JP2006229038A - Manufacturing method of multilayer printed wiring board - Google Patents
Manufacturing method of multilayer printed wiring board Download PDFInfo
- Publication number
- JP2006229038A JP2006229038A JP2005042247A JP2005042247A JP2006229038A JP 2006229038 A JP2006229038 A JP 2006229038A JP 2005042247 A JP2005042247 A JP 2005042247A JP 2005042247 A JP2005042247 A JP 2005042247A JP 2006229038 A JP2006229038 A JP 2006229038A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- compound
- insulating layer
- wiring board
- electrical insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000000034 method Methods 0.000 claims abstract description 82
- 239000000758 substrate Substances 0.000 claims abstract description 70
- 229920005989 resin Polymers 0.000 claims abstract description 65
- 239000011347 resin Substances 0.000 claims abstract description 65
- 150000001875 compounds Chemical class 0.000 claims abstract description 62
- 239000004020 conductor Substances 0.000 claims abstract description 60
- 229920000642 polymer Polymers 0.000 claims abstract description 55
- 229910052751 metal Inorganic materials 0.000 claims abstract description 50
- 239000002184 metal Substances 0.000 claims abstract description 50
- 238000007747 plating Methods 0.000 claims abstract description 42
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 25
- 238000010292 electrical insulation Methods 0.000 claims abstract description 24
- 239000010409 thin film Substances 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 13
- 230000001590 oxidative effect Effects 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 10
- 239000000945 filler Substances 0.000 claims description 6
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 3
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 246
- 239000000243 solution Substances 0.000 description 43
- 239000000047 product Substances 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- -1 triazine thiol compound Chemical class 0.000 description 20
- 239000010408 film Substances 0.000 description 17
- 125000002723 alicyclic group Chemical group 0.000 description 16
- 239000007788 liquid Substances 0.000 description 16
- 229920000098 polyolefin Polymers 0.000 description 15
- 238000007772 electroless plating Methods 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- 238000001035 drying Methods 0.000 description 13
- 239000003960 organic solvent Substances 0.000 description 13
- 238000006386 neutralization reaction Methods 0.000 description 12
- 230000009467 reduction Effects 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- 239000000178 monomer Substances 0.000 description 11
- 239000002966 varnish Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 125000003118 aryl group Chemical group 0.000 description 9
- 229920001971 elastomer Polymers 0.000 description 9
- 239000005060 rubber Substances 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000011256 inorganic filler Substances 0.000 description 8
- 229910003475 inorganic filler Inorganic materials 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 6
- 238000007598 dipping method Methods 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- 150000002391 heterocyclic compounds Chemical class 0.000 description 5
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 238000007788 roughening Methods 0.000 description 5
- QKVROWZQJVDFSO-UHFFFAOYSA-N 2-(2-methylimidazol-1-yl)ethanamine Chemical compound CC1=NC=CN1CCN QKVROWZQJVDFSO-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical group O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 150000007524 organic acids Chemical class 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000004643 cyanate ester Substances 0.000 description 3
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 3
- 125000004185 ester group Chemical group 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000007142 ring opening reaction Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- LHXNVCCLDTYJGT-UHFFFAOYSA-N 1-(oxiran-2-ylmethoxy)propan-2-ol Chemical compound CC(O)COCC1CO1 LHXNVCCLDTYJGT-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- JYLNVJYYQQXNEK-UHFFFAOYSA-N 3-amino-2-(4-chlorophenyl)-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(CN)C1=CC=C(Cl)C=C1 JYLNVJYYQQXNEK-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 239000004641 Diallyl-phthalate Substances 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 238000012644 addition polymerization Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- NXPHCVPFHOVZBC-UHFFFAOYSA-N hydroxylamine;sulfuric acid Chemical compound ON.OS(O)(=O)=O NXPHCVPFHOVZBC-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- LCSLWNXVIDKVGD-KQQUZDAGSA-N (3e,7e)-deca-3,7-diene Chemical compound CC\C=C\CC\C=C\CC LCSLWNXVIDKVGD-KQQUZDAGSA-N 0.000 description 1
- WLTSXAIICPDFKI-FNORWQNLSA-N (E)-3-dodecene Chemical compound CCCCCCCC\C=C\CC WLTSXAIICPDFKI-FNORWQNLSA-N 0.000 description 1
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- MHQVNWZWIUFNPL-UHFFFAOYSA-N 1-sulfanyl-1,2,4-triazole Chemical compound SN1C=NC=N1 MHQVNWZWIUFNPL-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- XGIDEUICZZXBFQ-UHFFFAOYSA-N 1h-benzimidazol-2-ylmethanethiol Chemical compound C1=CC=C2NC(CS)=NC2=C1 XGIDEUICZZXBFQ-UHFFFAOYSA-N 0.000 description 1
- YMJLEPMVGQBLHL-UHFFFAOYSA-N 1h-pyrazole-5-carbonitrile Chemical compound N#CC1=CC=NN1 YMJLEPMVGQBLHL-UHFFFAOYSA-N 0.000 description 1
- VMCICDADKZXNHW-UHFFFAOYSA-N 1h-triazin-2-amine Chemical compound NN1NC=CC=N1 VMCICDADKZXNHW-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- QLTXPYPAYKMBTK-UHFFFAOYSA-N 2-ethyl-1h-imidazole-5-carbodithioic acid Chemical compound CCC1=NC=C(C(S)=S)N1 QLTXPYPAYKMBTK-UHFFFAOYSA-N 0.000 description 1
- UKFXNYSRSFIZHZ-UHFFFAOYSA-N 2-ethyl-1h-imidazole-5-carbothioamide Chemical compound CCC1=NC=C(C(N)=S)N1 UKFXNYSRSFIZHZ-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- DTUIYOVMTFYCBZ-UHFFFAOYSA-N 2-methyl-1h-imidazole-5-carboxylic acid Chemical compound CC1=NC=C(C(O)=O)N1 DTUIYOVMTFYCBZ-UHFFFAOYSA-N 0.000 description 1
- SESYNEDUKZDRJL-UHFFFAOYSA-N 3-(2-methylimidazol-1-yl)propanenitrile Chemical compound CC1=NC=CN1CCC#N SESYNEDUKZDRJL-UHFFFAOYSA-N 0.000 description 1
- ZBUCUCTUJSXFRM-UHFFFAOYSA-N 3h-1,2,4-triazole-1,2-diamine Chemical compound NN1CN=CN1N ZBUCUCTUJSXFRM-UHFFFAOYSA-N 0.000 description 1
- ZNBNBTIDJSKEAM-UHFFFAOYSA-N 4-[7-hydroxy-2-[5-[5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-2-methyl-3-propanoyloxypentanoic acid Chemical compound C1C(O)C(C)C(C(C)C(OC(=O)CC)C(C)C(O)=O)OC11OC(C)(C2OC(C)(CC2)C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CC1 ZNBNBTIDJSKEAM-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- YATKABCHSRLDGQ-UHFFFAOYSA-N 5-benzyl-2-phenyl-1h-imidazole Chemical compound C=1C=CC=CC=1CC(N=1)=CNC=1C1=CC=CC=C1 YATKABCHSRLDGQ-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000694440 Colpidium aqueous Species 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- HPJSSVBSQYKPQE-UHFFFAOYSA-N N1C=NC=C1.NCCN1C(=NC=C1)C Chemical class N1C=NC=C1.NCCN1C(=NC=C1)C HPJSSVBSQYKPQE-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- UUQQGGWZVKUCBD-UHFFFAOYSA-N [4-(hydroxymethyl)-2-phenyl-1h-imidazol-5-yl]methanol Chemical compound N1C(CO)=C(CO)N=C1C1=CC=CC=C1 UUQQGGWZVKUCBD-UHFFFAOYSA-N 0.000 description 1
- KYUVFQQGUKEGPN-UHFFFAOYSA-N [Na].[Na].[Na].SC1=NC(=NC(=N1)S)S.CC=1N(C=CN1)CCC1=CC=NN=N1 Chemical compound [Na].[Na].[Na].SC1=NC(=NC(=N1)S)S.CC=1N(C=CN1)CCC1=CC=NN=N1 KYUVFQQGUKEGPN-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- GJYJYFHBOBUTBY-UHFFFAOYSA-N alpha-camphorene Chemical compound CC(C)=CCCC(=C)C1CCC(CCC=C(C)C)=CC1 GJYJYFHBOBUTBY-UHFFFAOYSA-N 0.000 description 1
- ZIXLDMFVRPABBX-UHFFFAOYSA-N alpha-methylcyclopentanone Natural products CC1CCCC1=O ZIXLDMFVRPABBX-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 description 1
- RJTANRZEWTUVMA-UHFFFAOYSA-N boron;n-methylmethanamine Chemical compound [B].CNC RJTANRZEWTUVMA-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910000378 hydroxylammonium sulfate Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000007719 peel strength test Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000012745 toughening agent Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
【課題】 信号損失が少なく、導体層の密着性に優れた多層プリント配線板を製造する。
【解決手段】 最外層が導体層である内層基板上に、絶縁性重合体と硬化剤とを含有する硬化性組成物を用いてなる未硬化又は半硬化の樹脂層を形成し、この表面に、金属に配位可能な構造を有する化合物を接触させた後、樹脂層を硬化して電気絶縁層を形成させ、次いで当該電気絶縁層表面に親水化処理した後、当該電気絶縁層表面を乾燥させ、更に金属に配位可能な構造を有する化合物を接触させ、その後めっき法により導体層を形成することを特徴とする多層プリント配線板の製造方法。
【選択図】 なしPROBLEM TO BE SOLVED: To produce a multilayer printed wiring board with little signal loss and excellent adhesion of a conductor layer.
An uncured or semi-cured resin layer made of a curable composition containing an insulating polymer and a curing agent is formed on an inner layer substrate whose outermost layer is a conductor layer, and the surface thereof is formed. After contacting a compound having a structure capable of coordinating with a metal, the resin layer is cured to form an electrical insulation layer, and then the surface of the electrical insulation layer is hydrophilized, and then the electrical insulation layer surface is dried. And a compound having a structure capable of coordinating with a metal is contacted, and then a conductor layer is formed by a plating method.
[Selection figure] None
Description
本発明は、多層プリント配線板の製造方法に関し、より詳しくはパターン密着性に優れた多層プリント配線板の製造方法に関する。 The present invention relates to a method for producing a multilayer printed wiring board, and more particularly to a method for producing a multilayer printed wiring board having excellent pattern adhesion.
電子機器の小型化、多機能化に伴って、電子機器に用いられている回路基板にも、より高密度化が要求されるようになってきている。
回路基板を高密度化するためには、回路基板を多層化するのが一般的である。多層回路基板は、通常、最外層に導体層が形成された内層基板の表面に、電気絶縁層を積層し、前記電気絶縁層の上に導体層を形成することによって得られる。電気絶縁層と導体層とは、必要に応じて、交互に数層積層することもできる。
As electronic devices become smaller and more multifunctional, circuit boards used in electronic devices are required to have higher density.
In order to increase the density of a circuit board, the circuit board is generally multilayered. A multilayer circuit board is usually obtained by laminating an electric insulation layer on the surface of an inner layer board having a conductor layer formed on the outermost layer, and forming a conductor layer on the electric insulation layer. The electrical insulating layer and the conductor layer can be alternately laminated in several layers as necessary.
多層回路基板においては、電気絶縁特性を得るため、内層基板の最外層として設けられた導体層と電気絶縁層との界面、及びこの電気絶縁層とその上に形成された導体層との界面などの層間における密着性が特に要求される。密着性向上については、例えば、特許文献1では、電気絶縁層の表面を粗化する方法が提案されている。また、特許文献2では、粗化後の電気絶縁層上に、ゴムや樹脂などの高分子成分を含有する無電解めっき用接着剤を塗布することが提案されている。特許文献3には、内層基板上の導体層を腐食液で化学的に粗化した後、表面を特定のトリアジンチオール化合物で接触処理してエポキシ樹脂などを含有する硬化性絶縁樹脂の層を形成し、更にこの電気絶縁層上に導体層を形成する技術が開示されている。 In a multilayer circuit board, in order to obtain electrical insulation characteristics, the interface between the conductor layer provided as the outermost layer of the inner layer board and the electrical insulation layer, and the interface between this electrical insulation layer and the conductor layer formed thereon, etc. The adhesion between the layers is particularly required. For improving the adhesion, for example, Patent Document 1 proposes a method of roughening the surface of the electrical insulating layer. Patent Document 2 proposes that an electroless plating adhesive containing a polymer component such as rubber or resin is applied on the electric insulating layer after roughening. In Patent Document 3, a conductive layer on an inner substrate is chemically roughened with a corrosive solution, and then the surface is contact-treated with a specific triazine thiol compound to form a layer of a curable insulating resin containing an epoxy resin or the like. Furthermore, a technique for forming a conductor layer on the electrical insulating layer is disclosed.
一方、電気絶縁層を粗化すると信号にノイズが入りやすくなり、表面粗さに起因する信号損失が発生することが知られている。信号の高周波化が進むにつれて、表皮効果の影響も大きくなり、この問題が重要視されるようになった。しかし、信号損失を抑制するために平滑な電気絶縁層表面に対してめっき法により導体層を形成すると、密着性が低下するという問題が生じる。
こうした、相反する二つの問題を解決するため、特許文献4では、最外層が導電体回路層(導体層)である内層基板上に、絶縁性重合体としてカルボキシル基含有重合体と、硬化剤として多価エポキシ化合物とを含有する硬化性組成物を用いて、未硬化又は半硬化の樹脂層を形成した後、前記樹脂層表面に、金属に配位可能な構造を有する化合物を接触させ、次いで前記樹脂層を硬化させて電気絶縁層を形成し、この電気絶縁層の表面に導体層を形成し、その後、導電体回路層(導体層)を形成する多層回路基板の製造方法が開示されている。この技術によって、平滑な電気絶縁層上に導体層を形成しても電気絶縁層と導体層との間の高い密着性と、低い信号損失とを同時に達成できるようになった。
On the other hand, it is known that when the electrical insulating layer is roughened, noise easily enters the signal and signal loss due to surface roughness occurs. As the frequency of signals increases, the effect of the skin effect increases, and this problem has come to be emphasized. However, when a conductor layer is formed by plating on a smooth electrical insulating layer surface in order to suppress signal loss, there arises a problem that adhesion is lowered.
