JP2006216276A - Lithium secondary battery and its manufacturing method - Google Patents
Lithium secondary battery and its manufacturing method Download PDFInfo
- Publication number
- JP2006216276A JP2006216276A JP2005025588A JP2005025588A JP2006216276A JP 2006216276 A JP2006216276 A JP 2006216276A JP 2005025588 A JP2005025588 A JP 2005025588A JP 2005025588 A JP2005025588 A JP 2005025588A JP 2006216276 A JP2006216276 A JP 2006216276A
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- polymerization monomer
- negative electrode
- electrolytic
- lithium secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウム二次電池用およびその製造方法に関し、詳しくは、高エネルギー密度を持つ二次電池の充放電サイクル特性を改善し、内部インピーダンスの増加の少ないリチウム二次電池及びそのリチウム二次電池の製造方法に関する。 The present invention relates to a lithium secondary battery and a method for manufacturing the same, and more particularly, to improve a charge / discharge cycle characteristic of a secondary battery having a high energy density and to reduce an increase in internal impedance and the lithium secondary battery. The present invention relates to a battery manufacturing method.
最近、大気中に含まれるCO2 ガス量が増加しつつある為、室温効果により地球の温暖化が生じる可能性が指摘されている。火力発電所は化石燃料などを燃焼させて得られる熱エネルギーを電気エネルギーに変換しているが、燃焼によりCO2 ガスを多量に排出するためあらたな火力発電所は、建設することが難しくなって来ている。したがって、火力発電所などの発電機にて作られた電力の有効利用として、余剰電力である夜間電力を一般家庭に設置した二次電池に蓄えて、これを電力消費量が多い昼間に使用して負荷を平準化する。いわゆるロードレベリングが提案されつつある。 Recently, since the amount of CO 2 gas contained in the atmosphere is increasing, the possibility of global warming due to the room temperature effect has been pointed out. Thermal power plants convert thermal energy obtained by burning fossil fuels into electrical energy, but because of the large amount of CO 2 gas emitted by combustion, new thermal power plants become difficult to construct. It is coming. Therefore, as an effective use of power generated by generators such as thermal power plants, surplus power is stored in secondary batteries installed in ordinary households and used in the daytime when power consumption is high. Level the load. So-called road leveling is being proposed.
また、CO2 、NOx 、炭化水素などを含む大気汚染にかかわる物質を排出しないという特徴とを有する電気自動車用途では、高エネルギー密度の二次電池の開発が期待されている。さらに、ブック型パーソナルコンピュータ、ワードプロセッサー、ビデオカメラ及び携帯電話等のポータブル機器の電源用途では、小型・軽量で高性能な二次電池の開発が急務になっている。 In addition, for electric vehicle applications having a feature of not discharging substances related to air pollution including CO 2 , NO x , hydrocarbons, etc., development of secondary batteries with high energy density is expected. Furthermore, in the power supply applications of portable devices such as book-type personal computers, word processors, video cameras, and mobile phones, it is an urgent task to develop a compact, lightweight, high-performance secondary battery.
このような小型・軽量で高性能な二次電池としては、充電時の反応で、リチウムイオンを層間からデインターカレートするリチウムインターカレーション化合物を正極物質に、リチウムイオンを炭素原子で形成される六員環網状平面の層間にインターカレートできるグラファイトに代表されるカーボン材料を負極物質に用いたロッキングチェアー型のいわゆる“リチウムイオン電池”の開発が進み、実用化されて一般的に使用されている。 As such a small, lightweight and high-performance secondary battery, a lithium intercalation compound that deintercalates lithium ions from the interlayer is used as a positive electrode material, and lithium ions are formed from carbon atoms. The development of a rocking chair type “lithium ion battery” using a carbon material typified by graphite, which can be intercalated between the layers of a six-membered ring network plane, as a negative electrode material has been developed and put into practical use. ing.
しかし、この“リチウムイオン電池”では、カーボン材料で構成される負極は理論的には炭素原子当たり最大1/6のリチウム原子しかインターカレートできないため、金属リチウムを負極物質に使用したときのリチウム一次電池に匹敵する高エネルギー密度の二次電池は実現できない。もし、充電時に“リチウムイオン電池”のカーボンからなる負極に理論量以上のリチウム量をインターカレートしようとした場合あるいは高電流密度の条件で充電した場合には、カーボン負極表面にリチウム金属がデンドライト(樹枝)状に成長し、最終的に充放電サイクルの繰り返しで負極と正極間の内部短絡に至る可能性がありグラファイト負極の理論容量を越える“リチウムイオン電池”では十分なサイクル寿命が得られていない。 However, in this “lithium ion battery”, a negative electrode composed of a carbon material can theoretically intercalate only a maximum of 1/6 lithium atoms per carbon atom. A secondary battery having a high energy density comparable to that of the primary battery cannot be realized. If a negative electrode made of carbon in a “lithium ion battery” is intercalated with a lithium amount greater than the theoretical amount during charging, or if charging is performed under conditions of high current density, lithium metal is dendrited on the surface of the carbon negative electrode. “Lithium ion battery” that grows in a (dendritic) shape and may eventually lead to an internal short circuit between the negative electrode and the positive electrode due to repeated charge and discharge cycles, and a sufficient cycle life can be obtained with a “lithium ion battery” exceeding the theoretical capacity of a graphite negative electrode Not.
一方、金属リチウムを負極に用いる高容量のリチウム二次電池が高エネルギー密度を示す二次電池として注目されているが、実用化に至っていない。その理由は、充放電のサイクル寿命が極めて短いためである。充放電のサイクル寿命が極めて短い主原因としては、金属リチウムが電解液中の水分などの不純物や有機溶媒と反応して絶縁膜が形成されていたり、金属リチウム箔表面が平坦でなく電界が集中する箇所があり、これが原因で充放電の繰り返しによってリチウム金属がデンドライト状に成長し、負極と正極間の内部短絡を引き起こし寿命に至ることにあると、考えられている。 On the other hand, a high-capacity lithium secondary battery using metallic lithium as a negative electrode has attracted attention as a secondary battery exhibiting a high energy density, but has not yet been put into practical use. This is because the cycle life of charge / discharge is extremely short. The main causes of extremely short charge / discharge cycle life are that metal lithium reacts with impurities such as moisture in the electrolyte and an organic solvent to form an insulating film, or the surface of the metal lithium foil is not flat and the electric field is concentrated. It is considered that the lithium metal grows in a dendrite shape due to repeated charge and discharge due to this, causing an internal short circuit between the negative electrode and the positive electrode and reaching the life.
また、上述のリチウムのデンドライトが成長して負極と正極が短絡状態となった場合、電池の持つエネルギーがその短絡部において短時間に消費されるため、電池が発熱したり、電解液の溶媒が熱により分解してガスを発生し、電池内の内圧が高まったりすることがある。いずれにしても、デンドライトの成長により、短絡による電池の損傷や寿命低下が引き起こされ易くなる。 In addition, when the above-mentioned lithium dendrite grows and the negative electrode and the positive electrode are short-circuited, the energy of the battery is consumed in the short-circuited portion in a short time, so that the battery generates heat or the solvent of the electrolyte solution It may decompose by heat to generate gas and increase the internal pressure in the battery. In any case, the growth of dendrites tends to cause damage to the battery and a decrease in life due to a short circuit.
上述の金属リチウム負極を用いた二次電池の問題点である金属リチウムと電解液中の水分や有機溶媒との反応進行を抑えるために、負極にリチウムとアルミニウムなどからなるリチウム合金を用いる方法が提案されている。しかしながら、この場合、リチウム合金が硬いためにスパイラル状に巻くことができないのでスパイラル円筒形電池の作製ができないこと、サイクル寿命が充分に伸びないこと、金属リチウムを負極に用いた電池に匹敵するエネルギー密度は充分に得られないこと、などの理由から、広範囲な実用化には至っていないのが現状である。 In order to suppress the progress of the reaction between metallic lithium and the water or organic solvent in the electrolytic solution, which is a problem of the secondary battery using the above metallic lithium negative electrode, there is a method using a lithium alloy composed of lithium and aluminum for the negative electrode. Proposed. However, in this case, since the lithium alloy is hard, it cannot be spirally wound, so that a spiral cylindrical battery cannot be produced, the cycle life is not sufficiently extended, and energy comparable to a battery using metallic lithium as a negative electrode. The current situation is that a wide range of practical applications has not been achieved because the density cannot be obtained sufficiently.
この他、充電時にリチウムと合金を形成する金属として、前記のアルミニウムや、カドミウム、インジウム、スズ、アンチモン、鉛、ビスマス等が挙げられており、これら金属や、これら金属からなる合金、及び、これら金属とリチウムの合金を負極に用いた二次電池が、特許文献1乃至特許文献7に開示されている。 In addition, the above-mentioned aluminum, cadmium, indium, tin, antimony, lead, bismuth, and the like are listed as the metal that forms an alloy with lithium at the time of charging. These metals, alloys made of these metals, and these Patent Documents 1 to 7 disclose secondary batteries using a metal-lithium alloy as a negative electrode.
しかし、これらの特許文献に記載の二次電池では負極の形状を明示しておらず、また上記合金材料を一般的な形状である箔状を含む板状部材として二次電池(リチウムを活物質とした二次電池)の負極として用いた場合、電極材料層における電池反応に寄与する部分の表面積が小さく、大電流での充放電が困難である。 However, in the secondary batteries described in these patent documents, the shape of the negative electrode is not clearly shown, and the secondary battery (lithium as an active material) is used as a plate-like member including the above alloy material as a general shape of foil. When used as the negative electrode of the secondary battery, the surface area of the electrode material layer contributing to the battery reaction is small, and charging / discharging with a large current is difficult.
更に、上記合金材料を負極として用いた二次電池では、充電時のリチウムとの合金化による体積膨張、放出時に収縮が起こり、この体積変化が大きく、電極が歪みを受けて亀裂が入る。そして、充放電サイクルを繰り返すと微粉化が起こり、電極のインピーダンスが上昇し、電池サイクル寿命の低下を招くという問題があるために実用化には至っていないのが現状である。 Furthermore, in a secondary battery using the above alloy material as a negative electrode, volume expansion due to alloying with lithium during charging and contraction during discharge occur, and this volume change is large, and the electrode is distorted and cracks. When the charge / discharge cycle is repeated, pulverization occurs, the electrode impedance increases, and the battery cycle life is shortened.
本発明者らは、以上のような問題を解決するために、シリコンやスズ元素からなるリチウム二次電池用負極として、特許文献8乃至特許文献13を提案している。
特許文献8ではリチウムと合金化しない金属材料の集電体上にシリコンやスズのリチウムと合金化する金属とニッケルや銅のリチウムと合金化しない金属から形成された電極層を形成した負極を用いたリチウム二次電池を提案している。特許文献9ではニッケルや銅等の元素とスズ等の元素との合金粉末から形成された負極を、特許文献10では電極材料層が平均粒径0.5〜60μmのシリコンやスズから成る粒子を35wt%以上含有し空隙率が0.10〜0.86で密度が1.00〜6.56g/cm3 の負極を用いたリチウム二次電池を提案している。特許文献11では非晶質相を有するシリコンやスズを有した負極を用いたリチウム二次電池を提案している。特許文献12では非化学量論組成の非晶質スズ−遷移金属合金粒子からなる負極を用いたリチウム二次電池を提案している。特許文献13では非化学量論組成の非晶質シリコン−遷移金属合金粒子からなる負極を用いたリチウム二次電池を提案している。
In order to solve the above problems, the present inventors have proposed Patent Documents 8 to 13 as negative electrodes for lithium secondary batteries made of silicon or tin element.
