[go: up one dir, main page]

JP2006223090A - Method of winding cylindrical linear motor armature coil, and stator of cylindrical linear motor and cylindrical linear motor using it - Google Patents

Method of winding cylindrical linear motor armature coil, and stator of cylindrical linear motor and cylindrical linear motor using it Download PDF

Info

Publication number
JP2006223090A
JP2006223090A JP2005309755A JP2005309755A JP2006223090A JP 2006223090 A JP2006223090 A JP 2006223090A JP 2005309755 A JP2005309755 A JP 2005309755A JP 2005309755 A JP2005309755 A JP 2005309755A JP 2006223090 A JP2006223090 A JP 2006223090A
Authority
JP
Japan
Prior art keywords
coil
linear motor
winding
cylindrical
cylindrical linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005309755A
Other languages
Japanese (ja)
Other versions
JP4711181B2 (en
Inventor
Yosuke Kawazoe
洋介 川副
Akihiko Maemura
前村  明彦
Tatsuo Suzuki
健生 鈴木
Isato Fukuma
勇人 福間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2005309755A priority Critical patent/JP4711181B2/en
Publication of JP2006223090A publication Critical patent/JP2006223090A/en
Application granted granted Critical
Publication of JP4711181B2 publication Critical patent/JP4711181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Linear Motors (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of winding a cylindrical linear motor armature coil, and a stator of a cylindrical linear motor and the cylindrical linear motor using it that make a bobbin for an annular coil unnecessary, that provide a space for processing the wiring and passing a crossover wire, and that make it easy to manufacture a yoke. <P>SOLUTION: The cylindrical linear motor is made up of a moving member 1 having a plurality of cylindrical magnets inside a cylindrical pipe that extends in the axial direction and the stator 2 that is concentrically arranged on the outside circumference of the moving member 1 via a magnetic gap in which the armature coil 6, which comprises a plurality of the annular coil groups, is provided in the axial direction on the inside circumference of a cylindrical yoke 7. This yoke 7 comprises an iron core of a thin plate blanked out roughly in a rectangular shape that is formed roughly in a cylindrical shape along the armature coil. A level difference 10 is provided at the joint portion formed when the iron core formed in roughly the cylindrical shape is wound. The winding process of the coil groups is performed utilizing the space 9 formed inside between the armature coil 6 and the level difference 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、円筒形リニアモータ電機子コイルの巻線方法、および円筒形リニアモータ固定子、並びにそれを用いた円筒形状の界磁と電機子を備えた可動磁石構造の円筒形リニアモータに関する。   The present invention relates to a winding method of a cylindrical linear motor armature coil, a cylindrical linear motor stator, and a cylindrical linear motor having a movable magnet structure including a cylindrical field and armature using the same.

従来、円筒形状の界磁と電機子を備えた円筒形リニアモータは図10のようになっている。
図10は第1従来技術による円筒形リニアモータの構成を示すものであって、(a)はその概略斜視図、(b)は(a)のB−B線に沿う正断面図である。
図10において、91は固定子、92は磁極、93は可動子、94はコイルボビン、95はリング状コイル、96は円筒状ヨークである。この円筒リニアモータは可動コイル形であり、軸方向に多極の磁極92を並べた固定子91と、固定子91と磁気的空隙を介して対向配置されたコイルボビン94に巻装されたリング状コイル95と、該リング状コイル95を包含するような円筒状ヨーク96とから成る可動子93により構成されている。円筒リニアモータのリング状コイル95に可動子の位置に応じた3相の電流を流すと、固定子91の軸方向に向かって可動子93が推力を発生し移動するようになっている(例えば、特許文献1を参照)。
Conventionally, a cylindrical linear motor having a cylindrical field and armature is as shown in FIG.
10A and 10B show the configuration of a cylindrical linear motor according to the first prior art, in which FIG. 10A is a schematic perspective view thereof, and FIG. 10B is a front sectional view taken along line BB in FIG.
In FIG. 10, 91 is a stator, 92 is a magnetic pole, 93 is a mover, 94 is a coil bobbin, 95 is a ring coil, and 96 is a cylindrical yoke. This cylindrical linear motor is of a movable coil type, and is a ring 91 wound around a stator 91 in which multipolar magnetic poles 92 are arranged in the axial direction, and a coil bobbin 94 arranged opposite to the stator 91 via a magnetic gap. The movable member 93 includes a coil 95 and a cylindrical yoke 96 that includes the ring-shaped coil 95. When a three-phase current corresponding to the position of the mover is passed through the ring-shaped coil 95 of the cylindrical linear motor, the mover 93 generates thrust and moves in the axial direction of the stator 91 (for example, , See Patent Document 1).

図11は第2従来技術による円筒形リニアモータの構成を示すものであって、(a)はその全体斜視図、(b)は(a)のB−B線に沿う正断面図である。
図11において、101は固定子、102は可動子、103は永久磁石、104は界磁ヨーク、105は電機子巻線、106は電機子コアである。この円筒形リニアモータは第1従来技術に対して可動磁石形を構成する点で異なっており、円筒状の電機子コア106と、円筒状の電機子巻線105と、界磁ヨーク104からなる固定子101と、円筒状の永久磁石103の界磁からなる可動子102で構成される。
また、図12は、第2従来技術による電機子巻線の製作工程および製作方法を示した概念図である。
図12において、107は各相の要素コイルを表している。固定子101は、各相(U、V、W)用の要素コイル(107a、107b、107c)が極ピッチPとなるように、電機子コア106に螺旋状に巻いた円筒状の電機子巻線105で構成されている。この場合、要素コイル(107a、107b、107c)を組み合わせて平滑電機子コイル108とした後、螺旋状に巻回して電機子巻線を作製するようになっている(例えば、特許文献2を参照)。
11A and 11B show the configuration of a cylindrical linear motor according to the second prior art, in which FIG. 11A is an overall perspective view and FIG. 11B is a front sectional view taken along line BB in FIG.
In FIG. 11, 101 is a stator, 102 is a mover, 103 is a permanent magnet, 104 is a field yoke, 105 is an armature winding, and 106 is an armature core. This cylindrical linear motor is different from the first prior art in that it forms a movable magnet type, and includes a cylindrical armature core 106, a cylindrical armature winding 105, and a field yoke 104. It is composed of a stator 101 and a mover 102 made of a field of a cylindrical permanent magnet 103.
FIG. 12 is a conceptual diagram showing an armature winding manufacturing process and manufacturing method according to the second prior art.
In FIG. 12, 107 represents the element coil of each phase. The stator 101 is a cylindrical armature winding that is wound around the armature core 106 in a spiral manner so that the element coils (107a, 107b, 107c) for each phase (U, V, W) have a pole pitch P. It consists of a line 105. In this case, after the element coils (107a, 107b, 107c) are combined to form the smooth armature coil 108, the armature winding is manufactured by spirally winding (see, for example, Patent Document 2). ).

図13は第3従来技術による電機子巻線の製作工程および製作方法を示した概念図である。
図13のように、電機子コイルが6相帯(U、V、W、U’、V’、W’)から成り、各コイルを円筒状に巻回したあと各相(U−U’、V−V’、W−W’)間で結線するものもある(例えば、特許文献3を参照)。
特開平8−275498号(明細書第4頁、第1図〜第2図) 実開平6−62787号公報(明細書第2頁、第1図〜第4図) 特開2001−8430号公報(明細書第20頁、第11図)
FIG. 13 is a conceptual diagram showing a manufacturing process and a manufacturing method of an armature winding according to the third prior art.
As shown in FIG. 13, the armature coil is composed of six-phase bands (U, V, W, U ′, V ′, W ′), and after winding each coil in a cylindrical shape, each phase (U−U ′, There is also a connection between VV ′ and WW ′) (see, for example, Patent Document 3).
JP-A-8-275498 (Specification, page 4, FIGS. 1 to 2) Japanese Utility Model Publication No. 6-62787 (the second page of the specification, FIGS. 1 to 4) JP 2001-8430 A (page 20 of the specification, FIG. 11)

ところが、第1従来技術の円筒形リニアモータにおいては、固定子91を包含するようなコイルボビン94に巻装されたリング状コイル95を用いているので、コイルボビン94の分だけ巻線の占積率が低下するという問題があった。また、リング状コイル95を結線処理し、多相のコイルの渡り線を通すためのスペースを考慮する必要があるため、リング状コイル95の外径を、そのコイルを包含する円筒状ヨーク96の内径に対して小さくする必要がある。このためにリング状コイル95の占積率が低下し損失が増大するという問題があった。
また、円筒状ヨークの製作については、円柱から削り出すかあるいは鋳造により製作しているので、外径が異なる毎に専用の治具が必要となり多くの時間を費やす必要がある。
However, since the cylindrical linear motor of the first prior art uses the ring-shaped coil 95 wound around the coil bobbin 94 that includes the stator 91, the space factor of the winding is equivalent to the coil bobbin 94. There was a problem that decreased. In addition, since it is necessary to consider the space for connecting the ring-shaped coil 95 and passing the connecting wire of the multiphase coil, the outer diameter of the ring-shaped coil 95 is set to the cylindrical yoke 96 including the coil. It is necessary to make it smaller than the inner diameter. For this reason, there has been a problem that the space factor of the ring-shaped coil 95 decreases and the loss increases.
In addition, since the cylindrical yoke is manufactured by machining from a column or casting, a dedicated jig is required every time the outer diameter is different, and a lot of time must be spent.

本発明は上記問題点を解決するためになされたものであり、その第1の目的は、リング状コイルのボビンを無くし、結線処理および渡り線のスペースを確保すると供に、コイルを包含するヨークの製作が容易な、円筒形リニアモータ電機子コイルの巻線方法、および円筒形リニアモータ固定子、並びにそれを用いた円筒形リニアモータを提供することである。   The present invention has been made to solve the above problems, and a first object of the invention is to eliminate the bobbin of the ring-shaped coil, to secure a space for connection processing and a crossover, and to include a yoke including the coil. It is an object of the present invention to provide a cylindrical linear motor armature coil winding method, a cylindrical linear motor stator, and a cylindrical linear motor using the same.

それから、第2従来技術の円筒形リニアモータにおいては、要素コイルを組み合わせ平滑電機子コイルとして、螺旋状に巻回して作製する場合は、各相間で結線処理をする必要がないので巻線の占積率を高くすることができる。しかし、この場合は、平滑電機子コイルの作製が困難であり巻線係数が小さいため損失が増加するという問題があった。
また、第3従来技術の円筒形リニアモータにおいては、リング状コイルを作製して、各相(U−U’、V−V’、W−W’)間で結線処理を行い作製する場合は、各相間での結線処理を行うスペースを確保するために巻線の占積率が低下し、損失が増加するといった問題があった。
Then, in the cylindrical linear motor according to the second prior art, when the element coils are combined and manufactured as a smooth armature coil by spirally winding, it is not necessary to perform a wiring process between the phases, so that the winding is occupied. The product rate can be increased. However, in this case, there is a problem that it is difficult to manufacture a smooth armature coil, and the loss increases because the winding coefficient is small.
In addition, in the cylindrical linear motor of the third prior art, when a ring-shaped coil is manufactured and wire connection processing is performed between each phase (UU ′, VV ′, WW ′), In order to secure a space for performing the wiring process between the phases, there is a problem that the space factor of the winding is lowered and the loss is increased.

結線処理を省くために複数個のコイルを連結した状態で巻回することも可能だが、例えば、6相帯(U−W’−V−U’−W−V’)の連結コイルを作製する場合は1コイル毎に巻方向を反転させて巻回するか、または、単相の要素コイル(U−U’、V−V’、W−W’)を作製後に結線処理を行い、3相帯の連結コイル(U−W−V−U−W−V)を作製した後に、逆相(U’、V’、W’)にあたるコイルの向きを反転させて6相帯(U−W’−V−U’−W−V’)のコイルを作製する必要がある。
それから、1コイル毎に巻き方向を反転させて巻回する場合は、巻き方向を反転する際にコイル全体が治具上で回転してコイルが解け、渡り線が長くなる問題があった。また、3相帯(U−W−V−U−W−V)の連結コイルを作製後に逆相にあたる部分のコイルの向きを反転させる場合は、コイルを反転させる時に断線させたり、誤った箇所のコイルの向きを反転させてしまうといった問題もあった。
Although it is possible to wind in a state where a plurality of coils are connected in order to eliminate the wiring process, for example, a connection coil of 6-phase band (UW'-VU'-WV ') is produced. In this case, the winding direction is reversed for each coil, or a single-phase element coil (U-U ', V-V', WW ') is produced, and then a connection process is performed to produce a three-phase After the band connecting coil (UWWVUWW) is fabricated, the direction of the coil corresponding to the reverse phase (U ′, V ′, W ′) is reversed to obtain the 6 phase band (UW ′). −V−U′−W−V ′) is required to be manufactured.
Then, when the winding direction is reversed for each coil, there is a problem that when the winding direction is reversed, the entire coil rotates on the jig, the coil is unwound, and the connecting wire becomes long. In addition, when reversing the direction of the coil corresponding to the reverse phase after making the three-phase band (U-W-V-U-W-V) connected coil, the coil may be disconnected or incorrect when the coil is reversed. There is also a problem that the direction of the coil is reversed.

本発明は上記問題点を解決するためになされたものであり、その第2の目的は、隣り合うコイルの巻方向が異なる連結コイルを容易に作製できるようにし、渡り線に必要な空間を小さくすることで、電機子の占積率を高めることができる円筒形リニアモータ電機子コイルの巻線方法、および円筒形リニアモータ固定子、並びにそれを用いた円筒形リニアモータを提供することである。   The present invention has been made to solve the above-mentioned problems, and a second object of the present invention is to make it possible to easily produce a connection coil in which the winding directions of adjacent coils are different, and to reduce the space required for the jumper wire. It is to provide a winding method of a cylindrical linear motor armature coil that can increase the space factor of the armature, a cylindrical linear motor stator, and a cylindrical linear motor using the same. .

上記問題を解決するため、本発明は次のように構成したものである。   In order to solve the above problems, the present invention is configured as follows.

請求項1の発明は、円筒形リニアモータの電機子コイルの巻線方法であって、前記電機子コイルの各相のコイル群を構成する銅線を、軸方向に伸びる円柱状の巻き取り治具に取付けた後、該巻き取り治具を所定の方向に回転させ、続いて該巻き取り治具を軸方向に移動させることにより、前記巻き取り治具に取付けた前段の各相のコイル群に隣り合わせになるように次段の各相のコイル群を構成する銅線を同様の工程により連続してリング状コイルを製作するようにしたことを特徴としている。   The invention of claim 1 is a method of winding an armature coil of a cylindrical linear motor, wherein a copper wire constituting a coil group of each phase of the armature coil is wound in a columnar shape extending in the axial direction. After being attached to the tool, the winding jig is rotated in a predetermined direction, and then the winding jig is moved in the axial direction, whereby the coil group of each phase of the previous stage attached to the winding jig A ring-shaped coil is continuously manufactured by a similar process for copper wires constituting a coil group of each phase of the next stage so as to be adjacent to each other.

また、請求項2の発明は、円筒形リニアモータの電機子コイルの巻線方法であって、前記電機子コイルの各相のコイル群を構成する銅線を、予め略U字状に折り返して配置し、該銅線の折り返し部分を軸方向に伸びる円筒状の巻き取り治具に取付けた後、該巻き取り治具を単一方向にのみ回転させ、続いて、前記巻き取り治具に取付けた前段の各相のコイル群に隣り合わせになるように次段の各相コイル群を構成する銅線を同様の工程により連続してリング状コイルを製作するようにしたことを特徴としている。   The invention of claim 2 is a winding method of an armature coil of a cylindrical linear motor, wherein copper wires constituting a coil group of each phase of the armature coil are folded in advance in a substantially U shape. After placing and attaching the folded portion of the copper wire to a cylindrical winding jig extending in the axial direction, the winding jig is rotated only in a single direction, and then attached to the winding jig Further, a ring-shaped coil is continuously manufactured by a similar process using copper wires constituting each phase coil group of the next stage so as to be adjacent to the coil group of each phase of the previous stage.

請求項3の発明は、請求項2記載の円筒形リニアモータ電機子コイルの巻線方法において、前記銅線の折り返し部分が前記コイル群の渡り線となるように、前記銅線の折り返し部分を前記巻き取り治具に取付けた渡り線を保持するための渡り線保持部に引っ掛けるようにしたことを特徴とする。   According to a third aspect of the present invention, in the winding method of the cylindrical linear motor armature coil according to the second aspect, the folded portion of the copper wire is arranged so that the folded portion of the copper wire becomes a connecting wire of the coil group. It is characterized in that it is hooked on a crossover holding part for holding a crossover attached to the winding jig.

請求項4の発明は、請求項3記載の円筒形リニアモータ電機子コイルの巻線方法において、前記巻き取り治具に前記銅線を巻き付けて各相のコイル群を作製した後、前記コイル群の渡り線が装着された前記渡り線保持部を前記巻き取り治具の内径側に収納したことを特徴としている。   According to a fourth aspect of the present invention, in the winding method of the cylindrical linear motor armature coil according to the third aspect, after the copper wire is wound around the winding jig to produce a coil group of each phase, the coil group The crossover holding portion to which the crossover wire is attached is housed on the inner diameter side of the winding jig.

また、請求項5の発明は、円筒形リニアモータ固定子に係わる発明であって、円筒状のヨークと、前記ヨークの内周に複数個のコイル群を軸方向に等ピッチに配置してなる請求項1または2に記載の巻線方法により製造された電機子コイルと、を備えたことを特徴としている。   The invention according to claim 5 is an invention relating to a cylindrical linear motor stator, wherein a cylindrical yoke and a plurality of coil groups are arranged at equal pitches in the axial direction on the inner periphery of the yoke. And an armature coil manufactured by the winding method according to claim 1.

請求項6の発明は、請求項5に記載の円筒形リニアモータ固定子において、前記ヨークは、略長方形に打ち抜いた薄板状鉄心を前記電機子コイルの外周に沿うように略円筒状に成形したものであり、前記略円筒状に成形された薄板状鉄心を巻回した際にできる接合部に段差を設けたことを特徴としている   According to a sixth aspect of the present invention, in the cylindrical linear motor stator according to the fifth aspect, the yoke is formed in a substantially cylindrical shape so that a thin plate-shaped iron core punched out into a substantially rectangular shape follows the outer periphery of the armature coil. It is characterized in that a step is provided in a joint portion formed when the thin plate-shaped iron core formed in the substantially cylindrical shape is wound.

請求項7の発明は、請求項6に記載の円筒形リニアモータ固定子において、前記固定子のヨークを形成する際に、前記電機子コイルと前記ヨークの段差との内面にできたスペースを利用して、前記電機子コイルを構成する多相のコイル群の結線処理を行うことを特徴としている。   According to a seventh aspect of the present invention, in the cylindrical linear motor stator according to the sixth aspect, when the yoke of the stator is formed, a space formed on the inner surface between the armature coil and the step of the yoke is used. And the connection process of the multiphase coil group which comprises the said armature coil is performed, It is characterized by the above-mentioned.

請求項8の発明は、請求項6または7に記載の円筒形リニアモータ固定子において、前記固定子のヨークを形成する際に、前記ヨークの接合部にできた段差を利用して位置決めを行うことを特徴としている。   According to an eighth aspect of the present invention, in the cylindrical linear motor stator according to the sixth or seventh aspect, when the yoke of the stator is formed, positioning is performed using a step formed at the joint portion of the yoke. It is characterized by that.

また、請求項9の発明は、円筒形リニアモータに係わる発明であって、請求項5に記載の固定子と、前記固定子の内周に磁気的空隙を介して対向配置されると共に軸方向に伸びる円筒状のパイプと、該パイプの内側に挿設された多極に着磁してなる複数の円柱状磁石を有する可動子と、を備えたことを特徴としている。   The invention of claim 9 relates to a cylindrical linear motor, wherein the stator according to claim 5 is disposed opposite to the inner periphery of the stator via a magnetic gap and is axial. And a mover having a plurality of columnar magnets magnetized by multiple poles inserted inside the pipe.

請求項10の発明は、請求項9に記載の円筒形リニアモータにおいて、前記パイプ内に挿設された複数の円柱状磁石の軸方向長さの合計が、請求項5記載の電機子コイルの軸方向長さと前記可動子の駆動ストロークの和に等しく、かつ、前記電機子コイルの軸方向長さと前記可動子の駆動ストロークの和が、前記ヨークの軸方向長さ以下であることを特徴としている。   A tenth aspect of the present invention is the cylindrical linear motor according to the ninth aspect, wherein the sum of the axial lengths of the plurality of columnar magnets inserted in the pipe is the armature coil according to the fifth aspect. It is equal to the sum of the axial length and the drive stroke of the mover, and the sum of the axial length of the armature coil and the drive stroke of the mover is equal to or less than the axial length of the yoke. Yes.

請求項11の発明は、請求項9または10に記載の円筒形リニアモータにおいて、前記パイプ内に挿設された複数の円柱状磁石のうち、前記パイプ内の両端に位置する磁石の軸方向長さを他の磁石の軸方向長さより短くしたことを特徴としている。   An eleventh aspect of the present invention is the cylindrical linear motor according to the ninth or tenth aspect, wherein among the plurality of columnar magnets inserted in the pipe, the axial lengths of the magnets located at both ends of the pipe are provided. This is characterized in that it is shorter than the axial length of other magnets.

請求項12の発明は、請求項9または10に記載の円筒形リニアモータにおいて、前記パイプ内に挿設された複数の円柱状磁石の間に、該磁石の軸方向長さより短い円柱状磁性体を設けたことを特徴としている。   A twelfth aspect of the present invention is the cylindrical linear motor according to the ninth or tenth aspect, wherein the cylindrical magnetic body is shorter than the axial length of the magnet between the plurality of columnar magnets inserted in the pipe. It is characterized by providing.

また、請求項1に記載の発明によると、多相の銅線を固定して巻き取り治具を回転後にスライドさせることにより、前記、多相の連続したリング状コイルを容易に製作でき、リング状コイルの結線処理を省くことが可能となる。   Further, according to the invention described in claim 1, the polyphase continuous ring-shaped coil can be easily manufactured by fixing the multiphase copper wire and sliding the winding jig after the rotation. This makes it possible to omit the wire coil connection process.

また、請求項2に記載の発明によると、特にストロークが長い円筒形リニアモータの隣り合うコイルにおいて、逆向きに巻回してあるような連結コイルを容易に作製することが可能となる。それから、渡り線の半数をコイルの内径側に配置してあるので、連結コイル作製中にコイルが巻き取り治具上を滑って解けることがないので、コイル間の渡り線を短くすることができる。   According to the second aspect of the present invention, it is possible to easily produce a connecting coil that is wound in the opposite direction in the adjacent coils of a cylindrical linear motor having a particularly long stroke. Then, since half of the connecting wires are arranged on the inner diameter side of the coil, the connecting wire between the coils can be shortened because the coil is not slid on the winding jig during connection coil production. .

また、請求項3に記載の発明によると、空芯のリング状連結コイルを作成することができる。   According to the third aspect of the present invention, an air-core ring-shaped connecting coil can be created.

また、請求項4に記載の発明によると、コイル巻き始め部分に必要な銅線の立ち上がり線のスペースを省略することができるので、立ち上がり線のスペースを省いた連続コイルを用いることで、円筒形リニアモータの電機子コイルの占積率を高めることができ、結果として損失を下げることができる。   Further, according to the invention described in claim 4, since the space of the rising line of the copper wire necessary for the coil winding start portion can be omitted, by using a continuous coil that eliminates the space of the rising line, a cylindrical shape is obtained. The space factor of the armature coil of the linear motor can be increased, and as a result, the loss can be reduced.

また、請求項5に記載の発明によると、請求項1または2記載の巻線方法により製造された電機子巻線を、円筒状のヨークと組み合わせることで、 小型で省スペースの円筒型リニアモータ固定子を得ることができる。   According to the invention described in claim 5, the armature winding manufactured by the winding method according to claim 1 or 2 is combined with the cylindrical yoke, so that a compact and space-saving cylindrical linear motor is obtained. A stator can be obtained.

また、請求項6に記載の発明によると、円筒形リニアモータの固定子ヨークを薄板状鉄心から容易に製作することができる。   According to the sixth aspect of the present invention, the stator yoke of the cylindrical linear motor can be easily manufactured from a thin plate core.

また、請求項7に記載の発明によると、リング状コイルの結線処理のために、固定子ヨークの内径よりもリング状コイルの内径を小さくすることなく、同じ径で製作することができる。このため、従来の円筒形リニアモータに対して巻線の占積率を向上することができ損失を低減することができる。   Further, according to the seventh aspect of the present invention, the ring-shaped coil can be connected with the same diameter without making the inner diameter of the ring-shaped coil smaller than the inner diameter of the stator yoke. For this reason, the space factor of a coil | winding can be improved with respect to the conventional cylindrical linear motor, and a loss can be reduced.

また、請求項8に記載の発明によると、請求項1〜4のいずれかに記載の円筒形リニアモータを複数個並べて用いる場合に、個々のモータの位置決めをするために必要な特別な治具を新規に付加することなく、容易に位置決めをすることができる。   Further, according to the invention described in claim 8, when a plurality of cylindrical linear motors according to any one of claims 1 to 4 are used side by side, a special jig necessary for positioning the individual motors is used. Positioning can be easily performed without newly adding.

また、請求項9の発明によると、請求項5〜8に記載の損失の少ないリニアモータ固定子を、界磁を構成するリニアモータ可動子と対向配置させることで、発熱のない円筒型リニアモータを得ることができる。   According to a ninth aspect of the present invention, the linear motor stator having a small loss according to the fifth to eighth aspects is arranged opposite to the linear motor movable element constituting the field, so that a cylindrical linear motor that does not generate heat is provided. Can be obtained.

また、請求項10および11に記載の発明によると、円筒形リニアモータの考慮するストロークのどの場所であっても一定の推力を得ることができる。   In addition, according to the invention described in claims 10 and 11, a constant thrust can be obtained at any location of the stroke considered by the cylindrical linear motor.

また、請求項12に記載の発明によると、強い異方性を有する磁石の磁化方向を対向させて並べた場合でも、磁石間にその磁石よりも短い円柱状磁性体を配置することで、対向する磁束が互いに打ち消しあうことなく、磁石間の磁性体部分では、軸方向と垂直な向きに磁束を流すことができる。   According to the invention of claim 12, even when magnets having strong anisotropy are arranged with their magnetization directions opposed to each other, by arranging a columnar magnetic body shorter than the magnet between the magnets, The magnetic flux can flow in the direction perpendicular to the axial direction in the magnetic body portion between the magnets without canceling each other.

以下、本発明の実施例を図に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の第1実施例を示す円筒形リニアモータの側断面図、図2は図1のA―A線に沿う正断面図である。
図1、2において、1は可動子、2は固定子、3はパイプ、4は円柱状磁石、4a、4bはパイプ3内の両端に設けた円柱状磁石、5は円柱状磁性体、6は電機子コイル、7はヨーク、9はスペース、10は段差である。
FIG. 1 is a side sectional view of a cylindrical linear motor showing a first embodiment of the present invention, and FIG. 2 is a front sectional view taken along line AA of FIG.
1 and 2, 1 is a movable element, 2 is a stator, 3 is a pipe, 4 is a cylindrical magnet, 4a and 4b are cylindrical magnets provided at both ends of the pipe 3, 5 is a cylindrical magnetic body, 6 Is an armature coil, 7 is a yoke, 9 is a space, and 10 is a step.

本発明の特徴は以下のとおりである。
すなわち、円筒形リニアモータは、軸方向に伸びる円筒状のパイプ3と、該パイプ3の内側に挿設された多極に着磁してなる複数の円柱状磁石4と、該円筒状磁石4の間に挿入された円柱状磁性体5を有する可動子1と、可動子1の外周に磁気的空隙を介して同心配置された円筒状のヨーク7と、該ヨーク7の内周にリング状に巻回してなる複数個のコイル群を軸方向に等ピッチで配置した電機子コイル6を有する固定子2とより構成されている。
ここで、パイプ3内に挿設された複数の円柱状磁石4の軸方向長さの合計が、電機子コイル6の軸方向長さLと可動子1の駆動ストロークSの和に等しく、かつ、電機子コイル6の軸方向長さLと可動子1の駆動ストロークSの和が、ヨーク7の軸方向長さ以下に設定されている。
The features of the present invention are as follows.
That is, the cylindrical linear motor includes a cylindrical pipe 3 that extends in the axial direction, a plurality of columnar magnets 4 that are magnetized in multiple poles inserted inside the pipe 3, and the cylindrical magnet 4. A mover 1 having a columnar magnetic body 5 inserted between them, a cylindrical yoke 7 arranged concentrically on the outer periphery of the mover 1 via a magnetic gap, and a ring shape on the inner periphery of the yoke 7 And a stator 2 having an armature coil 6 in which a plurality of coil groups wound around are arranged at an equal pitch in the axial direction.
Here, the sum of the axial lengths of the plurality of columnar magnets 4 inserted in the pipe 3 is equal to the sum of the axial length L C of the armature coil 6 and the driving stroke S of the mover 1, In addition, the sum of the axial length L C of the armature coil 6 and the drive stroke S of the mover 1 is set to be equal to or less than the axial length of the yoke 7.

具体的には、可動子1のパイプ3に挿設された円柱状磁石4は、軸方向に磁化されており、隣どうしで磁化方向が180°異なるようになっている。また、パイプ3内に挿設された複数の円柱状磁石4のうち、パイプ3内の両端に位置する磁石8aおよび8bの軸方向長さを他の磁石の軸方向長さより短くしてあり、複数の円柱状磁石の間に入る円柱状磁性体5の軸方向長さは該磁性体を挟む両側の磁石の軸方向長さよりも短くしてある。   Specifically, the columnar magnet 4 inserted in the pipe 3 of the mover 1 is magnetized in the axial direction, and the magnetization direction is different by 180 ° between the adjacent magnets. In addition, among the plurality of columnar magnets 4 inserted in the pipe 3, the axial lengths of the magnets 8a and 8b located at both ends in the pipe 3 are shorter than the axial lengths of the other magnets, The axial length of the columnar magnetic body 5 entering between the plurality of columnar magnets is shorter than the axial length of the magnets on both sides sandwiching the magnetic body.

また、固定子に用いるヨーク7は、略長方形に打ち抜いた薄板状鉄心の一方の長辺を基準にして、前記電機子コイル6の外周に沿うように略円筒状に成形したものであり、前記略円筒状に成形された薄板状鉄心を巻回した際にできる、該鉄心の一方の長辺と他方の長辺との接合部に段差10を設けたものである。
また、固定子のヨーク7を形成する際に、電機子コイル6とヨーク7の段差10との内面にできたスペース9を利用して、電機子コイルを構成するコイル群の結線処理を行うようになっている。
The yoke 7 used for the stator is formed in a substantially cylindrical shape along the outer periphery of the armature coil 6 with reference to one long side of the thin plate-shaped iron core punched into a substantially rectangular shape. A step 10 is provided at a joint portion between one long side and the other long side of the iron core, which is formed when a thin plate-shaped iron core formed in a substantially cylindrical shape is wound.
Further, when forming the yoke 7 of the stator, the space 9 formed on the inner surface of the armature coil 6 and the step 10 of the yoke 7 is used to perform the connection processing of the coil group constituting the armature coil. It has become.

図3は本実施例における円筒形リニアモータに3相電源を用いた場合のリング状コイルの結線を示した概略図である。
図3において、11は図2の電機子コイル6を構成する各相のリング状コイル、12は結線処理を行う渡り線部である。この渡り線部12が、図2に示した電機子コイル6とヨーク7の段差10との内面にできたスペース9に収納される。
FIG. 3 is a schematic diagram showing the connection of ring coils when a three-phase power source is used for the cylindrical linear motor in this embodiment.
In FIG. 3, 11 is a ring-shaped coil of each phase constituting the armature coil 6 of FIG. 2, and 12 is a crossover portion for performing a connection process. This crossover portion 12 is accommodated in a space 9 formed on the inner surface between the armature coil 6 and the step 10 of the yoke 7 shown in FIG.

図4は本実施例における円筒形リニアモータの3相コイルの巻線方法を説明するための概略図である。
図4において、13は巻き取り治具、14は巻き取り方向、15が移動方向を表しており、図4(a)〜(e)を用いて3相コイルを同時に巻く方法について説明する。
まず、(a)において、電機子コイルの各相のコイル群(U相、V相、W相)を構成する銅線を、軸方向に伸びる円柱状の巻き取り治具13に取付けた後、巻き取り治具13を所定の巻き取り方向14に回転させ、次に(b)で該巻き取り治具13を軸方向に移動させ、続いて(c)で、(a)工程での巻き取り治具13に取付けた前段の各相のコイル群に隣り合わせになるように、次段の各相のコイル群を構成する銅線を再び該治具に対して巻き取り方向14に巻き取る。これにより3相分のリング状コイルが2個連続した状態で製作される。このように前記(a)〜(c)の工程を(d)に示す如く繰り返し、ストロークが長くなる場合であっても、(e)に示すとおり3相の連続したリング状コイルを容易に製作することが可能となる。
FIG. 4 is a schematic diagram for explaining a winding method of the three-phase coil of the cylindrical linear motor in this embodiment.
4, reference numeral 13 denotes a winding jig, 14 denotes a winding direction, and 15 denotes a moving direction. A method of winding a three-phase coil at the same time will be described with reference to FIGS.
First, in (a), after attaching the copper wire constituting the coil group (U phase, V phase, W phase) of each phase of the armature coil to the cylindrical winding jig 13 extending in the axial direction, The winding jig 13 is rotated in a predetermined winding direction 14, and then the winding jig 13 is moved in the axial direction in (b). Subsequently, in (c), the winding in the step (a). The copper wire constituting the coil group of each phase of the next stage is wound around the jig again in the winding direction 14 so as to be adjacent to the coil group of each phase of the previous stage attached to the jig 13. As a result, two ring coils for three phases are produced in a continuous state. Thus, the steps (a) to (c) are repeated as shown in (d), and even when the stroke becomes long, a three-phase continuous ring-shaped coil is easily manufactured as shown in (e). It becomes possible to do.

本発明の第1実施例は上記構成にしたので、円筒形リニアモータの固定子ヨークを薄板状鉄心から容易に製作することができると共に、薄板状鉄心を円筒状に成形する際にできるヨークの接合部における段差と電機子コイルとの間のスペースを利用して、コイル群の結線処理や渡り線処理を容易に行うことができる。また、これにより、多相の連続したリング状コイルを容易に製作することができる。   Since the first embodiment of the present invention is configured as described above, the stator yoke of the cylindrical linear motor can be easily manufactured from the thin plate-shaped iron core, and the yoke can be formed when the thin plate-shaped iron core is formed into a cylindrical shape. By using the space between the step at the joint and the armature coil, it is possible to easily perform connection processing and crossover processing of the coil group. This also makes it possible to easily produce a multi-phase continuous ring coil.

次に、本発明の第2実施例について説明する。
図5は本発明の第2実施例を示す円筒形リニアモータを複数本並べて配置した場合であって、(a)はその正断面図、(b)は(a)の破線部の拡大図である。なお、図中の16は複数本の円筒形リニアモータの断面、17は位置決め部、LMは円筒形リニアモータを表す。
すなわち、本円筒形リニアモータLMを、例えば、図示のごとくH形状の治具上に複数本並べて用いる場合は、円筒形リニアモータの断面16において、段差部を有する位置決め部17を利用して位置決めを行うのである。
第2実施例は上記構成にしたので、電機子コイルを構成するリング状コイルの結線処理および渡り線を通すためのスペースをヨークの製作段階で確保でき、リニアモータを複数本同時に並べて用いる場合に個々のリニアモータの位置決めを容易に行うことができる。
Next, a second embodiment of the present invention will be described.
FIG. 5 shows a case where a plurality of cylindrical linear motors according to the second embodiment of the present invention are arranged side by side, wherein (a) is a front sectional view thereof, and (b) is an enlarged view of a broken line portion of (a). is there. In the figure, 16 denotes a cross section of a plurality of cylindrical linear motors, 17 denotes a positioning portion, and LM denotes a cylindrical linear motor.
That is, for example, when a plurality of cylindrical linear motors LM are used side by side on an H-shaped jig as shown in the drawing, positioning is performed using a positioning unit 17 having a stepped portion in the cross section 16 of the cylindrical linear motor. Is done.
Since the second embodiment has the above-described configuration, a space for passing the connecting wire and the connecting wire of the ring-shaped coil constituting the armature coil can be secured at the manufacturing stage of the yoke, and a plurality of linear motors are used side by side. Each linear motor can be easily positioned.

次に、本発明の第3実施例について説明する。
図6は本発明の第3実施例を示す円筒形リニアモータの2相帯(U−U’)コイルの巻線方法を説明するための図であって、(a)は銅線を巻き取り治具に予め折り返して配置した状態、(b)は銅線を巻き取り治具にリング状連結コイルとして5回巻いた状態、(c)は銅線を巻き取り治具にリング状連結コイルとして10回巻いた状態、(d)は(c)のa−a線に沿う正断面図である。なお、(d)図は巻き取り治具の断面を省略して図示したものとなっている。
図6において、20はリング状連結コイルの巻き取り治具、21はリング状コイル作製用銅線、22はリング状コイル作製用銅線21の左側巻き取り対象部、23はリング状コイル作製用銅線21の右側巻き取り対象部、24はリング状コイル25とリング状コイル26を連結する渡り線、25は銅線巻き取り対象部22により作製されるリング状コイル、26は銅線巻き取り対象部23により作製されるリング状コイル、27は渡り線24とリング状コイル25、26から構成される2相帯(U−U’)のリング状連結コイルである。
Next, a third embodiment of the present invention will be described.
FIG. 6 is a view for explaining a winding method of a two-phase band (U-U ') coil of a cylindrical linear motor according to a third embodiment of the present invention. FIG. A state in which the wire is folded in advance on the jig, (b) is a state in which the copper wire is wound around the winding jig as a ring-shaped connection coil, and (c) is a state in which the copper wire is wound on the winding jig as a ring-shaped connection coil FIG. 10D is a front sectional view taken along line aa in FIG. In addition, (d) figure abbreviate | omits the cross section of the winding-up jig and illustrated.
In FIG. 6, 20 is a winding jig for a ring-shaped connecting coil, 21 is a copper wire for producing a ring-shaped coil, 22 is a portion to be wound on the left side of the copper wire 21 for producing a ring-shaped coil, and 23 is for producing a ring-shaped coil. The right winding target portion of the copper wire 21, 24 is a connecting wire connecting the ring-shaped coil 25 and the ring-shaped coil 26, 25 is a ring-shaped coil produced by the copper wire winding target portion 22, and 26 is a copper wire winding. A ring-shaped coil 27, which is manufactured by the target portion 23, is a two-phase band (UU ′) ring-shaped connecting coil composed of a crossover 24 and ring-shaped coils 25, 26.

図7は図6の巻き取り治具を示した概略図であって、(a)が側面図、(b)が正断面図、図8は2相帯の連結コイル作製用の銅線を巻き取り治具の渡り線保持部に配置した状態を示す概念図である。
図7において、28は渡り線保持部、29は渡り線保持部を径方向に伸縮させる伸縮機構、30は2相帯(U−U’)のリング状連結コイル作製用銅線の配置である。
7 is a schematic view showing the winding jig of FIG. 6, wherein (a) is a side view, (b) is a front sectional view, and FIG. 8 is a winding of a copper wire for producing a two-phase band connection coil. It is a conceptual diagram which shows the state arrange | positioned in the crossover holding part of a taking jig.
In FIG. 7, 28 is a connecting wire holding part, 29 is an expansion / contraction mechanism for expanding and contracting the connecting wire holding part in the radial direction, and 30 is an arrangement of a copper wire for producing a two-phase band (U-U ') ring-shaped connecting coil. .

まず、図6(a)において、電機子コイルの2相帯(U−U’)のコイル群を構成する銅線21を予め略U字状に折り返して配置すると共に、該銅線の折り返し部分がコイル群の渡り線となり、該渡り線24を軸方向に伸びる円筒状の巻き取り治具に取付けする。図6(b)および(c)において、該巻き取り治具20を単一方向(図中の矢印方向)にのみ回転させ、巻き取り治具20に銅線21を巻き取る。続いて、巻き取り治具20に取付けた前段の各相のコイル群に隣り合わせになるように次段の各相コイル群を構成する銅線21を同様の工程により連続してリング状コイルを製作し、隣りあうコイル群22、23の巻き方向が異なる2相帯(U−U’)のリング状連結コイルを作製することができる。ここで、図6(d)に示すように渡り線24はコイル群25の内径側に配置されることになる。
具体的には、上記に述べた渡り線24となる銅線の折り返し部分は、図7に示すごとく巻き取り治具20に取付けた渡り線を保持するための渡り線保持部28に引っ掛けるようにし、図8に示す渡り線保持部28に装着してなる銅線の配置30の状態において、図中の矢印方向に回転させる。そして、巻き取り治具20に銅線22、23を巻き付けて各相のコイル群25、26を作製完了した後、コイル群の渡り線24が装着された渡り線保持部28を、巻き取り治具20の内部に設けた伸縮機構29により巻き取り治具20の径方向内側に向かって収納し、巻き取り治具21を連結コイルから引き抜くようにしている。
なお、図6(c)では、軸方向に1段あたり10回しか巻いていないが、渡り線24の長さを調整することで1段あたりの巻数を自由に調整することができる。当然、コイルの段数を増やしていけば、コイル1個あたりの巻数を自由に変えることもできる。
したがって、本発明の第3実施例は、銅線を予め銅線を折り返して巻き取り治具に配置後、巻き取り治具を単一方向にのみ回転させるだけで前記リング状連結コイルを作製するようにしたので、特にストロークが長い円筒形リニアモータの隣り合うコイルにおいて、逆向きに巻回してなる連結コイルの作製を容易に行うことが可能となる。
また、渡り線をコイル群の内径側に配置するようにしてあるので、連結コイル作製完了後、作成中に拘わらず、コイルが巻き取り治具上を滑って解けることがないので、コイル間の渡り線を短くすることができる。また、コイルの立ち上がり線のスペースを省略することができるので、コイルの占積率を高めることができる。
さらに、このような電機子コイルを円筒形リニアモータに適用すると、コイル間の結線処理がなく、各コイルの巻き始め部分に必要な銅線の立ち上がり線のスペースを省いた連続コイルを用いることで、円筒形リニアモータの電機子コイルの占積率を高めることができ、結果として損失を下げることができる。
First, in FIG. 6A, the copper wire 21 constituting the coil group of the two-phase band (U-U ') of the armature coil is previously folded and arranged in a substantially U shape, and the folded portion of the copper wire is arranged. Becomes a connecting wire of the coil group, and the connecting wire 24 is attached to a cylindrical winding jig extending in the axial direction. 6B and 6C, the winding jig 20 is rotated only in a single direction (the arrow direction in the drawing), and the copper wire 21 is wound around the winding jig 20. Subsequently, the copper coil 21 constituting each phase coil group of the next stage is continuously manufactured by the same process so as to be adjacent to the coil group of each phase of the previous stage attached to the winding jig 20. In addition, two-phase band (UU ′) ring-shaped connecting coils in which the winding directions of the adjacent coil groups 22 and 23 are different can be manufactured. Here, as shown in FIG. 6 (d), the crossover wires 24 are arranged on the inner diameter side of the coil group 25.
Specifically, the folded portion of the copper wire that becomes the connecting wire 24 described above is hooked on the connecting wire holding portion 28 for holding the connecting wire attached to the winding jig 20 as shown in FIG. In the state of the arrangement 30 of the copper wire attached to the crossover holding part 28 shown in FIG. 8, it is rotated in the arrow direction in the figure. Then, after the copper wires 22 and 23 are wound around the winding jig 20 to complete the production of the coil groups 25 and 26 of the respective phases, the crossover holding unit 28 to which the crossover wires 24 of the coil groups are attached is wound up. The retractable mechanism 29 provided inside the tool 20 is housed toward the radially inner side of the winding jig 20, and the winding jig 21 is pulled out from the connecting coil.
In FIG. 6C, only 10 turns per stage in the axial direction is provided, but the number of turns per stage can be freely adjusted by adjusting the length of the connecting wire 24. Of course, if the number of coils is increased, the number of turns per coil can be freely changed.
Therefore, in the third embodiment of the present invention, after the copper wire is folded in advance and placed on the winding jig, the ring-shaped connecting coil is produced simply by rotating the winding jig only in a single direction. Since it did in this way, it becomes possible to produce easily the connection coil wound in the reverse direction especially in the coil which adjoins a cylindrical linear motor with a long stroke.
In addition, since the connecting wire is arranged on the inner diameter side of the coil group, the coil does not slide on the winding jig regardless of whether or not the connection coil is being created. The crossover can be shortened. Moreover, since the space of the coil rising line can be omitted, the space factor of the coil can be increased.
Furthermore, when such an armature coil is applied to a cylindrical linear motor, there is no connection process between the coils, and a continuous coil that eliminates the space of the rising line of the copper wire necessary for the winding start portion of each coil can be used. The space factor of the armature coil of the cylindrical linear motor can be increased, and as a result, the loss can be reduced.

次に、本発明の第4実施例について説明する。
図9は本発明の第4実施例を示す円筒形リニアモータの6相帯(U−W’−V−U’−W−V’)コイルの巻線方法を説明するための図であって、(a)はリング状連結コイルを作製する際の銅線の配置であり、(b)はリング状連結コイルとして5回巻いた状態、(c)はリング状連結コイルとして10回巻いた状態、(d)は(c)のa−a線に沿う正断面図、(e)は(c)のb−b線に沿う正断面図である。
図9において、31は6相帯のリング状連結コイルのうちU相コイル作製用の銅線、32はリング状コイル作製用銅線31の左側巻き取り対象部、33はリング状コイル作製用銅線31の右側巻き取り対象部、34はリング状コイル35とリング状コイル36を連結する渡り線、35は銅線巻き取り対象部32により作製されるリング状コイル、36は銅線巻き取り対象部33により作製されるリング状コイル、41は6相帯のリング状連結コイルのうちV相コイル作製用の銅線、42はリング状コイル作製用銅線41の左側巻き取り対象部、43はリング状コイル作製用銅線41の左側巻き取り対象部、44はリング状コイル45とリング状コイル46を連結する渡り線、45は銅線巻き取り対象部42により作製されるリング状コイル、46は銅線巻き取り対象部43により作製されるリング状コイル、51は6相帯のリング状連結コイルのうちW相コイル作製用の銅線である。
第4実施例が第3実施例と異なる点は、6相帯(U−W’−V−U’−W−V’)の連結コイルを作製する点である。すなわち、6相帯の連結コイルを作成する場合は、第3実施例に示した2相帯(U−U’)の連結コイルを要素コイルとし、3個分配置したものとなっている(U−U’、V−V’、W−W’)。
まず、図9(a)で、U、V、W各相コイル作製用銅線31、41、51を、予め略U字状に折り返して配置し、U相、V相の銅線の折り返し部分であるコイル群の渡り線34、44、同様にW相の銅線の折り返し部分となる渡り線(矢視せず)を巻き取り治具20に取り付けた後、図9(b)および(c)において、U相については巻き取り対象部32および33、V相については巻き取り対象部42および43、同様にW相の巻き取り対象部(矢視せず)を単一方向に回転させることにより、U相の各リング状コイル35および36、V相の各リング状コイル45および46、同様にW相の各リング状コイル(矢視せず)を作製する。なお、W相については銅線の折り返し部分の配置がU相、V相に対して上下方向反対になる点で異なるが、その他は同じである。
したがって、本発明の第4実施例は、6相帯(U−W’−V−U’−W−V’)の連結コイルを作製する場合は、従来技術であれば、予め2相帯(U−U’、V−V’、W−W’)の連結コイルを作製し、必要個数分組み合わせて6相帯の連結コイルを作製していたものを、図9(a)に示す通り、2相帯(U−U’)の連結コイルを作製するための銅線を並べて配置し、巻き取り治具を単一方向に回転させるだけで、6相帯の連結コイルを容易に作製することができる。
当然、6相帯に限らずN相帯の連結コイルは、同様な方法で容易に作製することができる。なお、巻き取り手順は第3実施例と同じである。
Next, a fourth embodiment of the present invention will be described.
FIG. 9 is a diagram for explaining a winding method of a six-phase band (UW′-VU′-WV ′) coil of a cylindrical linear motor according to a fourth embodiment of the present invention. (A) is arrangement | positioning of the copper wire at the time of producing a ring-shaped connection coil, (b) is the state wound 5 times as a ring-shaped connection coil, (c) is the state wound 10 times as a ring-shaped connection coil (D) is a front sectional view along the aa line in (c), and (e) is a front sectional view along the bb line in (c).
In FIG. 9, 31 is a copper wire for producing a U-phase coil among the ring-shaped connecting coils of the 6-phase band, 32 is a left winding target portion of the copper wire 31 for producing the ring-shaped coil, and 33 is copper for producing the ring-shaped coil. The right winding target portion of the wire 31, 34 is a connecting wire connecting the ring coil 35 and the ring coil 36, 35 is a ring coil produced by the copper wire winding target portion 32, and 36 is a copper wire winding target. A ring-shaped coil produced by the section 33, 41 is a copper wire for producing a V-phase coil among the ring-shaped connected coils of the 6-phase band, 42 is a portion to be wound on the left side of the copper wire 41 for producing the ring-shaped coil, 43 is A left winding target portion of the ring-shaped coil manufacturing copper wire 41, 44 is a connecting wire connecting the ring-shaped coil 45 and the ring-shaped coil 46, 45 is a ring-shaped coil manufactured by the copper wire winding target portion 42, 6 is a ring-shaped coil which is formed by a copper wire winding subject unit 43, 51 is a copper wire W phase coil fabricated out of 6 phase belts ring-shaped coupling coil.
The fourth embodiment is different from the third embodiment in that a connection coil of a six-phase band (UW'-VU'-WV ') is produced. That is, in the case of creating a 6-phase band connection coil, the two-phase band (U-U ') connection coil shown in the third embodiment is used as an element coil and arranged in three pieces (U -U ', VV', WW ').
First, in FIG. 9 (a), U, V, and W phase-coil-preparing copper wires 31, 41, 51 are previously folded and arranged in a substantially U shape, and the U-phase and V-phase copper wires are turned back. 9A and 9B are attached to the take-up jig 20 after connecting the crossover wires 34 and 44 of the coil group as well as the crossover wire (not shown by the arrow), which is the folded portion of the W-phase copper wire. ), The winding target portions 32 and 33 for the U phase, the winding target portions 42 and 43 for the V phase, and similarly the W phase winding target portion (not shown) are rotated in a single direction. Thus, the U-phase ring-shaped coils 35 and 36, the V-phase ring-shaped coils 45 and 46, and the W-phase ring-shaped coils (not shown) are produced. Note that the W phase is different in that the arrangement of the folded portion of the copper wire is opposite to the U phase and the V phase in the vertical direction, but the rest is the same.
Therefore, in the fourth embodiment of the present invention, when a connecting coil of 6-phase band (UW'-VU'-W-V ') is manufactured according to the prior art, the 2-phase band ( U-U ', V-V', and WW ') are produced, and a 6-phase band coupling coil is produced by combining the necessary number, as shown in FIG. A copper coil for producing a two-phase band (U-U ') connection coil is arranged side by side, and a six-phase band connection coil is easily produced simply by rotating the winding jig in a single direction. Can do.
Of course, not only the 6-phase band but also the N-phase band coupling coil can be easily manufactured by the same method. The winding procedure is the same as in the third embodiment.

本発明の円筒形リニアモータは、固定子の円筒状ヨークの外面にできる段差を利用して容易に位置決めを行うことが可能なので、例えば、複数本の円筒リニアモータを並べて、チップマウンタのヘッドなどに適用することができる。   Since the cylindrical linear motor of the present invention can be easily positioned by utilizing the step formed on the outer surface of the cylindrical yoke of the stator, for example, a plurality of cylindrical linear motors are arranged side by side, a chip mounter head, etc. Can be applied to.

本発明の第1実施例を示す円筒形リニアモータの側断面図Side sectional view of a cylindrical linear motor showing a first embodiment of the present invention. 図1のA―A線に沿う正断面図Front sectional view along line AA in FIG. 本実施例における円筒形リニアモータに3相電源を用いた場合のリング状コイルの結線を示した概略図Schematic showing the connection of ring coils when a three-phase power source is used for the cylindrical linear motor in this embodiment 本実施例における円筒形リニアモータの3相コイルの巻線方法を説明するための概略図Schematic for demonstrating the winding method of the three-phase coil of the cylindrical linear motor in a present Example 本発明の第2実施例を示す円筒形リニアモータを複数本並べて配置した場合であって、(a)はその正断面図、(b)は(a)の破線部の拡大図It is a case where a plurality of cylindrical linear motors showing a second embodiment of the present invention are arranged side by side, wherein (a) is a front sectional view thereof, and (b) is an enlarged view of a broken line portion of (a). 本発明の第3実施例を示す円筒形リニアモータの2相帯(U−U’)コイルの巻線方法を説明するための図であって、(a)は銅線を巻き取り治具に予め折り返して配置した状態、(b)は銅線を巻き取り治具にリング状連結コイルとして5回巻いた状態、(c)は銅線を巻き取り治具にリング状連結コイルとして10回巻いた状態、(d)は(c)のa−a線に沿う正断面図It is a figure for demonstrating the winding method of the two phase band (UU ') coil of the cylindrical linear motor which shows 3rd Example of this invention, Comprising: (a) is a copper wire to a winding jig | tool. A state where it is folded in advance, (b) is a state in which a copper wire is wound around a winding jig as a ring-shaped connecting coil, and (c) is a copper wire being wound around a winding jig as a ring-shaped connecting coil, 10 times. (D) is a front sectional view taken along line aa in (c). 巻き取り治具の断面図Cross section of winding jig 2相帯(U−U’)コイルを作製するための銅線を巻き取り治具上に配置した状態を示す図The figure which shows the state which has arrange | positioned the copper wire for producing a two phase band (U-U ') coil on a winding jig | tool. 本発明の第4実施例を示す円筒形リニアモータの6相帯(U−W’−V−U’−W−V’)コイルの巻線方法を説明するための図であって、(a)はリング状連結コイルを作製する際の銅線の配置であり、(b)はリング状連結コイルとして5回巻いた状態、(c)はリング状連結コイルとして10回巻いた状態、(d)は(c)のA−A線に沿う正断面図、(e)は(c)のB−B線に沿う正断面図It is a figure for demonstrating the winding method of the 6 phase belt | band | zone (UW'-VU'-WV ') coil of the cylindrical linear motor which shows 4th Example of this invention, (a ) Is an arrangement of copper wires when producing a ring-shaped connecting coil, (b) is a state where the ring-shaped connecting coil is wound five times, (c) is a state where the ring-shaped connecting coil is wound ten times, (d ) Is a front sectional view taken along line AA in (c), and (e) is a front sectional view taken along line BB in (c). 従来の円筒形リニアモータの構成を示すものであって、(a)はその概略斜視図、(b)は(a)のb−b線に沿う正断面図The structure of the conventional cylindrical linear motor is shown, Comprising: (a) is the schematic perspective view, (b) is front sectional drawing which follows the bb line of (a). 従来の円筒形リニアモータの斜視図と正断面図A perspective view and a front sectional view of a conventional cylindrical linear motor 従来の円筒形リニアモータの要素コイルと電機子巻線を示す図Diagram showing element coil and armature winding of conventional cylindrical linear motor 従来の6相帯(U−W’−V−U’−W−V’)コイルを用いた円筒形リニアモータの断面図Sectional view of a cylindrical linear motor using a conventional 6-phase band (U-W'-V-U'-W-V ') coil

符号の説明Explanation of symbols

1 可動子、
2 固定子、
3 パイプ、
4 円柱状磁石、
5 円柱状磁性体、
6 電機子コイル、
7 円筒状ヨーク、
8a、8b 円柱状磁石、
9 スペース、
10 接合部(段差)、
11 リング状コイル、
12 リング状コイル群の結線処理および渡り線部、
13 巻き取り治具、
14 リング状コイルの巻き取り方向、
15 リング状コイルの巻き取り後の移動方向、
16 複数本の円筒形リニアモータの断面、
17 位置決め部、
20 リング状連結コイルの巻き取り治具、
21 リング状コイル作製用銅線、
22 リング状コイル作製用銅線の左側巻き取り対象部、
23 リング状コイル作製用銅線の右側巻き取り対象部、
24 リング状コイル25とリング状コイル26を連結する渡り線、
25 銅線巻き取り対象部22により作製されるリング状コイル、
26 銅線巻き取り対象部23により作製されるリング状コイル、
27 渡り線24とリング状コイル25、26から構成される2相帯(U−U’)のリング状連結コイル、
28 渡り線保持部、
29 渡り線保持部の伸縮機構、
30 2相帯(U−U’)のリング状連結コイル作製用銅線の配置、
31 6相帯(U−W’−V−U’−W−V’)のリング状連結コイルを構成するU相コイル作製用の銅線、
32 リング状コイル作製用銅線31の左側巻き取り対象部、
33 リング状コイル作製用銅線31の右側巻き取り対象部、
34 リング状コイル35とリング状コイル36を連結する渡り線、
35 銅線巻き取り対象部32により作製されるリング状コイル、
36 銅線巻き取り対象部33により作製されるリング状コイル、
41 6相帯(U−W’−V−U’−W−V’)のリング状連結コイルを構成するV相コイル作製用の銅線、
42 リング状コイル作製用銅線41の左側巻き取り対象部、
43 リング状コイル作製用銅線41の左側巻き取り対象部、
44 リング状コイル45とリング状コイル46を連結する渡り線、
45 銅線巻き取り対象部42により作製されるリング状コイル、
46 銅線巻き取り対象部43により作製されるリング状コイル、
51 6相帯(U−W’−V−U’−W−V’)のリング状連結コイルを構成するW相コイル作製用の銅線、
LM 円筒形リニアモータ
1 mover,
2 Stator,
3 pipes,
4 cylindrical magnets,
5 cylindrical magnetic material,
6 Armature coil,
7 Cylindrical yoke,
8a, 8b cylindrical magnets,
9 space,
10 joints (steps),
11 Ring coil,
12 Ring-shaped coil group connection processing and crossover section,
13 Winding jig,
14 Winding direction of the ring coil,
15 Movement direction after winding the ring-shaped coil,
16 Cross section of multiple cylindrical linear motors,
17 Positioning part,
20 Ring winding coil winding jig,
21 Copper wire for ring coil production,
22 The left winding target portion of the ring-shaped coil manufacturing copper wire,
23 The right winding target part of the copper wire for ring coil production,
24 Crossover connecting the ring coil 25 and the ring coil 26;
25 Ring-shaped coil produced by the copper wire winding target part 22,
26 Ring-shaped coil produced by the copper wire winding target part 23,
27 A two-phase band (UU ′) ring-shaped connecting coil composed of a jumper wire 24 and ring-shaped coils 25, 26;
28 Crossover holding part,
29 Extension mechanism of the crossover holding part,
30 Arrangement of a copper wire for producing a ring-shaped connecting coil of two-phase band (U-U '),
31 Copper wire for making a U-phase coil constituting a ring-shaped connecting coil of 6-phase band (UW'-VU'-WV '),
32 The left winding target portion of the ring-shaped coil manufacturing copper wire 31;
33 The right winding target portion of the ring-shaped coil manufacturing copper wire 31;
34 Crossover connecting the ring coil 35 and the ring coil 36;
35 Ring-shaped coil produced by the copper wire winding target part 32,
36 Ring-shaped coil produced by the copper wire winding object part 33,
41 Copper wire for producing a V-phase coil constituting a ring-shaped connecting coil of 6-phase band (UW'-VU'-WV '),
42 The left winding target portion of the ring-shaped coil manufacturing copper wire 41,
43 The portion to be wound on the left side of the ring-shaped coil manufacturing copper wire 41,
44 Crossover connecting the ring coil 45 and the ring coil 46;
45 Ring-shaped coil produced by the copper wire winding target part 42,
46 Ring-shaped coil produced by the copper wire winding target part 43,
51 Copper wire for producing a W-phase coil constituting a ring-shaped connecting coil of 6-phase band (UW'-VU'-WV '),
LM cylindrical linear motor

Claims (12)

円筒形リニアモータの電機子コイルの巻線方法であって、
前記電機子コイルの各相のコイル群を構成する銅線を、軸方向に伸びる円柱状の巻き取り治具に取付けた後、該巻き取り治具を所定の方向に回転させ、続いて該巻き取り治具を軸方向に移動させることにより、前記巻き取り治具に取付けた前段の各相のコイル群に隣り合わせになるように次段の各相のコイル群を構成する銅線を同様の工程により連続してリング状コイルを製作するようにしたことを特徴とする円筒形リニアモータ電機子コイルの巻線方法。
A winding method of an armature coil of a cylindrical linear motor,
After attaching the copper wire constituting the coil group of each phase of the armature coil to a cylindrical winding jig extending in the axial direction, the winding jig is rotated in a predetermined direction, and then the winding is performed. By moving the take-up jig in the axial direction, the copper wire constituting the coil group of each phase of the next stage so as to be adjacent to the coil group of each phase of the previous stage attached to the take-up jig is the same process A winding method for a cylindrical linear motor armature coil, characterized in that a ring-shaped coil is continuously manufactured by the above method.
円筒形リニアモータの電機子コイルの巻線方法であって、
前記電機子コイルの各相のコイル群を構成する銅線を、予め略U字状に折り返して配置し、該銅線の折り返し部分を軸方向に伸びる円筒状の巻き取り治具に取付けた後、該巻き取り治具を単一方向にのみ回転させ、続いて、前記巻き取り治具に取付けた前段の各相のコイル群に隣り合わせになるように次段の各相コイル群を構成する銅線を同様の工程により連続してリング状コイルを製作するようにしたことを特徴とする円筒形リニアモータ電機子コイルの巻線方法。
A winding method of an armature coil of a cylindrical linear motor,
After the copper wire constituting the coil group of each phase of the armature coil is previously folded and arranged in a substantially U shape, and the folded portion of the copper wire is attached to a cylindrical winding jig extending in the axial direction The copper that constitutes each phase coil group of the next stage so that the winding jig is rotated only in a single direction and then adjacent to the coil group of each phase of the previous stage attached to the winding jig. A winding method for a cylindrical linear motor armature coil, characterized in that a ring-shaped coil is continuously manufactured by a similar process.
前記銅線の折り返し部分が前記コイル群の渡り線となるように、前記銅線の折り返し部分を前記巻き取り治具に取付けた渡り線を保持するための渡り線保持部に引っ掛けるようにしたことを特徴とする請求項2記載の円筒形リニアモータ電機子コイルの巻線方法。   The folded portion of the copper wire is hooked to the connecting wire holding portion for holding the connecting wire attached to the winding jig so that the folded portion of the copper wire becomes a connecting wire of the coil group. A winding method for a cylindrical linear motor armature coil according to claim 2. 前記巻き取り治具に前記銅線を巻き付けて各相のコイル群を作製した後、前記コイル群の渡り線が装着された前記渡り線保持部を前記巻き取り治具の内径側に収納したことを特徴とする請求項3に記載の円筒形リニアモータ電機子コイルの巻線方法。   After winding the copper wire around the winding jig to produce a coil group of each phase, the connecting wire holding part on which the connecting wire of the coil group was mounted was housed on the inner diameter side of the winding jig. The winding method of the cylindrical linear motor armature coil according to claim 3. 円筒状のヨークと、前記ヨークの内周に複数個のコイル群を軸方向に等ピッチに配置してなる請求項1または2に記載の巻線方法により製造された電機子コイルと、を備えたことを特徴とする円筒形リニアモータ固定子。   A cylindrical yoke, and an armature coil manufactured by the winding method according to claim 1, wherein a plurality of coil groups are arranged on the inner periphery of the yoke at an equal pitch in the axial direction. A cylindrical linear motor stator characterized by that. 前記ヨークは、略長方形に打ち抜いた薄板状鉄心を前記電機子コイルの外周に沿うように略円筒状に成形したものであり、前記略円筒状に成形された薄板状鉄心を巻回した際にできる接合部に段差を設けたことを特徴とする請求項5に記載の円筒形リニアモータ固定子。   The yoke is obtained by forming a thin plate-shaped iron core punched into a substantially rectangular shape into a substantially cylindrical shape along the outer periphery of the armature coil, and when the thin plate-shaped iron core formed in the substantially cylindrical shape is wound. The cylindrical linear motor stator according to claim 5, wherein a step is provided in the joint portion that can be formed. 前記固定子のヨークを形成する際に、前記電機子コイルと前記ヨークの段差との内面にできたスペースを利用して、前記電機子コイルを構成する多相のコイル群の結線処理を行うことを特徴とする請求項6に記載の円筒形リニアモータ固定子。   When forming the yoke of the stator, the connection process of the multi-phase coil group constituting the armature coil is performed using the space formed on the inner surface between the armature coil and the step of the yoke. The cylindrical linear motor stator according to claim 6. 前記固定子のヨークを形成する際に、前記ヨークの接合部にできた段差を利用して位置決めを行うことを特徴とする請求項6または7に記載の円筒形リニアモータ固定子。   8. The cylindrical linear motor stator according to claim 6, wherein when the yoke of the stator is formed, positioning is performed using a step formed at a joint portion of the yoke. 9. 請求項5に記載の固定子と、
前記固定子の内周に磁気的空隙を介して対向配置されると共に軸方向に伸びる円筒状のパイプと、該パイプの内側に挿設された多極に着磁してなる複数の円柱状磁石を有する可動子と、
を備えたことを特徴とする円筒形リニアモータ。
A stator according to claim 5;
A cylindrical pipe that is disposed opposite to the inner periphery of the stator via a magnetic gap and extends in the axial direction, and a plurality of columnar magnets that are magnetized in a multipole inserted inside the pipe. A mover having
A cylindrical linear motor characterized by comprising:
前記パイプ内に挿設された複数の円柱状磁石の軸方向長さの合計が、請求項5記載の電機子コイルの軸方向長さと前記可動子の駆動ストロークの和に等しく、かつ、前記電機子コイルの軸方向長さと前記可動子の駆動ストロークの和が、前記ヨークの軸方向長さ以下であることを特徴とする請求項9に記載の円筒形リニアモータ。   The sum of the axial lengths of the plurality of columnar magnets inserted in the pipe is equal to the sum of the axial length of the armature coil and the drive stroke of the mover according to claim 5, and the electric machine The cylindrical linear motor according to claim 9, wherein the sum of the axial length of the child coil and the driving stroke of the mover is equal to or less than the axial length of the yoke. 前記パイプ内に挿設された複数の円柱状磁石のうち、前記パイプ内の両端に位置する磁石の軸方向長さを他の磁石の軸方向長さより短くしたことを特徴とする請求項9または10に記載の円筒形リニアモータ。   The axial length of magnets located at both ends in the pipe among the plurality of columnar magnets inserted in the pipe is shorter than the axial length of other magnets. The cylindrical linear motor according to 10. 前記パイプ内に挿設された複数の円柱状磁石の間に、該磁石の軸方向長さより短い円柱状磁性体を設けたことを特徴とする請求項9または10に記載の円筒形リニアモータ。   The cylindrical linear motor according to claim 9 or 10, wherein a columnar magnetic body shorter than the axial length of the magnet is provided between the plurality of columnar magnets inserted in the pipe.
JP2005309755A 2005-01-17 2005-10-25 Cylindrical linear motor armature coil winding method, cylindrical linear motor stator, and cylindrical linear motor using the same Expired - Fee Related JP4711181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309755A JP4711181B2 (en) 2005-01-17 2005-10-25 Cylindrical linear motor armature coil winding method, cylindrical linear motor stator, and cylindrical linear motor using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005009229 2005-01-17
JP2005009229 2005-01-17
JP2005309755A JP4711181B2 (en) 2005-01-17 2005-10-25 Cylindrical linear motor armature coil winding method, cylindrical linear motor stator, and cylindrical linear motor using the same

Publications (2)

Publication Number Publication Date
JP2006223090A true JP2006223090A (en) 2006-08-24
JP4711181B2 JP4711181B2 (en) 2011-06-29

Family

ID=36985017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309755A Expired - Fee Related JP4711181B2 (en) 2005-01-17 2005-10-25 Cylindrical linear motor armature coil winding method, cylindrical linear motor stator, and cylindrical linear motor using the same

Country Status (1)

Country Link
JP (1) JP4711181B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079358A (en) * 2006-09-19 2008-04-03 Yaskawa Electric Corp Cylindrical linear motor
JP2008236818A (en) * 2007-03-16 2008-10-02 Yaskawa Electric Corp thetaZ ACTUATOR
JP2009112087A (en) * 2007-10-29 2009-05-21 Yaskawa Electric Corp Direct acting rotation actuator
EP2178194A2 (en) 2008-10-20 2010-04-21 Aisin Seiki Kabushiki Kaisha Linear motor coil
EP2523319A1 (en) * 2011-05-13 2012-11-14 Siemens Aktiengesellschaft Cylindrical linear motor with low latching forces
KR101230070B1 (en) 2011-09-07 2013-02-05 미쓰비시덴키 가부시키가이샤 Stator for cylindrical linear motor, cylindrical linear motor and winding method of stator coil for cylindrical linear motor
EP2541745A3 (en) * 2011-06-27 2016-11-09 Sanyo Denki Co., Ltd. Linear Motor With Back Yoke

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118755A (en) * 1985-11-16 1987-05-30 Fanuc Ltd Ac rectilinear moving type motor
JPH02168844A (en) * 1988-12-20 1990-06-28 Ntn Corp Linear motor
JPH09172767A (en) * 1995-12-18 1997-06-30 Tdk Corp Permanent magnet type linear motor
JP2000308324A (en) * 1999-02-19 2000-11-02 Hitachi Koki Co Ltd Linear shuttle motor device
JP2001093767A (en) * 1999-07-16 2001-04-06 Toyota Motor Corp Winding machine
JP2003070216A (en) * 2001-08-23 2003-03-07 Ichinomiya Denki:Kk Continuous winding device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118755A (en) * 1985-11-16 1987-05-30 Fanuc Ltd Ac rectilinear moving type motor
JPH02168844A (en) * 1988-12-20 1990-06-28 Ntn Corp Linear motor
JPH09172767A (en) * 1995-12-18 1997-06-30 Tdk Corp Permanent magnet type linear motor
JP2000308324A (en) * 1999-02-19 2000-11-02 Hitachi Koki Co Ltd Linear shuttle motor device
JP2001093767A (en) * 1999-07-16 2001-04-06 Toyota Motor Corp Winding machine
JP2003070216A (en) * 2001-08-23 2003-03-07 Ichinomiya Denki:Kk Continuous winding device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079358A (en) * 2006-09-19 2008-04-03 Yaskawa Electric Corp Cylindrical linear motor
JP2008236818A (en) * 2007-03-16 2008-10-02 Yaskawa Electric Corp thetaZ ACTUATOR
JP2009112087A (en) * 2007-10-29 2009-05-21 Yaskawa Electric Corp Direct acting rotation actuator
EP2178194A2 (en) 2008-10-20 2010-04-21 Aisin Seiki Kabushiki Kaisha Linear motor coil
EP2523319A1 (en) * 2011-05-13 2012-11-14 Siemens Aktiengesellschaft Cylindrical linear motor with low latching forces
CN102780375A (en) * 2011-05-13 2012-11-14 西门子公司 Cylindrical linear motor with low latching forces
US8853894B2 (en) 2011-05-13 2014-10-07 Siemens Aktiengesellschaft Cylindrical linear motor having low cogging forces
EP2541745A3 (en) * 2011-06-27 2016-11-09 Sanyo Denki Co., Ltd. Linear Motor With Back Yoke
KR101230070B1 (en) 2011-09-07 2013-02-05 미쓰비시덴키 가부시키가이샤 Stator for cylindrical linear motor, cylindrical linear motor and winding method of stator coil for cylindrical linear motor
JP2013059165A (en) * 2011-09-07 2013-03-28 Mitsubishi Electric Corp Stator of cylindrical linear motor, cylindrical linear motor and winding method of stator coil of cylindrical linear motor
TWI488410B (en) * 2011-09-07 2015-06-11 Mitsubishi Electric Corp Stator of cylindrical linear motor,cylindrical linear motorand winding method of stator coil of cylindrical linear motor

Also Published As

Publication number Publication date
JP4711181B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP5040303B2 (en) Rotating electric machine
JP4420041B2 (en) Manufacturing method of rotating electric machine and stator
KR101011396B1 (en) Motors and motor systems
JP5033668B2 (en) Rotating electric machine
JP5840295B2 (en) Rotating electric machine
JP5193438B2 (en) Multiphase claw pole type motor
JP5758718B2 (en) Stator, motor, conductor manufacturing method, stator manufacturing method
JP7359597B2 (en) Coils, stators, and motors
JPWO2015079732A1 (en) Armature of electric machine
JP2009273216A (en) Motor
JP2009195004A (en) Rotating electric machine
JPWO2008096519A1 (en) Rotary / linear motor
JP5097569B2 (en) Coil manufacturing method and manufacturing apparatus
JP2009159738A (en) Permanent magnet synchronous motor
JP5626758B2 (en) Stator
JP5039598B2 (en) Manufacturing method of rotating electrical machine
JP4711181B2 (en) Cylindrical linear motor armature coil winding method, cylindrical linear motor stator, and cylindrical linear motor using the same
US20190312476A1 (en) Motor
JP2005151785A (en) Synchronous generator having annular armature coil
JP6351861B2 (en) Armature manufacturing method
WO2021131575A1 (en) Coil, stator comprising same, and motor
JP2013070522A (en) Armature for rotary electric machine and manufacturing method thereof
JP5095276B2 (en) Stator and winding method thereof
JP5479954B2 (en) Coil manufacturing method
JP5496159B2 (en) Cylindrical linear motor and winding method of stator coil of cylindrical linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

LAPS Cancellation because of no payment of annual fees