In order to solve these two conflicting problems, in Patent Document 4, a carboxyl group-containing polymer as an insulating polymer and a curing agent as an insulating polymer on an inner layer substrate whose outermost layer is a conductor circuit layer (conductor layer). After forming an uncured or semi-cured resin layer using a curable composition containing a polyvalent epoxy compound, the surface of the resin layer is contacted with a compound having a structure capable of coordinating with a metal, A method of manufacturing a multilayer circuit board is disclosed in which the resin layer is cured to form an electrical insulation layer, a conductor layer is formed on the surface of the electrical insulation layer, and then a conductor circuit layer (conductor layer) is formed. Yes. With this technique, even when a conductor layer is formed on a smooth electrical insulating layer, high adhesion between the electrical insulating layer and the conductor layer and low signal loss can be achieved simultaneously.
ところで、従来の多層回路基板の製造の無電解めっき処理装置は、膨潤処理、親水化処理、中和還元処理、クリーナーコンディショナー処理、ソフトエッチ処理、酸洗処理、触媒付与処理、触媒活性化処理、無電解めっき処理、水洗処理をそれぞれ専用の処理槽で実施するように構成されている。そのため、各処理槽に基板を搬送する場合において、表面に付着している水などを除去する乾燥工程を経る場合がある。例えば、基板を親水化処理、又は親水化処理と中和還元処理とをした後に熱処理などにより乾燥して、次の工程まで搬送し、めっき法により導体層が形成される。 By the way, the electroless plating processing apparatus for manufacturing a conventional multilayer circuit board includes swelling processing, hydrophilization processing, neutralization reduction processing, cleaner conditioner processing, soft etch processing, pickling processing, catalyst application processing, catalyst activation processing, The electroless plating treatment and the water washing treatment are each performed in dedicated treatment tanks. Therefore, when a substrate is transported to each processing tank, a drying process for removing water or the like adhering to the surface may be performed. For example, the substrate is subjected to a hydrophilic treatment, or a hydrophilic treatment and a neutralization reduction treatment, and then dried by a heat treatment or the like, and conveyed to the next step, and a conductor layer is formed by a plating method.
そこで、本発明者らは、前記特許文献4の方法に従って、電気絶縁層を形成した基板に親水化処理、又は親水化処理と中和還元処理とを行った後、めっき法により電気絶縁層表面に導体層を形成することを試みた。ところが、その結果、電気絶縁層と導体層との間の十分な密着性が得られない場合のあることが分った。そして、更なる検討の結果、中和還元処理後の電気絶縁層表面が乾燥の程度によって、電気絶縁層と導体層との密着性が低下を起こす場合のあることを確認した。 Therefore, the present inventors performed a hydrophilization treatment or a hydrophilization treatment and a neutralization reduction treatment on the substrate on which the electrical insulation layer is formed according to the method of Patent Document 4, and then the surface of the electrical insulation layer by plating. An attempt was made to form a conductor layer. However, as a result, it has been found that sufficient adhesion between the electrical insulating layer and the conductor layer may not be obtained. As a result of further studies, it was confirmed that the adhesion between the electrical insulating layer and the conductor layer might be lowered depending on the degree of drying of the surface of the electrical insulating layer after the neutralization reduction treatment.
本発明は、前記の問題点を鑑みてなされたものであり、その目的は、親水化処理、又は親水化処理と中和還元処理とを行った後、乾燥した電気絶縁層に金属配位能を有する化合物を接触させ、その後めっき法により導体層を形成することで、電気絶縁層と導体層との間の密着性を向上でき、かつ、信号損失についての要求品質をも満たす多層回路基板の製造方法を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to perform a hydrophilization treatment, or a hydrophilization treatment and a neutralization reduction treatment, and then perform a metal coordination ability on a dried electrical insulating layer. Of a multilayer circuit board that can improve the adhesion between the electrical insulating layer and the conductor layer and satisfy the required quality for signal loss. It is to provide a manufacturing method.
前記目的を達成するため、本発明者らは、親水化処理、又は親水化処理と中和還元処理とを行った後に乾燥した、実質的に粗化されていない電気絶縁層表面に、めっき法により導体層を形成しても電気絶縁層と導体層との界面の高い密着性と少ない信号損失の両立を実現する多層回路基板を得るべく、鋭意検討を重ねた。その結果、親水化処理、又は親水化処理と中和還元処理とを行った後に乾燥した電気絶縁層表面に、金属配位可能な構造を有する化合物を接触させ、その上にめっきを成長させて導体層回路層を形成することにより、親水化処理後の電気絶縁層表面の乾燥の程度に拘わらず、前記密着性及び平坦性に優れる熱硬化性樹脂組成物が安定して得られることを見出し、この知見に基づいて本発明を完成するに至った。 In order to achieve the above-mentioned object, the present inventors performed a hydrophilization treatment, or a plating method on the surface of the electrically insulating layer which has been dried after the hydrophilization treatment and the neutralization reduction treatment, and has not been roughened. In order to obtain a multilayer circuit board that achieves both high adhesion at the interface between the electrical insulating layer and the conductor layer and low signal loss even when the conductor layer is formed by the above-mentioned method, intensive studies have been made. As a result, a compound having a structure capable of metal coordination is brought into contact with the surface of the electrical insulating layer which has been dried after the hydrophilization treatment or the hydrophilization treatment and the neutralization reduction treatment, and plating is grown thereon. It has been found that by forming the conductor layer circuit layer, the thermosetting resin composition having excellent adhesion and flatness can be stably obtained regardless of the degree of drying of the surface of the electrically insulating layer after the hydrophilic treatment. Based on this finding, the present invention has been completed.
かくして本発明によれば、以下の1〜5に記載の発明が提供される。
1.最外層が導体層である内層基板上に、絶縁性重合体と硬化剤とを含有する硬化性組成物を用いてなる未硬化又は半硬化の樹脂層を形成し、この表面に、金属に配位可能な構造を有する化合物を接触させた後、樹脂層を硬化して電気絶縁層を形成させ、次いで当該電気絶縁層表面に親水化処理した後、当該電気絶縁層表面を乾燥させ、更に金属に配位可能な構造を有する化合物を接触させ、その後めっき法により導体層を形成することを特徴とする多層プリント配線板の製造方法。
2.前記親水化処理が、過マンガン酸塩、クロム酸塩及び重クロム酸塩からなる群より選ばれる酸化性化合物の溶液と電気絶縁層表面とを接触させる方法である前記1に記載の多層プリント配線板の製造方法。
3.電気絶縁層が前記酸化性化合物の溶液に可溶な樹脂及び/又はフィラーを含有するものである前記1〜2のいずれかに記載の多層プリント配線板の製造方法。
4.電気絶縁層に形成された金属薄膜層を加熱処理する工程を含む前記1〜3のいずれかに記載の多層プリント配線板の製造方法。
5.請求項1〜4のいずれかに記載の方法により製造された多層プリント配線板。
Thus, according to the present invention, the following inventions 1 to 5 are provided.
1. On the inner layer substrate whose outermost layer is a conductor layer, an uncured or semi-cured resin layer using a curable composition containing an insulating polymer and a curing agent is formed, and this surface is provided with a metal. After contacting a compound having a recognizable structure, the resin layer is cured to form an electrical insulation layer, and then the surface of the electrical insulation layer is hydrophilized, and then the surface of the electrical insulation layer is dried, and further the metal A method for producing a multilayer printed wiring board, comprising contacting a compound having a coordinable structure with a conductive layer after plating.
2. 2. The multilayer printed wiring according to 1 above, wherein the hydrophilization treatment is a method in which a solution of an oxidizing compound selected from the group consisting of permanganate, chromate and dichromate is brought into contact with the surface of the electrical insulating layer. A manufacturing method of a board.
3. The manufacturing method of the multilayer printed wiring board in any one of said 1-2 whose electrical insulation layer contains resin and / or a filler soluble in the solution of the said oxidizing compound.
4). The manufacturing method of the multilayer printed wiring board in any one of said 1-3 including the process of heat-processing the metal thin film layer formed in the electrical insulating layer.
5. The multilayer printed wiring board manufactured by the method in any one of Claims 1-4.
本発明者によれば、親水化処理後に乾燥した、実質的に粗化されていない電気絶縁層表面に、めっき法により導体層を形成しても電気絶縁層と導体層との界面の高い密着性と少ない信号損失の両立を実現する多層回路基板を得ることができる。 According to the present inventor, even if a conductor layer is formed by plating on the surface of the electrically insulating layer that is dried after the hydrophilization treatment and is not substantially roughened, the interface between the electrically insulating layer and the conductor layer has high adhesion. A multilayer circuit board that realizes both compatibility and low signal loss can be obtained.
本発明の多層プリント配線板の製造方法は、次の5つの工程に分けることが出来る。
(工程A)最外層が導体層(以下、第一の導体層ということがある)である内層基板上に、絶縁性重合体と硬化剤とを含有する硬化性組成物を用いてなる未硬化又は半硬化の樹脂層を形成し、この表面に、金属に配位可能な構造を有する化合物を接触させる。
(工程B)前記樹脂層を硬化させて電気絶縁層を形成し、得られた電気絶縁層の表面に、親水化処理を行う。ここで親水化処理に続いて、工程Cを行う前に、電気絶縁層の表面に、中和還元処理を行うこともできる。
(工程C)前記電気絶縁層を乾燥させる。
(工程D)前記電気絶縁層の表面に、金属に配位可能な構造を有する化合物を接触させる。
(工程E)前記電気絶縁層上に、めっき法により導体層(以下、第二の導体層ということがある)を形成する。
各工程について、以下に詳述する。
The manufacturing method of the multilayer printed wiring board of this invention can be divided into the following five processes.
(Process A) Uncured using a curable composition containing an insulating polymer and a curing agent on an inner layer substrate whose outermost layer is a conductor layer (hereinafter sometimes referred to as a first conductor layer). Alternatively, a semi-cured resin layer is formed, and a compound having a structure capable of coordinating with a metal is brought into contact with this surface.
(Step B) The resin layer is cured to form an electric insulation layer, and the surface of the obtained electric insulation layer is subjected to a hydrophilic treatment. Here, following the hydrophilization treatment, the neutralization reduction treatment can be performed on the surface of the electrical insulating layer before performing the step C.
(Step C) The electrical insulating layer is dried.
(Step D) A compound having a structure capable of coordinating with a metal is brought into contact with the surface of the electrical insulating layer.
(Step E) A conductor layer (hereinafter sometimes referred to as a second conductor layer) is formed on the electrical insulating layer by a plating method.
Each step will be described in detail below.
(工程A)
この工程に係わる内層基板は、1又は2以上の電気絶縁層と導体層とをそれぞれ有し、かつ最外層が導体層である基板である。
内層基板を構成する導体層は、通常、導電性金属からなる。
内層基板を構成する電気絶縁層は、酸化ケイ素やアルミナなどの無機化合物、又は、脂環式オレフィン重合体、エポキシ樹脂、マレイミド樹脂、(メタ)アクリル樹脂、ジアリルフタレート樹脂、トリアジン樹脂、芳香族ポリエーテル重合体、シアネートエステル重合体、ポリイミドなどの絶縁性重合体などの有機化合物からなる。また、内層基板は、強度向上のためにガラス繊維、樹脂繊維などを含有させたものであってもよい。
最外層の導体層の厚みを除く内層基板の厚みは、通常10μm〜2mm、好ましくは30μm〜1.6mm、より好ましくは40μm〜1mmである。
このような内層基板の具体例として、プリント配線基板や絶縁基板などが挙げられる。これは電気絶縁層の表面に導体層が形成されたものである。
(Process A)
The inner layer substrate related to this step is a substrate having one or more electrical insulating layers and conductor layers, and the outermost layer being a conductor layer.
The conductor layer constituting the inner layer substrate is usually made of a conductive metal.
The electrical insulating layer constituting the inner layer substrate may be an inorganic compound such as silicon oxide or alumina, or an alicyclic olefin polymer, an epoxy resin, a maleimide resin, a (meth) acrylic resin, a diallyl phthalate resin, a triazine resin, or an aromatic poly It consists of organic compounds, such as ether polymers, cyanate ester polymers, and insulating polymers such as polyimide. In addition, the inner layer substrate may contain glass fibers, resin fibers, etc. in order to improve strength.
The thickness of the inner layer substrate excluding the thickness of the outermost conductor layer is usually 10 μm to 2 mm, preferably 30 μm to 1.6 mm, more preferably 40 μm to 1 mm.
Specific examples of such an inner layer substrate include a printed wiring board and an insulating substrate. In this case, a conductor layer is formed on the surface of the electrical insulating layer.
この内層基板上には、絶縁性重合体と硬化剤とを含有する硬化性組成物を用いて、未硬化又は半硬化の樹脂層が形成される。
ここで未硬化の樹脂層とは、樹脂層を構成する絶縁性重合体が溶解可能な溶剤に、実質的に樹脂層全部が溶解可能な状態のものである。半硬化の樹脂層とは、加熱によって更に硬化しうる程度に硬化された状態のものであり、好ましくは、樹脂層を構成している絶縁性重合体が溶解可能な溶剤に一部(具体的には7重量%以上)が溶解する状態のものであるか、当該溶剤中に樹脂層を24時間浸漬した時の体積の膨潤率が、浸漬前の200%以上のものである。
On this inner layer substrate, an uncured or semi-cured resin layer is formed using a curable composition containing an insulating polymer and a curing agent.
Here, the uncured resin layer is in a state where substantially the entire resin layer can be dissolved in a solvent in which the insulating polymer constituting the resin layer can be dissolved. The semi-cured resin layer is in a state of being cured to such an extent that it can be further cured by heating, and is preferably partially (specifically, in a solvent in which the insulating polymer constituting the resin layer can be dissolved. 7% by weight or more) or a swelling ratio of the volume when the resin layer is immersed in the solvent for 24 hours is 200% or more before immersion.
未硬化又は半硬化の樹脂層を形成するのに用いる硬化性組成物を構成する絶縁性重合体は、電気絶縁性を有するものであれば制限されない。例えばエポキシ樹脂、マレイミド樹脂、(メタ)アクリル樹脂、ジアリルフタレート樹脂、トリアジン樹脂、脂環式オレフィン重合体、芳香族ポリエーテル重合体、ベンゾシクロブテン重合体、シアネートエステル重合体、液晶ポリマー、ポリイミドなどが挙げられる。これらの中でも、脂環式オレフィン重合体、芳香族ポリエーテル重合体、ベンゾシクロブテン重合体、シアネートエステル重合体又はポリイミドが好ましく、脂環式オレフィン重合体又は芳香族ポリエーテル重合体が特に好ましく、脂環式オレフィン重合体がとりわけ好ましい。 The insulating polymer constituting the curable composition used for forming the uncured or semi-cured resin layer is not limited as long as it has electrical insulation. For example, epoxy resin, maleimide resin, (meth) acrylic resin, diallyl phthalate resin, triazine resin, alicyclic olefin polymer, aromatic polyether polymer, benzocyclobutene polymer, cyanate ester polymer, liquid crystal polymer, polyimide, etc. Is mentioned. Among these, alicyclic olefin polymers, aromatic polyether polymers, benzocyclobutene polymers, cyanate ester polymers or polyimides are preferred, alicyclic olefin polymers or aromatic polyether polymers are particularly preferred, Alicyclic olefin polymers are particularly preferred.
絶縁性重合体の重量平均分子量に格別な制限はないが、通常10,000〜1,000,000、好ましくは50,000〜500,000である。酸化処理による電気絶縁層の粗さの程度を制御しやすい点から10,000〜1,000,000の重量平均分子量Mwを有する重合体が、硬化性組成物に含まれる絶縁性重合体成分100重量部中、20重量部以上、好ましくは30重量部以上存在するのが望ましい。
本発明において、重量平均分子量Mwは、ゲル・パーミエーション・クロマトグラフィー(GPC)で測定されるポリスチレン又はポリイソプレン換算の重量平均分子量である。
Although there is no special restriction | limiting in the weight average molecular weight of an insulating polymer, Usually, 10,000-1,000,000, Preferably it is 50,000-500,000. Insulating polymer component 100 in which a polymer having a weight average molecular weight Mw of 10,000 to 1,000,000 is contained in the curable composition is easy to control the degree of roughness of the electrical insulating layer by the oxidation treatment. It is desirable that 20 parts by weight or more, preferably 30 parts by weight or more is present in the parts by weight.
In the present invention, the weight average molecular weight Mw is a weight average molecular weight in terms of polystyrene or polyisoprene measured by gel permeation chromatography (GPC).
とりわけ好ましい絶縁性重合体である脂環式オレフィン重合体は、脂環構造を有する不飽和炭化水素の重合体である。脂環式オレフィン重合体の具体例としては、ノルボルネン系単量体の開環重合体及びその水素添加物、ノルボルネン系単量体の付加重合体、ノルボルネン系単量体とビニル化合物との付加重合体、単環シクロアルケン重合体、脂環式共役ジエン重合体、ビニル系脂環式炭化水素重合体及びその水素添加物、芳香族オレフィン重合体の芳香環水素添加物などが挙げられる。これらの中でも、ノルボルネン系単量体の開環重合体及びその水素添加物、ノルボルネン系単量体の付加重合体、ノルボルネン系単量体とビニル化合物との付加重合体、芳香族オレフィン重合体の芳香環水素添加物が好ましく、特にノルボルネン系単量体の開環重合体の水素添加物が好ましい。 An alicyclic olefin polymer which is a particularly preferable insulating polymer is a polymer of an unsaturated hydrocarbon having an alicyclic structure. Specific examples of alicyclic olefin polymers include ring-opening polymers of norbornene monomers and hydrogenated products thereof, addition polymers of norbornene monomers, addition weights of norbornene monomers and vinyl compounds. Examples thereof include a polymer, a monocyclic cycloalkene polymer, an alicyclic conjugated diene polymer, a vinyl alicyclic hydrocarbon polymer and a hydrogenated product thereof, and an aromatic ring hydrogenated product of an aromatic olefin polymer. Among these, ring-opening polymers of norbornene monomers and hydrogenated products thereof, addition polymers of norbornene monomers, addition polymers of norbornene monomers and vinyl compounds, aromatic olefin polymers An aromatic ring hydrogenated product is preferable, and a hydrogenated product of a ring-opening polymer of a norbornene monomer is particularly preferable.
脂環式オレフィン重合体は、極性基を有するものが好ましい。極性基としては、ヒドロキシル基、カルボキシル基、アルコキシル基、エポキシ基、グリシジル基、オキシカルボニル基、カルボニル基、アミノ基、エステル基、カルボン酸無水物基などが挙げられ、特に、カルボキシル基又はカルボン酸無水物(カルボニルオキシカルボニル)基が好適である。 The alicyclic olefin polymer preferably has a polar group. Examples of the polar group include a hydroxyl group, a carboxyl group, an alkoxyl group, an epoxy group, a glycidyl group, an oxycarbonyl group, a carbonyl group, an amino group, an ester group, and a carboxylic acid anhydride group. An anhydride (carbonyloxycarbonyl) group is preferred.
脂環式オレフィン重合体は、通常、8−エチル−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エンやトリシクロ[4.3.0.12,5]デカ−3,7−ジエンなどのノルボルネン環を有する脂環式オレフィンを付加重合又は開環重合し、そして必要に応じて不飽和結合部分を水素化することによって、或いは芳香族オレフィンを付加重合し、そして当該重合体の芳香環部分を水素化することによって得られる。また、極性基を有する脂環式オレフィン重合体は、例えば、1)前記脂環式オレフィン重合体に極性基を変性反応により導入することによって、2)極性基を含有する単量体を共重合成分として共重合することによって、あるいは3)エステル基などの極性基を含有する単量体を共重合成分として共重合した後、エステル基などを加水分解することによって得られる。
また、脂環式オレフィン重合体は、脂環式オレフィン及び/又は芳香族オレフィンと、これら共重合可能な単量体(例えば、1−ヘキセンなど)とを共重合して得ることもできる。
The alicyclic olefin polymer is usually 8-ethyl-tetracyclo [4.4.0.1 2,5 . Addition polymerization or ring-opening polymerization of an alicyclic olefin having a norbornene ring such as 1 7,10 ] dodec-3-ene or tricyclo [4.3.0.1 2,5 ] deca-3,7-diene, If necessary, it can be obtained by hydrogenating the unsaturated bond portion, or by addition polymerization of an aromatic olefin and hydrogenating the aromatic ring portion of the polymer. The alicyclic olefin polymer having a polar group is, for example, 1) by introducing a polar group into the alicyclic olefin polymer by a modification reaction, and 2) copolymerizing a monomer containing the polar group. It can be obtained by copolymerization as a component, or 3) by copolymerizing a monomer containing a polar group such as an ester group as a copolymerization component and then hydrolyzing the ester group.
Moreover, an alicyclic olefin polymer can also be obtained by copolymerizing an alicyclic olefin and / or an aromatic olefin, and these monomers (for example, 1-hexene etc.) which can be copolymerized.
脂環式オレフィン重合体のガラス転移温度は、使用目的に応じて適宜選択できるが、通常50℃以上、好ましくは70℃以上、より好ましくは100℃以上、最も好ましくは125℃以上である。 The glass transition temperature of the alicyclic olefin polymer can be appropriately selected according to the purpose of use, but is usually 50 ° C. or higher, preferably 70 ° C. or higher, more preferably 100 ° C. or higher, and most preferably 125 ° C. or higher.
硬化剤は、加熱により架橋構造を形成し、硬化するものであればよい。硬化剤としては、イオン性硬化剤、ラジカル性硬化剤又はイオン性とラジカル性とを兼ね備えた硬化剤等、公知の熱硬化剤を用いることができ、特にビスフェノールAビス(プロピレングリコールグリシジルエーテル)エーテルのようなグリシジルエーテル型エポキシ化合物、脂環式エポキシ化合物、グリシジルエステル型エポキシ化合物などの多価エポキシ化合物が好ましい。硬化剤の配合割合は、絶縁性重合体100重量部に対して、通常1〜100重量部、好ましくは5〜80重量部、より好ましくは10〜50重量部の範囲である。 Any curing agent may be used as long as it forms a crosslinked structure by heating and cures. As the curing agent, a known thermosetting agent such as an ionic curing agent, a radical curing agent, or a curing agent having both ionic and radical properties can be used, and in particular, bisphenol A bis (propylene glycol glycidyl ether) ether. Polyhydric epoxy compounds such as glycidyl ether type epoxy compounds, alicyclic epoxy compounds, and glycidyl ester type epoxy compounds are preferred. The mixing ratio of the curing agent is usually in the range of 1 to 100 parts by weight, preferably 5 to 80 parts by weight, and more preferably 10 to 50 parts by weight with respect to 100 parts by weight of the insulating polymer.
また、硬化剤の他に硬化促進剤を併用することで、耐熱性の高い電気絶縁膜を得るのが容易になる。例えば硬化剤として多価エポキシ化合物を用いた場合には、トリアゾール化合物やイミダゾール化合物などの第3級アミン化合物や三弗化ホウ素錯化合物などの硬化促進剤を使用することもできる。 Moreover, it becomes easy to obtain an electrical insulating film having high heat resistance by using a curing accelerator in addition to the curing agent. For example, when a polyvalent epoxy compound is used as the curing agent, a curing accelerator such as a tertiary amine compound such as a triazole compound or an imidazole compound or a boron trifluoride complex compound may be used.
硬化性樹脂組成物中には、工程Bにおける電気絶縁層の親水化処理において、電気絶縁層表面に酸化処理液を接触させる方法を採用する場合、当該酸化処理液に溶解可能な樹脂成分やフィラーを含むのが良い。酸化処理液に溶解可能な樹脂成分については、工程Bの説明において詳述する。
また、本発明に係る硬化性組成物には、所望に応じて、その他の成分を配合することができる。例えば、他の成分としては、難燃剤、軟質重合体、耐熱安定剤、耐候安定剤、老化防止剤、レベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス、乳剤、充填剤、磁性体、誘電特性調整剤、靭性剤などが挙げられる。その配合割合は、本発明の目的を損ねない範囲で適宜選択される。
In the curable resin composition, in the case of adopting a method of bringing the oxidation treatment liquid into contact with the surface of the electric insulation layer in the hydrophilic treatment of the electric insulation layer in the step B, a resin component or filler that can be dissolved in the oxidation treatment liquid It is good to include. The resin component that can be dissolved in the oxidation treatment liquid will be described in detail in the description of the step B.
Moreover, other components can be mix | blended with the curable composition concerning this invention as needed. For example, other components include flame retardants, soft polymers, heat stabilizers, weathering stabilizers, anti-aging agents, leveling agents, antistatic agents, slip agents, antiblocking agents, antifogging agents, lubricants, dyes, pigments Natural oils, synthetic oils, waxes, emulsions, fillers, magnetic materials, dielectric property modifiers, tougheners and the like. The blending ratio is appropriately selected within a range that does not impair the object of the present invention.
通常、上述した硬化性組成物を構成する各成分を、液状媒体に配合し、硬化性組成物のワニスにすると樹脂層の形成が容易になる。ワニス調製に用いる溶剤としては、例えば、トルエン、キシレン、エチルベンゼン、トリメチルベンゼンなどの芳香族炭化水素系有機溶剤;n−ペンタン、n−ヘキサン、n−ヘプタンなどの脂肪族炭化水素系有機溶剤;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系有機溶剤;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンなどのハロゲン化炭化水素系有機溶剤;メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノンなどのケトン系有機溶剤などを挙げることができる。
ワニスを得る方法に格別な制限はなく、例えば、硬化性組成物を構成する各成分と有機溶媒とを混合することにより得られる。各成分の混合方法は、常法に従えばよく、例えば、攪拌子とマグネチックスターラーを使用した攪拌、高速ホモジナイザー、ディスパージョン、遊星攪拌機、二軸攪拌機、ボールミル、三本ロールなどを使用した方法などで行うことができる。これらを混合する際の温度は、硬化剤による反応が作業性に影響を及ぼさない範囲であり、さらには安全性の点から混合時に使用する有機溶剤の沸点以下が好ましい。
有機溶剤の使用量は、厚みの制御や平坦性向上などの目的に応じて適宜選択されるが、ワニスの固形分濃度が、通常5〜70重量%、好ましくは10〜65重量%、より好ましくは20〜60重量%になる範囲である。
Usually, when each component which comprises the curable composition mentioned above is mix | blended with a liquid medium and it is set as the varnish of a curable composition, formation of a resin layer becomes easy. Examples of the solvent used for preparing the varnish include aromatic hydrocarbon organic solvents such as toluene, xylene, ethylbenzene and trimethylbenzene; aliphatic hydrocarbon organic solvents such as n-pentane, n-hexane and n-heptane; Aliphatic hydrocarbon organic solvents such as pentane and cyclohexane; Halogenated hydrocarbon organic solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene; Ketone organic solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone Can be mentioned.
There is no special restriction | limiting in the method of obtaining a varnish, For example, it can obtain by mixing each component which comprises a curable composition, and an organic solvent. The mixing method of each component may be in accordance with ordinary methods, for example, stirring using a stirrer and a magnetic stirrer, high speed homogenizer, dispersion, planetary stirrer, twin screw stirrer, ball mill, three rolls, etc. And so on. The temperature at the time of mixing is in a range where the reaction by the curing agent does not affect the workability, and is preferably below the boiling point of the organic solvent used at the time of mixing from the viewpoint of safety.
The amount of the organic solvent used is appropriately selected according to the purpose of controlling the thickness or improving the flatness, but the solid content concentration of the varnish is usually 5 to 70% by weight, preferably 10 to 65% by weight, more preferably. Is in the range of 20 to 60% by weight.
内層基板上に樹脂層を形成する方法に格別な制限はないが、内層基板と接するように、絶縁性重合体と硬化剤とを含有する硬化性組成物のフィルム状又はシート状成形物を貼り合わせて樹脂層を形成する方法(A1)や、内層基板上に絶縁性重合体と硬化剤とを含有する硬化性組成物のワニスを塗布し、乾燥させて、未硬化又は半硬化の樹脂層を形成する方法(A2)が挙げられる。
樹脂層を硬化して得られる電気絶縁層上に形成する金属薄膜層との密着性の面内均一性が高い点から方法(A1)によって樹脂層を形成させる方が好ましい。
There is no particular limitation on the method of forming the resin layer on the inner layer substrate, but a film-like or sheet-like molded product of a curable composition containing an insulating polymer and a curing agent is pasted so as to contact the inner layer substrate. A method (A1) for forming a resin layer together, or applying a varnish of a curable composition containing an insulating polymer and a curing agent on an inner layer substrate and drying to apply an uncured or semi-cured resin layer The method (A2) which forms is mentioned.
It is preferable to form the resin layer by the method (A1) from the viewpoint of high in-plane uniformity of adhesion with the metal thin film layer formed on the electrical insulating layer obtained by curing the resin layer.
方法(A1)によって未硬化又は半硬化の樹脂層を形成する場合、内層基板表面の導体層と電気絶縁層との密着力を向上させるために、硬化性組成物のフィルム状又はシート状成形体を貼り合わせる前に、導体層が形成された内層基板の表面を前処理することが好ましい。前処理の方法としては、特に限定されず公知の技術が使える。例えば、内層基板表面の導体層が銅からなるものであれば、強アルカリ酸化性溶液を内層基板表面に接触させて第一の導体層表面に、房状の酸化銅の層を形成して粗化する酸化処理方法、第一の導体層表面を先の方法で酸化した後に水素化ホウ素ナトリウム、ホルマリンなどで還元する方法、及び第一の導体層にめっきを析出させ粗化する方法、有機酸と接触させて、第一の導体層の銅の粒界を溶出して粗化する方法、チオール化合物やシラン化合物などによりプライマー層を形成する方法等が挙げられる。この内、微細な配線パターンの形状が維持されやすい観点から、有機酸と接触させて第一の導体層の銅の粒界を溶出して粗化する方法、チオール化合物やシラン化合物などによりプライマー層を形成する方法が好ましい。 In the case of forming an uncured or semi-cured resin layer by the method (A1), in order to improve the adhesion between the conductor layer on the inner substrate surface and the electrical insulating layer, a film-shaped or sheet-shaped molded body of the curable composition It is preferable to pretreat the surface of the inner layer substrate on which the conductor layer is formed before bonding the layers. The pretreatment method is not particularly limited, and a known technique can be used. For example, if the conductor layer on the inner layer substrate is made of copper, a strong alkaline oxidizing solution is brought into contact with the inner layer substrate surface to form a tufted copper oxide layer on the first conductor layer surface. Oxidation method, method of oxidizing the surface of the first conductor layer by the previous method and then reducing with sodium borohydride, formalin, etc., method of depositing and roughening the plating on the first conductor layer, organic acid And a method of eluting and roughening the copper grain boundary of the first conductor layer, a method of forming a primer layer with a thiol compound or a silane compound, and the like. Among these, from the viewpoint of easily maintaining the shape of the fine wiring pattern, the primer layer is formed by a method of eluting and roughening the copper grain boundary of the first conductor layer by contacting with an organic acid, a thiol compound or a silane compound, etc. The method of forming is preferred.
方法(A1)において用いる硬化性組成物のフィルム状又はシート状成形物の厚みは、通常0.1〜150μm、好ましくは0.5〜100μm、より好ましくは1.0〜80μmである。 The thickness of the film-like or sheet-like molded product of the curable composition used in the method (A1) is usually 0.1 to 150 μm, preferably 0.5 to 100 μm, more preferably 1.0 to 80 μm.
このフィルム状又はシート状成形物は、通常、硬化性組成物を、溶液キャスト法や溶融キャスト法などにより成形されたものである。溶液キャスト法により成形する場合は、ワニスを支持体に塗布した後に有機溶剤を乾燥除去する。
溶液キャスト法に使用する支持体として、樹脂フィルム(キャリアフィルム)
や金属箔などが挙げられる。樹脂フィルムとしては、通常、熱可塑性樹脂フィルムが用いられ、具体的には、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリエチレンフィルム、ポリカーボネイトフィルム、ポリエチレンナフタレートフィルム、ポリアリレートフィルム、ナイロンフィルムなどが挙げられる。これら樹脂フィルムの中、耐熱性や耐薬品性、積層後の剥離性などの観点からポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルムが好ましい。金属箔としては、例えば、銅箔、アルミ箔、ニッケル箔、クロム箔、金箔、銀箔などが挙げられる。導電性が良好で安価である点から、銅箔、特に電解銅箔や圧延銅箔が好適である。支持体の厚さは特に制限されないが、作業性等の観点から、通常1μm〜150μm、好ましくは2μm〜100μm、より好ましくは3μm〜50μmである。支持体の表面平均粗さは、Raが300nm以下で好ましくは150nm以下、より好ましくは100nm以下である。支持体の表面平均粗さRaが大きすぎると、電気絶縁層の表面平均粗さRaが大きくなり微細な導体パターンの形成が困難になる。
This film-like or sheet-like molded product is usually obtained by molding a curable composition by a solution casting method, a melt casting method, or the like. In the case of molding by the solution casting method, the organic solvent is dried and removed after applying the varnish to the support.
Resin film (carrier film) as a support used in the solution casting method
And metal foil. As the resin film, a thermoplastic resin film is usually used. Specific examples include a polyethylene terephthalate film, a polypropylene film, a polyethylene film, a polycarbonate film, a polyethylene naphthalate film, a polyarylate film, and a nylon film. Among these resin films, a polyethylene terephthalate film and a polyethylene naphthalate film are preferable from the viewpoints of heat resistance, chemical resistance, peelability after lamination, and the like. Examples of the metal foil include copper foil, aluminum foil, nickel foil, chrome foil, gold foil, and silver foil. From the viewpoint of good conductivity and low cost, a copper foil, particularly an electrolytic copper foil or a rolled copper foil is preferred. The thickness of the support is not particularly limited, but is usually 1 μm to 150 μm, preferably 2 μm to 100 μm, more preferably 3 μm to 50 μm from the viewpoint of workability and the like. The surface average roughness of the support is such that Ra is 300 nm or less, preferably 150 nm or less, more preferably 100 nm or less. When the surface average roughness Ra of the support is too large, the surface average roughness Ra of the electrical insulating layer is increased and it is difficult to form a fine conductor pattern.
支持体に硬化性組成物のワニスを塗布する方法として、デイップコート、ロールコート、カーテンコート、ダイコート、スリットコートなどの方法が挙げられる。また有機溶剤の除去乾燥の条件は、有機溶剤の種類により適宜選択され、乾燥温度は、通常20〜300℃、好ましくは30〜200℃であり、乾燥時間は、通常30秒〜1時間、好ましくは1分〜30分である。 Examples of the method for applying the varnish of the curable composition to the support include dip coating, roll coating, curtain coating, die coating, and slit coating. The conditions for removing and drying the organic solvent are appropriately selected depending on the type of the organic solvent, the drying temperature is usually 20 to 300 ° C., preferably 30 to 200 ° C., and the drying time is usually 30 seconds to 1 hour, preferably Is 1 to 30 minutes.
方法(A1)において、この硬化性組成物のフィルム状又はシート状成形物を内層基板上に積層する方法に格別な制限はないが、例えば、支持体付きのフィルム状又はシート状成形物を、当該成形物が導体層に接するように重ね合わせ、加圧ラミネータ、プレス、真空ラミネータ、真空プレス、ロールラミネータなどの加圧機を使用して加熱圧着(ラミネーション)して、基板表面と成形物との界面に、実質的な空隙が存在しないように両者を結合させる方法が挙げられる。加熱圧着は、配線への埋め込み性を向上させ、気泡等の発生を抑えるために真空下で行うのが好ましい。加熱圧着時の温度は、通常30〜250℃、好ましくは70〜200℃、圧着力は、通常10kPa〜20MPa、好ましくは100kPa〜10MPa、圧着時間は、通常30秒〜5時間、好ましくは1分〜3時間であり、通常100kPa〜1Pa、好ましくは40kPa〜10Paに雰囲気を減圧する。 In the method (A1), there is no particular limitation on the method of laminating the film-shaped or sheet-shaped molded product of the curable composition on the inner layer substrate. For example, a film-shaped or sheet-shaped molded product with a support is Lamination is performed so that the molded product is in contact with the conductor layer, and pressure bonding (lamination) is performed using a pressure laminator, a press, a vacuum laminator, a vacuum press, a roll laminator, etc. A method of bonding the two so that there is no substantial void at the interface is mentioned. The thermocompression bonding is preferably performed under vacuum in order to improve the embedding property in the wiring and suppress the generation of bubbles and the like. The temperature during thermocompression bonding is usually 30 to 250 ° C., preferably 70 to 200 ° C., the crimping force is usually 10 kPa to 20 MPa, preferably 100 kPa to 10 MPa, and the crimping time is usually 30 seconds to 5 hours, preferably 1 minute. -3 hours, and the pressure is usually reduced to 100 kPa to 1 Pa, preferably 40 kPa to 10 Pa.
内層基板に積層する前記成形物は2以上であってもよく、例えば、電気絶縁層の平坦性を向上させる目的や、電気絶縁層の厚みを増す目的で、前記成形物が貼り合わせられた内層基板に、当該成形物と接するように別のフィルム状又はシート状成形物を貼り合わせてもよい。内層基板に複数のフィルム状又はシート状成形物を貼り合わせて、未硬化又は半硬化の樹脂層を形成する場合、金属に配位可能な構造を有する化合物と接触するのは、最後に積層した成形物となる。 The number of the molded products laminated on the inner layer substrate may be two or more. For example, for the purpose of improving the flatness of the electrical insulating layer or increasing the thickness of the electrical insulating layer, the inner layer on which the molded product is bonded. Another film-shaped or sheet-shaped molded product may be bonded to the substrate so as to be in contact with the molded product. When an uncured or semi-cured resin layer is formed by laminating a plurality of film-like or sheet-like molded products to the inner layer substrate, the last contact with the compound having a structure capable of coordinating to the metal is performed. It becomes a molded product.
方法(A2)によって未硬化又は半硬化の樹脂層を形成する場合、上述した硬化性組成物のワニスを、内層基板上に直接塗布し、乾燥すればよい。塗布や乾燥の方法や条件などは、硬化性組成物のフィルム状又はシート状成形物を形成するのと同様でよい。 When an uncured or semi-cured resin layer is formed by the method (A2), the varnish of the curable composition described above may be directly applied onto the inner layer substrate and dried. The method and conditions for application and drying may be the same as those for forming a film-like or sheet-like molded product of the curable composition.
(工程A)においては、内層基板上に形成された未硬化又は半硬化の樹脂層表面に、金属に配位可能な構造を有する化合物を接触させる。内層基板上に硬化性組成物のフィルム状又はシート状成形物を貼り合わせて樹脂層を形成するに際し、成形物として支持体付きの成形物を用いた場合には、この支持体を剥がした後に、この工程を行う。 In (Step A), a compound having a structure capable of coordinating with a metal is brought into contact with the surface of an uncured or semi-cured resin layer formed on the inner layer substrate. When forming a resin layer by laminating a film-like or sheet-like molded product of the curable composition on the inner layer substrate, when a molded product with a support is used as the molded product, the support is peeled off. This step is performed.
金属配位能を有する化合物(以下、配位構造含有化合物ということがある)は、金属に配意することができる官能基を有するものであり、好ましい具体例としては、アミノ基、チオール基、カルボキシル基、シアノ基など金属に配位可能な官能基を有する化合物や金属との配位能を有する複素環化合物などの非共有電子対を有する化合物が挙げられる。中でも窒素原子、酸素原子、又は硫黄原子を環内に含有する複素環化合物が特に好ましく、とりわけ窒素原子を含有する複素環化合物が好ましい。もちろんこうした複素環化合物は、更に金属に配位可能な他の官能基をも有するものであってもよい。更に金属に配位可能な官能基をも有する複素環化合物は、より高いパターン密着性を与える点で好ましい。 A compound having a metal coordination ability (hereinafter, sometimes referred to as a coordination structure-containing compound) has a functional group capable of giving care to a metal. Preferred specific examples include an amino group, a thiol group, Examples thereof include compounds having a lone pair such as a compound having a functional group capable of coordinating to a metal such as a carboxyl group or a cyano group, or a heterocyclic compound having a coordination ability with a metal. Among these, a heterocyclic compound containing a nitrogen atom, oxygen atom or sulfur atom in the ring is particularly preferred, and a heterocyclic compound containing a nitrogen atom is particularly preferred. Of course, such a heterocyclic compound may further have another functional group capable of coordinating to a metal. Furthermore, a heterocyclic compound having a functional group capable of coordinating to a metal is preferable in terms of providing higher pattern adhesion.
配位構造含有化合物の中でも硬化性樹脂組成物中の成分と反応し、これらの化合物が次の工程で形成される樹脂基材表面に強固に保持される点から、イミダゾール、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−メルカプトメチルベンゾイミダゾール、2−エチルイミダゾール−4−ジチオカルボン酸、2−メチルイミダゾール−4−カルボン酸、1−(2−アミノエチル)−2−メチルイミダゾール、1−(2−シアノエチル)−2−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、ベンゾイミダゾール、2−エチル−4−チオカルバモイルイミダゾール等のイミダゾール類;ピラゾール、3−アミノ−4−シアノ−ピラゾール等のピラゾール類;1,2,4−トリアゾール、2−アミノ−1,2,4−トリアゾール、1,2−ジアミノ−1,2,4−トリアゾール、1−メルカプト−1,2,4−トリアゾール等のトリアゾール類;2−アミノトリアジン、2,4−ジアミノ−6−(6−(2−(2メチル−1−イミダゾリル)エチル)トリアジン2,4,6−トリメルカプト−s−トリアジン−トリソデイウムソルト等のトリアジン類;が好ましい例としてあげられる。 Among the coordination structure-containing compounds, it reacts with components in the curable resin composition, and these compounds are firmly held on the surface of the resin substrate formed in the next step, so that imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-mercaptomethylbenzimidazole, 2-ethylimidazole-4-dithiocarboxylic acid, 2-methylimidazole-4-carboxylic acid, 1- (2-aminoethyl) -2-methylimidazole Imidazoles such as 1- (2-cyanoethyl) -2-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, benzimidazole, 2-ethyl-4-thiocarbamoylimidazole; pyrazole, 3-amino-4 -Pyrazoles such as cyano-pyrazole; 1,2,4-triazole, 2- Triazoles such as mino-1,2,4-triazole, 1,2-diamino-1,2,4-triazole, 1-mercapto-1,2,4-triazole; 2-aminotriazine, 2,4-diamino Preferred examples include triazines such as -6- (6- (2- (2-methyl-1-imidazolyl) ethyl) triazine 2,4,6-trimercapto-s-triazine-trisodium salt;
これらの配位構造含有化合物を用いた場合、樹脂層を硬化させる時に樹脂層表面の架橋密度を高め、かつ親水性を高めることができる。このため、次に詳述する電気絶縁層表面の親水化処理で、電気絶縁層の強度が維持される一方、電気絶縁層中に含まれる親水化処理液に可溶な樹脂やフィラーの除去を容易にすることができる。 When these coordination structure-containing compounds are used, when the resin layer is cured, the crosslinking density on the surface of the resin layer can be increased and the hydrophilicity can be increased. For this reason, the strength of the electrical insulation layer is maintained by the hydrophilic treatment on the surface of the electrical insulation layer described in detail below, while the resin and filler soluble in the hydrophilic treatment solution contained in the electrical insulation layer are removed. Can be easily.
こうした配位構造含有化合物と、未硬化又は半硬化の樹脂層表面とを接触させる方法は特に制限されない。具体例としては、配位構造含有化合物を水又は有機溶媒に溶かして溶液にした後、この溶液中に、樹脂層が形成された内層基板を浸漬するディップ法や、この溶液を樹脂層表面にスプレー等で塗布するスプレー法などが挙げられる。接触操作は、1回でも2回以上を繰り返し行ってもよい。
接触に際しての温度は、配位構造含有化合物やその溶液の沸点、融点、操作性や生産性などを考慮して任意に選択することができるが、通常10〜100℃、好ましくは15〜65℃で行う。接触時間は、成形体表面に付着させたい配位構造含有化合物の量やその溶液の濃度、プリント配線板の生産性などに応じて任意に選択することができるが、通常0.1〜360分、好ましくは0.1〜60分である。
この後、過剰な配位構造含有化合物の除去や基盤の乾燥を目的として、窒素などの不活性ガスを吹きかける;通常30〜180℃、好ましくは50〜150℃で1分以上、好ましくは5〜120分間、オーブン中で乾燥させる;溶媒で洗浄する;溶媒で洗浄した後加熱して乾燥させるなどの処理ができる。
A method for bringing such a coordination structure-containing compound into contact with the uncured or semi-cured resin layer surface is not particularly limited. Specific examples include a dipping method in which a coordination structure-containing compound is dissolved in water or an organic solvent to form a solution, and the inner layer substrate on which the resin layer is formed is immersed in this solution, or this solution is applied to the resin layer surface. The spray method etc. which apply | coat with spray etc. are mentioned. The contact operation may be repeated once or twice or more.
The temperature at the time of contact can be arbitrarily selected in consideration of the boiling point, melting point, operability and productivity of the coordination structure-containing compound and its solution, but is usually 10 to 100 ° C., preferably 15 to 65 ° C. To do. The contact time can be arbitrarily selected according to the amount of the coordination structure-containing compound to be adhered to the surface of the molded product, the concentration of the solution, the productivity of the printed wiring board, etc., but usually 0.1 to 360 minutes. , Preferably 0.1 to 60 minutes.
Thereafter, an inert gas such as nitrogen is sprayed for the purpose of removing excess coordination structure-containing compound and drying the substrate; usually 30 to 180 ° C., preferably 50 to 150 ° C. for 1 minute or more, preferably 5 to 5 ° C. It can be treated in an oven for 120 minutes; washed with a solvent; washed with a solvent and then heated to dry.
配位構造含有化合物を溶媒に溶解して用いる場合、用いる溶媒は特に制限されず、ラミネーション後の樹脂層が容易に溶解せず、配位構造含有化合物が溶解するものを選択すれば良く、例えば、水;テトラヒドロフランなどのエーテル類、エタノールやイソプロパノールなどのアルコール類、アセトンなどのケトン類、エチルセロソルブアセテートなどのセロソルブ類など極性溶媒、これらの混合物が挙げられる。配位構造含有化合物溶液中の配位構造含有化合物濃度に格別な制限はないが、配位構造含有化合物が、本工程での操作性の観点から、通常0.001〜70重量%、好ましくは0.01〜50重量%である。
もちろん、使用温度において配位構造含有化合物が液体であり、配位構造含有化合物を未硬化又は半硬化の樹脂層表面と接触させる操作に支障がない場合は、特に溶媒に溶解せず、そのまま用いることも可能である。
本発明において配位構造含有化合物の溶液は、上述の配位構造含有化合物を主材料とするものであり、配位構造含有化合物以外の成分として、未硬化又は半硬化の樹脂層と配位構造含有化合物溶液との濡れを向上させる目的で用いる界面活性剤やその他の添加物などが挙げられる。これらの添加物の使用量は、密着性確保の観点から配位構造含有化合物に対して10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下である。
When the coordination structure-containing compound is dissolved in a solvent and used, the solvent to be used is not particularly limited, and the resin layer after lamination does not easily dissolve, and it is only necessary to select one that dissolves the coordination structure-containing compound. Water, ethers such as tetrahydrofuran, alcohols such as ethanol and isopropanol, ketones such as acetone, polar solvents such as cellosolves such as ethyl cellosolve acetate, and mixtures thereof. There is no particular limitation on the concentration of the coordination structure-containing compound in the coordination structure-containing compound solution, but the coordination structure-containing compound is usually 0.001 to 70% by weight from the viewpoint of operability in this step, preferably 0.01 to 50% by weight.
Of course, when the coordination structure-containing compound is a liquid at the operating temperature and there is no problem in the operation of bringing the coordination structure-containing compound into contact with the surface of the uncured or semi-cured resin layer, the compound is not dissolved in a solvent and used as it is. It is also possible.
In the present invention, the solution of the coordination structure-containing compound is mainly composed of the above-mentioned coordination structure-containing compound, and as a component other than the coordination structure-containing compound, an uncured or semi-cured resin layer and a coordination structure Examples thereof include surfactants and other additives used for the purpose of improving the wetting with the containing compound solution. The amount of these additives to be used is 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less based on the coordination structure-containing compound from the viewpoint of ensuring adhesion.
(工程B)
上記工程Aに続いて、表面に金属配位能を有する化合物と接触させた後の未硬化又は半硬化の樹脂層を硬化して、電気絶縁層を形成する。
樹脂層の硬化は、通常、樹脂層(樹脂層が形成された内層基板全体)を加熱することにより行う。硬化剤の種類に応じて硬化条件は適宜選択されるが、硬化させるための温度は、通常30〜400℃、好ましくは70〜300℃、より好ましくは100〜200℃であり、硬化時間は、通常0.1〜5時間、好ましくは0.5〜3時間である。加熱の方法は特に制限されず、例えばオーブンなどを用いて行えばよい。
(Process B)
Subsequent to the above step A, the uncured or semi-cured resin layer after being brought into contact with the compound having metal coordination ability on the surface is cured to form an electrical insulating layer.
The resin layer is usually cured by heating the resin layer (the entire inner layer substrate on which the resin layer is formed). Curing conditions are appropriately selected according to the type of the curing agent, but the temperature for curing is usually 30 to 400 ° C., preferably 70 to 300 ° C., more preferably 100 to 200 ° C., and the curing time is Usually 0.1 to 5 hours, preferably 0.5 to 3 hours. The heating method is not particularly limited, and may be performed using, for example, an oven.
通常、多層プリント配線板を形成する場合、第一の導体層と後に形成される第二の導体層とを接続するため、金属薄膜層を形成する前に、電気絶縁層にビアホール形成用の開口を形成する。このビアホール形成用の開口は、フォトリソグラフィ法のような化学的処理により、又は、ドリル、レーザ、プラズマエッチング等の物理的処理等により形成することができる。電気絶縁層の特性を低下させず、より微細なビアホールを形成することができるという観点から、炭酸ガスレーザ、エキシマレーザ、UV−YAGレーザ等のレーザによる方法が好ましい。
従って、次の工程Cに係る電気絶縁層は、通常ビアホール形成用の開口を有する。
Normally, when forming a multilayer printed wiring board, an opening for forming a via hole is formed in the electrical insulating layer before forming the metal thin film layer in order to connect the first conductor layer and the second conductor layer formed later. Form. The opening for forming the via hole can be formed by chemical processing such as photolithography, or physical processing such as drilling, laser, or plasma etching. From the viewpoint that a finer via hole can be formed without degrading the characteristics of the electrical insulating layer, a method using a laser such as a carbon dioxide laser, an excimer laser, or a UV-YAG laser is preferable.
Therefore, the electrical insulating layer according to the next step C usually has an opening for forming a via hole.
次いで、所定濃度の親水化処理液を用いて親水化処理を行う。親水化処理液は、過マンガン酸塩、クロム酸塩及び重クロム酸塩からなる群より選択される酸化性溶液を用いるのが好ましく、特に過マンガン酸塩を用いるのが好ましい。また、親水化処理液には水酸化アルカリを混合させるのが好ましい。
過マンガン酸塩は、アルカリ金属の過マンガン酸塩であり、過マンガン酸カリウムや過マンガン酸ナトリウムが好適に用いられる。また水酸化アルカリは、アルカリ金属の水酸化物であり、水酸化カリウムや水酸化ナトリウムが好適に用いられる。
Next, a hydrophilic treatment is performed using a hydrophilic treatment solution having a predetermined concentration. As the hydrophilization treatment liquid, an oxidizing solution selected from the group consisting of permanganate, chromate and dichromate is preferably used, and permanganate is particularly preferably used. Moreover, it is preferable to mix an alkali hydroxide with the hydrophilic treatment liquid.
The permanganate is an alkali metal permanganate, and potassium permanganate and sodium permanganate are preferably used. Alkali hydroxide is an alkali metal hydroxide, and potassium hydroxide and sodium hydroxide are preferably used.
過マンガン酸塩と水酸化アルカリとを含有する特に好適な親水化処理液は、過マンガン酸塩と水酸化アルカリとを水に溶解して、過マンガン酸塩の濃度が、通常50g/リットル以上、150g/リットル以下、好ましくは60g/リットル以上、100g/リットル以下に、そして水酸化アルカリの濃度が、通常0.6規定以上1.5規定以下、好ましくは0.95規定以上1.2規定以下となるように調整したものである。濃度がこの範囲であれば、良好な密着性が得られる。 A particularly preferred hydrophilization treatment liquid containing permanganate and alkali hydroxide is obtained by dissolving permanganate and alkali hydroxide in water, and the concentration of permanganate is usually 50 g / liter or more. 150 g / liter or less, preferably 60 g / liter or more and 100 g / liter or less, and the concentration of the alkali hydroxide is usually 0.6 or more and 1.5 or less, preferably 0.95 or more and 1.2 or less. It adjusted so that it might become the following. If the concentration is within this range, good adhesion can be obtained.
過マンガン酸塩と水酸化アルカリとの混合溶液からなる親水化処理液と電気絶縁層とを接触させる方法は特に制限されず、例えば電気絶縁層を酸化性化合物の溶液に浸漬するディップ法、表面張力を利用して酸化性化合物溶液を電気絶縁層に載せる液盛り法、酸化性化合物の溶液を基材に噴霧するスプレー法などいかなる方法であっても良い。接触操作は、1回でも2回以上を繰り返して行ってもよい。 The method for bringing the hydrophilization treatment solution composed of a mixed solution of permanganate and alkali hydroxide into contact with the electrical insulating layer is not particularly limited. For example, a dipping method in which the electrical insulating layer is immersed in an oxidizing compound solution, the surface Any method may be used, such as a liquid filling method in which an oxidizing compound solution is placed on an electrical insulating layer using tension, or a spray method in which an oxidizing compound solution is sprayed onto a substrate. The contact operation may be performed once or twice or more.
親水化処理液で電気絶縁層表面を酸化する場合、電気絶縁層を形成する前の熱硬化性スラリー中に、親水化処理液に可溶の重合体や無機充填剤を含ませておくと、熱硬化性スラリー中の電気絶縁性重合体と微細な海島構造を形成した上で選択的に溶解するため、所望の表面平均粗さに調整することができる。
本発明において電気絶縁層の表面平均粗さRaは0.05μm以上、0.2μm未満、好ましくは0.06μm以上、0.1μm以下であり、かつ表面十点平均粗さRzjisは0.3μm以上、4μm未満、好ましくは0.5μm以上、3μm以下である。
ここで、RaはJIS B 0601−2001に示される中心線平均粗さであり、表面十点平均粗さRzjisは、JIS B 0601−2001付属書1に示される十点平均粗さである。
When oxidizing the surface of the electrical insulating layer with a hydrophilic treatment liquid, if a hydrophilic polymer or an inorganic filler is contained in the thermosetting slurry before forming the electrical insulation layer, Since the electrically insulating polymer in the thermosetting slurry and a fine sea-island structure are formed and then selectively dissolved, the surface average roughness can be adjusted to a desired value.
In the present invention, the surface average roughness Ra of the electrical insulating layer is 0.05 μm or more and less than 0.2 μm, preferably 0.06 μm or more and 0.1 μm or less, and the surface ten-point average roughness Rzjis is 0.3 μm or more. It is less than 4 μm, preferably 0.5 μm or more and 3 μm or less.
Here, Ra is the center line average roughness shown in JIS B 0601-2001, and the surface 10-point average roughness Rzjis is the 10-point average roughness shown in JIS B 0601-2001 Annex 1.
親水化処理液に可溶な重合体の例としては、液状エポキシ樹脂、ポリエステル樹脂、ビスマレイミド−トリアジン樹脂、シリコーン樹脂、ポリメチルメタクリル樹脂、天然ゴム、スチレン系ゴム、イソプレン系ゴム、ブタジエン系ゴム、ニトリル系ゴム、エチレン系ゴム、プロピレン系ゴム、ウレタンゴム、ブチルゴム、シリコーンゴム、フッ素ゴム、ノルボルネンゴム、エーテル系ゴム等が挙げられる。
親水処理液に可溶の重合体の配合割合に格別の制限はなく、絶縁性重合体100重量部に対して、通常、1〜30重量部、好ましくは3〜25重量部、より好ましくは5〜20重量部である。
Examples of polymers soluble in the hydrophilization treatment liquid include liquid epoxy resins, polyester resins, bismaleimide-triazine resins, silicone resins, polymethylmethacrylic resins, natural rubber, styrene rubber, isoprene rubber, butadiene rubber. Nitrile rubber, ethylene rubber, propylene rubber, urethane rubber, butyl rubber, silicone rubber, fluorine rubber, norbornene rubber, ether rubber and the like.
There is no particular limitation on the blending ratio of the polymer soluble in the hydrophilic treatment liquid, and it is usually 1 to 30 parts by weight, preferably 3 to 25 parts by weight, more preferably 5 to 100 parts by weight of the insulating polymer. ~ 20 parts by weight.
親水化処理液に可溶の無機充填剤の例としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、酸化亜鉛、酸化チタン、酸化マグネシウム、ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸ジルコニウム、水和アルミナ、水酸化マグネシウム、水酸化アルミニウム、硫酸バリウム、シリカ、タルク、クレー等を挙げることができる。これらの中でも、炭酸カルシウム及びシリカが、微細な粒子を得やすく、かつ、充填剤可溶性水溶液で溶出されやすいので微細な粗面形状を得るのに好適である。これらの無機充填剤は、シランカップリング剤処理やステアリン酸等の有機酸処理をしたものであってもよい。 Examples of inorganic fillers soluble in the hydrophilization treatment solution include calcium carbonate, magnesium carbonate, barium carbonate, zinc oxide, titanium oxide, magnesium oxide, magnesium silicate, calcium silicate, zirconium silicate, hydrated alumina, Examples thereof include magnesium hydroxide, aluminum hydroxide, barium sulfate, silica, talc, and clay. Among these, calcium carbonate and silica are suitable for obtaining a fine rough surface shape because fine particles are easily obtained and are easily eluted with a filler-soluble aqueous solution. These inorganic fillers may be treated with a silane coupling agent or an organic acid such as stearic acid.
また、添加される無機充填剤は、電気絶縁層の誘電特性を低下させない非導電性のものであることが好ましい。無機充填剤の形状は、特に限定されず、球状、繊維状、板状等であってもよいが、微細な粗面形状を得るために、微細な粉末状であることが好ましい。無機充填剤の平均粒径としては0.008μm以上、2μm未満、好ましくは0.01μm以上、1.5μm未満、特に好ましくは0.02μm以上、1μm未満である。平均粒径が小さすぎると、大型基板の場合に均一な密着性が得られないおそれがあり、逆に、大きすぎると電気絶縁層に大きな粗面が発生し、高密度の配線パターンが得られない可能性がある。
親水化処理液に可溶の無機充填剤の配合量は、必要とされる密着性の程度に応じて適宜選択されるが、重合体100重量部に対して、通常、1〜80重量部、好ましくは3〜60重量部、より好ましくは5〜40重量部である。
上記のような親水化処理液に可溶の重合体や無機充填剤は、難燃助剤、耐熱安定剤、誘電特性調整剤、靭性剤の一部等として用いることができる。
Moreover, it is preferable that the inorganic filler to be added is non-conductive that does not deteriorate the dielectric properties of the electrical insulating layer. The shape of the inorganic filler is not particularly limited and may be spherical, fibrous, plate-like, or the like, but is preferably a fine powder to obtain a fine rough surface shape. The average particle size of the inorganic filler is 0.008 μm or more and less than 2 μm, preferably 0.01 μm or more and less than 1.5 μm, particularly preferably 0.02 μm or more and less than 1 μm. If the average particle size is too small, uniform adhesion may not be obtained in the case of a large substrate. Conversely, if the average particle size is too large, a large rough surface is generated in the electrical insulating layer, and a high-density wiring pattern is obtained. There is no possibility.
The blending amount of the inorganic filler soluble in the hydrophilic treatment liquid is appropriately selected according to the required degree of adhesion, but is usually 1 to 80 parts by weight with respect to 100 parts by weight of the polymer. Preferably it is 3-60 weight part, More preferably, it is 5-40 weight part.
Polymers and inorganic fillers that are soluble in the hydrophilic treatment liquid as described above can be used as a part of a flame retardant aid, a heat-resistant stabilizer, a dielectric property adjusting agent, a toughening agent, and the like.
電気絶縁層の親水化処理後は、酸化性化合物を除去するため、通常、電気絶縁層表面を水で洗浄する。水だけでは洗浄しきれない物質が付着している場合、その物質を溶解可能な洗浄液で更に洗浄したり、他の化合物と接触させたりして水に可溶の物質にしてから水で洗浄することもできる。例えば、過マンガン酸カリウム水溶液や過マンガン酸ナトリウム水溶液等のアルカリ性水溶液を電気絶縁層と接触させた場合は、発生した二酸化マンガンの皮膜を除去する目的で、硫酸ヒドロキシアミンや、硫酸ヒドロキシアミンと硫酸との混合液等の酸性水溶液により中和還元処理する。なお、前記中和還元工程は後述する乾燥工程の後に行うようにすることも可能である。 After the hydrophilic treatment of the electrical insulating layer, the surface of the electrical insulating layer is usually washed with water in order to remove the oxidizing compound. If a substance that cannot be washed with water alone is attached, wash the substance with a dissolvable cleaning solution or contact with other compounds to make it soluble in water, and then wash with water. You can also. For example, when an alkaline aqueous solution such as a potassium permanganate aqueous solution or a sodium permanganate aqueous solution is brought into contact with the electrical insulating layer, hydroxyamine sulfate or hydroxyamine sulfate and sulfuric acid are used for the purpose of removing the generated manganese dioxide film. And neutralization reduction treatment with an acidic aqueous solution such as a mixed solution. The neutralization reduction step can be performed after the drying step described later.
(工程C)
次いで、電気絶縁層表面に付着した水などを除去する乾燥工程を行う。具体的な乾燥条件は特に限定されず、電気絶縁層の組成等を考慮して適宜選択すればよいが、例えば、空気、又は窒素などの不活性ガスを吹きかける;減圧乾燥させる;通常30〜180℃、好ましくは50〜160℃で1分以上、好ましくは5〜120分間、高温の気体(空気、窒素ガス、アルゴンガスなど)を基板に吹きつける熱風乾燥機やブロア乾燥機で乾燥させる;などの処理ができる。また、遠赤外線の照射によって基板内外の温度上昇を促す事で、残留水分などを蒸発させる遠赤外線乾燥機を使用することもできる。
(Process C)
Next, a drying process is performed to remove water adhering to the surface of the electrical insulating layer. Specific drying conditions are not particularly limited, and may be appropriately selected in consideration of the composition of the electrical insulating layer. For example, air or an inert gas such as nitrogen is sprayed; Dry at high temperature gas (air, nitrogen gas, argon gas, etc.) at a temperature of 50 ° C., preferably 50-160 ° C. for 1 minute or longer, preferably 5-120 minutes, with a hot air dryer or blower dryer that blows the substrate on the substrate; Can be processed. Further, a far-infrared dryer that evaporates residual moisture and the like can be used by urging the temperature rise inside and outside the substrate by irradiation with far-infrared rays.
(工程D)
肯定Cを経て、少なくとも表面が乾燥した前記電気絶縁層に、配位構造含有化合物を接触させる。この配位構造含有化合物は、特に制限されず、例えば工程Aで例示した化合物群から選択して用いればよく、工程Aで用いたものと同じ化合物を選択しても、異なる化合物を選択しても良い。
また、この配位構造含有化合物を接触させる方法も、特に制限されず、例えば工程Aで例示した同様な方法から選択することができ、工程Aで採用した方法と同じ方法を選択しても、異なる方法を選択しても良い。
(Process D)
Through affirmative C, the coordination structure-containing compound is brought into contact with the electrical insulating layer having at least a dry surface. The coordination structure-containing compound is not particularly limited, and may be selected from, for example, the compound group exemplified in Step A. Even if the same compound as that used in Step A is selected, a different compound is selected. Also good.
Further, the method for bringing the coordination structure-containing compound into contact is not particularly limited, and can be selected from, for example, the same method exemplified in Step A. Even if the same method as that adopted in Step A is selected, Different methods may be selected.
(工程E)
次いで、乾燥させた前記電気絶縁層表面に配位構造含有化合物を接触させた後、金属薄膜層を形成する。この電気絶縁層表面とビアホール形成用開口の内壁面に、めっき法により第二の導体層を形成する。
めっき法により第二の導体層を形成する方法としては、まず、無電解めっき法により、内層基板や電気絶縁層上に金属薄膜を形成し、次いでこの金属薄膜にめっき用レジストパターンを形成し、金属薄膜を用いて電解めっき法によりパターンに金属層を成長させた後、レジストを除去し、次いで金属をエッチングすることにより金属薄膜が除去され導体層を形成する方法が挙げられる。
(Process E)
Subsequently, after the surface of the dried electrical insulating layer is brought into contact with the coordination structure-containing compound, a metal thin film layer is formed. A second conductor layer is formed by plating on the surface of the electrical insulating layer and the inner wall surface of the via hole forming opening.
As a method of forming the second conductor layer by the plating method, first, a metal thin film is formed on the inner layer substrate or the electrical insulating layer by an electroless plating method, and then a resist pattern for plating is formed on the metal thin film, There is a method in which after a metal layer is grown on a pattern by electrolytic plating using a metal thin film, the resist is removed, and then the metal is etched to remove the metal thin film and form a conductor layer.
金属薄膜層の形成を無電解めっきにより行う場合、金属薄膜層を電気絶縁層の表面に形成させる前に、金属薄膜層上に、銀、パラジウム、亜鉛、コバルトなどの触媒核を吸着させるのが一般的である。
触媒核を電気絶縁層に付着させる方法は特に制限されず、銀、パラジウム、亜鉛、コバルトなどの金属化合物やこれらの塩や錯体を、水又はアルコール若しくはクロロホルムなどの有機溶媒に0.001〜10重量%の濃度で溶解した液(必要に応じて酸、アルカリ、錯化剤、還元剤などを含有していてもよい)に浸漬した後、金属を還元する方法などが挙げられる。
When forming a metal thin film layer by electroless plating, it is advisable to adsorb catalyst nuclei such as silver, palladium, zinc and cobalt on the metal thin film layer before forming the metal thin film layer on the surface of the electrical insulating layer. It is common.
The method for attaching the catalyst nucleus to the electrical insulating layer is not particularly limited, and a metal compound such as silver, palladium, zinc, cobalt, or a salt or complex thereof is added to water or an organic solvent such as alcohol or chloroform in an amount of 0.001 to 10%. For example, a method of reducing a metal after dipping in a solution (which may contain an acid, an alkali, a complexing agent, a reducing agent, etc., if necessary) dissolved in a concentration by weight is included.
無電解めっき法に用いる無電解めっき液としては、公知の自己触媒型の無電解めっき液を用いれば良く、めっき液中に含まれる金属種、還元剤種、錯化剤種、水素イオン濃度、溶存酸素濃度などは特に限定されない。例えば、次亜リン酸アンモニウム又は次亜リン酸、水素化硼素アンモニウムやヒドラジン、ホルマリンなどを還元剤とする無電解銅めっき液、次亜リン酸ナトリウムを還元剤とする無電解ニッケル−リンめっき液、ジメチルアミンボランを還元剤とする無電解ニッケル−ホウ素めっき液、無電解パラジウムめっき液、次亜リン酸ナトリウムを還元剤とする無電解パラジウム−リンめっき液、無電解金めっき液、無電解銀めっき液、次亜リン酸ナトリウムを還元剤とする無電解ニッケル−コバルト−リンめっき液等の無電解めっき液を用いることができる。
金属薄膜層を形成した後、基板表面を防錆剤と接触させて防錆処理をすることもできる。
As the electroless plating solution used in the electroless plating method, a known autocatalytic electroless plating solution may be used. The metal species, reducing agent species, complexing agent species, hydrogen ion concentration, The dissolved oxygen concentration is not particularly limited. For example, electroless copper plating solution using ammonium hypophosphite or hypophosphorous acid, ammonium borohydride, hydrazine, formalin, etc. as a reducing agent, electroless nickel-phosphorous plating solution using sodium hypophosphite as a reducing agent Electroless nickel-boron plating solution with dimethylamine borane as reducing agent, electroless palladium plating solution, electroless palladium-phosphorous plating solution with sodium hypophosphite as reducing agent, electroless gold plating solution, electroless silver An electroless plating solution such as an electroless nickel-cobalt-phosphorous plating solution containing sodium hypophosphite as a reducing agent can be used.
After the metal thin film layer is formed, the substrate surface can be brought into contact with a rust preventive agent for rust prevention treatment.
通常、このようにして得た金属薄膜層の上に、厚付けめっきを行い、第二の導体層を完成させる。厚付けめっきとしては、例えば、常法に従って金属薄膜上に、パターン状のめっきレジストを形成させ、更にその上に電解めっき等の湿式めっきによりめっきを成長させ、次いで、めっきレジストを除去し、更にエッチングにより金属薄膜層をパターン状にエッチングして第二の導体層を形成する。従って、第二の導体層は、通常、パターン状の金属薄膜層と、その上に成長させためっきとからなる。 Usually, thick plating is performed on the metal thin film layer thus obtained to complete the second conductor layer. As thick plating, for example, a pattern-like plating resist is formed on a metal thin film according to a conventional method, and further, plating is grown thereon by wet plating such as electrolytic plating, and then the plating resist is removed. The metal thin film layer is etched into a pattern by etching to form a second conductor layer. Therefore, the second conductor layer is usually composed of a patterned metal thin film layer and plating grown thereon.
また、本発明においては、金属薄膜層を形成した後や厚付けめっきの後に、密着性向上などのため、当該金属薄膜層を加熱することができる。加熱温度は、通常通常50〜350℃、好ましくは80〜250℃である。
加熱は加圧条件下で実施しても良く、このときの圧力を加える方法として、例えば、熱プレス機、加圧加熱ロール機などを用いた、基板に対して物理的に圧力を加える方法が挙げられる。加える圧力は、通常0.1MPa〜20MPa、好ましくは0.5MPa〜10MPaである。この範囲であれば、金属薄膜と電気絶縁層との高い密着性が確保できる。
Moreover, in this invention, after forming a metal thin film layer or after thick plating, the said metal thin film layer can be heated for the adhesive improvement etc. The heating temperature is usually 50 to 350 ° C, preferably 80 to 250 ° C.
Heating may be carried out under pressurized conditions, and as a method of applying pressure at this time, for example, a method of physically applying pressure to the substrate using a hot press machine, a pressurized heating roll machine, or the like is available. Can be mentioned. The applied pressure is usually 0.1 MPa to 20 MPa, preferably 0.5 MPa to 10 MPa. If it is this range, the high adhesiveness of a metal thin film and an electrically insulating layer is securable.
このようにして得られた多層プリント配線板を内層基板として、本発明における工程A〜Eを繰り返すことで、更なる多層化も可能である。 Further multilayering is possible by repeating the steps A to E in the present invention using the multilayer printed wiring board thus obtained as an inner layer substrate.
本発明の多層プリント配線板の製造方法によれば、工程Bの親水化処理後、電気絶縁層表面に付着した水などを除去する工程Cを経ても、めっき法により形成された導体層と電気絶縁層との間に十分な密着性が得られる。また、前記方法により製造された基板は、コンピューターや携帯電話等の電子機器において、CPUやメモリなどの半導体素子、その他の実装部品を実装するために使用できる。特に、微細配線を有するものは高密度プリント配線基板として、高速コンピューターや、高周波領域で使用する携帯端末の基板として好適である。 According to the method for producing a multilayer printed wiring board of the present invention, after the hydrophilization treatment in Step B, the conductor layer formed by the plating method can be electrically connected to the conductive layer formed by the plating method even after going through Step C for removing water adhering to the surface of the electrical insulating layer. Sufficient adhesion can be obtained between the insulating layer. In addition, the substrate manufactured by the above method can be used for mounting a semiconductor element such as a CPU and a memory and other mounting parts in an electronic device such as a computer or a mobile phone. In particular, a substrate having fine wiring is suitable as a high-density printed circuit board, as a substrate for a high-speed computer or a portable terminal used in a high-frequency region.
以下に、実施例及び比較例を挙げて本発明を具体的に説明する。なお、実施例中、部及び%は、特に断りのない限り重量基準である。
本実施例において行った評価方法は以下のとおりである。
(1)分子量(Mw、Mn)
トルエンを溶剤とするゲル・パーミエーション・クロマトグラフィー(GPC)によるポリスチレン換算値として測定した。
(2)水素化率及び無水マレイン酸残基含有率
水素添加前の重合体中の不飽和結合のモル数に対する水素添加率(水素添加添加率)及び重合体中の総モノマー単位数に対する無水マレイン酸残基のモル数の割合は1H−NMRスペクトルにより測定した。
(3)ガラス移転温度(Tg)
示差走査熱量法(DSC法)により測定した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In the examples, parts and% are based on weight unless otherwise specified.
The evaluation methods performed in this example are as follows.
(1) Molecular weight (Mw, Mn)
It measured as a polystyrene conversion value by gel permeation chromatography (GPC) using toluene as a solvent.
(2) Hydrogenation rate and maleic anhydride residue content Hydrogenation rate relative to the number of moles of unsaturated bonds in the polymer before hydrogenation (hydrogenation rate) and maleic anhydride relative to the total number of monomer units in the polymer The ratio of the number of moles of acid residues was measured by 1 H-NMR spectrum.
(3) Glass transfer temperature (Tg)
It measured by the differential scanning calorimetry method (DSC method).
(4)表面平均粗さRa、表面十点平均粗さRzjis
平均粗さRaと表面十点平均粗さRzjisは、共に非接触式である光学式表面形状測定装置(キーエンス社製カラーレーザー顕微鏡 商品名「VK−8500」)を用いて、20μm×20μmの矩形領域について測定した値である。
(4) Surface average roughness Ra, surface ten-point average roughness Rzjis
The average roughness Ra and the surface ten-point average roughness Rzjis are both 20 μm × 20 μm rectangles using an optical surface shape measuring device (a color laser microscope trade name “VK-8500” manufactured by Keyence Corporation) that is a non-contact type. It is the value measured for the area.
(6)密着性の評価
導体層と電気絶縁層との間の引き剥がし強さをJIS C 6481に定める銅はくの引き剥がし強さに準じて90度ピール強度試験にて評価した。
(6) Evaluation of adhesion The peel strength between the conductor layer and the electrical insulating layer was evaluated by a 90 degree peel strength test according to the peel strength of the copper foil defined in JIS C 6481.
(7)パターニング性の評価
配線幅30μm、配線間距離30μm、配線長5cmで50本の配線パターンを形成し、50本がいずれも形状に乱れの無いものを○、形状に乱れはあるが欠損の無いものを△、欠損のあるものを×として評価した。
(7) Evaluation of patterning property 50 wiring patterns were formed with a wiring width of 30 μm, a distance between wirings of 30 μm, and a wiring length of 5 cm. Evaluation was made with △ for those without, and X for those with defects.
実施例1
8−エチル−テトラシクロ[4.4.0.12,5.17,10]−ドデカ−3−エンを開環重合し、次いで水素添加反応を行い、数平均分子量(Mn)=31,200、重量平均分子量(Mw)=55,800、Tg=約140℃の水素化重合体を得た。得られたポリマーの水素化率は99%以上であった。
得られた重合体100部、無水マレイン酸40部及びジクミルパーオキシド5部をt−ブチルベンゼン250部に溶解し、140℃で6時間反応を行った。得られた反応生成物溶液を1000部のイソプロピルアルコール中に注ぎ、反応生成物を凝固させマレイン酸変性水素化重合体を得た。この変性水素化重合体を100℃で20時間真空乾燥した。この変性水素化重合体の分子量はMn=33,200、Mw=68,300でTgは170℃であった。無水マレイン酸残基含有率は25モル%であった。
Example 1
8-ethyl-tetracyclo [4.4.0.1 2,5 . 1 7, 10 ] -dodec-3-ene is subjected to ring-opening polymerization, followed by hydrogenation reaction, number average molecular weight (Mn) = 31,200, weight average molecular weight (Mw) = 55,800, Tg = about 140 A hydrogenated polymer at 0 ° C. was obtained. The hydrogenation rate of the obtained polymer was 99% or more.
100 parts of the obtained polymer, 40 parts of maleic anhydride and 5 parts of dicumyl peroxide were dissolved in 250 parts of t-butylbenzene, and reacted at 140 ° C. for 6 hours. The obtained reaction product solution was poured into 1000 parts of isopropyl alcohol to solidify the reaction product to obtain a maleic acid-modified hydrogenated polymer. This modified hydrogenated polymer was vacuum-dried at 100 ° C. for 20 hours. The molecular weight of this modified hydrogenated polymer was Mn = 33,200, Mw = 68,300, and Tg was 170 ° C. The maleic anhydride residue content was 25 mol%.
前記変性水素化重合体100部、ビスフェノールAビス(プロピレングリコールグリシジルエーテル)エーテル40部、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]ベンゾトリアゾール5部及び1−ベンジル−2−フェニルイミダゾール0.1部、及び酸化処理液に可溶性の重合体として液状ポリブタジエン(商品名「日石ポリブタジエン B−1000」、日本石油化学株式会社製)10部を、キシレン215部及びシクロペンタノン54部からなる混合溶剤に溶解させて、硬化性樹脂組成物のワニスを得た。 100 parts of the modified hydrogenated polymer, 40 parts of bisphenol A bis (propylene glycol glycidyl ether) ether, 5 parts of 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] benzotriazole and 1 -0.1 part of benzyl-2-phenylimidazole, 10 parts of liquid polybutadiene (trade name “Nisseki Polybutadiene B-1000”, manufactured by Nippon Petrochemical Co., Ltd.) as a polymer soluble in the oxidation treatment liquid, and 215 parts of xylene And it was made to melt | dissolve in the mixed solvent which consists of 54 parts of cyclopentanone, and the varnish of the curable resin composition was obtained.
当該ワニスを、ダイコーターを用いて、300mm角の厚さ40μm、表面平均粗さRa0.08μmのポリエチレンナフタレートフィルム(支持体)に塗工し、その後、窒素オーブン中、120℃で10分間乾燥し、支持体上に厚みが35μmのフィルム状成形物(支持体付きフィルム状成形物)を得た。 The varnish is applied to a polyethylene naphthalate film (support) having a thickness of 40 mm and a surface average roughness Ra of 0.08 μm using a die coater, and then dried at 120 ° C. for 10 minutes in a nitrogen oven. Then, a film-shaped molded product (film-shaped molded product with a support) having a thickness of 35 μm was obtained on the support.
配線幅及び配線間距離が50μm、導体厚みが18μmで表面が有機酸との接触によりマイクロエッチング処理された内層回路を形成された厚さ0.8mm、150mm角の両面銅張り基板(ガラスフィラー及びハロゲン不含エポキシ樹脂を含有するワニスをガラスクロスに含浸させて得られたコア材)を内層基板として、この上に前述の支持体付きフィルム状成形物を150mm角に切断し、成形物面が内側となるようにして両面銅張り基板両面に重ね合わせた。これを、一次プレスとして耐熱ゴム製プレス板を上下に備えた真空ラミネータを用いて、200Paに減圧して、温度110℃、圧力0.5MPaで60秒間加熱圧着した。次いで、二次プレスとして金属製プレス板で覆われた耐熱ゴム製プレス板を上下に備えた真空ラミネータを用いて、200Paに減圧して、温度140℃、1.0MPaで60秒間、加熱圧着し、次いで支持体を剥がして、内層基板上に樹脂層を得た。 Double-sided copper-clad substrate with a thickness of 0.8 mm and a square of 150 mm with a wiring width and a distance between wirings of 50 μm, a conductor thickness of 18 μm, and a surface subjected to microetching treatment by contact with an organic acid (glass filler and A core material obtained by impregnating a glass cloth with a varnish containing a halogen-free epoxy resin) is used as an inner layer substrate, and the above-mentioned film-like molded product with a support is cut into a 150 mm square, and the molded product surface is The two-sided copper-clad substrates were superposed on both sides so as to be inside. This was depressurized to 200 Pa using a vacuum laminator provided with heat-resistant rubber press plates at the top and bottom as a primary press, and thermocompression bonded at a temperature of 110 ° C. and a pressure of 0.5 MPa for 60 seconds. Next, using a vacuum laminator with a heat-resistant rubber press plate covered with a metal press plate as a secondary press, the pressure was reduced to 200 Pa and thermocompression bonded at a temperature of 140 ° C. and 1.0 MPa for 60 seconds. Then, the support was peeled off to obtain a resin layer on the inner layer substrate.
次いで、この基板の表面に、1−(2−アミノエチル)−2−メチルイミダゾールが1.0%になるように調整した水溶液に30℃にて10分間浸漬し、次いで25℃の水に1分間浸漬した後、エアーナイフにて余分な溶液を除去した。これを170℃の窒素オーブン中に60分間放置し、樹脂層を硬化させて内層基板上に電気絶縁層を形成した。
得られた電気絶縁層に、UV−YAGレーザ第3高調波を用いて直径30μmの層間接続のビアホールを形成しビアホールつき多層基板を得た。
Next, the substrate was dipped in an aqueous solution adjusted to 1.0% of 1- (2-aminoethyl) -2-methylimidazole at 30 ° C. for 10 minutes, and then immersed in water at 25 ° C. for 1 minute. After dipping for a minute, the excess solution was removed with an air knife. This was left in a nitrogen oven at 170 ° C. for 60 minutes to cure the resin layer and form an electrically insulating layer on the inner substrate.
In the obtained electrical insulating layer, via-holes with an interlayer connection of 30 μm in diameter were formed using a UV-YAG laser third harmonic to obtain a multilayer substrate with via holes.
上述のビアホールつき多層基板を過マンガン酸濃度60g/リットル、水酸化ナトリウム濃度28g/リットルになるように調整した70℃の水溶液に10分間揺動浸漬した。次いで、基板を水槽に1分間揺動浸漬し、更に別の水槽に1分間揺動浸漬することにより、基板を水洗した。続いて硫酸ヒドロキシルアミン濃度170g/リットル、硫酸80g/リットルになるように調整した25℃の水溶液に、基板を5分間浸漬し、中和還元処理をした後、水洗した。 The multilayer substrate with via holes described above was rock-immersed for 10 minutes in a 70 ° C. aqueous solution adjusted to a permanganate concentration of 60 g / liter and a sodium hydroxide concentration of 28 g / liter. Next, the substrate was washed with water by dipping in a water tank for 1 minute and further dipping in another water tank for 1 minute. Subsequently, the substrate was immersed in an aqueous solution at 25 ° C. adjusted to have a hydroxylamine sulfate concentration of 170 g / liter and sulfuric acid of 80 g / liter for 5 minutes, neutralized and reduced, and then washed with water.
続いて、水洗後の多層基板上に付着した溶液を熱風乾燥機中で80℃、10分乾燥させた後、室温で30分間放置した。 Subsequently, the solution adhering to the multilayer substrate after washing with water was dried at 80 ° C. for 10 minutes in a hot air dryer, and then allowed to stand at room temperature for 30 minutes.
次いで、この多層基板の表面に、1−(2−アミノエチル)−2−メチルイミダゾールが1.0%になるように調整した水溶液に60℃にて1分間浸漬した後、水洗した。 Next, the multilayer substrate was dipped in an aqueous solution adjusted to 1.0% of 1- (2-aminoethyl) -2-methylimidazole at 60 ° C. for 1 minute and then washed with water.
めっき前処理として、水洗後の多層基板をアルカップアクチベータMAT−1−A(上村工業株式会社製)が200ml/リットル、アルカップアクチベータMAT−1−B(上村工業株式会社製)が30ml/リットル、水酸化ナトリウムが0.35g/リットルになるように調整した60℃のPd塩含有めっき触媒溶液に5分間浸漬した。次いで、上述と同じ方法で基板を水洗した後、アルカップレデユーサーMAB−4−A(上村工業株式会社製)が20ml/リットル、アルカップレデユーサーMAB−4−B(上村工業株式会社製)が200ml/リットルになるように調整した溶液に35℃で、3分間浸漬し、めっき触媒を還元処理した。このようにしてめっき触媒を吸着させ、めっき前処理を施した多層基板の最外絶縁層表面の十点平均粗さ表面十点平均粗さRzjis及び平均粗さRaの評価を行った。評価結果を表1に示す。 As the plating pretreatment, Alcup activator MAT-1-A (manufactured by Uemura Kogyo Co., Ltd.) is 200 ml / liter, and Alcup activator MAT-1-B (manufactured by Uemura Kogyo Co., Ltd.) is 30 ml / liter. Then, it was immersed for 5 minutes in a Pd salt-containing plating catalyst solution at 60 ° C. adjusted so that sodium hydroxide would be 0.35 g / liter. Next, after washing the substrate with the same method as described above, Alcup Deleuther MAB-4-A (manufactured by Uemura Kogyo Co., Ltd.) is 20 ml / liter, Alcup Deyuuser MAB-4-B (manufactured by Uemura Kogyo Co., Ltd.) Was immersed in a solution adjusted to 200 ml / liter at 35 ° C. for 3 minutes to reduce the plating catalyst. Thus, the plating catalyst was adsorbed, and the 10-point average roughness surface 10-point average roughness Rzjis and average roughness Ra of the outermost insulating layer surface of the multilayer substrate subjected to the plating pretreatment were evaluated. The evaluation results are shown in Table 1.
こうして得られた基板を、スルカップPSY−1A(上村工業株式会社製)100ml/リットル、スルカップPSY−1B(上村工業株式会社製)40ml/リットル、ホルマリン0.2モル/リットルとなるように調整した溶液に空気を吹き込みながら、温度36℃、5分間浸漬して無電解銅めっき処理を行った。
無電解めっき処理により金属薄膜層が形成された多層基板を、更に上述と同様に水洗した後、乾燥し、防錆処理を施し、無電解めっき皮膜が形成された多層基板を得た。
The substrate thus obtained was adjusted so as to be Sulcup PSY-1A (Uemura Kogyo Co., Ltd.) 100 ml / liter, Sulcup PSY-1B (Uemura Kogyo Co., Ltd.) 40 ml / L, formalin 0.2 mol / L. While blowing air into the solution, it was immersed for 5 minutes at a temperature of 36 ° C. to perform electroless copper plating.
The multilayer substrate on which the metal thin film layer was formed by the electroless plating treatment was further washed with water in the same manner as described above, then dried and subjected to rust prevention treatment to obtain a multilayer substrate on which the electroless plating film was formed.
この防錆処理が施された多層基板表面に、市販の感光性レジストのドライフィルムを熱圧着して貼り付け、さらに、このドライフィルム上に密着性評価用パターンに対応するパターンのマスクを密着させ露光した後、現像してレジストパターンを得た。次に硫酸100g/リットルの溶液に25℃で1分間浸漬させ防錆剤を除去し、レジスト非形成部分に電解銅めっきを施し厚さ18μmの電解銅めっき膜を形成させた。次いで、レジストパターンを剥離液にて剥離除去し、塩化第二銅と塩酸混合溶液によりエッチング処理を行うことにより、前記金属薄膜及び電解銅めっき膜からなる配線パターンを形成し両面2層の配線パターン付き多層回路基板を得た。そして、最後に、170℃で30分間アニール処理をして多層プリント配線板を得た。得られた多層プリント配線板のパターニング性の評価及びめっき密着性の評価を行った。評価結果を表1に示す。 A dry film of a commercially available photosensitive resist is attached to the surface of the multilayer substrate subjected to the rust prevention treatment by thermocompression bonding, and a mask having a pattern corresponding to the adhesion evaluation pattern is adhered to the dry film. After exposure, development was performed to obtain a resist pattern. Next, it was immersed in a 100 g / liter sulfuric acid solution at 25 ° C. for 1 minute to remove the rust preventive, and electrolytic copper plating was applied to the resist non-formed portion to form an electrolytic copper plating film having a thickness of 18 μm. Next, the resist pattern is stripped and removed with a stripping solution, and an etching process is performed with a cupric chloride and hydrochloric acid mixed solution to form a wiring pattern composed of the metal thin film and the electrolytic copper plating film. A multi-layer circuit board was obtained. Finally, annealing was performed at 170 ° C. for 30 minutes to obtain a multilayer printed wiring board. Evaluation of patterning property and plating adhesion of the obtained multilayer printed wiring board was performed. The evaluation results are shown in Table 1.
実施例2
実施例1にて、中和還元処理後の水洗をした多層基板の、熱風乾燥機での乾燥後の室温での放置時間を48時間にした以外は、実施例1と同様に実施した。評価結果を表1に示す。
Example 2
The same procedure as in Example 1 was performed except that the multilayer substrate washed with water after the neutralization reduction treatment in Example 1 was allowed to stand at room temperature after drying in a hot air dryer for 48 hours. The evaluation results are shown in Table 1.
比較例1
実施例1にて、中和還元処理後の水洗をした多層基板を乾燥した後に、基板を1−(2−アミノエチル)−2−メチルイミダゾールに浸漬させる操作を行わないこと以外は、実施例1と同様に実施したところ、無電解めっきが部分的にしか析出せず、また、電解めっき中に一部剥離していた。評価結果を表1に示す。
Comparative Example 1
In Example 1, the multilayer substrate that had been washed with water after the neutralization reduction treatment was dried, and then the operation of immersing the substrate in 1- (2-aminoethyl) -2-methylimidazole was not performed. When carried out in the same manner as in No. 1, the electroless plating was only partially deposited, and partly peeled off during the electrolytic plating. The evaluation results are shown in Table 1.
比較例2
実施例1にて、1−(2−アミノエチル)−2−メチルイミダゾールに浸漬する操作を行わずに、樹脂層を硬化させて内層基板上に電気絶縁層を形成した以外は、実施例1と同様に実施したところ、無電解めっきが部分的にしか析出せず、また、電解めっき中に一部剥離していた。評価結果を表1に示す。
Comparative Example 2
Example 1 is the same as Example 1 except that the resin layer was cured and an electrical insulating layer was formed on the inner substrate without performing the operation of immersing in 1- (2-aminoethyl) -2-methylimidazole. When electroless plating was carried out in the same manner as above, the electroless plating was only partially deposited, and partly peeled off during the electrolytic plating. The evaluation results are shown in Table 1.
以上の結果から、親水化処理後、表面を乾燥した前記電気絶縁層に、配位構造含有化合物を接触させて、めっき法により導体層を形成すると、十分に乾燥した電気絶縁層であっても、その上に形成された第二の導体層との安定した密着性と良好なパターニング性の得られることが判った。 From the above results, after the hydrophilization treatment, when the conductive layer is formed by plating method by bringing the coordination structure-containing compound into contact with the electrical insulation layer whose surface has been dried, even if the electrical insulation layer is sufficiently dried It has been found that stable adhesion to the second conductor layer formed thereon and good patterning properties can be obtained.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005042247A JP2006229038A (en) | 2005-02-18 | 2005-02-18 | Manufacturing method of multilayer printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005042247A JP2006229038A (en) | 2005-02-18 | 2005-02-18 | Manufacturing method of multilayer printed wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006229038A true JP2006229038A (en) | 2006-08-31 |
Family
ID=36990117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005042247A Pending JP2006229038A (en) | 2005-02-18 | 2005-02-18 | Manufacturing method of multilayer printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006229038A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012043799A1 (en) * | 2010-09-30 | 2012-04-05 | 日本ゼオン株式会社 | Method for manufacturing multilayer circuit board |
JP2014036051A (en) * | 2012-08-07 | 2014-02-24 | Ajinomoto Co Inc | Adhesive film, method of manufacturing hardening body, hardening body, wiring board, and semiconductor device |
JP5470493B1 (en) * | 2013-07-23 | 2014-04-16 | Jx日鉱日石金属株式会社 | Resin base material, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method |
WO2016175106A1 (en) * | 2015-04-28 | 2016-11-03 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, metal-foil-clad laminate, resin sheet, and printed wiring board |
JP2017076814A (en) * | 2016-12-26 | 2017-04-20 | 味の素株式会社 | Adhesive film, method for manufacturing cured body, cured body, wiring board, and semiconductor device |
JP2018207132A (en) * | 2018-10-04 | 2018-12-27 | 味の素株式会社 | Adhesive film, method for manufacturing cured body, cured body, wiring board, and semiconductor device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0480141A (en) * | 1990-07-23 | 1992-03-13 | Ricoh Co Ltd | Multiple stage sheet feeding and transferring device |
JPH09246716A (en) * | 1996-03-13 | 1997-09-19 | Nippon Riironaale Kk | Surface layer printed wiring board (slc) manufacturing method |
JP2001015934A (en) * | 1999-06-30 | 2001-01-19 | Toppan Printing Co Ltd | Multilayer printed wiring board and its manufacture |
JP2003304066A (en) * | 2002-04-11 | 2003-10-24 | Cmk Corp | Multilayer printed wiring board and manufacturing method thereof |
JP2003338683A (en) * | 2002-05-22 | 2003-11-28 | Shinko Electric Ind Co Ltd | Method of manufacturing wiring board |
WO2004080141A1 (en) * | 2003-03-04 | 2004-09-16 | Zeon Corporation | Process for producing multilayer printed wiring board and multilayer printed wiring board |
-
2005
- 2005-02-18 JP JP2005042247A patent/JP2006229038A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0480141A (en) * | 1990-07-23 | 1992-03-13 | Ricoh Co Ltd | Multiple stage sheet feeding and transferring device |
JPH09246716A (en) * | 1996-03-13 | 1997-09-19 | Nippon Riironaale Kk | Surface layer printed wiring board (slc) manufacturing method |
JP2001015934A (en) * | 1999-06-30 | 2001-01-19 | Toppan Printing Co Ltd | Multilayer printed wiring board and its manufacture |
JP2003304066A (en) * | 2002-04-11 | 2003-10-24 | Cmk Corp | Multilayer printed wiring board and manufacturing method thereof |
JP2003338683A (en) * | 2002-05-22 | 2003-11-28 | Shinko Electric Ind Co Ltd | Method of manufacturing wiring board |
WO2004080141A1 (en) * | 2003-03-04 | 2004-09-16 | Zeon Corporation | Process for producing multilayer printed wiring board and multilayer printed wiring board |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012043799A1 (en) * | 2010-09-30 | 2012-04-05 | 日本ゼオン株式会社 | Method for manufacturing multilayer circuit board |
US9615465B2 (en) | 2010-09-30 | 2017-04-04 | Zeon Corporation | Method of production of multilayer circuit board |
JP2014036051A (en) * | 2012-08-07 | 2014-02-24 | Ajinomoto Co Inc | Adhesive film, method of manufacturing hardening body, hardening body, wiring board, and semiconductor device |
JP5544444B1 (en) * | 2013-07-23 | 2014-07-09 | Jx日鉱日石金属株式会社 | Resin base material, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method |
JP2015043401A (en) * | 2013-07-23 | 2015-03-05 | Jx日鉱日石金属株式会社 | Resin substrate, printed wiring board, printed circuit board, copper clad laminate, and method for manufacturing printed wiring board |
JP5470493B1 (en) * | 2013-07-23 | 2014-04-16 | Jx日鉱日石金属株式会社 | Resin base material, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method |
WO2016175106A1 (en) * | 2015-04-28 | 2016-11-03 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, metal-foil-clad laminate, resin sheet, and printed wiring board |
KR20170141701A (en) * | 2015-04-28 | 2017-12-26 | 미츠비시 가스 가가쿠 가부시키가이샤 | Resin composition, prepreg, metal-foil-clad laminate, resin sheet, and printed wiring board |
CN107531882A (en) * | 2015-04-28 | 2018-01-02 | 三菱瓦斯化学株式会社 | Resin combination, prepreg, clad with metal foil plywood, resin sheet and printed circuit board (PCB) |
JPWO2016175106A1 (en) * | 2015-04-28 | 2018-02-22 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board |
EP3290454A4 (en) * | 2015-04-28 | 2018-09-12 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg, metal-foil-clad laminate, resin sheet, and printed wiring board |
KR102481055B1 (en) * | 2015-04-28 | 2022-12-23 | 미츠비시 가스 가가쿠 가부시키가이샤 | Resin composition, prepreg, metal-foil-clad laminate, resin sheet, and printed wiring board |
JP2017076814A (en) * | 2016-12-26 | 2017-04-20 | 味の素株式会社 | Adhesive film, method for manufacturing cured body, cured body, wiring board, and semiconductor device |
JP2018207132A (en) * | 2018-10-04 | 2018-12-27 | 味の素株式会社 | Adhesive film, method for manufacturing cured body, cured body, wiring board, and semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4411544B2 (en) | Multilayer printed wiring board manufacturing method and multilayer printed wiring board | |
CN100546438C (en) | Circuit substrate and manufacture method thereof | |
TW540284B (en) | Process for manufacturing multi-layer circuit substrate | |
JP3541360B2 (en) | Method for forming multilayer circuit structure and substrate having multilayer circuit structure | |
JP4850487B2 (en) | LAMINATE FOR PRINTED WIRING BOARD, PRINTED WIRING BOARD USING THE SAME, METHOD FOR PRODUCING PRINTED WIRING BOARD, ELECTRICAL COMPONENT, ELECTRONIC COMPONENT, AND ELECTRIC DEVICE | |
JP2011000892A (en) | Resin composite film | |
WO2007023944A1 (en) | Composite resin molded article, laminate, multi-layer circuit board, and electronic device | |
JPWO2009038177A1 (en) | Curable resin composition and use thereof | |
JP2006229038A (en) | Manufacturing method of multilayer printed wiring board | |
JP3861999B2 (en) | Partial plating method and resin member | |
JP2007227567A (en) | Method for forming metal thin film layer and method for producing multilayer printed wiring board | |
JP3862009B2 (en) | Multilayer circuit board manufacturing method | |
JPWO2004086833A1 (en) | Printed wiring board, method for producing the same, and curable resin molded body with support | |
JP2006028225A (en) | Thermosetting resin composition, electrical insulating film, laminate and multilayer circuit board | |
JP4300389B2 (en) | Multilayer circuit board manufacturing method | |
JP2006278922A (en) | Multilayer circuit board manufacturing method | |
JP2005264303A (en) | Method for producing metal resin composite film, metal resin composite film and use thereof | |
JP4061457B2 (en) | Method for forming electrical insulating layer and use thereof | |
JP2004134670A (en) | Method for manufacturing multilayer circuit board | |
JP2007134396A (en) | Laminate for printed wiring board, patterning method of multilayer metal wiring employing it, and metal thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070919 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100428 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101101 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110531 |