Patent Document 8 uses a negative electrode in which a metal material that is not alloyed with lithium and an electrode layer formed of a metal that is alloyed with lithium such as silicon or tin and a metal that is not alloyed with nickel or copper is used. We have proposed a lithium secondary battery. In Patent Document 9, a negative electrode formed from an alloy powder of an element such as nickel or copper and an element such as tin is used. In Patent Document 10, particles made of silicon or tin having an average particle size of 0.5 to 60 μm are used. A lithium secondary battery using a negative electrode containing 35 wt% or more, having a porosity of 0.10 to 0.86 and a density of 1.00 to 6.56 g / cm 3 is proposed. Patent Document 11 proposes a lithium secondary battery using a negative electrode having silicon or tin having an amorphous phase. Patent Document 12 proposes a lithium secondary battery using a negative electrode made of non-stoichiometric amorphous tin-transition metal alloy particles. Patent Document 13 proposes a lithium secondary battery using a negative electrode made of non-stoichiometric amorphous silicon-transition metal alloy particles.
しかし、上記提案では、リチウム挿入に伴う電気量に対するリチウム放出に伴う電気量の効率が黒鉛負極と同等の性能までは得られておらず、効率のさらなる向上が期待されていた。また、上記提案の電極は黒鉛電極より抵抗が高く、抵抗の低減が望まれていた。 However, in the above proposal, the efficiency of the amount of electricity associated with the release of lithium relative to the amount of electricity associated with lithium insertion has not been obtained to the same level as that of the graphite negative electrode, and further improvement in efficiency has been expected. Further, the proposed electrode has a higher resistance than the graphite electrode, and a reduction in resistance has been desired.
リチウム二次電池用の電極材料としてシリコンからなる微粉末を使用する場合や、結着剤として絶縁体樹脂を使用する場合において、電極のインピーダンスが高くなり、電池のサイクル寿命や、充放電の初回の効率が低下する。これを改善するために特許文献14で導電性高分子モノマーを電池内で重合させることが提案されている。しかし導電性高分子は可撓性に乏しく電極表面に重合形成した膜が剥がれたり、微粒子状に重合形成されるため均一な膜にならず電極材料表面に効果的に被覆させることが困難である。また非水電解液中の導電性高分子の濃度や電解重合時の電流密度によっては、形成した導電性高分子がセパレーターを貫通して短絡を引き起こしてしまうため十分な電池性能向上の効果が得られていない。
本発明は、電極構造体及びリチウム二次電池の内部抵抗を低下させる、さらには充放電を繰り返した時内部抵抗の増加を抑制するものであって、リチウム二次電池のリチウム挿入に伴う電気量に対するリチウム放出に伴う電気量の効率を向上させ、エネルギー密度、サイクル寿命を向上させることが可能なリチウム二次電池及びその製造方法を提供することを目的とする。 The present invention reduces the internal resistance of the electrode structure and the lithium secondary battery, and further suppresses the increase of the internal resistance when charging and discharging are repeated, and the amount of electricity accompanying lithium insertion in the lithium secondary battery An object of the present invention is to provide a lithium secondary battery capable of improving the efficiency of the amount of electricity associated with lithium release and improving the energy density and cycle life, and a method for producing the same.
すなわち、本発明は、正極、負極、非水電解液を有するリチウム二次電池であって、前記非水電解液に電解酸化重合モノマーと電解還元重合モノマーを含有することを特徴とするリチウム二次電池である。 That is, the present invention is a lithium secondary battery having a positive electrode, a negative electrode, and a nonaqueous electrolytic solution, wherein the nonaqueous electrolytic solution contains an electrolytic oxidation polymerization monomer and an electrolytic reduction polymerization monomer. It is a battery.
また、本発明は、正極、負極、非水電解液を有するリチウム二次電池であって、電解酸化重合モノマーと電解還元重合モノマーを含有する前記非水電解液に電圧を印加することにより、少なくとも正極または負極のいずれか一方に前記電解酸化重合モノマーと電解還元重合モノマーが重合してなるポリマーが形成されていることを特徴とするリチウム二次電池である。 Further, the present invention is a lithium secondary battery having a positive electrode, a negative electrode, and a nonaqueous electrolytic solution, and at least by applying a voltage to the nonaqueous electrolytic solution containing an electrolytic oxidation polymerization monomer and an electrolytic reduction polymerization monomer, The lithium secondary battery is characterized in that a polymer obtained by polymerizing the electrolytic oxidation polymerization monomer and the electrolytic reduction polymerization monomer is formed on either the positive electrode or the negative electrode.
さらに、本発明は、正極、負極、非水電解液を有するリチウム二次電池の製造方法において、電解酸化重合モノマーと電解還元重合モノマーを含有する前記非水電解液に正極および負極から電圧を印加することにより、少なくとも正極または負極のいずれか一方に前記電解酸化重合モノマーと電解還元重合モノマーからなるポリマーを形成する工程を有することを特徴とするリチウム二次電池の製造方法である。 Furthermore, the present invention provides a method for producing a lithium secondary battery having a positive electrode, a negative electrode, and a nonaqueous electrolytic solution, wherein a voltage is applied from the positive electrode and the negative electrode to the nonaqueous electrolytic solution containing an electrolytic oxidation polymerization monomer and an electrolytic reduction polymerization monomer. Thus, a method for producing a lithium secondary battery, comprising a step of forming a polymer composed of the electrolytic oxidation polymerization monomer and the electrolytic reduction polymerization monomer on at least one of the positive electrode and the negative electrode.
本発明は、リチウム二次電池のリチウム挿入に伴う電気量に対するリチウム放出に伴う電気量の効率を向上させ、エネルギー密度、サイクル寿命を向上させることが可能なリチウム二次電池及びその製造方法を提供することができる。 The present invention provides a lithium secondary battery capable of improving the energy density and cycle life by improving the efficiency of the amount of electricity associated with lithium release relative to the amount of electricity associated with lithium insertion in the lithium secondary battery, and a method for manufacturing the same. can do.
以下、本発明を詳細に説明する。
本発明は、正極と、リチウム金属、リチウム合金あるいはリチウムの吸蔵・放出が可能な材料からなる負極と、溶媒と溶質とからなる非水電解液とを備えた非水電解液二次電池において、前記非水電解液が電解還元重合モノマーと電解酸化重合モノマーの両方を含有することを特徴とするものである。
Hereinafter, the present invention will be described in detail.
The present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode made of lithium metal, a lithium alloy or a material capable of occluding and releasing lithium, and a non-aqueous electrolyte made of a solvent and a solute. The non-aqueous electrolyte contains both an electrolytic reduction polymerization monomer and an electrolytic oxidation polymerization monomer.
前記非水電解液に含有される電解酸化重合モノマーの含有量は0.01wt%以上10wt%以下、好ましくは0.05〜5.0wt%の範囲である。電解還元重合モノマーの含有量は0.01wt%以上10wt%以下、好ましくは0.05〜5.0wt%の範囲である。 The content of the electrolytic oxidation polymerization monomer contained in the non-aqueous electrolyte is 0.01 wt% or more and 10 wt% or less, preferably 0.05 to 5.0 wt%. The content of the electrolytic reduction polymerization monomer is 0.01 wt% or more and 10 wt% or less, preferably 0.05 to 5.0 wt%.
また、本発明は、前記非水電解液に電解還元重合モノマーと電解酸化重合モノマーの両方を含有させ、電池の負極と正極間に含有モノマーが重合する電圧を印加させること、または電池使用時の充放電の過程で重合させることにより、電極あるいは電極活物質表面にポリマーを形成させるものである。 In the present invention, the nonaqueous electrolytic solution contains both an electrolytic reduction polymerization monomer and an electrolytic oxidation polymerization monomer, and a voltage at which the monomer is polymerized is applied between the negative electrode and the positive electrode of the battery. Polymerization is performed on the surface of the electrode or electrode active material by polymerizing in the process of charge and discharge.
電極材料表面や電極構造体表面に電解酸化重合ポリマーと電解還元重合ポリマーの両方を被覆させ、電解酸化重合ポリマーである導電性ポリマーによる導電パスを電極に形成することにより、電極内部抵抗を下げることができ、充放電を繰り返した時の電極内の抵抗の上昇を抑制することができる。さらに正極及び負極活物質表面に形成されたポリマーによる被覆膜は、活物質と電解液の直接接触を抑制し、Liと電解液の反応や正極活物質の溶出を防ぐ。また電流集中が起こることも防ぐことができる。電解酸化重合モノマーを重合させた導電性ポリマーは可撓性に乏しく、またセパレーターを貫通して短絡を引き起こすなどの問題が発生するが、電解酸化重合モノマーと電解還元重合モノマーを同時に重合させることにより、より均一で導電性を有し可撓性のあるポリマーを形成できる。 Reduce the internal resistance of the electrode by coating the surface of the electrode material or electrode structure with both electrolytic oxidation polymer and electrolytic reduction polymer, and forming a conductive path on the electrode with the conductive polymer that is electrolytic oxidation polymer. It is possible to suppress the increase in resistance in the electrode when charging and discharging are repeated. Furthermore, the coating film made of a polymer formed on the surfaces of the positive electrode and the negative electrode active material suppresses direct contact between the active material and the electrolytic solution, and prevents reaction between Li and the electrolytic solution and elution of the positive electrode active material. Moreover, current concentration can be prevented from occurring. A conductive polymer obtained by polymerizing an electrolytic oxidation polymerization monomer has poor flexibility, and causes problems such as short circuit through the separator. However, by conducting simultaneous polymerization of electrolytic oxidation polymerization monomer and electrolytic reduction polymerization monomer. A more uniform, conductive and flexible polymer can be formed.
これらにより、リチウム二次電池のリチウム挿入に伴う電気量に対するリチウム放出に伴う電気量の効率を向上させ、エネルギー密度、サイクル寿命を向上させることが可能となる。 As a result, it is possible to improve the efficiency of the amount of electricity associated with lithium release relative to the amount of electricity associated with lithium insertion in the lithium secondary battery, and to improve the energy density and cycle life.
本発明者らは、活物質としてシリコン、又はスズ、及びこれらの少なくとも一種類を主構成元素として含む合金粉末を用いた負極において、電解酸化重合ポリマーと電解還元重合ポリマーを両方形成することで、充放電を繰り返すことによる電池内部インピーダンスの増加の少ない高容量リチウム二次電池を提供できることを見出した。 In the negative electrode using an alloy powder containing silicon or tin as an active material and at least one of these as a main constituent element, the present inventors formed both an electrolytic oxidation polymer and an electrolytic reduction polymer. It has been found that a high-capacity lithium secondary battery with little increase in battery internal impedance due to repeated charging and discharging can be provided.
以下、本発明の電池、これを構成する各部材の材料について、その態様に沿って具体的に説明する。
[電極構造体]
図1は、本発明のリチウム二次電池における負極材料微粉末から成る電極構造体103の一実施態様の断面を模式的に示す概念図である。図1(a)は集電体100上に、負極材料微粉末から成る電極材料層101、そしてその表面に電解重合ポリマー層(皮膜)102が設けられた電極構造体103である。図1(b)では、負極材料微粉末から成る電極材料層101が設けられた電極構造体103が、負極活物質104と導電補助材105と結着剤106から構成されている。これらの電極材料層101を構成している負極活物質104や導電補助材105の表面も電化重合ポリマーにより被覆されていると推測できる。尚、同図では、集電体100の片面のみに電極材料層101が設けられているが、電池の形態によっては集電体100の両面に設けることができる。
Hereinafter, the battery of this invention and the material of each member which comprises this are demonstrated concretely along the aspect.
[Electrode structure]
FIG. 1 is a conceptual diagram schematically showing a cross section of one embodiment of an electrode structure 103 made of a fine powder of a negative electrode material in a lithium secondary battery of the present invention. FIG. 1A shows an electrode structure 103 in which an electrode material layer 101 made of a negative electrode material fine powder is provided on a current collector 100, and an electropolymerized polymer layer (film) 102 is provided on the surface thereof. In FIG. 1B, an electrode structure 103 provided with an electrode material layer 101 made of a negative electrode material fine powder is composed of a negative electrode active material 104, a conductive auxiliary material 105, and a binder 106. It can be presumed that the surfaces of the negative electrode active material 104 and the conductive auxiliary material 105 constituting these electrode material layers 101 are also covered with the electropolymerized polymer. In the figure, the electrode material layer 101 is provided only on one side of the current collector 100, but it can be provided on both sides of the current collector 100 depending on the form of the battery.
以下では、図1(b)の電極構造体103の製造方法の一例について説明する。
負極活物質104、導電補助材105、結着剤106を混合し、適宜、溶媒を添加して粘度を調整して、ペーストを調製する。ついで、ペーストを集電体100上に塗布し、乾燥して電極材料層101を形成する。必要に応じてロールプレス等で厚みを調整して形成される。
Below, an example of the manufacturing method of the electrode structure 103 of FIG.1 (b) is demonstrated.
The negative electrode active material 104, the conductive auxiliary material 105, and the binder 106 are mixed, and a solvent is added as appropriate to adjust the viscosity to prepare a paste. Next, the paste is applied on the current collector 100 and dried to form the electrode material layer 101. It is formed by adjusting the thickness with a roll press or the like as necessary.
(集電体100)
集電体100は、充電時の電極反応で消費する電流を効率よく供給する、あるいは放電時に発生する電流を集電する役目を担っている。特に電極構造体103を二次電池の負極に適用する場合、集電体100を形成する材料としては、電気伝導度が高く、且つ、電池反応に不活性な材質が望ましい。好ましい材質としては、銅、ニッケル、鉄、ステンレススチール、チタン、白金から選択される一種類以上の金属材料から成るものが挙げられる。より好ましい材料としては安価で電気抵抗の低い銅が用いられる。また、集電体の形状としては、板状であるが、この“板状”とは、厚みについては実用の範囲上で特定されず、厚み約100μm程度もしくはそれ以下のいわゆる“箔”といわれる形態をも包含する。また、板状であって、例えばメッシュ状、スポンジ状、繊維状をなす部材、パンチングメタル、エキスパンドメタル等を採用することもできる。
(Current collector 100)
The current collector 100 plays a role of efficiently supplying a current consumed by an electrode reaction during charging or collecting a current generated during discharging. In particular, when the electrode structure 103 is applied to the negative electrode of a secondary battery, the material forming the current collector 100 is preferably a material having high electrical conductivity and inert to battery reaction. Preferable materials include those made of one or more metal materials selected from copper, nickel, iron, stainless steel, titanium, and platinum. As a more preferable material, copper which is inexpensive and has low electric resistance is used. The shape of the current collector is plate-like, but the “plate-like” is not specified in terms of the practical range, and is called a “foil” having a thickness of about 100 μm or less. It includes forms. Further, a plate-like member such as a mesh shape, a sponge shape, or a fiber shape, a punching metal, an expanded metal, or the like may be employed.
(電極材料層101)
電極材料層101は、負極材料微粉末から構成される層で、電解重合ポリマーで被覆された合金粉末と導電補助材や結着剤としての高分子材などの複合化された層である。
(Electrode material layer 101)
The electrode material layer 101 is a layer composed of a negative electrode material fine powder, and is a composite layer of an alloy powder coated with an electrolytic polymerization polymer, a conductive auxiliary material, a polymer material as a binder, and the like.
前記複合化された層は、前記負極材料微粉末に、適宜、導電補助材、結着剤を加え混合し、塗布し、加圧成形して形成される。容易に塗布できるようにするために、上記混合物に溶剤を添加してペースト状にすることも好ましい。上記の塗布方法としては、例えば、コーター塗布方法、スクリーン印刷法が適用できる。また、溶剤を添加することなく上記主材と導電補助材と結着剤を、あるいは結着剤を混合せずに上記負極材料と導電補助材のみを、集電体上に加圧成形して、電極材料層を形成することも可能である。導電補助材としては黒鉛粉末を用いる。黒鉛粉末はアセチレンブラックやケッチェンブラックなどの非晶質炭素や黒鉛構造炭素などの炭素材を用いることができる。上記導電材の形状として好ましくは、球状、フレーク状、フィラメント状、繊維状、スパイク状、針状、などが挙げられ、より好ましくは、これらの形状から選択される異なる二種類以上の形状を採用することにより、電極材料層形成時のパッキング密度を上げて電極のインピーダンスを低減することができる。 The composite layer is formed by appropriately adding a conductive auxiliary material and a binder to the negative electrode material fine powder, mixing, applying, and pressure forming. In order to make it easy to apply, it is also preferable to add a solvent to the mixture to make a paste. As the coating method, for example, a coater coating method or a screen printing method can be applied. In addition, the main material, the conductive auxiliary material and the binder without adding a solvent, or only the negative electrode material and the conductive auxiliary material without being mixed with the binder are pressure-molded on the current collector. It is also possible to form an electrode material layer. Graphite powder is used as the conductive auxiliary material. As the graphite powder, a carbon material such as amorphous carbon such as acetylene black or ketjen black or carbon having a graphite structure can be used. Preferred examples of the shape of the conductive material include a spherical shape, a flake shape, a filament shape, a fiber shape, a spike shape, and a needle shape, and more preferably two or more different shapes selected from these shapes are adopted. By doing so, the packing density at the time of electrode material layer formation can be raised, and the impedance of an electrode can be reduced.
Si元素含有負極材料(より具体的にはSi微粉末もしくはSi合金微粉末)は、従来の黒鉛等の炭素材料に比べて、充電時の体積膨張があるために、上記負極材料を主に用いて集電体上に作製した活物質層(電極材料層)の密度は、高すぎると充電時の体積膨張で集電体とのはがれを引き起こし、低すぎると粒子間の接触抵抗が増し集電能が低下するので、0.9〜2.5g/cm3 の範囲が好ましく、1.0〜1.8g/cm3 の範囲がより好ましい。 Since the Si element-containing negative electrode material (more specifically, Si fine powder or Si alloy fine powder) has a volume expansion at the time of charging as compared with conventional carbon materials such as graphite, the negative electrode material is mainly used. If the density of the active material layer (electrode material layer) produced on the current collector is too high, the volume expansion during charging causes peeling from the current collector. If the density is too low, the contact resistance between the particles increases and the current collection capacity increases. Is reduced, the range of 0.9 to 2.5 g / cm 3 is preferable, and the range of 1.0 to 1.8 g / cm 3 is more preferable.
結着剤としては、有機ポリマーが好ましく、非水溶性ポリマーと水溶性ポリマーのどちらでも使用可能である。非水溶性ポリマーの具体例としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリフッ化ビリニデン、テトラフルオロエチレンポリマー、フッ化ビリニデン−ヘキサフルオロプロピレン共重合体などのフッ素樹脂、ポリエチレン−ポリビニルアルコール共重合体、スチレン−ブタジエンラバー、ポリアミック酸、ポリイミド、ポリアミドイミドなどが挙げられる。水溶性ポリマーの具体例としては、ポリビニルアルコール、(エチレン成分の少ない)エチレン−ビニルアルコールコポリマー、ポリビニルブチラール、ポリビニルアセタール、ポリビニルメチルエーテル、ポリビニルエチルエーテル、ポリビニルイソブチルエーテル、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシメチルエチルセルロース、ポリエチレングリコールなどが挙げられる。 The binder is preferably an organic polymer, and either a water-insoluble polymer or a water-soluble polymer can be used. Specific examples of the water-insoluble polymer include polyolefins such as polyethylene and polypropylene, fluorine resins such as poly (vinylidene fluoride), tetrafluoroethylene polymer, and vinylidene fluoride-hexafluoropropylene copolymer, polyethylene-polyvinyl alcohol copolymer, styrene. -Butadiene rubber, polyamic acid, polyimide, polyamideimide and the like. Specific examples of the water-soluble polymer include polyvinyl alcohol, ethylene-vinyl alcohol copolymer (low ethylene component), polyvinyl butyral, polyvinyl acetal, polyvinyl methyl ether, polyvinyl ethyl ether, polyvinyl isobutyl ether, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl Examples thereof include cellulose, hydroxymethyl ethyl cellulose, polyethylene glycol and the like.
上記結着剤の電極材料層を占める割合は、結着剤としての機能を発揮し、かつ充電時により多くの活物質量を保持するために、電極材料層に対して1〜20wt%の範囲とすることが好ましく、5〜15wt%の範囲とすることがより好ましい。 The ratio of the binder to the electrode material layer is in the range of 1 to 20 wt% with respect to the electrode material layer in order to exhibit a function as a binder and to retain a larger amount of active material during charging. It is preferable to make it into the range of 5 to 15 wt%.
(電解重合ポリマー層102)
本発明の要点である電解重合ポリマー層102は、非水電解液に含有されている電解酸化重合モノマーと電解還元重合モノマーが電圧を印加することにより、重合してなるポリマーからなる。電解重合ポリマー層102は、非水電解液に加えておいたモノマーを電池組み立て後に電極表面上に重合して形成されるが、初回の充放電前に電圧を印加させることで意図的にモノマーを重合させても良いし、電池の充放電の過程で形成させることもできる。
(Electropolymerized polymer layer 102)
The electropolymerized polymer layer 102 which is the main point of the present invention is made of a polymer obtained by polymerizing an electrolytic oxidation polymerization monomer and an electrolytic reduction polymerization monomer contained in a nonaqueous electrolytic solution by applying a voltage. The electropolymerized polymer layer 102 is formed by polymerizing the monomer added to the non-aqueous electrolyte on the electrode surface after battery assembly. The monomer is intentionally added by applying a voltage before the first charge / discharge. It may be polymerized or formed in the process of charging / discharging the battery.
[二次電池]
次に、本発明に係る二次電池について説明する。
本発明の二次電池は、上述した特徴を有する電極構造体を用いた負極、電解質及び正極を具備し、リチウムの酸化反応及びリチウムイオンの還元反応を利用したものである。図2は、本発明のリチウム二次電池の基本構成を示した図である。図2の二次電池において、201は本発明の電極構造体を使用した負極、202は正極、203はイオン伝導体、204は負極端子、205は正極端子、206は電槽(ハウジング)である。
[Secondary battery]
Next, the secondary battery according to the present invention will be described.
The secondary battery of the present invention includes a negative electrode, an electrolyte, and a positive electrode using the electrode structure having the above-described features, and utilizes a lithium oxidation reaction and a lithium ion reduction reaction. FIG. 2 is a diagram showing a basic configuration of the lithium secondary battery of the present invention. In the secondary battery of FIG. 2, 201 is a negative electrode using the electrode structure of the present invention, 202 is a positive electrode, 203 is an ionic conductor, 204 is a negative electrode terminal, 205 is a positive electrode terminal, and 206 is a battery case (housing). .
上記二次電池は、十分に露点温度が管理された乾燥空気あるいは乾燥不活性ガス雰囲気下で、負極と正極の間に短絡防止のセパレーターとして微孔性高分子フィルムをはさんで電極群を形成した後、電槽に挿入し、各電極と各電極端子とを接続し、電解液を注入した後、電槽を密閉して電池を組み立てる。 The above secondary battery forms an electrode group with a microporous polymer film sandwiched between the negative electrode and the positive electrode in a dry air or dry inert gas atmosphere where the dew point temperature is well controlled. After that, the battery is inserted into a battery case, each electrode and each electrode terminal are connected, and an electrolyte solution is injected. Then, the battery case is sealed and a battery is assembled.
(正極202)
前述した本発明の電極構造体を負極に用いたリチウム二次電池の対極となる正極202は、少なくともリチウムイオンのホスト材となる正極材料から成り、好ましくはリチウムイオンのホスト材となる正極材料から形成された層と集電体から成る。さらに該正極材料から形成された層は、リチウムイオンのホスト材となる正極材料と結着剤、場合によってはこれらに導電補助材を加えた材料から成るのが好ましい。
(Positive electrode 202)
The positive electrode 202 serving as a counter electrode of a lithium secondary battery using the above-described electrode structure of the present invention as a negative electrode is composed of at least a positive electrode material serving as a lithium ion host material, preferably a positive electrode material serving as a lithium ion host material. It consists of a formed layer and a current collector. Further, the layer formed from the positive electrode material is preferably made of a positive electrode material which becomes a lithium ion host material and a binder, and in some cases, a material obtained by adding a conductive auxiliary material thereto.
本発明のリチウム二次電池に用いるリチウムイオンのホスト材となる正極材料としては、遷移金属酸化物、遷移金属硫化物、遷移金属窒化物、リチウム−遷移金属酸化物、リチウム−遷移金属硫化物、リチウム−遷移金属窒化物が好ましく、リチウムを含有するリチウム−遷移金属酸化物、リチウム−遷移金属硫化物、リチウム−遷移金属窒化物がより好ましい。遷移金属酸化物、遷移金属硫化物、遷移金属窒化物の遷移金属元素としては、例えば、d殻あるいはf殻を有する金属元素であり、Sc、Y、ランタノイド、アクチノイド、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pb、Pt、Cu、Ag、Auが好適に用いられる。 Examples of the positive electrode material used as a lithium ion host material for the lithium secondary battery of the present invention include transition metal oxides, transition metal sulfides, transition metal nitrides, lithium-transition metal oxides, lithium-transition metal sulfides, Lithium-transition metal nitrides are preferred, and lithium-containing transition metal oxides, lithium-transition metal sulfides, and lithium-transition metal nitrides are more preferred. Examples of transition metal elements of transition metal oxides, transition metal sulfides, and transition metal nitrides are metal elements having a d-shell or f-shell, such as Sc, Y, lanthanoid, actinoid, Ti, Zr, Hf, V Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pb, Pt, Cu, Ag, and Au are preferably used.
上記正極活物質の形状が粉末である場合には、結着剤を用いるか、焼結あるいは蒸着させて正極活物質層を集電体上に形成して正極を作製する。また、上記正極活物質粉の導電性が低い場合には、前記電極構造体の活物質層の形成と同様に、導電補助材を混合することが適宜必要になる。上記導電補助材並びに結着剤としては、前述した本発明の電極構造体103に用いるものが同様に使用できる。 When the shape of the positive electrode active material is powder, a binder is used, or a positive electrode active material layer is formed on a current collector by sintering or vapor deposition to produce a positive electrode. Further, when the positive electrode active material powder has low conductivity, it is necessary to appropriately mix a conductive auxiliary material as in the formation of the active material layer of the electrode structure. As the conductive auxiliary material and the binder, those used for the electrode structure 103 of the present invention described above can be similarly used.
上記正極に用いる集電体材料としては、電気伝導度が高く、且つ、電池反応に不活性な材質であるアルミニウム、チタン、ステンレス、ニッケル、白金が好ましく、中でもアルミニウムが安価で電気伝導性が高いのでより好ましい。また、集電体の形状としては、板状であるが、この“板状”とは、厚みについては実用の範囲上で特定されず、厚み約100μm程度もしくはそれ以下のいわゆる“箔”といわれる形態をも包含する。また、板状であって、例えばメッシュ状、スポンジ状、繊維状をなす部材、パンチングメタル、エキスパンドメタル等を採用することもできる。 The current collector material used for the positive electrode is preferably aluminum, titanium, stainless steel, nickel, or platinum, which is a material that has high electrical conductivity and is inert to battery reaction, and among them, aluminum is inexpensive and has high electrical conductivity. It is more preferable. The shape of the current collector is plate-like, but the “plate-like” is not specified in terms of the practical range, and is called a “foil” having a thickness of about 100 μm or less. It includes forms. Further, a plate-like member such as a mesh shape, a sponge shape, or a fiber shape, a punching metal, an expanded metal, or the like may be employed.
(イオン伝導体203)
本発明のリチウム二次電池のイオン伝導体には、電解液(電解質を溶媒に溶解させて調製した電解質溶液)を保持させたセパレーターなどのリチウムイオンの伝導体が使用できる。
(Ion conductor 203)
As the ion conductor of the lithium secondary battery of the present invention, a lithium ion conductor such as a separator holding an electrolytic solution (an electrolyte solution prepared by dissolving an electrolyte in a solvent) can be used.
本発明の二次電池に用いるイオン伝導体の導電率は、25℃における値として、1×10-3S/cm以上であることが好ましく、5×10-3S/cm以上であることがより好ましい。 The conductivity of the ionic conductor used for the secondary battery of the present invention is preferably 1 × 10 −3 S / cm or more, preferably 5 × 10 −3 S / cm or more, as a value at 25 ° C. More preferred.
電解質としては、例えば、リチウムイオン(Li+ )とルイス酸イオン(BF4 -、PF6 -、AsF6 -、ClO4 -、CF3 SO3 -、BPh4 -(Ph:フェニル基))からなる塩、及びこれらの混合塩、が挙げられる。上記塩は、減圧下で加熱したりして、十分な脱水と脱酸素を行なっておくことが望ましい。 Examples of the electrolyte include lithium ions (Li + ) and Lewis acid ions (BF 4 − , PF 6 − , AsF 6 − , ClO 4 − , CF 3 SO 3 − , BPh 4 − (Ph: phenyl group)). And mixed salts thereof. It is desirable that the salt be sufficiently dehydrated and deoxygenated by heating under reduced pressure.
上記電解質の溶媒としては、例えば、アセトニトリル、ベンゾニトリル、プロピレンカーボネイト、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルホルムアミド、テトラヒドロフラン、ニトロベンゼン、ジクロロエタン、ジエトキシエタン、1,2−ジメトキシエタン、クロロベンゼン、γ−ブチロラクトン、ジオキソラン、スルホラン、ニトロメタン、ジメチルサルファイド、ジメチルサルオキシド、ギ酸メチル、3−メチル−2−オキダゾリジノン、2−メチルテトラヒドロフラン、3−プロピルシドノン、二酸化イオウ、塩化ホスホリル、塩化チオニル、塩化スルフリル、又は、これらの混合液が使用できる。 Examples of the electrolyte solvent include acetonitrile, benzonitrile, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethylformamide, tetrahydrofuran, nitrobenzene, dichloroethane, diethoxyethane, 1,2-dimethoxyethane, Chlorobenzene, γ-butyrolactone, dioxolane, sulfolane, nitromethane, dimethyl sulfide, dimethylsulfoxide, methyl formate, 3-methyl-2-oxazolidinone, 2-methyltetrahydrofuran, 3-propyl sydnone, sulfur dioxide, phosphoryl chloride, thionyl chloride, Sulfuryl chloride or a mixture thereof can be used.
上記溶媒は、例えば、活性アルミナ、モレキュラーシーブ、五酸化リン、塩化カルシウムなどで脱水するか、溶媒によっては、不活性ガス中でアルカリ金属共存下で蒸留して不純物除去と脱水をも行なうのがよい。 For example, the solvent may be dehydrated with activated alumina, molecular sieve, phosphorus pentoxide, calcium chloride or the like, or depending on the solvent, distillation may be performed in an inert gas in the presence of an alkali metal to remove impurities and dehydrate. Good.
(非水電解液)
本発明は、リチウム二次電池に用いられる非水電解液に特徴を有し、該非水電解液に電解酸化重合モノマーと電解還元重合モノマーを含有することを特徴とする。
(Nonaqueous electrolyte)
The present invention is characterized by a nonaqueous electrolytic solution used in a lithium secondary battery, and the nonaqueous electrolytic solution contains an electrolytic oxidation polymerization monomer and an electrolytic reduction polymerization monomer.
電解酸化重合モノマーには、ピロール、アニリン、チオフェン及びそれらの誘導体から成る群から選択される1種類以上のモノマーもしくはオレゴマーが用いられる。
電解還元重合モノマーには、アクリロニトリル、メタクリル酸エステル、スチレン、ブタジエン、メチレンマロン酸エステル、α−シアノアクリル酸エステル、ニトロエチレン、ビニレンカーボネートから成る群から選択される1種類以上のモノマーもしくはオレゴマーが用いられる。
As the electrolytic oxidation polymerization monomer, one or more monomers or olegomers selected from the group consisting of pyrrole, aniline, thiophene, and derivatives thereof are used.
As the electrolytic reduction polymerization monomer, one or more monomers selected from the group consisting of acrylonitrile, methacrylic acid ester, styrene, butadiene, methylene malonic acid ester, α-cyanoacrylic acid ester, nitroethylene, vinylene carbonate, or olegomer are used. It is done.
電解液へのモノマーの添加量が少なすぎると効果がなく、多すぎると電解液のイオン伝導度を低下させ、充電時に形成される重合被膜の厚みが厚くなり電極の抵抗を高めてしまう。本発明者らの実験では電解酸化重合モノマーを7.5wt%添加すると導電性ポリマーにより短絡を引き起こした。また、電解還元重合モノマーを5.0wt%添加すると電池内部抵抗の増加により、初回の充電に対する放電量が低下した。そして電解酸化重合モノマーは0.2wt%の添加でも効果があることを確認した。従って、モノマーの非水電解液への最適な添加量は非水電解液のイオン伝導度、電極の抵抗・厚み・凹凸、セパレーターの多孔度・厚み、重合時の印加電圧・電流密度などによって左右されるが、電解酸化重合モノマー、電解還元重合モノマーの電解液中の含有量は、それぞれ0.01〜10wt%の範囲が好ましい。より好ましくは0.05〜5wt%である。 If the amount of the monomer added to the electrolytic solution is too small, there is no effect, and if it is too large, the ionic conductivity of the electrolytic solution is lowered, and the thickness of the polymer film formed at the time of charging is increased and the resistance of the electrode is increased. In our experiment, when 7.5 wt% of electrolytic oxidation polymerization monomer was added, a short circuit was caused by the conductive polymer. Further, when 5.0 wt% of electrolytic reduction polymerization monomer was added, the discharge amount with respect to the first charge was reduced due to an increase in battery internal resistance. It was confirmed that the electrolytic oxidation polymerization monomer was effective even when 0.2 wt% was added. Therefore, the optimum amount of monomer added to the non-aqueous electrolyte depends on the ionic conductivity of the non-aqueous electrolyte, the resistance / thickness / concaveness of the electrode, the porosity / thickness of the separator, the applied voltage / current density during polymerization, etc. However, the content of the electrolytic oxidation polymerization monomer and the electrolytic reduction polymerization monomer in the electrolytic solution is preferably in the range of 0.01 to 10 wt%. More preferably, it is 0.05-5 wt%.
さらに、電解酸化重合モノマーより電解還元重合モノマーを多く添加するとより均一なポリマー皮膜を形成しやすいため、非水電解液に含有される電解酸化重合モノマー(MO )と電解還元重合モノマー(MR )の比率(MR /MO )は、重量比で1<MR /MO <50の範囲にすることが好ましい。より好ましくは、5<MR /MO <25である。 Furthermore, when more electrolytic reduction polymerization monomer is added than electrolytic oxidation polymerization monomer, a more uniform polymer film is easily formed. Therefore, the electrolytic oxidation polymerization monomer (M O ) and the electrolytic reduction polymerization monomer (M R ) contained in the non-aqueous electrolyte ) Ratio (M R / M O ) is preferably in the range of 1 <M R / M O <50 by weight ratio. More preferably, 5 <M R / M O <25.
また、本発明のリチウム二次電池の製造方法は、電解酸化重合モノマーと電解還元重合モノマーを含有する前記非水電解液に正極および負極から電圧を印加することにより、少なくとも正極または負極のいずれか一方に前記電解酸化重合モノマーと電解還元重合モノマーからなるポリマーを形成する工程を有することを特徴とする。 Further, the method for producing a lithium secondary battery of the present invention includes applying a voltage from the positive electrode and the negative electrode to the non-aqueous electrolyte containing the electrolytic oxidation polymerization monomer and the electrolytic reduction polymerization monomer, so that at least either the positive electrode or the negative electrode is applied. On the other hand, the method has a step of forming a polymer comprising the electrolytic oxidation polymerization monomer and the electrolytic reduction polymerization monomer.
本発明では正極および負極間に電圧を印加することにより、非水電解液に含有されている電解酸化重合モノマーと電解還元重合モノマーは電極表面で電子を受け渡しすることにより重合してポリマーを形成する。一方、重合開始剤を添加し重合する方法も考えられるが、重合開始剤等を添加すると電極表面ではなく、電解液中で重合反応が始まる可能性があり、セパレーターの細孔を塞いでしまう等の弊害が出るため好ましくない。 In the present invention, by applying a voltage between the positive electrode and the negative electrode, the electrolytic oxidation polymerization monomer and the electrolytic reduction polymerization monomer contained in the non-aqueous electrolyte polymerize by passing electrons on the electrode surface to form a polymer. . On the other hand, a polymerization method may be considered by adding a polymerization initiator, but if a polymerization initiator or the like is added, the polymerization reaction may start not in the electrode surface but in the electrolytic solution, and the pores of the separator are blocked. This is not preferable because of the negative effects.
また、本発明の電池では、3V以上の一定電圧を電池に所定の時間印加することによって、ポリマーを形成させることができる。4V級の二次電池の場合、一定電流密度で4.2V程度の充電終止電圧まで充電し、その後その電圧において定電圧のまま所定の時間充電を続けるという定電流定電圧方式の充電を行えば、容易に、ポリマーを形成させることができる。また、放電時にも3V以上の一定電圧を電池に所定の時間印加することになるので、ポリマーを形成させることができる。 In the battery of the present invention, a polymer can be formed by applying a constant voltage of 3 V or more to the battery for a predetermined time. In the case of a 4V class secondary battery, if charging is performed at a constant current density to a charge end voltage of about 4.2V, and then charging is continued for a predetermined time while maintaining the constant voltage at that voltage, A polymer can be easily formed. In addition, since a constant voltage of 3 V or more is applied to the battery for a predetermined time even during discharge, a polymer can be formed.
(セパレーター)
前記セパレーターは、二次電池内で負極201と正極202の短絡を防ぐ役割がある。また、電解液を保持する役割を有する場合もある。
(separator)
The separator serves to prevent a short circuit between the negative electrode 201 and the positive electrode 202 in the secondary battery. Moreover, it may have a role of holding the electrolytic solution.
セパレーターとしては、リチウムイオンが移動できる細孔を有し、かつ、電解液に不溶で安定である必要がある。したがって、セパレーターとしては、例えば、ガラス、ポリプロピレンやポリエチレンなどのポリオレフィン、フッ素樹脂、などの不織布あるいはミクロポア構造の材料が好適に用いられる。また、微細孔を有する金属酸化物フィルム、又は、金属酸化物を複合化した樹脂フィルムも使用できる。 The separator must have pores through which lithium ions can move and be insoluble and stable in the electrolyte. Therefore, as the separator, for example, glass, polyolefin such as polypropylene or polyethylene, non-woven fabric such as fluororesin, or a material having a micropore structure is preferably used. Moreover, the metal oxide film which has a micropore, or the resin film which compounded the metal oxide can also be used.
[電池の形状と構造]
本発明の二次電池の具体的な形状としては、例えば、扁平形、円筒形、直方体形、シート形などがある。又、電池の構造としては、例えば、単層式、多層式、スパイラル式などがある。その中でも、スパイラル式円筒形の電池は、負極と正極の間にセパレーターを挟んで巻くことによって、電極面積を大きくすることができ、充放電時に大電流を流すことができるという特徴を有する。また、直方体形やシート形の電池は、複数の電池を収納して構成する機器の収納スペースを有効に利用することができる特徴を有する。
[Battery shape and structure]
Specific examples of the secondary battery of the present invention include a flat shape, a cylindrical shape, a rectangular parallelepiped shape, and a sheet shape. Examples of the battery structure include a single layer type, a multilayer type, and a spiral type. Among them, the spiral cylindrical battery has a feature that an electrode area can be increased by winding a separator between a negative electrode and a positive electrode, and a large current can flow during charging and discharging. Moreover, a rectangular parallelepiped type or sheet type battery has a feature that a storage space of a device configured by storing a plurality of batteries can be used effectively.
図3に示すスパイラル式円筒型の二次電池では、正極集電体304上に形成された正極活物質(材料)層305を有する正極306と、負極集電体301上に形成された負極活物質(材料)層302を有した負極303が、例えば少なくとも電解液を保持したセパレーターで形成されたイオン伝導体307を介して対向し、多重に巻回された円筒状構造の積層体を形成している。当該円筒状構造の積層体が、負極端子としての負極缶308内に収容されている。また、当該負極缶308の開口部側には正極端子としての正極キャップ309が設けられており、負極缶内の他の部分においてガスケット310が配置されている。円筒状構造の電極の積層体は絶縁板311を介して正極キャップ側と隔てられている。正極306については正極リード313を介して正極キャップ309に接続されている。また負極303については負極リード312を介して負極缶308と接続されている。正極キャップ側には電池内部の内圧を調整するための安全弁314が設けられている。前述したようにイオン伝導体307には、電解酸化重合モノマーと電解還元重合モノマーの両方を含み、電圧を印加することで正極306の活物質層305、負極303の活物質層302に、前述した本発明の重合ポリマーが被覆される。 In the spiral cylindrical secondary battery shown in FIG. 3, a positive electrode 306 having a positive electrode active material (material) layer 305 formed on the positive electrode current collector 304 and a negative electrode active material formed on the negative electrode current collector 301. A negative electrode 303 having a substance (material) layer 302 is opposed to, for example, an ion conductor 307 formed of a separator holding at least an electrolytic solution, and forms a multilayer structure of a cylindrical structure wound in multiple layers. ing. The laminated body having the cylindrical structure is accommodated in a negative electrode can 308 serving as a negative electrode terminal. In addition, a positive electrode cap 309 as a positive electrode terminal is provided on the opening side of the negative electrode can 308, and a gasket 310 is disposed in another part of the negative electrode can. The electrode stack having a cylindrical structure is separated from the positive electrode cap side by an insulating plate 311. The positive electrode 306 is connected to the positive electrode cap 309 via the positive electrode lead 313. The negative electrode 303 is connected to the negative electrode can 308 via the negative electrode lead 312. A safety valve 314 for adjusting the internal pressure inside the battery is provided on the positive electrode cap side. As described above, the ionic conductor 307 includes both the electrolytic oxidation polymerization monomer and the electrolytic reduction polymerization monomer, and the active material layer 305 of the positive electrode 306 and the active material layer 302 of the negative electrode 303 are applied to the active material layer 302 by applying a voltage as described above. The polymerized polymer of the present invention is coated.
以下では、図3に示した電池の組み立て方法の一例を説明する。
(i)負極303と成形した正極306の間に、セパレーター307を挟んで、負極缶308に組み込む。
(ii)モノマーを添加した電解液を注入した後、正極キャップ309とガスケット310を組み立てる。
(iii)上記(ii)をかしめることによって、電池は完成する。
Below, an example of the assembly method of the battery shown in FIG. 3 is demonstrated.
(I) The separator 307 is sandwiched between the negative electrode 303 and the formed positive electrode 306, and the negative electrode can 308 is assembled.
(Ii) After injecting the electrolyte added with the monomer, the positive electrode cap 309 and the gasket 310 are assembled.
(Iii) The battery is completed by caulking (ii) above.
なお、上述したリチウム電池の材料調製、及び電池の組み立ては、水分が十分除去された乾燥空気中、又は乾燥不活性ガス中で行なうのが望ましい。
上述のような二次電池を構成する部材について説明する。
It is desirable that the above-described lithium battery material preparation and battery assembly be performed in dry air from which moisture has been sufficiently removed or in a dry inert gas.
The member which comprises the above secondary batteries is demonstrated.
(ガスケット)
ガスケット310の材料としては、例えば、フッ素樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリスルフォン樹脂、各種ゴムが使用できる。電池の封口方法としては、図2のようにガスケットを用いた「かしめ」以外にも、ガラス封管、接着剤、溶接、半田付けなどの方法が用いられる。また、図3の絶縁板311の材料としては、各種有機樹脂材料やセラミックスが用いられる。
(gasket)
As a material of the gasket 310, for example, a fluororesin, a polyolefin resin, a polyamide resin, a polysulfone resin, and various rubbers can be used. As a battery sealing method, a glass sealing tube, an adhesive, welding, soldering, or the like is used in addition to “caulking” using a gasket as shown in FIG. Further, as the material of the insulating plate 311 in FIG. 3, various organic resin materials and ceramics are used.
(外缶)
電池の外缶として、電池の負極缶308、及び正極キャップ309から構成される。外缶の材料としては、ステンレススチールが好適に用いられる。特に、チタンクラッドステンレス板や銅クラッドステンレス板、ニッケルメッキ鋼板などが多用される。
(Outside can)
As an outer can of the battery, a negative electrode can 308 of the battery and a positive electrode cap 309 are configured. Stainless steel is suitably used as the material for the outer can. In particular, a titanium clad stainless plate, a copper clad stainless plate, a nickel plated steel plate, etc. are frequently used.
図3では負極缶308が電池ハウジング(ケース)と端子を兼ねているため、上記のステンレススチールが好ましい。ただし、正極缶または負極缶が電池ハウジングと端子を兼用しない場合には、電池ケースの材質としては、ステンレススチール以外にも亜鉛などの金属、ポリプロピレンなどのプラスチック、または、金属もしくはガラス繊維とプラスチックの複合材を用いることができる。 In FIG. 3, since the negative electrode can 308 serves as a battery housing (case) and a terminal, the above stainless steel is preferable. However, if the positive electrode can or negative electrode can does not serve as the battery housing and terminal, the material of the battery case is not only stainless steel but also metals such as zinc, plastics such as polypropylene, or metal or glass fiber and plastic. Composite materials can be used.
(安全弁)
リチウム二次電池には、電池の内圧が高まった時の安全対策として、安全弁が備えられている。安全弁としては、例えば、ゴム、スプリング、金属ボール、破裂箔などが使用できる。
(safety valve)
A lithium secondary battery is provided with a safety valve as a safety measure when the internal pressure of the battery increases. As the safety valve, for example, rubber, a spring, a metal ball, a rupture foil, or the like can be used.
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。 Hereinafter, the present invention will be described in more detail on the basis of examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the present invention. It is.
実施例1
〔電極構造体の作製〕
本例では、電解酸化重合モノマーにチオフェンを電解還元重合モノマーにビニレンカーボネートを用いてリチウム二次電池を作製した。
Example 1
[Production of electrode structure]
In this example, a lithium secondary battery was prepared using thiophene as the electrolytic oxidation polymerization monomer and vinylene carbonate as the electrolytic reduction polymerization monomer.
〔負極の作製〕
シリコン−スズ合金の微粉末74wt%と、導電補助材として、黒鉛粉末(直径が約5μmで厚みが約1μmの略円板状の黒鉛粉末)10.0wt%と、黒鉛粉末(略球形であってその平均粒径は5μm)5.0wt%と、結着剤(バインダー)としてのポリアミック酸11.0wt%とを混合し、N−メチル−2ピロリドンを添加して混練し、ペーストを調製した。
(Production of negative electrode)
74% by weight of fine powder of silicon-tin alloy, 10.0% by weight of graphite powder (substantially disk-shaped graphite powder having a diameter of about 5 μm and a thickness of about 1 μm) as a conductive auxiliary material, and graphite powder (substantially spherical) The average particle size is 5 μm) 5.0 wt% and 11.0 wt% polyamic acid as a binder (binder) are mixed, and N-methyl-2pyrrolidone is added and kneaded to prepare a paste. .
次に、そのように調製したペーストを、15μm厚の電界銅箔(電気化学的に製造された銅箔)の上にコーターで塗布し、乾燥させ、ロールプレスにて厚みを調製し、厚み25μmの活物質層の電極構造体を作製した。 Next, the paste thus prepared is applied onto a 15 μm thick electrolytic copper foil (electrochemically produced copper foil) with a coater, dried, and the thickness is adjusted with a roll press, and the thickness is 25 μm. An electrode structure having an active material layer was prepared.
そして、その電極構造体を2.5cm×2.5cmのサイズに切り出し、銅タブを溶接して負極とした。
〔正極の作製〕
(i)クエン酸リチウムと硝酸コバルトを1:3のモル比で混合し、クエン酸を添加してイオン交換水に溶解した水溶液を、200℃空気気流中に噴霧して、微粉末のリチウム−コバルト酸化物の前駆体を調製した。
(ii)上記(i)で得られたリチウム−コバルト酸化物の前駆体を、更に、酸素気流中で850℃で熱処理した。
(iii)上記(ii)において調製したリチウム−コバルト酸化物に、黒鉛粉3重量%とポリフッ化ビリニデン粉5wt%を混合した後、N−メチル−2−ピロリドンを添加してペーストを作製した。
(iv)上記(iii)で得られたペーストを、厚み20ミクロンのアルミニウム箔の集電体304の両面に塗布乾燥した後、ロールプレス機で片側の正極活物質層の厚みを90ミクロンに調整した。さらに、アルミニウムのリードを超音波溶接機で接続し、150℃で減圧乾燥して正極を作製した。
The electrode structure was cut into a size of 2.5 cm × 2.5 cm, and a copper tab was welded to form a negative electrode.
[Production of positive electrode]
(I) Lithium citrate and cobalt nitrate are mixed at a molar ratio of 1: 3, and an aqueous solution in which citric acid is added and dissolved in ion-exchanged water is sprayed into an air stream at 200 ° C. A precursor of cobalt oxide was prepared.
(Ii) The lithium-cobalt oxide precursor obtained in (i) above was further heat-treated at 850 ° C. in an oxygen stream.
(Iii) After mixing 3% by weight of graphite powder and 5% by weight of polyvinylidene fluoride powder with the lithium-cobalt oxide prepared in (ii) above, N-methyl-2-pyrrolidone was added to prepare a paste.
(Iv) After applying and drying the paste obtained in (iii) above on both sides of the aluminum foil current collector 304 with a thickness of 20 microns, the thickness of the positive electrode active material layer on one side is adjusted to 90 microns with a roll press. did. Further, aluminum leads were connected with an ultrasonic welder and dried under reduced pressure at 150 ° C. to produce a positive electrode.
〔リチウム挿入脱離量の評価手順〕
次に、エチレンカーボネートとジエチルカーボネートとを3:7の体積比で混合して得た有機溶媒0.1リットルに、LiPF6 の塩を1M(モル/リットル)(15.19g)溶解させ、さらにチオフェンを0.2wt%(0.24g)とビニレンカーボネートを5.0wt%(6.13g)加えて電解液を調製した。そして、この電解液を25μm厚の多孔質ポリエチレンフィルムにしみ込ませ、該フィルムの一方の面には上述した負極を配置し、他方の面には上述した正極を配置して、これらの電極でポリエチレンフィルムを挟み込むようにした。次に、平坦性を出すために両側からガラス板で挟み込み、さらにアルミラミネートフィルムにて被覆して評価用セルを作製した。
[Evaluation procedure for lithium insertion / extraction]
Next, 1M (mol / liter) (15.19 g) of a salt of LiPF 6 was dissolved in 0.1 liter of an organic solvent obtained by mixing ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7, An electrolyte solution was prepared by adding 0.2 wt% (0.24 g) of thiophene and 5.0 wt% (6.13 g) of vinylene carbonate. Then, this electrolytic solution is impregnated into a porous polyethylene film having a thickness of 25 μm, the negative electrode described above is disposed on one surface of the film, and the positive electrode described above is disposed on the other surface. The film was sandwiched between them. Next, in order to obtain flatness, it was sandwiched between glass plates from both sides, and further covered with an aluminum laminate film to produce an evaluation cell.
なお、このアルミラミネートフィルムは、最も外側の層がナイロンフィルムで、真ん中の層が20μm厚のアルミニウム箔で、内側の層がポリエチレンフィルムである、3層構成のフィルムを使用した。なお、各電極の引き出し端子部分はラミネートせず融着して密封した。 The aluminum laminate film was a three-layer film in which the outermost layer was a nylon film, the middle layer was an aluminum foil with a thickness of 20 μm, and the inner layer was a polyethylene film. The lead terminal portion of each electrode was fused and sealed without being laminated.
そして、上記二次電池としての機能を評価するために、リチウムの挿入脱離サイクル試験(充放電サイクル試験)を行った。
すなわち、上述の評価用セルを充放電装置に接続し、始めに電流密度3.2mA/cm2 で評価用セルを充電し、次に電圧4.2Vに達したところで電圧を一定に保ち、電流が0.16mA/cm2 になるまで充電した。ついで、電流密度3.2mA/cm2 で評価用セルを電圧2.5Vに達するまで放電した。この時の充電電気量と放電電気量を測定し、電池の充放電効率を評価した。
In order to evaluate the function as the secondary battery, a lithium insertion / extraction cycle test (a charge / discharge cycle test) was performed.
That is, the above-described evaluation cell is connected to the charging / discharging device, the evaluation cell is first charged at a current density of 3.2 mA / cm 2 , and when the voltage reaches 4.2 V, the voltage is kept constant. Was charged to 0.16 mA / cm 2 . Subsequently, the evaluation cell was discharged at a current density of 3.2 mA / cm 2 until the voltage reached 2.5V. The charge electricity amount and the discharge electricity amount at this time were measured, and the charge / discharge efficiency of the battery was evaluated.
比較例1
電解液にモノマーを添加していない以外は、実施例1と同様にして電池を作製した。
比較例2
電解液に電解酸化重合モノマーとしてチオフェンを0.2wt%添加し、電解還元重合モノマーを添加しないで、他は実施例1と同様にして電池を作製した。
Comparative Example 1
A battery was fabricated in the same manner as in Example 1 except that no monomer was added to the electrolytic solution.
Comparative Example 2
A battery was fabricated in the same manner as in Example 1 except that 0.2 wt% of thiophene was added as an electrolytic oxidation polymerization monomer to the electrolytic solution, and no electrolytic reduction polymerization monomer was added.
比較例3
電解液に電解酸化重合モノマーとしてチオフェンを7.5wt%添加し、電解還元重合モノマーを添加しないで、他は実施例1と同様にして電池を作製した。
Comparative Example 3
A battery was fabricated in the same manner as in Example 1 except that 7.5 wt% of thiophene was added as an electrolytic oxidation polymerization monomer to the electrolytic solution, and no electrolytic reduction polymerization monomer was added.
比較例4
電解液に電解還元重合モノマーとしてビニレンカーボネートを5.0wt%添加し、電解酸化重合モノマーを添加しないで、他は実施例1と同様にして電池を作製した。
Comparative Example 4
A battery was fabricated in the same manner as in Example 1 except that 5.0 wt% of vinylene carbonate was added as an electrolytic reduction polymerization monomer to the electrolytic solution, and no electrolytic oxidation polymerization monomer was added.
(電極構造体のリチウム挿入脱離の性能評価結果)
下記の表1は、実施例及び比較例について、初回と50サイクル目のリチウム挿入量に対する脱離量をパーセンテージで表した充放電効率を示したものである。
(Performance evaluation result of lithium insertion / extraction of electrode structure)
Table 1 below shows the charge / discharge efficiency in terms of percentage of the amount of desorption relative to the amount of lithium inserted at the first and 50th cycles for the examples and comparative examples.
表1より、比較例3は電解液に添加した電解酸化重合モノマー量が多いため、重合形成した導電性ポリマーがセパレーターを貫通して短絡した。電解液にモノマーを5.0wt%以上添加した実施例1、比較例4はモノマーを添加していない比較例1よりも初回の充放電効率が低下した。このように、モノマー添加量が多すぎると電解液のイオン伝導度が低下や、充電時に形成される重合被膜の厚みが厚くなり電極の抵抗が高くなるなどの悪影響を及ぼしてしまう。しかし、50サイクル目の充放電効率をみると、実施例1では電解還元重合モノマーと電解酸化重合モノマーを電解液に同時に添加した効果により、比較例と比べて最も高く劣化が進んでいない。 From Table 1, since Comparative Example 3 has a large amount of electrolytic oxidation polymerization monomer added to the electrolytic solution, the conductive polymer formed by polymerization penetrated the separator and was short-circuited. In Example 1 and Comparative Example 4 in which the monomer was added in an amount of 5.0 wt% or more to the electrolytic solution, the initial charge / discharge efficiency was lower than that in Comparative Example 1 in which no monomer was added. As described above, if the amount of the monomer added is too large, the ionic conductivity of the electrolytic solution is lowered, and the thickness of the polymer film formed at the time of charging is increased, and the resistance of the electrode is increased. However, looking at the charge / discharge efficiency at the 50th cycle, in Example 1, the deterioration was the highest compared with the comparative example due to the effect of simultaneously adding the electrolytic reduction polymerization monomer and the electrolytic oxidation polymerization monomer to the electrolytic solution.
電解酸化重合モノマー添加量は0.2wt%で十分効果が得られることから、電解酸化重合モノマーは電解還元重合モノマーより少量添加すれば良いことが分かる。これらのことから、モノマーの添加量は0.01〜10.0wt%が好ましい。より好ましくは0.05〜5.0wt%である。そして電解酸化重合モノマーと電解還元重合モノマーの比率は 1<電解還元重合モノマーの含有量/電解酸化重合モノマーの含有量<50 の範囲が好ましい。 Since the effect is sufficiently obtained when the addition amount of the electrolytic oxidation polymerization monomer is 0.2 wt%, it is understood that the electrolytic oxidation polymerization monomer may be added in a smaller amount than the electrolytic reduction polymerization monomer. For these reasons, the amount of monomer added is preferably 0.01 to 10.0 wt%. More preferably, it is 0.05-5.0 wt%. The ratio of the electrolytic oxidation polymerization monomer to the electrolytic reduction polymerization monomer is preferably in the range of 1 <content of electrolytic reduction polymerization monomer / content of electrolytic oxidation polymerization monomer <50.
図4は、実施例1及び比較例1、2における二次電池のリチウム挿入脱離サイクル試験の結果を、横軸にサイクル数、縦軸にリチウム脱離量が最大のサイクルを100%として、各サイクルのリチウム脱離量を示したグラフである。図4に示すように本発明の電池(実施例1)と、モノマーを非水電解液に加えていない比較例1の電池及びチオフェンのみを非水電解液に加えた比較例2の電池ではサイクルを繰り返すと電池の容量維持率は、本発明の電池のほうが優れている。また実施例1は比較例1、比較例2よりも初回の充放電効率は低下するが、2サイクル目、3サイクル目で放電量が増加するため、3サイクル目での放電量は比較例1、比較例2とほぼ同量である。以上より、実施例1にて作製した二次電池は、高容量を維持しつつ、サイクル寿命が長くなることが分かった。 FIG. 4 shows the results of the lithium insertion / extraction cycle test of the secondary battery in Example 1 and Comparative Examples 1 and 2, with the horizontal axis representing the cycle number and the vertical axis representing the maximum lithium desorption amount as 100%. It is the graph which showed the amount of lithium desorption of each cycle. As shown in FIG. 4, the battery of the present invention (Example 1), the battery of Comparative Example 1 in which no monomer is added to the non-aqueous electrolyte, and the battery of Comparative Example 2 in which only thiophene is added to the non-aqueous electrolyte are cycled. Is repeated, the battery capacity retention rate of the battery of the present invention is superior. Further, in Example 1, the initial charge / discharge efficiency is lower than in Comparative Example 1 and Comparative Example 2, but the discharge amount increases in the second and third cycles, so the discharge amount in the third cycle is Comparative Example 1. The amount is almost the same as in Comparative Example 2. From the above, it was found that the secondary battery produced in Example 1 has a long cycle life while maintaining a high capacity.
本発明のリチウム二次電池は、リチウム二次電池内抵抗を軽減することができ、高エネルギー密度でサイクル特性に優れているので、デジタルカメラ、デジタルビデオカメラ、携帯電話、ノートPC等に利用することができる。 The lithium secondary battery of the present invention can reduce the resistance in the lithium secondary battery, and has high cycle density and high energy density. Therefore, the lithium secondary battery is used for a digital camera, a digital video camera, a mobile phone, a notebook PC, and the like. be able to.
100 集電体
101 電極材料層
102 電解重合ポリマー層
103 電極構造体
104 活物質
105 導電材
106 結着剤
201、303 負極
202、306 正極
203、307 イオン伝導体
204 負極端子
205 正極端子
206 電槽(電池ハウジング)
301 負極集電体
302 負極活物質層
304 正極集電体
305 正極活物質層
308 負極缶(負極端子)
309 正極キャップ(正極端子)
310 ガスケット
311 絶縁板
312 負極リード
313 正極リード
314 安全弁
DESCRIPTION OF SYMBOLS 100 Current collector 101 Electrode material layer 102 Electropolymerization polymer layer 103 Electrode structure 104 Active material 105 Conductive material 106 Binder 201, 303 Negative electrode 202, 306 Positive electrode 203, 307 Ion conductor 204 Negative electrode terminal 205 Positive electrode terminal 206 Battery case (Battery housing)
301 Negative electrode current collector
302 Negative electrode active material layer 304 Positive electrode current collector 305 Positive electrode active material layer 308 Negative electrode can (negative electrode terminal)
309 Positive electrode cap (positive electrode terminal)
310 Gasket 311 Insulating plate 312 Negative electrode lead 313 Positive electrode lead 314 Safety valve
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005025588A JP4756869B2 (en) | 2005-02-01 | 2005-02-01 | Lithium secondary battery and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005025588A JP4756869B2 (en) | 2005-02-01 | 2005-02-01 | Lithium secondary battery and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006216276A true JP2006216276A (en) | 2006-08-17 |
JP4756869B2 JP4756869B2 (en) | 2011-08-24 |
Family
ID=36979340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005025588A Expired - Fee Related JP4756869B2 (en) | 2005-02-01 | 2005-02-01 | Lithium secondary battery and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4756869B2 (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006269417A (en) * | 2005-02-22 | 2006-10-05 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery and method of forming coating for negative electrode active material thereof |
JP2008226606A (en) * | 2007-03-12 | 2008-09-25 | Denso Corp | Manufacturing method of lithium secondary battery |
WO2010092815A1 (en) * | 2009-02-13 | 2010-08-19 | パナソニック株式会社 | Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP2011514630A (en) * | 2008-02-22 | 2011-05-06 | コロラド ステイト ユニバーシティ リサーチ ファウンデーション | Lithium ion battery |
JP2011108505A (en) * | 2009-11-18 | 2011-06-02 | Toyota Motor Corp | Lithium ion secondary battery |
JP2011159568A (en) * | 2010-02-03 | 2011-08-18 | Kri Inc | Positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery using the same |
JP2012142260A (en) * | 2010-12-29 | 2012-07-26 | Ind Technol Res Inst | Nonaqueous electrolyte, and lithium secondary battery containing nonaqueous electrolyte |
WO2012172758A1 (en) * | 2011-06-16 | 2012-12-20 | パナソニック株式会社 | Negative electrode for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, and lithium ion secondary battery using negative electrode for lithium ion secondary battery |
JP2014165007A (en) * | 2013-02-25 | 2014-09-08 | Toyota Industries Corp | Negative electrode for nonaqueous secondary battery and manufacture of the same, and nonaqueous secondary battery |
US9136559B2 (en) | 2010-12-29 | 2015-09-15 | Industrial Technology Research Institute | Non-aqueous electrolyte and lithium secondary battery including the same |
US20170294680A1 (en) * | 2016-04-07 | 2017-10-12 | StoreDot Ltd. | Partly immobilized ionic liquid electrolyte additives for lithium ion batteries |
US10110036B2 (en) | 2016-12-15 | 2018-10-23 | StoreDot Ltd. | Supercapacitor-emulating fast-charging batteries and devices |
US10199677B2 (en) | 2016-04-07 | 2019-02-05 | StoreDot Ltd. | Electrolytes for lithium ion batteries |
US10199646B2 (en) | 2014-07-30 | 2019-02-05 | StoreDot Ltd. | Anodes for lithium-ion devices |
US10290864B2 (en) | 2016-04-07 | 2019-05-14 | StoreDot Ltd. | Coated pre-lithiated anode material particles and cross-linked polymer coatings |
US10293704B2 (en) | 2014-04-08 | 2019-05-21 | StoreDot Ltd. | Electric vehicles with adaptive fast-charging, utilizing supercapacitor-emulating batteries |
US10355271B2 (en) | 2016-04-07 | 2019-07-16 | StoreDot Ltd. | Lithium borates and phosphates coatings |
US10367193B2 (en) | 2016-04-07 | 2019-07-30 | StoreDot Ltd. | Methods of preparing anodes using tin as active material |
US10367192B2 (en) | 2016-04-07 | 2019-07-30 | StoreDot Ltd. | Aluminum anode active material |
US10454101B2 (en) | 2017-01-25 | 2019-10-22 | StoreDot Ltd. | Composite anode material made of core-shell particles |
US10468727B2 (en) | 2016-04-07 | 2019-11-05 | StoreDot Ltd. | Graphite-carbohydrate active material particles with carbonized carbohydrates |
US10549650B2 (en) | 2014-04-08 | 2020-02-04 | StoreDot Ltd. | Internally adjustable modular single battery systems for power systems |
JP2020021655A (en) * | 2018-08-01 | 2020-02-06 | 株式会社日本触媒 | Electrolyte, alkali metal ion secondary battery, and additive for electrolyte |
US10608463B1 (en) | 2019-01-23 | 2020-03-31 | StoreDot Ltd. | Direct charging of battery cell stacks |
US10818919B2 (en) | 2016-04-07 | 2020-10-27 | StoreDot Ltd. | Polymer coatings and anode material pre-lithiation |
US10916811B2 (en) | 2016-04-07 | 2021-02-09 | StoreDot Ltd. | Semi-solid electrolytes with flexible particle coatings |
US11128152B2 (en) | 2014-04-08 | 2021-09-21 | StoreDot Ltd. | Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection |
US11205796B2 (en) | 2016-04-07 | 2021-12-21 | StoreDot Ltd. | Electrolyte additives in lithium-ion batteries |
CN114639878A (en) * | 2020-12-16 | 2022-06-17 | 中国科学院理化技术研究所 | Aqueous lithium ion battery electrolyte based on oligomer and application thereof |
US11831012B2 (en) | 2019-04-25 | 2023-11-28 | StoreDot Ltd. | Passivated silicon-based anode material particles |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002025615A (en) * | 2000-07-10 | 2002-01-25 | Toyota Central Res & Dev Lab Inc | Lithium secondary battery |
JP2004171877A (en) * | 2002-11-19 | 2004-06-17 | Sony Corp | Cell |
-
2005
- 2005-02-01 JP JP2005025588A patent/JP4756869B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002025615A (en) * | 2000-07-10 | 2002-01-25 | Toyota Central Res & Dev Lab Inc | Lithium secondary battery |
JP2004171877A (en) * | 2002-11-19 | 2004-06-17 | Sony Corp | Cell |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006269417A (en) * | 2005-02-22 | 2006-10-05 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery and method of forming coating for negative electrode active material thereof |
JP2008226606A (en) * | 2007-03-12 | 2008-09-25 | Denso Corp | Manufacturing method of lithium secondary battery |
JP2011514630A (en) * | 2008-02-22 | 2011-05-06 | コロラド ステイト ユニバーシティ リサーチ ファウンデーション | Lithium ion battery |
US8247096B2 (en) | 2009-02-13 | 2012-08-21 | Panasonic Corporation | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
WO2010092815A1 (en) * | 2009-02-13 | 2010-08-19 | パナソニック株式会社 | Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
CN101960654A (en) * | 2009-02-13 | 2011-01-26 | 松下电器产业株式会社 | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP2011108505A (en) * | 2009-11-18 | 2011-06-02 | Toyota Motor Corp | Lithium ion secondary battery |
JP2011159568A (en) * | 2010-02-03 | 2011-08-18 | Kri Inc | Positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery using the same |
US9136559B2 (en) | 2010-12-29 | 2015-09-15 | Industrial Technology Research Institute | Non-aqueous electrolyte and lithium secondary battery including the same |
JP2012142260A (en) * | 2010-12-29 | 2012-07-26 | Ind Technol Res Inst | Nonaqueous electrolyte, and lithium secondary battery containing nonaqueous electrolyte |
WO2012172758A1 (en) * | 2011-06-16 | 2012-12-20 | パナソニック株式会社 | Negative electrode for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, and lithium ion secondary battery using negative electrode for lithium ion secondary battery |
JP2014165007A (en) * | 2013-02-25 | 2014-09-08 | Toyota Industries Corp | Negative electrode for nonaqueous secondary battery and manufacture of the same, and nonaqueous secondary battery |
US9590239B2 (en) | 2013-02-25 | 2017-03-07 | Kabushiki Kaisha Toyota Jidoshokki | Negative electrode for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery |
US11560062B2 (en) | 2014-04-08 | 2023-01-24 | StoreDot Ltd. | Software management of EV battery modules |
US11128152B2 (en) | 2014-04-08 | 2021-09-21 | StoreDot Ltd. | Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection |
US10549650B2 (en) | 2014-04-08 | 2020-02-04 | StoreDot Ltd. | Internally adjustable modular single battery systems for power systems |
US10293704B2 (en) | 2014-04-08 | 2019-05-21 | StoreDot Ltd. | Electric vehicles with adaptive fast-charging, utilizing supercapacitor-emulating batteries |
US10199646B2 (en) | 2014-07-30 | 2019-02-05 | StoreDot Ltd. | Anodes for lithium-ion devices |
US10424814B2 (en) | 2016-04-07 | 2019-09-24 | StoreDot Ltd. | Introducing a mobile layer of ionic liquid into electrolytes of lithium ion batteries |
US11069918B2 (en) | 2016-04-07 | 2021-07-20 | StoreDot Ltd. | Carbonate electrolytes for lithium ion batteries |
US10355271B2 (en) | 2016-04-07 | 2019-07-16 | StoreDot Ltd. | Lithium borates and phosphates coatings |
US10367193B2 (en) | 2016-04-07 | 2019-07-30 | StoreDot Ltd. | Methods of preparing anodes using tin as active material |
US10367192B2 (en) | 2016-04-07 | 2019-07-30 | StoreDot Ltd. | Aluminum anode active material |
US10367191B2 (en) | 2016-04-07 | 2019-07-30 | StoreDot Ltd. | Tin silicon anode active material |
US10199677B2 (en) | 2016-04-07 | 2019-02-05 | StoreDot Ltd. | Electrolytes for lithium ion batteries |
US10454104B2 (en) | 2016-04-07 | 2019-10-22 | StoreDot Ltd. | Methods for preparing anodes from anode active material particles with lithium borates and phosphates coatings |
US11594757B2 (en) * | 2016-04-07 | 2023-02-28 | StoreDot Ltd. | Partly immobilized ionic liquid electrolyte additives for lithium ion batteries |
US10461323B2 (en) | 2016-04-07 | 2019-10-29 | StoreDot Ltd. | Composite lithium borates and/or phosphates and polymer coatings for active material particles |
US10468727B2 (en) | 2016-04-07 | 2019-11-05 | StoreDot Ltd. | Graphite-carbohydrate active material particles with carbonized carbohydrates |
US20170294680A1 (en) * | 2016-04-07 | 2017-10-12 | StoreDot Ltd. | Partly immobilized ionic liquid electrolyte additives for lithium ion batteries |
US11205796B2 (en) | 2016-04-07 | 2021-12-21 | StoreDot Ltd. | Electrolyte additives in lithium-ion batteries |
US10096859B2 (en) | 2016-04-07 | 2018-10-09 | StoreDot Ltd. | Electrolytes with ionic liquid additives for lithium ion batteries |
US10290864B2 (en) | 2016-04-07 | 2019-05-14 | StoreDot Ltd. | Coated pre-lithiated anode material particles and cross-linked polymer coatings |
US10680289B2 (en) | 2016-04-07 | 2020-06-09 | StoreDot Ltd. | Buffering zone for preventing lithium metallization on the anode of lithium ion batteries |
US10818919B2 (en) | 2016-04-07 | 2020-10-27 | StoreDot Ltd. | Polymer coatings and anode material pre-lithiation |
US10923712B2 (en) | 2016-04-07 | 2021-02-16 | StoreDot Ltd. | Preparing anodes for lithium ion cells from aluminum anode active material particles |
US10903530B2 (en) | 2016-04-07 | 2021-01-26 | StoreDot Ltd. | Anode material particles with porous carbon-based shells |
US10910671B2 (en) | 2016-04-07 | 2021-02-02 | StoreDot Ltd. | Mobile layer of ionic liquid in electrolytes |
US10916811B2 (en) | 2016-04-07 | 2021-02-09 | StoreDot Ltd. | Semi-solid electrolytes with flexible particle coatings |
US10873200B2 (en) | 2016-12-15 | 2020-12-22 | StoreDot Ltd. | Devices and methods comprising supercapacitor-emulating fast-charging batteries |
US10110036B2 (en) | 2016-12-15 | 2018-10-23 | StoreDot Ltd. | Supercapacitor-emulating fast-charging batteries and devices |
US10505181B2 (en) | 2017-01-25 | 2019-12-10 | StoreDot Ltd. | Composite anode material made of ionic-conducting electrically insulating material |
US10454101B2 (en) | 2017-01-25 | 2019-10-22 | StoreDot Ltd. | Composite anode material made of core-shell particles |
US11936035B2 (en) | 2017-01-25 | 2024-03-19 | StoreDot Ltd. | Composite anode material made of ionic-conducting electrically insulating material |
JP2020021655A (en) * | 2018-08-01 | 2020-02-06 | 株式会社日本触媒 | Electrolyte, alkali metal ion secondary battery, and additive for electrolyte |
JP7251934B2 (en) | 2018-08-01 | 2023-04-04 | 株式会社日本触媒 | Electrolyte, alkali metal ion secondary battery, and additive for electrolyte |
US10608463B1 (en) | 2019-01-23 | 2020-03-31 | StoreDot Ltd. | Direct charging of battery cell stacks |
US11831012B2 (en) | 2019-04-25 | 2023-11-28 | StoreDot Ltd. | Passivated silicon-based anode material particles |
CN114639878A (en) * | 2020-12-16 | 2022-06-17 | 中国科学院理化技术研究所 | Aqueous lithium ion battery electrolyte based on oligomer and application thereof |
CN114639878B (en) * | 2020-12-16 | 2024-06-21 | 中国科学院理化技术研究所 | Aqueous lithium-ion battery electrolyte based on oligomer and its application |
Also Published As
Publication number | Publication date |
---|---|
JP4756869B2 (en) | 2011-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4756869B2 (en) | Lithium secondary battery and manufacturing method thereof | |
JP4366101B2 (en) | Lithium secondary battery | |
JP5094013B2 (en) | ELECTRODE STRUCTURE FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY HAVING THE ELECTRODE STRUCTURE | |
JP4898737B2 (en) | Negative electrode material, negative electrode structure, and secondary battery for lithium secondary battery | |
JP3959708B2 (en) | Method for producing positive electrode for lithium battery and positive electrode for lithium battery | |
JP3218170B2 (en) | Lithium secondary battery and method of manufacturing lithium secondary battery | |
JP4321115B2 (en) | Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP4366222B2 (en) | Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure | |
CN103918107A (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same | |
JP3794553B2 (en) | Lithium secondary battery electrode and lithium secondary battery | |
JP2009205918A (en) | Power storage device | |
JP2014194842A (en) | Lithium ion secondary battery | |
JP2002015729A (en) | Nonaqueous electrolyte secondary battery | |
JP2017134997A (en) | Nonaqueous electrolyte secondary battery | |
JP2006216277A (en) | Method of manufacturing electrode material for lithium secondary battery, electrode structure, and secondary battery | |
JP5995014B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2016076342A (en) | Electrode for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP2004349079A (en) | Lithium secondary battery electrode structure, manufacturing method of same, secondary battery having the structure and manufacturing method of same | |
JP2005129437A (en) | Electrode structure for nonaqueous electrolyte secondary battery and its manufacturing method, as well as nonaqueous electrolyte secondary battery equipped with electrode structure and its manufacturing method | |
JP2007026926A (en) | Negative electrode for secondary battery and secondary battery using the same | |
JP5863631B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP2005293960A (en) | Anode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2003162997A (en) | Negative electrode for secondary battery and secondary battery using the same | |
JP2013137939A (en) | Nonaqueous secondary battery | |
JP4710230B2 (en) | Secondary battery electrolyte and secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080122 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101012 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110524 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110531 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140610 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |