[go: up one dir, main page]

JP2006212153A - Ophthalmologic photography apparatus - Google Patents

Ophthalmologic photography apparatus Download PDF

Info

Publication number
JP2006212153A
JP2006212153A JP2005026894A JP2005026894A JP2006212153A JP 2006212153 A JP2006212153 A JP 2006212153A JP 2005026894 A JP2005026894 A JP 2005026894A JP 2005026894 A JP2005026894 A JP 2005026894A JP 2006212153 A JP2006212153 A JP 2006212153A
Authority
JP
Japan
Prior art keywords
eye
image
light
examined
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005026894A
Other languages
Japanese (ja)
Other versions
JP4578994B2 (en
Inventor
Tokio Ueno
登輝夫 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2005026894A priority Critical patent/JP4578994B2/en
Publication of JP2006212153A publication Critical patent/JP2006212153A/en
Application granted granted Critical
Publication of JP4578994B2 publication Critical patent/JP4578994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable the precise detection of the information of misregister when an excellent tomogram in a direction of depth is captured and to enable the reflection of the information to acquire the above information on the tomogram. <P>SOLUTION: An ophthalmologic photography apparatus having an OCT optical system to capture the tomogram of an examinee's eye using the low coherent light is equipped with a scanning means to scan the measurement light in a prescribed direction, a tomogram capturing means to capture the tomogram in the direction of the depth of the examinee's eye by changing the optical path length during the scanning by the scanning means, a switch to output a trigger to start the operations of the scanning means and the tomogram capturing means, a front image capturing means to capture two or more front images of the fundus of the eye or the anterior of the eye section in a time series, a misregister detecting means to detect the amount of the misregister of the examinee's eye, and a display control means which corrects the tomogram captured by the tomogram capturing means on the basis of the amount of the misregister to display on a monitor or displays the information of the misregister together with the tomogram captured by the tomogram capturing means on the monitor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低コヒーレント光を用いて被検眼の断面像を取得する眼科撮影装置に関する。   The present invention relates to an ophthalmologic photographing apparatus that acquires a cross-sectional image of an eye to be examined using low coherent light.

被検眼(例えば、被検眼眼底)の断層像を非侵襲で得ることできる眼科撮影装置として、低コヒーレント光を用いた光干渉断層計(Optical Coherence Tomography:OCT)が知られている。このような眼科撮影装置は、ガルバノミラーにより測定光を眼底に対して2次元的に走査させ、参照ミラーの光路とコヒーレンス長内で一致した場合に得られる干渉信号により二次元的にOCT画像を得る方式(C-Scan)や、測定光を眼底に対して一次元走査し、参照ミラーの光路長を変化させることにより、網膜断層画像を得る方式(B-Scan)を用いることができる。このようなOCT画像を得る際に測定中に眼球の固視微動等により被検眼が動くと、測定部位がずれてしまい良好な断層像を得ることができない。これを改善するために、OCT光学系にスキャニングレーザオフサルモスコープ(SLO光学系)を複合させて、被検眼からの測定反射光をハーフミラーで分割し、OCT画像と眼底観察画像(SLO画像)を同時に捉えることで固視微動を検知し、これによる位置ずれ補正を行うことができる装置が知られている(特許文献1参照)。
米国特許5975697号
An optical coherence tomography (OCT) using low-coherent light is known as an ophthalmologic imaging apparatus that can obtain a tomographic image of a subject's eye (for example, the fundus of the subject's eye) non-invasively. Such an ophthalmologic photographing apparatus scans the fundus two-dimensionally with the galvano mirror in a two-dimensional manner, and generates an OCT image two-dimensionally using an interference signal obtained when the optical path of the reference mirror coincides with the coherence length. A method for obtaining a retinal tomographic image (B-Scan) can be used by obtaining a retinal tomographic image by changing the optical path length of the reference mirror by one-dimensionally scanning the fundus with measurement light. When such an OCT image is obtained, if the eye to be inspected moves due to eye movements or the like during measurement, the measurement site is displaced and a good tomographic image cannot be obtained. In order to improve this, a scanning laser ophthalmoscope (SLO optical system) is combined with the OCT optical system, and the measurement reflected light from the eye to be examined is divided by a half mirror, and the OCT image and fundus observation image (SLO image) An apparatus is known that can detect microscopic movements of the eye by simultaneously capturing the movements, and perform positional deviation correction using the movement (see Patent Document 1).
US Pat. No. 5,975,697

特許文献1に開示される装置では、C-Scan方式によるOCT画像取得時の位置ずれ補正は良好に行うことができるが、B-Scan方式によるOCT画像取得時では、SLO光学系も一次元のみの走査であるため、固視微動による測定部位のずれを精度良く検出することが難しい。   In the apparatus disclosed in Patent Document 1, misalignment correction at the time of OCT image acquisition by the C-Scan method can be performed satisfactorily, but at the time of OCT image acquisition by the B-Scan method, the SLO optical system is only one-dimensional. Therefore, it is difficult to accurately detect the shift of the measurement site due to the fixation fine movement.

本発明は、上記問題点を鑑み、良好な奥行き方向の断面画像を取得する際の位置ずれ情報を精度良く検出することができるとともに、その情報を取得した情報を断面画像に反映させることが可能な眼科撮影装置を提供することを技術課題とする。   In view of the above problems, the present invention can accurately detect misalignment information when acquiring a cross-sectional image in a good depth direction, and can reflect the acquired information in the cross-sectional image. It is a technical problem to provide a simple ophthalmologic photographing apparatus.

上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。   In order to solve the above problems, the present invention is characterized by having the following configuration.

(1) 低コヒーレント長の光の一部を被検眼に向けて照射するとともに該低コヒーレント長の光の一部を参照光とし,該参照光と被検眼に照射した前記測定光の反射光との合成により得られる干渉光を受光することにより被検眼画像を得る眼科撮影装置において、前記測定光を所定方向に走査する走査手段と、該走査手段による前記測定光の走査中に前記参照光の光路長を変化させることにより被検眼の深さ方向の断面画像を得る断面画像取得手段と、前記走査手段及び断面画像取得手段の動作のきっかけとなるトリガ信号を出力する撮影スイッチと、該撮影スイッチによるトリガ信号に基づき前記走査手段による測定光の走査と対応させて被検眼の眼底或いは前眼部の正面画像を時系列にて複数得る正面画像取得手段と、前記トリガ信号に基づき前記正面画像取得手段にて得られる前記正面画像から基準画像を設定し,該基準画像とその後に取得される正面画像とを画像処理により比較し、位置ずれ量を検出する位置ずれ検出手段と、該検出手段により検出された前記位置ずれ量に基づいて前記断面画像取得手段により取得される前記断面画像を補正してモニタに表示,或いは位置ずれ情報を前記断面画像取得手段により取得される前記断面画像とともにモニタに表示する表示制御手段と、を備えることを特徴とする。
(2) (1)の眼科撮影装置において、前記検出手段によって設定される前記基準画像は、前記トリガ信号に基づき前記正面画像取得手段にて得られる最初の正面画像であることを特徴とする。
(3) (1)の眼科撮影装置において、前記正面画像取得手段は被検眼を照明するための照明光学系と該照明光学系にて照明される被検眼からの反射光を受光して被検眼の正面画像を取得するため撮影光学系とを有し、前記測定光は前記走査手段よりも被検側に配置される光学部材により前記照明光学系から出射される照明光と同軸とされ、さらに前記光学部材は前記照明光学系を含まない前記撮影光学系中に配置されていることを特徴とする。
(4) (3)の眼科撮影装置において、前記断面画像取得手段により取得される前記断面画像は被検眼の眼底断面画像であり、前記正面画像取得手段により取得される前記正面画像は被検眼の眼底画像であることを特徴とする。
(1) irradiating a part of light with low coherent length toward the eye to be examined and using part of the light with low coherent length as reference light, and the reflected light of the measurement light irradiated on the eye to be examined and In an ophthalmologic photographing apparatus that obtains an eye image to be examined by receiving interference light obtained by combining the scanning light, scanning means for scanning the measurement light in a predetermined direction, and scanning of the measurement light by the scanning means Cross-sectional image acquisition means for obtaining a cross-sectional image in the depth direction of the eye to be examined by changing the optical path length, an imaging switch for outputting a trigger signal that triggers the operation of the scanning means and the cross-sectional image acquisition means, and the imaging switch Front image acquisition means for obtaining a plurality of front images of the fundus or anterior eye portion of the eye to be examined in time series corresponding to the scanning of the measurement light by the scanning means based on the trigger signal by the scanning means, and the trigger signal A misregistration detecting unit configured to detect a misregistration amount by setting a reference image from the front image obtained by the front image obtaining unit based on the image and comparing the reference image with a front image obtained thereafter by image processing; The cross-sectional image acquired by the cross-sectional image acquisition unit is corrected based on the positional deviation amount detected by the detection unit and displayed on a monitor, or the positional deviation information is acquired by the cross-sectional image acquisition unit. Display control means for displaying on a monitor together with the cross-sectional image.
(2) In the ophthalmologic photographing apparatus according to (1), the reference image set by the detection unit is a first front image obtained by the front image acquisition unit based on the trigger signal.
(3) In the ophthalmologic photographing apparatus according to (1), the front image acquisition means receives an illumination optical system for illuminating the eye to be examined and reflected light from the eye to be illuminated illuminated by the illumination optical system to receive the eye to be examined. An imaging optical system for acquiring a front image of the optical system, wherein the measurement light is coaxial with illumination light emitted from the illumination optical system by an optical member disposed on the test side with respect to the scanning unit, and The optical member is disposed in the photographing optical system not including the illumination optical system.
(4) In the ophthalmologic photographing apparatus according to (3), the cross-sectional image acquired by the cross-sectional image acquisition unit is a fundus cross-sectional image of the eye to be examined, and the front image acquired by the front image acquisition unit is of the eye to be examined. It is a fundus image.

本発明によれば、良好な奥行き方向の断面画像を取得する際の位置ずれ情報を精度良く検出することができるとともに、その情報を取得した情報を断面画像に反映させることができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to detect the positional offset information at the time of acquiring the cross-sectional image of a favorable depth direction, the information which acquired the information can be reflected on a cross-sectional image.

本発明の実施形態を図面に基づいて説明する。図1は、本実施形態の眼科撮影装置の光学系及び制御系を示す図である。なお、本実施形態においては、被検眼の奥行き方向をZ方向(光軸L1方向)、奥行き方向に垂直(被検者の顔面と同一平面)な平面上の水平方向成分をX方向、鉛直方向成分をY方向として説明する。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating an optical system and a control system of the ophthalmologic photographing apparatus according to the present embodiment. In this embodiment, the depth direction of the eye to be examined is the Z direction (optical axis L1 direction), the horizontal component on the plane perpendicular to the depth direction (the same plane as the face of the subject) is the X direction, and the vertical direction. The component is described as the Y direction.

図1において、その光学系は、被検眼(例えば、被検眼眼底)の断層像を非侵襲で得るための断層測定光学系(以下、OCT光学系とする)21と、XY方向における被検眼の位置ずれ量を検出するために被検眼(被検眼眼底や前眼部等)を正面から観察する観察光学系11に大別される。また、本実施形態において、観察光学系11は、被検眼眼底を正面からに観察可能な構成となっており、眼底を照明する観察用照明光学系11aと、照明光学系11aにより照明された眼底からの反射光を受光する観察用受光光学系11bにて構成される。   In FIG. 1, the optical system includes a tomographic measurement optical system (hereinafter referred to as an OCT optical system) 21 for non-invasively obtaining a tomographic image of the eye to be examined (for example, the fundus of the eye to be examined) and the eye to be examined in the XY directions. In order to detect the amount of displacement, the eye is roughly divided into an observation optical system 11 that observes the eye to be examined (the eye fundus, anterior eye portion, etc.) from the front. In the present embodiment, the observation optical system 11 is configured to be able to observe the fundus of the subject's eye from the front. The observation illumination optical system 11a illuminates the fundus and the fundus illuminated by the illumination optical system 11a. The observation light receiving optical system 11b receives reflected light from the light.

照明光学系11aは、観察光源1、近赤外光(例えば、波長850nm以上)を透過する赤外フィルタ2、コンデンサレンズ3、リング状の開口を有するリングスリット4、リレーレンズ5、ミラー6、中心部に黒点を有する黒点板7、リレーレンズ8、孔あきミラー9、対物レンズ10を有する。リングスリット4は被検眼Eの瞳孔と共役な位置に配置されており、瞳孔周辺部から眼底照明光を入射することにより被検眼眼底を照明する。   The illumination optical system 11a includes an observation light source 1, an infrared filter 2 that transmits near-infrared light (for example, a wavelength of 850 nm or more), a condenser lens 3, a ring slit 4 having a ring-shaped opening, a relay lens 5, a mirror 6, A black spot plate 7 having a black spot at the center, a relay lens 8, a perforated mirror 9, and an objective lens 10 are provided. The ring slit 4 is disposed at a position conjugate with the pupil of the eye E to be examined, and illuminates the fundus of the eye to be examined by entering fundus illumination light from the periphery of the pupil.

また、受光光学系11bは、対物レンズ10、孔あきミラー9の開口近傍に位置する撮影絞り12、光軸方向に移動可能なフォーカシングレンズ13、結像レンズ14、2次元受光素子15を備える。撮影絞り12はレンズ10に関して瞳孔と略共役な位置に配置されている。なお、撮影絞り12とフォーカシングレンズ13の間には、観察光学系11の光軸L1とOCT光学系21の光軸L2とを同軸にするダイクロイックミラー40が配置されている。このダイクロイックミラー40は、OCT光学系21に用いる断層取得用の測定光を反射し、照明光学系11aの観察光源1により照明された眼底反射光を透過する特性を有する。これにより、OCT光学系21及び観察光学系11の両光学系の受光系に無駄なノイズが含まれないため、S/N比が劣化しない。反射と透過の関係は逆でもよい(OCT測定光を透過、観察光を反射)。なお、ダイクロイックミラー40は、孔あきミラー9よりも受光素子15側に配置することが望ましい。これは、照明光源1からの被検眼Eに向かう照明光がダイクロイックミラー40で反射してしまい、受光素子15に不要なノイズ光が入射するのを防止するためである。また、本実施形態においては、ダイクロイックミラー40を使用したが、これに限るものではなく、OCT用測定光と被検眼を観察する観察用光束を分割すればよく、例えばハーフミラー等であってもよい。   The light receiving optical system 11 b includes an objective lens 10, a photographing aperture 12 located in the vicinity of the aperture of the perforated mirror 9, a focusing lens 13 movable in the optical axis direction, an imaging lens 14, and a two-dimensional light receiving element 15. The photographing aperture 12 is disposed at a position substantially conjugate with the pupil with respect to the lens 10. A dichroic mirror 40 is arranged between the photographing aperture 12 and the focusing lens 13 so that the optical axis L1 of the observation optical system 11 and the optical axis L2 of the OCT optical system 21 are coaxial. The dichroic mirror 40 has a characteristic of reflecting the measurement light for tomographic acquisition used in the OCT optical system 21 and transmitting the fundus reflection light illuminated by the observation light source 1 of the illumination optical system 11a. As a result, useless noise is not included in the light receiving systems of both the OCT optical system 21 and the observation optical system 11, so that the S / N ratio does not deteriorate. The relationship between reflection and transmission may be reversed (transmit OCT measurement light and reflect observation light). The dichroic mirror 40 is preferably arranged on the light receiving element 15 side with respect to the perforated mirror 9. This is to prevent the illumination light from the illumination light source 1 toward the eye E to be reflected from the dichroic mirror 40 and unnecessary noise light from entering the light receiving element 15. In this embodiment, the dichroic mirror 40 is used. However, the present invention is not limited to this. The OCT measurement light and the observation light beam for observing the eye to be inspected may be divided. For example, a half mirror may be used. Good.

光源1を発した光束は、赤外フィルタ2により赤外光束とされ、レンズ3、リングスリット4を照明する。リングスリット4を透過した光は、レンズ5、ミラー6、黒点板7、レンズ8を経て孔あきミラー9に達する。そして、孔あきミラー9で反射された光は、対物レンズ10により被検眼Eの瞳孔付近で一旦収束した後、拡散して被検眼眼底を照明する。   The light beam emitted from the light source 1 is converted into an infrared light beam by the infrared filter 2 and illuminates the lens 3 and the ring slit 4. The light transmitted through the ring slit 4 reaches the perforated mirror 9 through the lens 5, the mirror 6, the black spot plate 7, and the lens 8. The light reflected by the perforated mirror 9 is once converged in the vicinity of the pupil of the eye E by the objective lens 10, and then diffused to illuminate the fundus of the eye to be examined.

観察照明光で照明された眼底からの反射光は、対物レンズ10、孔あきミラー9の開口部、撮影絞り12を通過して、ダイクロイックミラー40を透過した後、レンズ13、結像レンズ14を介して2次元受光素子15に結像する。   The reflected light from the fundus illuminated by the observation illumination light passes through the objective lens 10, the aperture of the perforated mirror 9, and the imaging aperture 12, passes through the dichroic mirror 40, and then passes through the lens 13 and the imaging lens 14. Then, an image is formed on the two-dimensional light receiving element 15.

制御部70は、二次元受光素子15から出力される眼底像から、基準となる眼底像を予めメモリ72に記憶しておき、基準眼底像とその後に取得される眼底像を画像処理により比較し、その位置変化に基づいてXY方向における眼底像の位置ずれを検出する。このようにすれば、制御部70は、測定中に眼球の固視微動等により被検眼が動いた場合、その方向とずれ量が算出できるので、XY方向における測定部位のずれを検出することができる。なお、二次元受光素子15によって検出された画像信号は、モニタ75にてリアルタイムで観察可能となっている。また、モニタ75には、取得された断層像や各種設定画面が表示される。なお、モニタ75はパーソナルコンピュータ等に備わる外部モニタを用いてもよい。   The control unit 70 stores a reference fundus image in advance in the memory 72 from the fundus image output from the two-dimensional light receiving element 15, and compares the reference fundus image and the fundus image acquired thereafter by image processing. Based on the change in position, the positional deviation of the fundus image in the XY directions is detected. In this way, the control unit 70 can calculate the direction and the amount of deviation when the eye to be examined moves due to eye movements or the like during measurement, so that the deviation of the measurement site in the XY directions can be detected. it can. The image signal detected by the two-dimensional light receiving element 15 can be observed on the monitor 75 in real time. The monitor 75 displays the acquired tomogram and various setting screens. The monitor 75 may be an external monitor provided in a personal computer or the like.

また、制御部70には、検者によって操作入力されるスイッチ部74が接続されており、断層像の取得を開始するため測定開始スイッチ74aや、OCT画像の測定位置を設定する測定位置設定スイッチ74b、等を有する。なお、スイッチ部74は、パーソナルコンピュータ等に備わるキーボードやマウス等を用いてもよい。   The control unit 70 is connected to a switch unit 74 that is operated and input by an examiner. The measurement start switch 74a for starting acquisition of a tomographic image and a measurement position setting switch for setting a measurement position of an OCT image. 74b, etc. Note that the switch unit 74 may use a keyboard, a mouse, or the like provided in a personal computer or the like.

次に、ダイクロイックミラー40の反射側に設けられたOCT光学系21の構成について説明する。27はOCT光学系21の測定光及び参照光として用いられる低コヒーレントな光を発するOCT光源であり、例えばSLD光源等が用いられる。OCT光源27には、例えば、800nm〜850nmまでのいずれかを中心波長に持つ光源が用いられる。26は光分割部材と光結合部材としての役割を兼用するファイバーカップラーである。OCT光源27から発せられた光は、導光路としての光ファイバ38aを介して、ファイバーカップラー26によって参照光と測定光とに分割される。したがって、測定光は光ファイバ38bを介して被検眼Eへと向かい、参照光は光ファイバ38cを介して参照ミラー31へと向かう。   Next, the configuration of the OCT optical system 21 provided on the reflection side of the dichroic mirror 40 will be described. Reference numeral 27 denotes an OCT light source that emits low-coherent light used as measurement light and reference light of the OCT optical system 21. For example, an SLD light source or the like is used. For the OCT light source 27, for example, a light source having a central wavelength of any one of 800 nm to 850 nm is used. Reference numeral 26 denotes a fiber coupler that doubles as a light splitting member and a light coupling member. The light emitted from the OCT light source 27 is split into reference light and measurement light by the fiber coupler 26 via an optical fiber 38a as a light guide. Therefore, the measurement light goes to the eye E through the optical fiber 38b, and the reference light goes to the reference mirror 31 through the optical fiber 38c.

測定光を被検眼Eへ向けて出射する側には、測定光を出射する光ファイバ38bの端部39b、被検眼の屈折誤差に合わせて光軸方向に移動可能なリレーレンズ24、ガルバノ駆動機構51の駆動により眼底上でXY方向に測定光を高速で走査させることが可能なガルバノミラー23と、リレーレンズ22が配置されている。また、ダイクロイックミラー40及び対物レンズ10は、OCT光学系21からのOCT測定光を被検眼眼底へと導光する導光光学系しての役割を有する。なお、光ファイバ38bの端部39bは、被検眼眼底と共役となるように配置される。また、ガルバノミラー19の反射面は、撮影絞り11および被検眼瞳孔と共役な位置に配置されている。   On the side that emits the measurement light toward the eye E, an end 39b of the optical fiber 38b that emits the measurement light, the relay lens 24 that can move in the optical axis direction according to the refraction error of the eye to be examined, and a galvano drive mechanism A galvanometer mirror 23 and a relay lens 22 that can scan the measurement light at high speed on the fundus in the XY directions by driving 51 are disposed. Further, the dichroic mirror 40 and the objective lens 10 serve as a light guide optical system that guides the OCT measurement light from the OCT optical system 21 to the fundus of the eye to be examined. Note that the end 39b of the optical fiber 38b is disposed so as to be conjugate with the fundus of the eye to be examined. The reflection surface of the galvanometer mirror 19 is arranged at a position conjugate with the imaging aperture 11 and the eye pupil to be examined.

光ファイバ38bの端部39bから出射した測定光は、リレーレンズ24を介して、ガルバノミラー23に達し、ガルバノミラー23の駆動により反射方向が変えられる。そして、ガルバノミラー23で反射された測定光は、リレーレンズ22を介して、ダイクロイックミラー40で反射された後、撮影絞り12、孔あきミラー9、対物レンズ10を介して、被検眼眼底に集光される。   The measurement light emitted from the end 39 b of the optical fiber 38 b reaches the galvano mirror 23 via the relay lens 24, and the reflection direction is changed by driving the galvano mirror 23. Then, the measurement light reflected by the galvanometer mirror 23 is reflected by the dichroic mirror 40 via the relay lens 22, and then collected on the fundus of the eye to be examined via the photographing aperture 12, the perforated mirror 9, and the objective lens 10. Lighted.

そして、眼底で反射した測定光は、対物レンズ10〜撮影絞り12を介して、ダイクロイックミラー40で反射し、OCT光学系21に向かい、リレーレンズ22、ガルバノミラー23、リレーレンズ24を介して、光ファイバ38bの端部39bに入射する。端部39bに入射した測定光は、光ファイバ38b、ファイバーカップラー26、光ファイバ38dを介して、ファイバーカップラー34に達する。   Then, the measurement light reflected from the fundus is reflected by the dichroic mirror 40 via the objective lens 10 to the photographing aperture 12, and directed to the OCT optical system 21, via the relay lens 22, the galvano mirror 23, and the relay lens 24. The light enters the end 39b of the optical fiber 38b. The measurement light incident on the end 39b reaches the fiber coupler 34 via the optical fiber 38b, the fiber coupler 26, and the optical fiber 38d.

一方、参照光を参照ミラー31に向けて出射する側には、参照光を出射する光ファイバ38cの端部39c、コリメータレンズ29、参照光の進行方向を折り返す参照ミラー31、集光レンズ32、参照光が入射する光ファイバ38eの端部39eが配置されている。参照ミラー31は、参照光の光路長を変化させるべく、参照ミラー駆動機構50により光軸方向に移動可能な構成となっている。なお、参照ミラー31は、ミラー31aとミラー31bにより構成される。   On the other hand, on the side where the reference light is emitted toward the reference mirror 31, the end 39c of the optical fiber 38c that emits the reference light, the collimator lens 29, the reference mirror 31 that turns back the traveling direction of the reference light, the condensing lens 32, An end 39e of the optical fiber 38e on which the reference light enters is disposed. The reference mirror 31 is configured to be movable in the optical axis direction by the reference mirror drive mechanism 50 in order to change the optical path length of the reference light. The reference mirror 31 includes a mirror 31a and a mirror 31b.

光ファイバー38cの端部39cから出射した参照光は、コリメータレンズ29で平行光束とされ、参照ミラー31を構成するミラー31aとミラー31bで反射された後、集光レンズ32により集光されて光ファイバ38eの端部39eに入射する。端部39eに入射した参照光は、光ファイバ38eを介して、ファイバーカップラー34に達する。   The reference light emitted from the end 39c of the optical fiber 38c is converted into a parallel light beam by the collimator lens 29, reflected by the mirror 31a and the mirror 31b constituting the reference mirror 31, and then condensed by the condenser lens 32 to be optical fiber. The light enters the end portion 39e of 38e. The reference light incident on the end 39e reaches the fiber coupler 34 via the optical fiber 38e.

ここで、測定光は眼底の各層で反射し、それぞれ時間的な遅れと異なる強度を持つ反射測定光となって、ファイバカップラー34にて参照光と合流するので、この2つの光の干渉現象を利用して反射測定光の強度を受光素子35により検出し、参照ミラー31を光軸方向に移動(走査)させることにより、光軸方向の反射強度分布を得ることができる。さらに、ガルバノミラー23により測定光を眼底上でX方向もしくはY方向に走査することにより、被検眼眼底のXZ面もしくはYZ面における断層画像を取得できる(なお、本実施形態においては、このように測定光を眼底に対して一次元走査し、参照ミラーの光路長を変化させることにより、網膜断層画像を得る方式をBスキャンとする)。さらに、参照ミラー31を固定したまま、測定光をXY方向に二次元的に走査することにより、2次元的に眼底画像(XY面)を得ることも可能である(なお、本実施形態においては、測定光を眼底に対して2次元的に走査させ、参照ミラーの光路とコヒーレンス長内で一致した場合に得られる干渉信号により二次元的にOCT画像を得る方式をCスキャンとする)。さらに、これらを利用して、参照ミラー31を光軸方向に移動させつつ、測定光を眼底に対して二次元的に走査すれば、眼底の3次元画像を構築することも可能である。なお、このようにして取得された断層像は、モニタ75に表示される。   Here, since the measurement light is reflected by each layer of the fundus oculi and becomes reflected measurement light having a different time delay and different intensity, and merges with the reference light by the fiber coupler 34, the interference phenomenon of these two lights is Utilizing this, the intensity of the reflected measurement light is detected by the light receiving element 35, and the reference mirror 31 is moved (scanned) in the optical axis direction, whereby a reflection intensity distribution in the optical axis direction can be obtained. Furthermore, a tomographic image on the XZ plane or YZ plane of the fundus of the eye to be examined can be acquired by scanning the measurement light in the X direction or Y direction on the fundus with the galvanometer mirror 23 (in this embodiment, in this way, A method of obtaining a retinal tomographic image by scanning the measurement light with respect to the fundus one-dimensionally and changing the optical path length of the reference mirror is referred to as B-scan). Furthermore, it is also possible to obtain a fundus image (XY plane) two-dimensionally by scanning the measurement light two-dimensionally in the XY direction with the reference mirror 31 fixed (in the present embodiment, The method of scanning the fundus two-dimensionally with respect to the fundus and obtaining an OCT image two-dimensionally with an interference signal obtained when the optical path of the reference mirror coincides with the coherence length is referred to as C-scan). Furthermore, if these are used to scan the fundus in two dimensions while moving the reference mirror 31 in the optical axis direction, it is possible to construct a three-dimensional image of the fundus. The tomographic image acquired in this way is displayed on the monitor 75.

以上のような構成を備える装置において、その動作を説明する。まず、検者は被検眼の眼底像がモニタ75に表示されるよう図示無きジョイスティックを操作するとともに、図示無き内部固視標を被検者に固視させる。このようにして検者の所望する測定部位の眼底像がモニタ75に表示された後、フォーカス合わせを行ったら断層像の取得(撮影)のためのステップに移行する。本実施形態においては、Bスキャン方式によりXZ面の断層像を取得する場合について説明する。   The operation of the apparatus having the above configuration will be described. First, the examiner operates a joystick (not shown) so that the fundus image of the subject's eye is displayed on the monitor 75, and causes the subject to fix an internal fixation target (not shown). After the fundus image of the measurement site desired by the examiner is displayed on the monitor 75 in this way, when focusing is performed, the process proceeds to a step for acquiring (imaging) a tomographic image. In the present embodiment, a case where a tomographic image of the XZ plane is acquired by the B scan method will be described.

図2はモニタ75に表示された眼底像の例である。まず、検者はリアルタイムで観察される眼底画像から検者の取得したい断層像の位置を選択する。検者は、測定位置設定スイッチ74bを操作して、X方向の測定位置を表すラインL1を眼底観察像に対して移動さ
せていき、X方向における測定位置を設定する。なお、ラインL1がX方向となるように設定すれば、XZ面の断層像の取得が行われ、ラインL1がY方向となるように設定すれば、YZ面の断層像が行われるようになっている。
FIG. 2 is an example of a fundus image displayed on the monitor 75. First, the examiner selects the position of the tomographic image that the examiner wants to acquire from the fundus image observed in real time. The examiner operates the measurement position setting switch 74b to move the line L1 representing the measurement position in the X direction with respect to the fundus observation image, and sets the measurement position in the X direction. If the line L1 is set to be in the X direction, a tomographic image of the XZ plane is acquired, and if the line L1 is set to be in the Y direction, a tomographic image of the YZ plane is performed. ing.

また、検者は、X方向(Y方向)における測定位置の設定とともに、Z方向における測定位置の設定を行う。Z方向においては、Z方向の測定光の走査幅(例えば、3mm)と、その走査ステップ数(Z方向の測定枚数)が設定する。例えば、走査幅が3mmであって、走査ステップ数が10μmのように設定されると、深さ3mmで10μmステップの断層像が得られる。なお、走査幅が大きく、走査ステップ数が細かいほど断層像の取得に時間を要する。   The examiner sets the measurement position in the Z direction as well as the measurement position in the X direction (Y direction). In the Z direction, the scanning width of the measuring light in the Z direction (for example, 3 mm) and the number of scanning steps (the number of measured sheets in the Z direction) are set. For example, if the scanning width is 3 mm and the number of scanning steps is set to 10 μm, a tomographic image having a depth of 3 mm and a 10 μm step is obtained. It should be noted that the longer the scan width and the smaller the number of scan steps, the longer it takes to acquire a tomographic image.

このようにして測定位置の設定が完了し、検者により測定開始スイッチ74aの入力があると、制御部70は、BスキャンによるXZ面の断層像の取得動作を開始する。ここで、
制御部70は、設定した測定位置に測定光が照射されるようにガルバノミラー23の駆動を開始するとともに、XY方向における眼底像の位置ずれの検出を開始する。この場合、例えば、測定開始スイッチ74aが入力された時の眼底像を基準眼底像としてメモリ72に記憶しておき、これに基づいて画像処理により眼底像の位置ずれを求める方法が考えられる。
In this way, when the setting of the measurement position is completed and the examiner inputs the measurement start switch 74a, the control unit 70 starts the XZ plane tomographic image acquisition operation by the B scan. here,
The control unit 70 starts driving the galvanometer mirror 23 so that the set measurement position is irradiated with the measurement light, and also starts detecting the positional deviation of the fundus image in the XY directions. In this case, for example, a method may be considered in which the fundus image when the measurement start switch 74a is input is stored in the memory 72 as a reference fundus image, and the positional displacement of the fundus image is obtained by image processing based on this.

制御部70は、ガルバノ駆動機構51を駆動させてガルバノミラー23の反射面を制御して測定光の照射位置をX方向に走査させるとともに、参照ミラー駆動機構50を駆動させ所定の走査ステップ数での画像が得られるよう参照ミラー31を光軸方向に移動させていく。また、制御部70は、XY方向における眼底像の位置ずれを時系列的に検出していき、検出される位置ずれ量と測定光の走査とを対応させてメモリ72に記憶していく。   The control unit 70 drives the galvano drive mechanism 51 to control the reflection surface of the galvano mirror 23 to scan the measurement light irradiation position in the X direction and to drive the reference mirror drive mechanism 50 with a predetermined number of scanning steps. The reference mirror 31 is moved in the direction of the optical axis so that the above image can be obtained. In addition, the control unit 70 detects the positional deviation of the fundus image in the XY directions in time series, and stores the detected positional deviation amount and the scanning of the measurement light in the memory 72 in association with each other.

このようにして、受光素子35では、参照ミラー31の位置に対応した光路長における眼底からの反射測定光が検出され、制御部70は、その光路長における測定光のX方向における反射強度分布を取得する。さらに、参照ミラー31が光軸方向に移動することにより、制御部70は、XZ方向の反射強度分布を取得する。このようにして、参照光の光路長が予め設定したZ方向の測定光の走査幅に達したら測定を終了し、測定結果がモニタ75に表示される。   In this manner, the light receiving element 35 detects the reflected measurement light from the fundus at the optical path length corresponding to the position of the reference mirror 31, and the control unit 70 determines the reflection intensity distribution in the X direction of the measurement light at the optical path length. get. Furthermore, when the reference mirror 31 moves in the optical axis direction, the control unit 70 acquires the reflection intensity distribution in the XZ direction. In this way, when the optical path length of the reference light reaches the preset scanning width of the measuring light in the Z direction, the measurement is terminated and the measurement result is displayed on the monitor 75.

ここで、制御部70は、得られたXZ方向の反射強度分布に基づいて周知の画像処理によりXZ方向の断層像を構築していくが、本実施形態では、測定光の走査に対応した形でメモリ72に記憶された眼底像のX方向の位置ずれ量に基づいてX方向における測定部位のずれ量を求め、断層像を画像処理にて補正する。また、眼底像のY方向の位置ずれ量に基づいてY方向の測定部位のずれ量を求め、予め選択した測定部位で測定が適正に行われたか否かを判定する。   Here, the control unit 70 constructs a tomographic image in the XZ direction by well-known image processing based on the obtained reflection intensity distribution in the XZ direction. In this embodiment, the control unit 70 has a shape corresponding to the scanning of the measurement light. Thus, based on the positional deviation amount of the fundus image stored in the memory 72 in the X direction, the deviation amount of the measurement site in the X direction is obtained, and the tomographic image is corrected by image processing. Further, the amount of deviation of the measurement site in the Y direction is obtained based on the amount of positional deviation in the Y direction of the fundus image, and it is determined whether or not the measurement was properly performed at the measurement site selected in advance.

まず、X方向における断層像の補正に関して、図3を用いて説明する。図3(a)は、XZ方向に断層像を取得した時のX方向における測定部位のずれを表す模式図である。横軸は被検眼の深さであるZ方向、縦軸はX方向の測定部位のずれ量ΔdXを表す。図3(b)は、図3(a)に示すような測定部位のずれがあった際に構築された断層像を表す模式図である。このように断層像の取得中に、固視微動等により被検眼がX方向に動くと、予め設定した測定位置に対して断層像がX方向にずれてしまう(例えば、図中のD1部分等)。このような断層像は、良好な断層像とはいえない。また、このような断層像の表示画像に基づいて被検眼の診断を行うことは、検者にとって適切ではない。   First, correction of a tomographic image in the X direction will be described with reference to FIG. FIG. 3A is a schematic diagram showing the shift of the measurement site in the X direction when a tomographic image is acquired in the XZ direction. The horizontal axis represents the Z direction, which is the depth of the eye to be examined, and the vertical axis represents the deviation ΔdX of the measurement site in the X direction. FIG. 3B is a schematic diagram showing a tomographic image constructed when there is a shift in the measurement site as shown in FIG. As described above, if the eye to be examined moves in the X direction due to fixation movement or the like during acquisition of the tomographic image, the tomographic image is displaced in the X direction with respect to the preset measurement position (for example, D1 portion in the figure). ). Such a tomogram is not a good tomogram. Further, it is not appropriate for the examiner to diagnose the eye to be examined based on such a tomographic display image.

そこで、本実施形態では、制御部70が、Z方向の各走査ステップ毎に断層像を構築していく際に、メモリ72に記憶された各走査ステップごとのX方向の位置ずれ量に基づいて、各断層像が基準位置に位置されるように補正処理をかけていく。例えば、D1部分の断層像にΔdX1のようなずれがあった際に、制御部70は、D1部分における断層像の位置をX方向にΔdX1分ずらすようにして断層像を補正する。このような補正処理を断層像全体で行うことにより、XZ方向の断層像は、図3(c)のようなX方向における断層像のずれが解消された精度のよい断層像を得ることができる。   Therefore, in this embodiment, when the control unit 70 constructs a tomographic image for each scanning step in the Z direction, it is based on the amount of positional deviation in the X direction for each scanning step stored in the memory 72. Then, correction processing is performed so that each tomographic image is positioned at the reference position. For example, when there is a shift such as ΔdX1 in the tomographic image of the D1 portion, the control unit 70 corrects the tomographic image by shifting the position of the tomographic image in the D1 portion by ΔdX1 in the X direction. By performing such correction processing on the entire tomographic image, the tomographic image in the XZ direction can obtain a tomographic image with high accuracy in which the displacement of the tomographic image in the X direction as shown in FIG. .

次に、Y方向に関して、予め選択した測定部位で測定が適正に行われたか否かを判定する。図4(a)は、XZ方向に断層像を取得した時のY方向における測定部位のずれを表す模式図である。横軸はZ方向、縦軸はY方向の測定部位のずれ量Δdyを表す。また、図4(b)は、図4(a)のような測定部位のずれがあった際のY方向における眼底上の測定部位のずれを表す模式図である。このように断層像の取得中に、固視微動等により被検眼がY方向に動くと、測定光の照射位置がY方向にずれてしまうため、予め設定した測定部位に対して異なる領域を測定してしまう。このようにY方向に測定部位のずれがあった状態の元で、断層像を構築しても、測定部位が異なるため断層像として正確とはいえない。   Next, with respect to the Y direction, it is determined whether or not the measurement has been properly performed at the measurement site selected in advance. FIG. 4A is a schematic diagram illustrating the shift of the measurement site in the Y direction when a tomographic image is acquired in the XZ direction. The horizontal axis represents the Z direction, and the vertical axis represents the amount of deviation Δdy of the measurement site in the Y direction. FIG. 4B is a schematic diagram showing the shift of the measurement site on the fundus in the Y direction when there is a shift of the measurement site as shown in FIG. As described above, if the eye to be examined moves in the Y direction due to fixation movement or the like during acquisition of the tomographic image, the measurement light irradiation position is shifted in the Y direction. Resulting in. Thus, even if a tomographic image is constructed in a state where there is a shift in the measurement region in the Y direction, it cannot be said that the tomographic image is accurate because the measurement region is different.

そこで、本実施形態では、制御部70が断層像を構築していく際に、メモリ72に記憶された各走査ステップごとのY方向の測定部位のずれ量に基づいて、各走査ステップごとにエラー情報を添付しておき、モニタ75に断層像を表示する際にエラー情報を報知する。この場合、制御部70は、各走査ステップ毎に、測定部位のずれ量が予め設定した所定の許容範囲を満たしているかを判定し、エラーと判定された場合には、エラー情報を添付する。そして、断層像を表示する際には、測定部位のずれがあった断層像の領域をエラーとして指定するように表示する(図4(c)参照)ようにしてもよいし、断層像全体がエラーとして表示されるような構成としてもよい。以上のように断層像に対してエラー表示を行うことにより、検者は、断層像が適正な測定部位で取得することができたものかを知ることができ、診断などの時の有用である。   Therefore, in the present embodiment, when the control unit 70 constructs a tomographic image, an error is detected for each scanning step based on the amount of deviation of the measurement region in the Y direction for each scanning step stored in the memory 72. Information is attached, and error information is notified when a tomogram is displayed on the monitor 75. In this case, the control unit 70 determines, for each scanning step, whether or not the deviation amount of the measurement site satisfies a predetermined allowable range set in advance, and attaches error information when it is determined that an error has occurred. Then, when displaying the tomographic image, it may be displayed so as to designate the area of the tomographic image in which the measurement site has shifted as an error (see FIG. 4C), or the entire tomographic image may be displayed. It is good also as a structure displayed as an error. By performing error display on the tomographic image as described above, the examiner can know whether the tomographic image has been acquired at an appropriate measurement site, which is useful for diagnosis and the like. .

なお、断層像のモニタ75への表示において、XZ方向の全測定領域の反射強度分布が取得されてから断層像を構築するような構成としても良いし、測定中、受光素子35で得られた受光信号に対して随時画像処理を進めていくことにより、測定が終了した範囲におけるエラー情報を含む断層像をモニタ75に随時表示していくような構成としてもよい。なお、得られた断層像を随時モニタ75に表示するような構成とすれば、検者は、上記のような測定部位のエラー情報を測定中に知ることができるので、測定のやりなおし等に素早く移行することができる。   In the display of the tomographic image on the monitor 75, a configuration may be adopted in which the tomographic image is constructed after the reflection intensity distribution of all the measurement areas in the XZ direction is acquired. A configuration may be adopted in which tomographic images including error information in a range where the measurement is completed are displayed on the monitor 75 as needed by proceeding with image processing on the received light signal as needed. If the configuration is such that the obtained tomographic image is displayed on the monitor 75 as needed, the examiner can know the error information of the measurement site as described above during measurement. Can be migrated.

以上まとめると、BスキャンによりXZ面の断層像もしくはYZ面の断層像を取得する
場合において、被検眼の位置ずれ量に基づいて、測定光の走査方向の測定部位のずれに関しては断層像の補正処理を行い、測定光の非走査方向においては適正な測定部位で断層像が得られたか否かを検者に対して報知することにより、良好な断層像が得られると共に、診断時に有用な情報を得ることが可能となる。
In summary, when a tomographic image of the XZ plane or a tomographic image of the YZ plane is acquired by B-scan, the tomographic image correction is performed with respect to the displacement of the measurement site in the scanning direction of the measurement light based on the positional deviation amount of the eye to be examined. By processing and informing the examiner whether or not a tomographic image has been obtained at an appropriate measurement site in the non-scanning direction of the measurement light, a good tomographic image can be obtained and useful information at the time of diagnosis Can be obtained.

なお、本実施形態においては、被検眼の眼底の断層像を取得するような構成としたが、これに限るものではなく、要するに被検眼のいずれか部位の断層像を得る眼科撮影装置に適用可能である(例えば、前眼部領域の断層像を得るもの等)。   In the present embodiment, the tomographic image of the fundus of the eye to be examined is obtained. However, the present invention is not limited to this, and can be applied to an ophthalmologic photographing apparatus that obtains a tomographic image of any part of the eye to be examined. (For example, to obtain a tomographic image of the anterior segment).

また、本実施形態においては、被検眼の眼底の正面像を検出することにより被検眼の位置ずれを検出する構成としたが、被検眼の位置ずれ量が得られればよく、例えば、被検眼の前眼部の正面像に基づいて被検眼の位置ずれを検出するような構成としてもよい。   In the present embodiment, the positional deviation of the eye to be examined is detected by detecting the front image of the fundus of the eye to be examined. However, the amount of positional deviation of the eye to be examined may be obtained. It is good also as a structure which detects the position shift of an eye to be examined based on the front image of an anterior eye part.

また、本実施形態においては、眼底像全体の位置変化から被検眼の位置ずれ量を検出する構成としたが、眼底像における血管形状や視神経乳頭等のいずれかを位置ずれ検出用の特徴点として、その特徴点の位置変化から位置ずれ量を求めるような構成としてもい。   In the present embodiment, the positional deviation amount of the eye to be examined is detected from the positional change of the entire fundus image. However, any one of the blood vessel shape and the optic disc in the fundus image is used as a feature point for detecting the positional deviation. A configuration may be adopted in which the amount of displacement is obtained from the change in position of the feature point.

また、OCT光学系21の内部にスキャニングレーザオフサルモスコープ(SLO)光学系を複合させた装置においても、適用可能である(図5参照)。本実施形態のOCT光学系の場合、例えば、SLO光学系の光源としてOCT光源27を兼用するとともに、リレーレンズ24と光ファイバ38bの端部39bの間にハーフミラー60を設け、ハーフミラー60の反射方向に共焦点光学系を構成するため集光レンズ61と、眼底に共役な共焦点開口62、SLO用受光素子63を設けるような構成が考えられる。また、ガルバノミラー23は、SLO光学系に用いる光を眼底上でXY方向に走査するために、OCT光学系と兼用される。このような装置の場合、Cスキャン方式により眼底の2次元眼底画像を得るような場合には、SLO光学系による2次元共焦点像に基づく測定部位のずれ(XY方向)を検知することができるが、Bスキャン方式により被検眼の奥行き方向の横断像(XZ面、YZ面)を求める場合、SLO光学系も1軸方向(X方向もしくはY方向)でしか検出しないため、眼底のどの位置をスキャンしているかリアルタイムで観察することができず、固視微動による測定部位のずれを検出することができない。すなわち、ガルバノミラー23の動作にSLO光学系の測定範囲が制限される。そこで、本実施形態のような構成とすれば、BスキャンによりXZ面もしくはYZ面の断層像を求める場合であっても、ガルバノミラー23の影響を受けること無く、被検眼の測定部位のずれが観察光学系11により検出された正面像から取得可能であるため、上記と同様、断層像の補正とエラー情報の報知を行うことができる。   Further, the present invention can be applied to an apparatus in which a scanning laser ophthalmoscope (SLO) optical system is combined in the OCT optical system 21 (see FIG. 5). In the case of the OCT optical system of the present embodiment, for example, the OCT light source 27 is also used as the light source of the SLO optical system, and a half mirror 60 is provided between the relay lens 24 and the end 39b of the optical fiber 38b. In order to construct a confocal optical system in the reflection direction, a condensing lens 61, a confocal aperture 62 conjugate to the fundus, and a light receiving element 63 for SLO can be considered. The galvanometer mirror 23 is also used as an OCT optical system in order to scan light used for the SLO optical system in the XY directions on the fundus. In the case of such an apparatus, when a two-dimensional fundus image of the fundus is obtained by the C-scan method, it is possible to detect the shift (XY direction) of the measurement site based on the two-dimensional confocal image by the SLO optical system. However, when obtaining a cross-sectional image (XZ plane, YZ plane) in the depth direction of the eye to be examined by the B-scan method, the SLO optical system detects only in one axis direction (X direction or Y direction). It is impossible to observe in real time whether scanning is performed, and it is impossible to detect a shift of the measurement site due to microscopic fixation. That is, the measurement range of the SLO optical system is limited by the operation of the galvanometer mirror 23. Therefore, with the configuration as in the present embodiment, even when a tomographic image of the XZ plane or the YZ plane is obtained by B-scan, the measurement site of the eye to be inspected is not affected by the galvanometer mirror 23. Since it can be acquired from the front image detected by the observation optical system 11, the tomographic image correction and the error information notification can be performed in the same manner as described above.

本実施形態の眼科撮影装置の光学系及び制御系を示す図である。It is a figure which shows the optical system and control system of the ophthalmologic imaging device of this embodiment. モニタに表示された眼底像の例である。It is an example of the fundus oculi image displayed on the monitor. X方向における断層像の補正について説明する図である。It is a figure explaining correction | amendment of the tomogram in a X direction. Y方向において、予め選択した測定部位で測定が適正に行われたか否かの判定に関する説明図である。It is explanatory drawing regarding determination of whether the measurement was performed appropriately in the Y direction in the measurement site selected beforehand. OCT光学系の内部にスキャニングレーザオフサルモスコープ(SLO)光学系を複合させた装置の構成について説明する図である。It is a figure explaining the structure of the apparatus which combined the scanning laser ophthalmoscope (SLO) optical system inside the OCT optical system.

符号の説明Explanation of symbols

11 観察光学系
21 断層測定光学系(OCT光学系)
23 ガルバノミラー
31 参照ミラー
35 受光素子
40 ダイクロイックミラー
70 制御部
75 モニタ

11 Observation optical system 21 Tomographic measurement optical system (OCT optical system)
23 Galvano mirror 31 Reference mirror 35 Light receiving element 40 Dichroic mirror 70 Control unit 75 Monitor

Claims (4)

低コヒーレント長の光の一部を被検眼に向けて照射するとともに該低コヒーレント長の光の一部を参照光とし,該参照光と被検眼に照射した前記測定光の反射光との合成により得られる干渉光を受光することにより被検眼画像を得る眼科撮影装置において、前記測定光を所定方向に走査する走査手段と、該走査手段による前記測定光の走査中に前記参照光の光路長を変化させることにより被検眼の深さ方向の断面画像を得る断面画像取得手段と、前記走査手段及び断面画像取得手段の動作のきっかけとなるトリガ信号を出力する撮影スイッチと、該撮影スイッチによるトリガ信号に基づき前記走査手段による測定光の走査と対応させて被検眼の眼底或いは前眼部の正面画像を時系列にて複数得る正面画像取得手段と、前記トリガ信号に基づき前記正面画像取得手段にて得られる前記正面画像から基準画像を設定し,該基準画像とその後に取得される正面画像とを画像処理により比較し、位置ずれ量を検出する位置ずれ検出手段と、該検出手段により検出された前記位置ずれ量に基づいて前記断面画像取得手段により取得される前記断面画像を補正してモニタに表示,或いは位置ずれ情報を前記断面画像取得手段により取得される前記断面画像とともにモニタに表示する表示制御手段と、を備えることを特徴とする眼科撮影装置。 By irradiating a part of the light having a low coherent length toward the eye to be examined and using a part of the light having the low coherent length as a reference light, and by combining the reference light and the reflected light of the measurement light emitted to the eye to be examined In an ophthalmologic photographing apparatus that obtains an eye image to be examined by receiving the obtained interference light, a scanning unit that scans the measurement light in a predetermined direction, and an optical path length of the reference light during scanning of the measurement light by the scanning unit Cross-sectional image acquisition means for obtaining a cross-sectional image in the depth direction of the eye to be examined by changing, an imaging switch for outputting a trigger signal that triggers the operation of the scanning means and the cross-sectional image acquisition means, and a trigger signal by the imaging switch Based on the trigger signal, front image acquisition means for obtaining a plurality of front images of the fundus or anterior eye portion of the eye to be examined in time series corresponding to the scanning of the measurement light by the scanning means A misregistration detecting means for setting a reference image from the front image obtained by the front image obtaining means, comparing the reference image with a front image obtained thereafter by image processing, and detecting a misregistration amount; The cross-sectional image obtained by correcting the cross-sectional image acquired by the cross-sectional image acquiring unit based on the amount of positional deviation detected by the detecting unit and displaying it on a monitor, or the cross-sectional image acquired by the cross-sectional image acquiring unit. An ophthalmologic photographing apparatus comprising: display control means for displaying on a monitor together with an image. 請求項1の眼科撮影装置において、前記検出手段によって設定される前記基準画像は、前記トリガ信号に基づき前記正面画像取得手段にて得られる最初の正面画像であることを特徴とする眼科撮影装置。 2. The ophthalmologic photographing apparatus according to claim 1, wherein the reference image set by the detecting means is a first front image obtained by the front image obtaining means based on the trigger signal. 請求項1の眼科撮影装置において、前記正面画像取得手段は被検眼を照明するための照明光学系と該照明光学系にて照明される被検眼からの反射光を受光して被検眼の正面画像を取得するため撮影光学系とを有し、前記測定光は前記走査手段よりも被検側に配置される光学部材により前記照明光学系から出射される照明光と同軸とされ、さらに前記光学部材は前記照明光学系を含まない前記撮影光学系中に配置されていることを特徴とする眼科撮影装置。 2. The ophthalmologic photographing apparatus according to claim 1, wherein the front image acquisition means receives an illumination optical system for illuminating the eye to be examined and reflected light from the eye to be illuminated illuminated by the illumination optical system to receive a front image of the eye to be examined. And the measurement light is coaxial with the illumination light emitted from the illumination optical system by an optical member disposed on the test side with respect to the scanning means, and the optical member Is arranged in the photographing optical system not including the illumination optical system. 請求項3の眼科撮影装置において、前記断面画像取得手段により取得される前記断面画像は被検眼の眼底断面画像であり、前記正面画像取得手段により取得される前記正面画像は被検眼の眼底画像であることを特徴とする眼科撮影装置。








4. The ophthalmologic photographing apparatus according to claim 3, wherein the cross-sectional image acquired by the cross-sectional image acquisition unit is a fundus cross-sectional image of the eye to be examined, and the front image acquired by the front image acquisition unit is a fundus image of the eye to be examined. An ophthalmologic photographing apparatus characterized by being.








JP2005026894A 2005-02-02 2005-02-02 Ophthalmic imaging equipment Expired - Fee Related JP4578994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005026894A JP4578994B2 (en) 2005-02-02 2005-02-02 Ophthalmic imaging equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026894A JP4578994B2 (en) 2005-02-02 2005-02-02 Ophthalmic imaging equipment

Publications (2)

Publication Number Publication Date
JP2006212153A true JP2006212153A (en) 2006-08-17
JP4578994B2 JP4578994B2 (en) 2010-11-10

Family

ID=36975851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026894A Expired - Fee Related JP4578994B2 (en) 2005-02-02 2005-02-02 Ophthalmic imaging equipment

Country Status (1)

Country Link
JP (1) JP4578994B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117714A (en) * 2005-09-29 2007-05-17 Topcon Corp Fundus observation apparatus, fundus image display apparatus, and fundus observation program
JP2007185243A (en) * 2006-01-11 2007-07-26 Topcon Corp Fundus observation device
JP2008073099A (en) * 2006-09-19 2008-04-03 Topcon Corp Fundus observation apparatus, fundus image display apparatus, and fundus observation program
JP2008086670A (en) * 2006-10-04 2008-04-17 Osaka Univ Fundus observation apparatus, fundus image display apparatus, and program
JP2008154704A (en) * 2006-12-22 2008-07-10 Topcon Corp Fundus observation apparatus, fundus image display apparatus, and program
JP2008206684A (en) * 2007-02-26 2008-09-11 Topcon Corp Fundus observation apparatus, fundus image processing apparatus, and program
JP2008237724A (en) * 2007-03-28 2008-10-09 Topcon Corp Optical image measuring device
JP2008237238A (en) * 2007-03-23 2008-10-09 Topcon Corp Optical image measurement device, image processing device, and program
EP2070467A1 (en) 2007-12-11 2009-06-17 Tomey Corporation Apparatus and method for imaging anterior eye part by optical coherence tomography
JP2009523563A (en) * 2006-01-19 2009-06-25 オプトビュー,インコーポレーテッド Examining the eye by optical coherence tomography
JP2009535164A (en) * 2006-05-01 2009-10-01 フィジカル サイエンシーズ, インコーポレイテッド Hybrid spectral domain optical coherence tomography line scan laser ophthalmoscope
JP2009273818A (en) * 2008-05-19 2009-11-26 Canon Inc Optical tomographic imaging apparatus and imaging method of optical tomographic image
EP2130486A1 (en) 2008-06-02 2009-12-09 Nidek Co., Ltd. Ophthalmic Photographing Apparatus
JP2009291252A (en) * 2008-06-02 2009-12-17 Nidek Co Ltd Occular fundus imaging apparatus
JP2010508105A (en) * 2006-11-02 2010-03-18 ハイデルベルク・エンジニアリング・ゲー・エム・ベー・ハー Retina diagnosis method and apparatus
JP2010099146A (en) * 2008-10-21 2010-05-06 Canon Inc Imaging control device, imaging device, imaging control method, program, and storage medium
JP2010110371A (en) * 2008-11-04 2010-05-20 Topcon Corp Apparatus and method for measuring eye, and program
JP2010119836A (en) * 2008-10-24 2010-06-03 Canon Inc Connection adapter, optical tomographic imaging apparatus, program for executing imaging method and memory device for the program
JP2010167268A (en) * 2008-12-26 2010-08-05 Canon Inc Imaging apparatus and method for taking image of eyeground by optical coherence tomography
WO2010113459A1 (en) * 2009-04-02 2010-10-07 株式会社トプコン Ophthalmological observation device
WO2010119632A1 (en) * 2009-04-15 2010-10-21 株式会社トプコン Eyeground observation device
JP2010246654A (en) * 2009-04-13 2010-11-04 Canon Inc Optical tomographic imaging apparatus and control method thereof
EP2076734A4 (en) * 2006-10-05 2010-12-01 Oti Ophthalmic Technologies OPTICAL IMAGING DEVICE WITH SPECTRAL DETECTOR
EP2258257A1 (en) * 2009-06-02 2010-12-08 Nidek Co., Ltd. Ophthalmic photographing apparatus
US7880895B2 (en) 2008-07-04 2011-02-01 Nidek Co., Ltd. Optical tomographic image photographing apparatus
JP2011083554A (en) * 2009-10-19 2011-04-28 Canon Inc Tomographic image capturing apparatus, method for capturing tomographic image, program and storage medium
US7954946B2 (en) 2008-07-04 2011-06-07 Nidek Co., Ltd. Optical tomographic image photographing apparatus
JP2011110290A (en) * 2009-11-27 2011-06-09 Nidek Co Ltd Fundus imaging apparatus
JP2011135933A (en) * 2009-12-25 2011-07-14 Nidek Co Ltd Retinal function measuring apparatus
JP2011156035A (en) * 2010-01-29 2011-08-18 Canon Inc Optical imaging apparatus, controlling method thereof, program thereof, and recording medium
JP2011212213A (en) * 2010-03-31 2011-10-27 Nidek Co Ltd Ophthalmologic apparatus
CN102469936A (en) * 2009-07-13 2012-05-23 佳能株式会社 Tomographic image capturing apparatus and tomographic image correction processing method
JP2012187228A (en) * 2011-03-10 2012-10-04 Canon Inc Photographing apparatus and image processing method
JP2012223428A (en) * 2011-04-21 2012-11-15 Topcon Corp Ophthalmic apparatus
JP2014012227A (en) * 2013-10-18 2014-01-23 Canon Inc Image generation device, image generation system and image generation method
JP2014057899A (en) * 2014-01-07 2014-04-03 Nidek Co Ltd Ophthalmological photographing device
JP2014147502A (en) * 2013-01-31 2014-08-21 Canon Inc Optical interference tomographic imaging device and method for controlling the same
JP2015083248A (en) * 2009-04-15 2015-04-30 株式会社トプコン Ophthalmologic apparatus
JP2017000800A (en) * 2016-08-24 2017-01-05 キヤノン株式会社 Optical tomographic imaging device
JP2017127597A (en) * 2016-01-22 2017-07-27 株式会社ニデック Fundus imaging apparatus
JP2018068578A (en) * 2016-10-27 2018-05-10 株式会社ニデック OCT apparatus and OCT control program
US10028656B2 (en) 2012-01-26 2018-07-24 Canon Kabushiki Kaisha Optical coherence tomographic apparatus
JPWO2020241699A1 (en) * 2019-05-31 2020-12-03
JP2021510588A (en) * 2018-01-19 2021-04-30 カール ツアイス メディテック アクチエンゲゼルシャフト A method of continuously controlling fixation of a patient's eye during detection of biometric data of the patient's eye

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267610A (en) * 1997-03-26 1998-10-09 Kowa Co Optical measuring device
JPH10267830A (en) * 1997-03-26 1998-10-09 Kowa Co Optical measuring device
JP2006051101A (en) * 2004-08-10 2006-02-23 Nidek Co Ltd Corneal surgery apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267610A (en) * 1997-03-26 1998-10-09 Kowa Co Optical measuring device
JPH10267830A (en) * 1997-03-26 1998-10-09 Kowa Co Optical measuring device
JP2006051101A (en) * 2004-08-10 2006-02-23 Nidek Co Ltd Corneal surgery apparatus

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117714A (en) * 2005-09-29 2007-05-17 Topcon Corp Fundus observation apparatus, fundus image display apparatus, and fundus observation program
JP2007185243A (en) * 2006-01-11 2007-07-26 Topcon Corp Fundus observation device
JP2009523563A (en) * 2006-01-19 2009-06-25 オプトビュー,インコーポレーテッド Examining the eye by optical coherence tomography
JP2009535164A (en) * 2006-05-01 2009-10-01 フィジカル サイエンシーズ, インコーポレイテッド Hybrid spectral domain optical coherence tomography line scan laser ophthalmoscope
JP2008073099A (en) * 2006-09-19 2008-04-03 Topcon Corp Fundus observation apparatus, fundus image display apparatus, and fundus observation program
JP2008086670A (en) * 2006-10-04 2008-04-17 Osaka Univ Fundus observation apparatus, fundus image display apparatus, and program
WO2008044603A1 (en) * 2006-10-04 2008-04-17 Osaka University Eyeground observing device, eyeground image display device, and eyeground image display method
US7784942B2 (en) 2006-10-04 2010-08-31 Kabushiki Kaisha Topcon Fundus oculi observation device, a fundus oculi image display device and a fundus oculi image display method
EP2076734A4 (en) * 2006-10-05 2010-12-01 Oti Ophthalmic Technologies OPTICAL IMAGING DEVICE WITH SPECTRAL DETECTOR
JP2010508105A (en) * 2006-11-02 2010-03-18 ハイデルベルク・エンジニアリング・ゲー・エム・ベー・ハー Retina diagnosis method and apparatus
JP2008154704A (en) * 2006-12-22 2008-07-10 Topcon Corp Fundus observation apparatus, fundus image display apparatus, and program
JP2008206684A (en) * 2007-02-26 2008-09-11 Topcon Corp Fundus observation apparatus, fundus image processing apparatus, and program
JP2008237238A (en) * 2007-03-23 2008-10-09 Topcon Corp Optical image measurement device, image processing device, and program
US8348426B2 (en) 2007-03-23 2013-01-08 Kabushiki Kaisha Topcon Optical image measurement device and image processing device
JP2008237724A (en) * 2007-03-28 2008-10-09 Topcon Corp Optical image measuring device
EP2070467A1 (en) 2007-12-11 2009-06-17 Tomey Corporation Apparatus and method for imaging anterior eye part by optical coherence tomography
US8265735B2 (en) 2007-12-11 2012-09-11 Tomey Corporation Apparatus and method for imaging anterior eye part by optical coherence tomography
JP2009273818A (en) * 2008-05-19 2009-11-26 Canon Inc Optical tomographic imaging apparatus and imaging method of optical tomographic image
US8797544B2 (en) 2008-05-19 2014-08-05 Canon Kabushiki Kaisha Optical coherence tomographic imaging device and imaging method of optical coherence tomographic image
EP2130486A1 (en) 2008-06-02 2009-12-09 Nidek Co., Ltd. Ophthalmic Photographing Apparatus
JP2009291252A (en) * 2008-06-02 2009-12-17 Nidek Co Ltd Occular fundus imaging apparatus
US7824035B2 (en) 2008-06-02 2010-11-02 Nidek Co., Ltd. Ophthalmic photographing apparatus
US7880895B2 (en) 2008-07-04 2011-02-01 Nidek Co., Ltd. Optical tomographic image photographing apparatus
US7954946B2 (en) 2008-07-04 2011-06-07 Nidek Co., Ltd. Optical tomographic image photographing apparatus
JP2010099146A (en) * 2008-10-21 2010-05-06 Canon Inc Imaging control device, imaging device, imaging control method, program, and storage medium
JP2010119836A (en) * 2008-10-24 2010-06-03 Canon Inc Connection adapter, optical tomographic imaging apparatus, program for executing imaging method and memory device for the program
US8308297B2 (en) 2008-10-24 2012-11-13 Canon Kabushiki Kaisha Connection adapter, optical tomographic imaging apparatus, program for executing imaging method and memory device for the program
JP2010110371A (en) * 2008-11-04 2010-05-20 Topcon Corp Apparatus and method for measuring eye, and program
JP2010167268A (en) * 2008-12-26 2010-08-05 Canon Inc Imaging apparatus and method for taking image of eyeground by optical coherence tomography
JP2010240068A (en) * 2009-04-02 2010-10-28 Topcon Corp Ophthalmic observation device
WO2010113459A1 (en) * 2009-04-02 2010-10-07 株式会社トプコン Ophthalmological observation device
JP2010246654A (en) * 2009-04-13 2010-11-04 Canon Inc Optical tomographic imaging apparatus and control method thereof
JP2016026108A (en) * 2009-04-15 2016-02-12 株式会社トプコン Ophthalmologic apparatus
WO2010119632A1 (en) * 2009-04-15 2010-10-21 株式会社トプコン Eyeground observation device
JP2015083248A (en) * 2009-04-15 2015-04-30 株式会社トプコン Ophthalmologic apparatus
JP2010264225A (en) * 2009-04-15 2010-11-25 Topcon Corp Fundus observation device
US8573776B2 (en) 2009-04-15 2013-11-05 Kabushiki Kaisha Topcon Fundus observation apparatus
US8540368B2 (en) 2009-06-02 2013-09-24 Nidek Co., Ltd. Ophthalmic photographing apparatus
EP2258257A1 (en) * 2009-06-02 2010-12-08 Nidek Co., Ltd. Ophthalmic photographing apparatus
CN102469936A (en) * 2009-07-13 2012-05-23 佳能株式会社 Tomographic image capturing apparatus and tomographic image correction processing method
US8970849B2 (en) 2009-07-13 2015-03-03 Canon Kabushiki Kaisha Tomography apparatus and tomogram correction processing method
JP2011083554A (en) * 2009-10-19 2011-04-28 Canon Inc Tomographic image capturing apparatus, method for capturing tomographic image, program and storage medium
JP2011110290A (en) * 2009-11-27 2011-06-09 Nidek Co Ltd Fundus imaging apparatus
JP2011135933A (en) * 2009-12-25 2011-07-14 Nidek Co Ltd Retinal function measuring apparatus
JP2011156035A (en) * 2010-01-29 2011-08-18 Canon Inc Optical imaging apparatus, controlling method thereof, program thereof, and recording medium
JP2011212213A (en) * 2010-03-31 2011-10-27 Nidek Co Ltd Ophthalmologic apparatus
JP2012187228A (en) * 2011-03-10 2012-10-04 Canon Inc Photographing apparatus and image processing method
JP2012223428A (en) * 2011-04-21 2012-11-15 Topcon Corp Ophthalmic apparatus
US10028656B2 (en) 2012-01-26 2018-07-24 Canon Kabushiki Kaisha Optical coherence tomographic apparatus
JP2014147502A (en) * 2013-01-31 2014-08-21 Canon Inc Optical interference tomographic imaging device and method for controlling the same
JP2014012227A (en) * 2013-10-18 2014-01-23 Canon Inc Image generation device, image generation system and image generation method
JP2014057899A (en) * 2014-01-07 2014-04-03 Nidek Co Ltd Ophthalmological photographing device
JP2017127597A (en) * 2016-01-22 2017-07-27 株式会社ニデック Fundus imaging apparatus
JP2017000800A (en) * 2016-08-24 2017-01-05 キヤノン株式会社 Optical tomographic imaging device
JP2018068578A (en) * 2016-10-27 2018-05-10 株式会社ニデック OCT apparatus and OCT control program
JP2021510588A (en) * 2018-01-19 2021-04-30 カール ツアイス メディテック アクチエンゲゼルシャフト A method of continuously controlling fixation of a patient's eye during detection of biometric data of the patient's eye
JP7308211B2 (en) 2018-01-19 2023-07-13 カール ツアイス メディテック アクチエンゲゼルシャフト Method for continuously controlling fixation of a patient's eye during detection of biometric data of the patient's eye
JPWO2020241699A1 (en) * 2019-05-31 2020-12-03
JP7528933B2 (en) 2019-05-31 2024-08-06 株式会社ニコン Optical coherence tomography apparatus and optical module

Also Published As

Publication number Publication date
JP4578994B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4578994B2 (en) Ophthalmic imaging equipment
JP4819478B2 (en) Ophthalmic imaging equipment
JP5079240B2 (en) Retinal function measuring device
JP4822969B2 (en) Ophthalmic imaging equipment
JP5404078B2 (en) Optical image measuring device
KR101571924B1 (en) Optical coherence tomographic apparatus, control method for optical coherence tomographic apparatus and storage medium
JP3653582B2 (en) Ophthalmic equipment
JP2010012109A (en) Ocular fundus photographic apparatus
US20120002164A1 (en) Fundus photographing apparatus
EP2258257A1 (en) Ophthalmic photographing apparatus
JP6685144B2 (en) Ophthalmic equipment and ophthalmic examination system
JP6349878B2 (en) Ophthalmic photographing apparatus, ophthalmic photographing method, and ophthalmic photographing program
JP4949504B2 (en) Ophthalmic imaging equipment
JP2015195876A (en) Fundus photographing device
JP2010125291A (en) Ophthalmological photographic apparatus
JP5570195B2 (en) OCT equipment
JP5242716B2 (en) Fundus image processing device
JP5319010B2 (en) Ophthalmic imaging equipment
JP5255711B2 (en) Ophthalmic imaging equipment
JP2018023675A (en) Optical tomographic imaging apparatus
JP6833081B2 (en) Ophthalmic equipment and ophthalmic examination system
JP6507536B2 (en) Ophthalmic imaging apparatus and ophthalmologic imaging program
JP2016013210A (en) Ophthalmic examination information processing apparatus and ophthalmic examination information processing program
JP5319009B2 (en) Fundus image display apparatus and ophthalmologic photographing apparatus including the same.
JP5306554B2 (en) Ophthalmic imaging equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4578994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees