[go: up one dir, main page]

JP2006104314A - Purification method of π-conjugated conductive polymer, electric energy storage device and semiconductor device - Google Patents

Purification method of π-conjugated conductive polymer, electric energy storage device and semiconductor device Download PDF

Info

Publication number
JP2006104314A
JP2006104314A JP2004292150A JP2004292150A JP2006104314A JP 2006104314 A JP2006104314 A JP 2006104314A JP 2004292150 A JP2004292150 A JP 2004292150A JP 2004292150 A JP2004292150 A JP 2004292150A JP 2006104314 A JP2006104314 A JP 2006104314A
Authority
JP
Japan
Prior art keywords
conductive polymer
conjugated conductive
purifying
chelate compound
conjugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004292150A
Other languages
Japanese (ja)
Inventor
Shinichiro Mukohata
眞一郎 向畠
Masafumi Oshima
雅史 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2004292150A priority Critical patent/JP2006104314A/en
Publication of JP2006104314A publication Critical patent/JP2006104314A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

【課題】
π共役系導電性高分子中に残渣する鉄イオンを効率的に除去し、電気エネルギー蓄積デバイスや半導体デバイスへ応用可能な耐熱性・耐湿性に優れたπ共役系導電性高分子の精製法を得る。
【解決手段】
π共役系導電性高分子の原料となる単量体から芳香族スルホン酸金属塩を酸化剤とする酸化重合反応によって生成されるπ共役系導電性高分子を精製する方法であって、前記重合反応後に、所定のキレート化合物を含み、その濃度、溶液温度、pHなどを制御した洗浄液を用いて洗浄することによって、π共役系導電性高分子中に残渣する鉄イオンを除去する。得られるπ共役系導電性高分子は耐熱性・耐湿性に優れるために、電気エネルギー蓄積デバイスや半導体デバイスの構成材料として好適である。
【選択図面】 なし
【Task】
A method for purifying π-conjugated conductive polymers with excellent heat resistance and moisture resistance that can be applied to electrical energy storage devices and semiconductor devices by efficiently removing residual iron ions in π-conjugated conductive polymers obtain.
[Solution]
A method for purifying a π-conjugated conductive polymer produced from a monomer as a raw material of a π-conjugated conductive polymer by an oxidative polymerization reaction using an aromatic sulfonic acid metal salt as an oxidizing agent, the polymerization After the reaction, the iron ions remaining in the π-conjugated conductive polymer are removed by washing with a washing liquid containing a predetermined chelate compound and controlling its concentration, solution temperature, pH and the like. Since the obtained π-conjugated conductive polymer is excellent in heat resistance and moisture resistance, it is suitable as a constituent material for electrical energy storage devices and semiconductor devices.
[Selected drawing] None

Description

本発明は、耐熱性及び耐湿性に優れたπ共役系導電性高分子の精製方法に関し、より詳しくは、化学酸化重合法により生成されるπ共役系導電性高分子の耐熱性及び耐湿性を向上させるための精製方法に関し、また、該導電性高分子の光、電子、電磁特性を利用した、コンデンサや有機太陽電池などの電気エネルギー蓄積デバイス及びダイオードやエレクトロルミネッセンスに利用される半導体デバイスに関する。   The present invention relates to a method for purifying a π-conjugated conductive polymer excellent in heat resistance and moisture resistance. More specifically, the present invention relates to the heat resistance and moisture resistance of a π-conjugated conductive polymer produced by a chemical oxidative polymerization method. The present invention relates to a purification method for improvement, and also relates to an electrical energy storage device such as a capacitor or an organic solar cell, and a semiconductor device used for a diode or electroluminescence, utilizing the light, electronic and electromagnetic characteristics of the conductive polymer.

π共役系導電性高分子の製造方法には、化学酸化重合法、電解酸化重合法、可溶性前駆体法や蒸着法など各種の方法が知られているが、目的とするπ共役系導電性高分子の種類やその用途によって最適な製造方法を選択する必要がある。   Various methods such as chemical oxidative polymerization, electrolytic oxidative polymerization, soluble precursor method, and vapor deposition are known as methods for producing π-conjugated conductive polymers. It is necessary to select an optimal production method depending on the type of molecule and its application.

上記製造方法の中でも、化学酸化重合法は、安価で製造条件の制御が容易にできるという特徴を有しており、ポリピロール、ポリアルキレンジオキシチオフェン、ポリアニリン及びそれらの誘導体に代表される多くのπ共役系導電性高分子の製造に適用されている。   Among the above production methods, the chemical oxidative polymerization method has a feature that it is inexpensive and the production conditions can be easily controlled, and many π typified by polypyrrole, polyalkylenedioxythiophene, polyaniline and derivatives thereof. It is applied to the production of conjugated conductive polymers.

これらのπ共役系導電性高分子は、トルエンスルホン酸第2鉄等の芳香族スルホン酸金属塩を酸化剤として用いる化学酸化重合により、10S/cm以上の電気伝導度を有する導電性高分子が容易に製造できるため、固体電解コンデンサ、湿式太陽電池、有機電解合成などの触媒電極、プラスチックフィルムなどの帯電防止材、匂いを識別するガスセンサー等としての応用が検討されている。   These π-conjugated conductive polymers are conductive polymers having an electrical conductivity of 10 S / cm or more by chemical oxidative polymerization using an aromatic sulfonic acid metal salt such as ferric toluenesulfonate as an oxidizing agent. Since it can be easily produced, application as a solid electrolytic capacitor, a wet solar cell, a catalyst electrode for organic electrolytic synthesis, an antistatic material such as a plastic film, a gas sensor for identifying an odor, and the like has been studied.

π共役系導電性高分子の工業的な応用例として、電荷蓄積デバイスであるアルミニウム固体電解コンデンサの固体電解質にポリアルキレンジオキシチオフェン(以下、「PADOT」と略記する。)を適用した例を以下に説明する。なお、図1はアルミニウム固体電解コンデンサの断面模式図である。   As an industrial application example of a π-conjugated conductive polymer, an example in which polyalkylenedioxythiophene (hereinafter abbreviated as “PADOT”) is applied to a solid electrolyte of an aluminum solid electrolytic capacitor as a charge storage device is as follows. Explained. FIG. 1 is a schematic sectional view of an aluminum solid electrolytic capacitor.

アルミニウム固体電解コンデンサは、弁作用金属であるアルミニウム箔1をホウ酸等の電解液中で陽極酸化し、誘電体酸化皮膜2を形成させる。この素子を、トルエンスルホン酸第2鉄を含む水溶液及び/または有機溶媒に浸漬後、アルキレンジオキシチオフェン単量体(以下、「ADOT」と略記する。)溶液中に浸漬することにより、誘電体酸化皮膜2に含浸させた酸化剤とアルキレンジオキシチオフェン単量体とを接触させ、酸化皮膜内部及びその表面に、固体電解質層3としてPADOT層が形成される。一般に、一回の操作では所望の厚みを有するPADOT層が形成できないため、上記操作を複数回繰り返した後に、順次、グラファイト層及び銀ペースト層からなる陰極導電層4を形成させる。   The aluminum solid electrolytic capacitor anodizes an aluminum foil 1 which is a valve action metal in an electrolytic solution such as boric acid to form a dielectric oxide film 2. This element is immersed in an aqueous solution containing ferric toluenesulfonate and / or an organic solvent, and then immersed in an alkylenedioxythiophene monomer (hereinafter abbreviated as “ADOT”) solution, whereby a dielectric is obtained. The oxidant impregnated in the oxide film 2 and the alkylenedioxythiophene monomer are brought into contact with each other, and a PADOT layer is formed as the solid electrolyte layer 3 inside and on the surface of the oxide film. In general, since a PADOT layer having a desired thickness cannot be formed by a single operation, the cathode conductive layer 4 composed of a graphite layer and a silver paste layer is sequentially formed after the above operation is repeated a plurality of times.

得られたコンデンサ素子をリードフレームに載置し、コンデンサ素子の陽極端子部5を外部陽極リード6に電気的に接合させ、また、陰極導電層4を導電性接着剤7を介して外部陰極リード8に接着させ、ついで、外装樹脂9でモールドしてアルミニウム固体電解コンデンサを完成する。   The obtained capacitor element is placed on a lead frame, the anode terminal portion 5 of the capacitor element is electrically joined to the external anode lead 6, and the cathode conductive layer 4 is connected to the external cathode lead via the conductive adhesive 7. 8 and then molded with exterior resin 9 to complete an aluminum solid electrolytic capacitor.

上記固体電解コンデンサの製造工程において、PADOT層を形成するための酸化剤としては、トルエンスルホン酸第2鉄を水及び/または有機溶媒に含有させた酸化剤溶液が用いられ、該溶液中の第2鉄イオンが酸化剤として作用し、ADOTを化学酸化重合させ、また、対イオンのトルエンスルホン酸イオンがドーパントとしてPADOT層中に導入される。   In the manufacturing process of the solid electrolytic capacitor, as the oxidizing agent for forming the PADOT layer, an oxidizing agent solution containing ferric toluenesulfonate in water and / or an organic solvent is used. The ferric ion acts as an oxidant to chemically oxidize ADOT, and a counter ion, toluenesulfonic acid ion, is introduced into the PADOT layer as a dopant.

PADOTを固体電解質として用いた固体電解コンデンサは、従来、タンタル固体電解コンデンサの固体電解質として利用されてきた二酸化マンガンに比べ、電気伝導率が100倍程度高いため、優れた高周波特性を有する。   A solid electrolytic capacitor using PADOT as a solid electrolyte has excellent high-frequency characteristics because its electric conductivity is about 100 times higher than that of manganese dioxide, which has been conventionally used as a solid electrolyte for tantalum solid electrolytic capacitors.

また、化学酸化重合法によれば、製造条件が難しく制御しにくい電解重合法に比べ、酸化剤溶液とADOTとを接触させることにより、容易にPADOTを生成することができ、製造工程が簡便であり、工業的にも有利である。   Also, according to the chemical oxidative polymerization method, PADOT can be easily produced by bringing the oxidant solution and ADOT into contact with each other, compared with the electrolytic polymerization method in which the production conditions are difficult and difficult to control, and the production process is simple. And industrially advantageous.

一般に、固体電解コンデンサ等の電気エネルギー蓄積デバイスの固体電解質として、π共役系導電性高分子を適用するには、電気伝導度の他に、耐候性、特に高温・高湿度下での安定性が要求される。   In general, in order to apply a π-conjugated conductive polymer as a solid electrolyte of an electrical energy storage device such as a solid electrolytic capacitor, in addition to electrical conductivity, weather resistance, particularly stability at high temperatures and high humidity, is required. Required.

化学酸化重合法により形成させたπ共役系導電性高分子中には、鉄イオンが不純物として残渣し、該鉄イオンは、接触するアルミニウム等の金属や金属酸化物に対して局部電池を形成し、腐食を引き起こす恐れがあり、誘電体酸化皮膜に亀裂を発生させる場合がある。また、π共役系導電性高分子はアニオンがドーピングされた高酸化状態であるために、熱、光、酸素、水などの相互的な作用により、性能劣化を起こしやすいが、発生した亀裂によって劣化速度が更に増大する。これらの欠点がデバイス材料としてπ共役系導電性高分子を利用する上で、大きな障害となっており、π共役系導電性高分子の内、比較的高い耐熱性・耐湿性を有するPADOTにおいてもこの点は例外ではない。   In the π-conjugated conductive polymer formed by the chemical oxidative polymerization method, iron ions remain as impurities, and the iron ions form a local battery against the metal or metal oxide such as aluminum that comes into contact. May cause corrosion and may cause cracks in the dielectric oxide film. In addition, π-conjugated conductive polymers are in a highly oxidized state doped with anions, and are subject to performance degradation due to the interaction of heat, light, oxygen, water, etc. The speed is further increased. These drawbacks are a major obstacle to using π-conjugated conductive polymers as device materials, and among PADOT having relatively high heat resistance and moisture resistance among π-conjugated conductive polymers. This is no exception.

π共役系導電性高分子の耐熱性・耐湿性を改善するために、様々な方法が提案されている。例えば、特許文献1に開示のπ共役系導電性高分子の製造方法には、酸化剤ドーパントとしてOH基またはCOOH基の少なくとも一方を含む化合物を含む非プロトン性溶媒中で化学酸化重合させ、ドーパントから効率的に供給されるプロトンによって酸化劣化を防ぐ方法が提案されている。   Various methods have been proposed to improve the heat resistance and moisture resistance of the π-conjugated conductive polymer. For example, in the method for producing a π-conjugated conductive polymer disclosed in Patent Document 1, chemical oxidative polymerization is performed in an aprotic solvent containing a compound containing at least one of an OH group or a COOH group as an oxidant dopant, and the dopant A method for preventing oxidative degradation by protons efficiently supplied from the sea has been proposed.

また、特許文献2に開示のπ共役系導電性高分子の製造方法には、カーボネート類やラクトン類などの非水系有機溶媒中で洗浄し、未重合や重合度の低いπ共役系導電性高分子を取り除き、耐酸化性を有する重合度の高いπ共役系導電性高分子を精製する方法が提案されている。   In addition, the method for producing a π-conjugated conductive polymer disclosed in Patent Document 2 includes washing in a non-aqueous organic solvent such as carbonates or lactones, and unpolymerized or having a low degree of polymerization. There has been proposed a method for removing a molecule and purifying a π-conjugated conductive polymer having oxidation resistance and a high degree of polymerization.

しかしながら、上記方法により、ドーパントからプロトンあるいは水素を供給させたり、あるいは、重合度の高いπ共役系導電性高分子を精製しても、π共役系導電性高分子中に取り込まれた鉄イオンが、コンデンサ素子の基体金属やその酸化物と接触することにより、局部電池が形成され、基体の腐食により生じるπ共役系導電性高分子の亀裂により、酸素や水への接触面積が加速度的に増大するために、π共役系導電性高分子の耐熱性・耐湿性が低下してしまうという解決すべき課題が残されていた。   However, even if protons or hydrogen are supplied from the dopant by the above method or a π-conjugated conductive polymer having a high degree of polymerization is purified, iron ions taken into the π-conjugated conductive polymer are not In contact with the base metal of the capacitor element and its oxide, a local battery is formed, and the contact area with oxygen and water increases at an accelerated rate due to cracks in the π-conjugated conductive polymer caused by corrosion of the base. Therefore, there remains a problem to be solved that the heat resistance and moisture resistance of the π-conjugated conductive polymer is lowered.

特開平10‐251384号公報JP-A-10-251384 特開2002‐270466号公報Japanese Patent Laid-Open No. 2002-270466

本発明の目的は、化学酸化重合法により生成されるπ共役系導電性高分子中に残渣する金属イオンを除去することにより、耐熱性・耐湿性を向上させたπ共役系導電性高分子の精製方法を提供することであり、また、該導電性高分子から構成される耐熱性・耐湿性に優れた電気エネルギー蓄積デバイス及び半導体デバイスを提供することである。   An object of the present invention is to provide a π-conjugated conductive polymer having improved heat resistance and moisture resistance by removing residual metal ions in the π-conjugated conductive polymer produced by a chemical oxidative polymerization method. It is to provide a purification method, and to provide an electrical energy storage device and a semiconductor device that are composed of the conductive polymer and are excellent in heat resistance and moisture resistance.

本発明者らは、π共役系導電性高分子の精製方法について鋭意研究を行った結果、π共役系導電性高分子を、特定のキレート化合物含有洗浄液を用いて精製することにより、上記課題を解決し得ることを見いだし、本発明を完成するに至った。   As a result of intensive research on a method for purifying a π-conjugated conductive polymer, the present inventors have refined the π-conjugated conductive polymer using a specific chelate compound-containing cleaning solution, thereby achieving the above-mentioned problem. It has been found that it can be solved, and the present invention has been completed.

すなわち、本発明は、π共役系導電性高分子の単量体から芳香族スルホン酸金属塩を酸化剤とする酸化重合反応によって生成されるπ共役系導電性高分子を精製する方法であって、前記π共役系導電性高分子を、キレート化合物を含む洗浄液を用いて洗浄することにより、該π共役系導電性高分子中に残渣する金属イオンを除去することを特徴とするπ共役系導電性高分子の精製方法である。   That is, the present invention is a method for purifying a π-conjugated conductive polymer produced by an oxidative polymerization reaction using an aromatic sulfonic acid metal salt as an oxidizing agent from a monomer of a π-conjugated conductive polymer. The π-conjugated conductive polymer is characterized in that metal ions remaining in the π-conjugated conductive polymer are removed by washing the π-conjugated conductive polymer with a cleaning liquid containing a chelate compound. This is a method for purifying a functional polymer.

また、本発明は、上記キレート化合物が、ジピリジル、テルピリジル、フェナントロリン、ジフェニルチオカルバゾン化合物、ニトロソナフトール化合物及びアミノポリカルボン酸化合物からなる群から選ばれる少なくとも1種であることを特徴とするπ共役系導電性高分子の精製方法である。   In the present invention, the chelate compound is at least one selected from the group consisting of dipyridyl, terpyridyl, phenanthroline, diphenylthiocarbazone compound, nitrosonaphthol compound and aminopolycarboxylic acid compound. This is a method for purifying a conductive polymer.

さらに本発明は、上記精製方法により得られたπ共役系導電性高分子から構成された電気エネルギー蓄積デバイス及び半導体デバイスである。   Furthermore, the present invention is an electrical energy storage device and a semiconductor device composed of a π-conjugated conductive polymer obtained by the above purification method.

本発明によれば、化学酸化重合法により生成されるπ共役系導電性高分子を簡便な工程により精製することができ、π共役系導電性高分子中に残渣する鉄イオンが効果的に除去されることにより、π共役系導電性高分子の耐熱性・耐湿性を向上させることが可能である。   According to the present invention, a π-conjugated conductive polymer produced by a chemical oxidative polymerization method can be purified by a simple process, and iron ions remaining in the π-conjugated conductive polymer are effectively removed. Thus, the heat resistance and moisture resistance of the π-conjugated conductive polymer can be improved.

また、本発明により精製されたπ共役系導電性高分子を用いた固体電解コンデンサなどの電気エネルギー蓄積デバイスや、半導体デバイスは、耐熱性・耐湿性に優れる。   In addition, an electrical energy storage device such as a solid electrolytic capacitor using a π-conjugated conductive polymer purified by the present invention, and a semiconductor device are excellent in heat resistance and moisture resistance.

本発明は、π共役系導電性高分子の単量体から芳香族スルホン酸金属塩を酸化剤とする酸化重合反応によって生成されるπ共役系導電性高分子を精製する方法に関するものであり、前記π共役系導電性高分子を、キレート化合物を含む洗浄液を用いて洗浄することにより、該π共役系導電性高分子中に残渣する金属イオンを除去することを特徴とするものである。   The present invention relates to a method for purifying a π-conjugated conductive polymer produced by an oxidative polymerization reaction using an aromatic sulfonic acid metal salt as an oxidizing agent from a π-conjugated conductive polymer monomer, By washing the π-conjugated conductive polymer with a cleaning liquid containing a chelate compound, metal ions remaining in the π-conjugated conductive polymer are removed.

本発明に用いられるπ共役系導電性高分子の単量体としては、ピロール、ADOT、アニリン、フェニレン、アセチレン、フラン、フェニレンビニレン、アズレン及びそれらの誘導体があげられるが、特に、得られるπ共役系導電性高分子が電気伝導度に優れ、かつコンデンサの高周波領域(1kHz〜100kHz)において低い等価直列抵抗(ESR)を示すピロール、ADOT、アニリン及びそれらの誘導体が好ましい。これらの中でも、より高周波領域(100kHz〜50MHz)において、低ESRが実現可能であるピロール及びその誘導体が特に好ましい。また、ピロールは、酸化重合の反応速度が高く、その高分子中に金属イオンが多く取り込まれやすいことから、本発明を適応する上で、より効果的である。   Examples of the monomer of the π-conjugated conductive polymer used in the present invention include pyrrole, ADOT, aniline, phenylene, acetylene, furan, phenylene vinylene, azulene, and derivatives thereof. Pyrrol, ADOT, aniline, and their derivatives are preferred because the conductive polymer is excellent in electrical conductivity and exhibits a low equivalent series resistance (ESR) in the high frequency region (1 kHz to 100 kHz) of the capacitor. Among these, pyrrole and its derivatives that can realize low ESR in a higher frequency region (100 kHz to 50 MHz) are particularly preferable. In addition, pyrrole is more effective in adapting the present invention because the reaction rate of oxidative polymerization is high and a large amount of metal ions are easily taken into the polymer.

酸化剤である芳香族スルホン酸金属塩としては、o‐トルエンスルホン酸第2鉄、m‐トルエンスルホン酸第2鉄、p‐トルエンスルホン酸第2鉄、o‐トルエンスルホン酸第2銅、m‐トルエンスルホン酸第2銅、p‐トルエンスルホン酸第2銅、o‐トルエンスルホン酸コバルト、m‐トルエンスルホン酸コバルト、p‐トルエンスルホン酸コバルト、o‐トルエンスルホン酸マンガン、m‐トルエンスルホン酸マンガン、p‐トルエンスルホン酸マンガン、o‐エチルベンゼンスルホン酸第2鉄、m‐エチルベンゼンスルホン酸第2鉄、p‐エチルベンゼンスルホン酸第2鉄、ナフタレンスルホン酸第2鉄及びその誘導体などがあげられる。   Examples of the aromatic sulfonic acid metal salt that is an oxidizing agent include ferric o-toluenesulfonate, ferric m-toluenesulfonate, ferric p-toluenesulfonate, cupric o-toluenesulfonate, m -Cuprous toluene sulfonate, cupric p-toluene sulfonate, cobalt o-toluene sulfonate, cobalt m-toluene sulfonate, cobalt p-toluene sulfonate, manganese o-toluene sulfonate, m-toluene sulfonic acid Examples thereof include manganese, manganese p-toluenesulfonate, ferric o-ethylbenzenesulfonate, ferric m-ethylbenzenesulfonate, ferric p-ethylbenzenesulfonate, ferric naphthalenesulfonate, and derivatives thereof.

上記例示した芳香族スルホン酸金属塩は、反応制御の容易性や工業的に安価に入手できることから、p‐トルエンスルホン酸第2鉄、p‐トルエンスルホン酸第2銅が好ましい。   The aromatic sulfonic acid metal salts exemplified above are preferably ferric p-toluenesulfonate and cupric p-toluenesulfonate because they can be easily controlled and industrially inexpensively obtained.

本発明において、精製目的とするπ共役系導電性高分子は、π共役系導電性高分子の単量体と芳香族スルホン酸金属塩との酸化重合反応による、従来公知の方法によって製造することができる。具体的には、エタノール等の有機溶媒中で、出発原料であるπ共役系導電性高分子の単量体に対して1〜4倍(モル比)の芳香族スルホン酸金属塩を添加して、数十分〜数時間反応させることによってπ共役系導電性高分子を生成することができる。得られたπ共役系導電性高分子を、純水やエタノール等の溶媒を用いて洗浄後、該高分子中に残渣する金属イオンを以下に説明する本発明の精製方法により除去する。   In the present invention, the π-conjugated conductive polymer to be purified is produced by a conventionally known method by an oxidative polymerization reaction between a monomer of a π-conjugated conductive polymer and an aromatic sulfonic acid metal salt. Can do. Specifically, in an organic solvent such as ethanol, 1 to 4 times (molar ratio) of an aromatic sulfonic acid metal salt is added to the monomer of the π-conjugated conductive polymer that is the starting material. The π-conjugated conductive polymer can be generated by reacting for several tens of minutes to several hours. The obtained π-conjugated conductive polymer is washed with a solvent such as pure water or ethanol, and then metal ions remaining in the polymer are removed by the purification method of the present invention described below.

本発明に用いられる洗浄液は、少なくともキレート化合物を含有する水及び/または有機溶媒の溶液からなり、該化合物を含む洗浄液を用いることにより、π共役系導電性高分子中に残渣する金属イオンを効果的に取り除くことができる。   The cleaning liquid used in the present invention comprises at least a solution of water and / or an organic solvent containing a chelate compound, and by using the cleaning liquid containing the compound, residual metal ions in the π-conjugated conductive polymer are effective. Can be removed.

上記キレート化合物としては、ジピリジル、テルピリジル、フェナントロリン、ジフェニルチオカルバゾン化合物、ニトロソナフトール化合物及びアミノポリカルボン酸化合物からなる群から選ばれる少なくとも1種類が用いられるが、中性から弱酸性領域において金属イオンとキレート化合物との錯イオンを容易に形成させ、かつ、2価鉄イオン(Fe2+)及び3価鉄イオン(Fe3+)を効率的に除去するためには、鉄イオン(Fe2+)の除去効果に優れたジピリジル、テルピリジル、フェナントロリンからなる群から選ばれる少なくとも1種と、鉄イオン(Fe3+)の除去効果に優れたニトロソナフトール化合物とを併用して用いるのが好ましい。 As the chelate compound, at least one selected from the group consisting of dipyridyl, terpyridyl, phenanthroline, diphenylthiocarbazone compound, nitrosonaphthol compound and aminopolycarboxylic acid compound is used. Removal of iron ions (Fe 2+ ) in order to easily form complex ions of a chelate compound and efficiently remove divalent iron ions (Fe 2+ ) and trivalent iron ions (Fe 3+ ) It is preferable to use in combination at least one selected from the group consisting of dipyridyl, terpyridyl, and phenanthroline, which are excellent in effect, and a nitrosonaphthol compound, which is excellent in the effect of removing iron ions (Fe 3+ ).

上記ジフェニルチオカルバゾン化合物としては、エノール型ジフェニルチオカルバゾン、ケト型ジフェニルチオカルバゾンおよびその誘導体などがあげられる。   Examples of the diphenylthiocarbazone compound include enol-type diphenylthiocarbazone, keto-type diphenylthiocarbazone, and derivatives thereof.

ニトロソナフトール化合物としては、2‐ニトロソ‐1‐ナフトール、1‐ニトロソ‐2‐ナフトール、ニトロソ−R塩およびその誘導体などがあげられる。   Examples of the nitrosonaphthol compound include 2-nitroso-1-naphthol, 1-nitroso-2-naphthol, nitroso-R salt and derivatives thereof.

また、アミノポリカルボン酸化合物としては、エチレンジアミン四酢酸(ethylenediaminetetraacetic acid、「EDTA」と略記する。)、ニトリロ三酢酸(nitrilotriacetic acid)、イミノ二酢酸(iminodiacetic acid)、1,2‐シクロヘキサンジアミン四酢酸(1,2‐cyclohexanediaminetetraacetic acid)、ジエチレントリアミン五酢酸(dithylenetriaminepentaacetic acid)、エチルエーテルジアミン四酢酸(ethyletherdiaminetetraacetic acid)、ヒドロキシエチレンジアミン三酢酸(hydroxyethylenediaminetetraacetic acid)、N,N−ビス(2−ヒドロキシエチル)グリシン[N,N−bis(2−hydroxyethyl)glycine]、アントラニル酸二酢酸(anthraninicacid diacetic acid)、グリコールエーテルジアミン四酢酸(glycoletherdiaminetetraacetic acid)、メチルグリシン二酢酸(methylglycinediacetic acid)及びそのアルカリ金属塩などがあげられる。   Examples of aminopolycarboxylic acid compounds include ethylenediaminetetraacetic acid (abbreviated as “EDTA”), nitrilotriacetic acid, iminodiacetic acid, 1,2-cyclohexanediaminetetraacetic acid. (1,2-cyclohexandiaminetetraacetic acid), diethylenetriaminepentaacetic acid, ethyletherdiaminetetraacetic acid, hydroxyethylenediaminetriacetic acid (hydroxyethylenediamineacetic acid) traicic acid), N, N-bis (2-hydroxyethyl) glycine [N, N-bis (2-hydroxyethyl) glycine], anthranilic acid diacetic acid, glycol ether diaminetetraacetic acid, Examples thereof include methylglycine diacetic acid and its alkali metal salt.

π共役系導電性高分子は、トルエンスルホン酸イオンなどの陰イオンがドーピングされることによって、高い電気導電性が発現されるが、この陰イオンはπ共役系導電性高分子の電気伝導度、耐熱性、耐湿性などの耐候性に大きな影響を与える。陰イオンであるキレート化合物が洗浄液中に多く存在すると、キレート化合物がπ共役系導電性高分子中に取り込まれ、電気伝導度や耐候性に悪影響を与えるため、本発明に用いられる洗浄液中のキレート化合物濃度としては、0.2mol/L未満が好ましく、より好ましくは0.1mol/L未満である。   The π-conjugated conductive polymer exhibits high electrical conductivity when doped with an anion such as toluene sulfonate ion, but this anion has the electrical conductivity of the π-conjugated conductive polymer, It greatly affects the weather resistance such as heat resistance and moisture resistance. If a large amount of anionic chelate compound is present in the cleaning solution, the chelate compound is incorporated into the π-conjugated conductive polymer, which adversely affects electrical conductivity and weather resistance. The compound concentration is preferably less than 0.2 mol / L, more preferably less than 0.1 mol / L.

洗浄操作中に、π共役系導電性高分子中の芳香族スルホン酸イオンが脱ドープされ、電気伝導度が低下する場合があり、固体電解コンデンサの固体電解質に適用した場合、耐熱性や高周波領域におけるESRが低下する。この脱ドープを防止するために、洗浄液中には芳香族スルホン酸イオンを少なくとも0.2mol/L含有させるのが好ましく、より好ましくは少なくとも0.4mol/Lである。   During the washing operation, aromatic sulfonate ions in the π-conjugated conductive polymer may be dedoped, resulting in a decrease in electrical conductivity. When applied to a solid electrolyte of a solid electrolytic capacitor, the heat resistance and high frequency range ESR at the time is reduced. In order to prevent this undoping, the cleaning liquid preferably contains at least 0.2 mol / L of aromatic sulfonate ions, more preferably at least 0.4 mol / L.

また、キレート化合物を含む洗浄液が、固体電解コンデンサの弁金属であるアルミニウムやその金属酸化物を腐食させ、漏れ電流を悪化させる場合があり、これを防止するには、洗浄液のpHを3〜8に制御することが好ましく、より好ましくは4〜6である。   In addition, the cleaning liquid containing a chelate compound may corrode aluminum and its metal oxide which are valve metals of a solid electrolytic capacitor and deteriorate leakage current. To prevent this, the pH of the cleaning liquid is adjusted to 3 to 8. It is preferable to control to 4-6.

本発明に用いられる洗浄液中に添加させる芳香族スルホン酸イオンを含む化合物としては、p‐トルエンスルホン酸1水和物、テトラエチルアンモニウム‐p‐トルエンスルホン酸、モノ‐p‐トルエンスルホン酸尿素、p‐トルエンスルホン酸ナトリウム、2‐アミノ‐5‐メチルベンゼン‐1‐スルホン酸、1‐シクロヘキシル‐3‐(2‐モルホリノエチル)カルボジイミドメト‐p‐トルエンスルホン酸、N‐シクロヘキシル‐N’‐(2‐モルホリノエチル)カルボジイミドメト‐p‐トルエンスルホン酸塩、p‐トルエンスルホニルヒドラジド、ナフタレンスルホン酸およびその誘導体などがあげられ、これらの化合物は洗浄液のpH調整剤としても用いることができる。   Compounds containing aromatic sulfonate ions to be added to the cleaning liquid used in the present invention include p-toluenesulfonic acid monohydrate, tetraethylammonium-p-toluenesulfonic acid, mono-p-toluenesulfonic acid urea, p -Sodium toluene sulfonate, 2-amino-5-methylbenzene-1-sulfonic acid, 1-cyclohexyl-3- (2-morpholinoethyl) carbodiimidometh-p-toluenesulfonic acid, N-cyclohexyl-N '-(2 -Morpholinoethyl) carbodiimidometh-p-toluenesulfonic acid salt, p-toluenesulfonyl hydrazide, naphthalenesulfonic acid and derivatives thereof, and the like, and these compounds can also be used as a pH adjuster for the washing liquid.

本発明に用いられる洗浄液のpH調整剤としては、上述した化合物に加え、硫酸や硝酸、アンモニア水などが用いられる。   As the pH adjuster for the cleaning liquid used in the present invention, sulfuric acid, nitric acid, aqueous ammonia and the like are used in addition to the above-described compounds.

本発明に用いられる洗浄液の温度としては、キレート生成反応を促進するために、30〜80℃の温度範囲に制御することが好ましく、より好ましくは60〜80℃である。   The temperature of the cleaning liquid used in the present invention is preferably controlled in the temperature range of 30 to 80 ° C., more preferably 60 to 80 ° C., in order to promote the chelate formation reaction.

上記洗浄液を用いてπ共役系導電性高分子を洗浄する方法としては、従来周知の方法が利用でき、例えば、本発明に用いられる洗浄液にπ共役系導電性高分子を浸漬する方法や、洗浄液をπ共役系導電性高分子に噴霧するシャワー洗浄法などがあげられる。この洗浄操作の後に、適当な溶媒(例えば純水、イソプロパノールまたはその混合溶媒)にて洗浄した後、好ましくは芳香族スルホン酸イオンを含有する溶液で洗浄する。   As a method of cleaning the π-conjugated conductive polymer using the cleaning liquid, a conventionally known method can be used. For example, a method of immersing a π-conjugated conductive polymer in the cleaning liquid used in the present invention, or a cleaning liquid And a shower cleaning method in which is sprayed onto a π-conjugated conductive polymer. After this washing operation, washing with an appropriate solvent (for example, pure water, isopropanol or a mixed solvent thereof), and preferably washing with a solution containing aromatic sulfonate ions.

上記工程により精製させたπ共役系導電性高分子は、鉄イオンが効率的に除去され、耐熱性・耐湿性に優れたπ共役系導電性高分子が得られ、光、電子、電磁デバイスへの応用が可能である。   The π-conjugated conductive polymer purified by the above process efficiently removes iron ions, yielding a π-conjugated conductive polymer with excellent heat resistance and moisture resistance, to light, electronic, and electromagnetic devices. Can be applied.

次に、本発明のπ共役系導電性高分子の精製方法について、アルミニウム固体電解コンデンサへの適用例をあげて、図1を参照して詳細に説明する。   Next, the method for purifying a π-conjugated conductive polymer of the present invention will be described in detail with reference to FIG. 1, taking an example of application to an aluminum solid electrolytic capacitor.

エッチング処理及び誘電体酸化皮膜2を形成させたアルミニウム箔1に、芳香族スルホン酸金属塩を含む水及び/または有機溶媒からなる酸化剤溶液を含浸させた後、ADOT溶液中に浸漬させて、固体電解質3であるPADOT層を形成させる。   The aluminum foil 1 on which the etching treatment and the dielectric oxide film 2 are formed is impregnated with an oxidizing agent solution composed of water and / or an organic solvent containing an aromatic sulfonic acid metal salt, and then immersed in an ADOT solution. A PADOT layer that is the solid electrolyte 3 is formed.

上記箔を純水などで洗浄した後に、キレート化合物を含む洗浄液中に浸漬する等の洗浄操作により、PADOT層に残渣する鉄イオンを除去する。その際、キレート化合物濃度としては0.2mol/L未満含有することが好ましい。   After the foil is washed with pure water or the like, iron ions remaining in the PADOT layer are removed by a washing operation such as immersing in a washing solution containing a chelate compound. At that time, the chelate compound concentration is preferably less than 0.2 mol / L.

上記キレート化合物としては、前述のように、アミノポリカルボン酸化合物、ジピリジル、テルピリジル、フェナントロリン、ジフェニルチオカルバゾン化合物およびニトロソナフトール化合物からなる群から選ばれる少なくとも1種を用いることができるが、ジピリジル、テルピリジル及びフェナントロリンからなる群から選ばれる少なくとも1種とニトロソナフトール化合物とを併用して用いるのが好ましい。   As the chelate compound, as described above, at least one selected from the group consisting of aminopolycarboxylic acid compounds, dipyridyl, terpyridyl, phenanthroline, diphenylthiocarbazone compounds and nitrosonaphthol compounds can be used. It is preferable to use at least one selected from the group consisting of terpyridyl and phenanthroline in combination with a nitrosonaphthol compound.

キレート化合物を含む洗浄液は、pH3〜8に制御され、かつ芳香族スルホン酸イオン、例えばトルエンスルホン酸イオンを少なくとも0.2mol/L含有することが好ましい。また、該洗浄液は、30〜80℃の温度に制御されていることが好ましい。   The cleaning liquid containing the chelate compound is preferably controlled to have a pH of 3 to 8 and contains at least 0.2 mol / L of an aromatic sulfonate ion, for example, toluene sulfonate ion. Moreover, it is preferable that this washing | cleaning liquid is controlled to the temperature of 30-80 degreeC.

誘電体酸化皮膜上にPADOT層を形成させた後、上記洗浄液で洗浄する操作を1回または複数回繰り返して、所望の厚みのPADOT層を形成させ、ついで、グラファイト層、銀ペースト層からなる陰極導電層4を形成させてコンデンサ素子を得る。   After the PADOT layer is formed on the dielectric oxide film, the operation of cleaning with the above cleaning solution is repeated once or a plurality of times to form a PADOT layer having a desired thickness, and then a cathode comprising a graphite layer and a silver paste layer Conductive layer 4 is formed to obtain a capacitor element.

得られたコンデンサ素子をリードフレームに載置し、コンデンサ素子の陽極端子部5を外部陽極リード6に電気的に接合させ、また、陰極導電層4を導電性接着剤7を介して外部陰極リード8に接着させ、ついで、外装樹脂9でモールドして本発明のアルミニウム固体電解コンデンサを完成する。   The obtained capacitor element is placed on a lead frame, the anode terminal portion 5 of the capacitor element is electrically joined to the external anode lead 6, and the cathode conductive layer 4 is connected to the external cathode lead via the conductive adhesive 7. 8 and then molded with the exterior resin 9 to complete the aluminum solid electrolytic capacitor of the present invention.

本発明によれば、化学酸化重合法により生成されるπ共役系導電性高分子を簡便な工程により精製することができ、π共役系導電性高分子中に残渣する鉄イオンが効果的に除去されることにより、π共役系導電性高分子の耐熱性・耐湿性を向上させることが可能である。   According to the present invention, a π-conjugated conductive polymer produced by a chemical oxidative polymerization method can be purified by a simple process, and iron ions remaining in the π-conjugated conductive polymer are effectively removed. Thus, the heat resistance and moisture resistance of the π-conjugated conductive polymer can be improved.

また、本発明により精製されたπ共役系導電性高分子を用いた固体電解コンデンサなどの電気エネルギー蓄積デバイスや、半導体デバイスは、耐熱性・耐湿性に優れる。   In addition, an electrical energy storage device such as a solid electrolytic capacitor using a π-conjugated conductive polymer purified by the present invention, and a semiconductor device are excellent in heat resistance and moisture resistance.

以下、本発明を実施例に基づいて詳細に説明するが、本発明は実施例によりなんら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited at all by the Example.

実施例1
酸化剤溶液としてp‐トルエンスルホン酸第2鉄/ブタノール=0.4mol/200mL溶液を調製した。
Example 1
As an oxidant solution, a solution of ferric p-toluenesulfonate / butanol = 0.4 mol / 200 mL was prepared.

次に、図1において、誘電体酸化皮膜2を形成させた200μm厚のエッチングアルミニウム箔1(6×4mm)上に、3,4‐エチレンジオキシチオフェン(以下、「EDOT」と略記する。)溶液、ついで先に調製した酸化剤溶液を塗布した後、120℃の雰囲気中で溶媒を除去しながら化学酸化重合を行い、固体電解質3としてポリエチレンジオキチオフェン(以下、「PEDOT」と略記する。)層を形成させた。   Next, in FIG. 1, 3,4-ethylenedioxythiophene (hereinafter abbreviated as “EDOT”) on an etching aluminum foil 1 (6 × 4 mm) having a thickness of 200 μm on which a dielectric oxide film 2 is formed. After applying the solution and then the previously prepared oxidant solution, chemical oxidative polymerization is performed while removing the solvent in an atmosphere of 120 ° C., and the solid electrolyte 3 is abbreviated as polyethylene dioxothiophene (hereinafter “PEDOT”). ) Layer was formed.

上記素子を、エタノールで洗浄した後に、キレート化合物としてEDTA‐2Naを0.3mol/L、テトラエチルアンモニウム‐p‐トルエンスルホン酸を0.4mol/Lを含み、pH5に調整した温度60℃の洗浄液中に10分間浸漬し、ついで純水で洗浄した。   In the cleaning solution at a temperature of 60 ° C. adjusted to pH 5 containing 0.3 mol / L of EDTA-2Na and 0.4 mol / L of tetraethylammonium-p-toluenesulfonic acid as chelate compounds after washing the device with ethanol For 10 minutes and then washed with pure water.

上記工程をPEDOT層の厚みが15μmとなるまで繰り返した後、カーボン層、銀ペースト層からなる陰極導電層4を形成させ、コンデンサ素子を作製した。   The above process was repeated until the thickness of the PEDOT layer became 15 μm, and then a cathode conductive layer 4 composed of a carbon layer and a silver paste layer was formed to produce a capacitor element.

得られたコンデンサ素子に外装を施して、図1に示すアルミニウム固体電解コンデンサを完成させた。   The obtained capacitor element was packaged to complete the aluminum solid electrolytic capacitor shown in FIG.

得られたアルミニウム固体電解コンデンサ10個について、静電容量(周波数120Hz)、誘電損失(tanδ、周波数120Hz)、ESR(100kHz)および定格電圧6.3V印加1分後の漏れ電流(LC)を各々測定し、平均値を算出した。さらに、温度60℃、湿度95%雰囲気中に500時間保持して耐熱・耐湿試験を行い、同様にして静電容量、tanδ、ESR及び漏れ電流を各々測定し、平均値を算出した。   For the 10 aluminum solid electrolytic capacitors obtained, the capacitance (frequency 120 Hz), dielectric loss (tan δ, frequency 120 Hz), ESR (100 kHz), and leakage current (LC) 1 minute after application of the rated voltage 6.3 V, respectively. The average value was calculated. Furthermore, a heat resistance / humidity resistance test was performed by holding in an atmosphere of temperature 60 ° C. and humidity 95% for 500 hours. Similarly, the capacitance, tan δ, ESR and leakage current were measured, and the average value was calculated.

また、試験終了後にコンデンサ素子を強酸によって溶解し、1素子中に含まれる鉄イオンを高周波プラズマ発光分光法により定量した。コンデンサの電気特性測定結果を表1に、コンデンサ素子中の鉄イオン含有量を表2に示す。表1及び表2の結果から、鉄イオンは非常に少なく、素子の劣化は初期値の8%以内であり、高い耐熱性・耐湿性を有することが確認できた。   Moreover, the capacitor | condenser element was melt | dissolved with the strong acid after completion | finish of a test, and the iron ion contained in one element was quantified by the high frequency plasma emission spectroscopy. Table 1 shows the measurement results of electrical characteristics of the capacitor, and Table 2 shows the iron ion content in the capacitor element. From the results shown in Tables 1 and 2, iron ions were very small, and the deterioration of the device was within 8% of the initial value, confirming that it had high heat resistance and moisture resistance.

実施例2
酸化剤溶液としてp‐トルエンスルホン酸第2鉄/ブタノール=0.4mol/200ml溶液を調製した。
Example 2
As an oxidizing agent solution, a solution of ferric p-toluenesulfonate / butanol = 0.4 mol / 200 ml was prepared.

次に、誘電体酸化皮膜を形成させた200μm厚のエッチングアルミニウム箔(6×4mm)上に、温度‐10℃に冷却したアニリン溶液、ついで先に調製した酸化剤溶液(‐10℃)を塗布し、室温で化学酸化重合を行い、ポリアニリン層を形成させた。   Next, on the etched aluminum foil (6 × 4 mm) having a thickness of 200 μm on which the dielectric oxide film is formed, the aniline solution cooled to −10 ° C. and the previously prepared oxidizing solution (−10 ° C.) are applied. Then, chemical oxidative polymerization was performed at room temperature to form a polyaniline layer.

上記素子をエタノールで洗浄した後に、キレート化合物として1‐ニトロソ‐2‐ナフトールを0.2mol/L、テトラエチルアンモニウム‐p‐トルエンスルホン酸を0.4mol/L含み、pH6に調整した温度60℃の洗浄液中に10分間浸漬し、ついで純水で洗浄した。   After the device was washed with ethanol, the temperature was adjusted to pH 6 at a temperature of 60 ° C. containing 0.2 mol / L of 1-nitroso-2-naphthol as a chelate compound and 0.4 mol / L of tetraethylammonium-p-toluenesulfonic acid. It was immersed in a cleaning solution for 10 minutes and then washed with pure water.

上記工程をポリアニリン層の厚みが8μmとなるまで繰り返した後、カーボン層、銀ペースト層からなる陰極導電層を形成させ、図1に示すアルミニウム固体電解コンデンサを10個完成させた。   The above process was repeated until the thickness of the polyaniline layer became 8 μm, and then a cathode conductive layer composed of a carbon layer and a silver paste layer was formed, and 10 aluminum solid electrolytic capacitors shown in FIG. 1 were completed.

得られたアルミニウム固体電解コンデンサについて、実施例1と同様にして、初期及び耐熱・耐湿試験後の静電容量、tanδ、ESR及び漏れ電流を各々測定し平均値を算出した。また、実施例1と同様にして、コンデンサ素子中の鉄イオンの定量を行った。コンデンサの電気特性測定結果を表1に、コンデンサ素子中の鉄イオン含有量を表2に示す。表1及び表2の結果から、コンデンサ素子中に含まれる鉄イオンは非常に少なく、素子の劣化は初期値の4%以内であり、高い耐熱性・耐湿性を有することが確認できた。   With respect to the obtained aluminum solid electrolytic capacitor, in the same manner as in Example 1, the initial value and the capacitance, tan δ, ESR, and leakage current after the heat and humidity resistance test were measured, and the average value was calculated. Further, in the same manner as in Example 1, iron ions in the capacitor element were quantified. Table 1 shows the measurement results of electrical characteristics of the capacitor, and Table 2 shows the iron ion content in the capacitor element. From the results of Tables 1 and 2, the capacitor elements contained very few iron ions, and the deterioration of the elements was within 4% of the initial value, confirming that they had high heat resistance and moisture resistance.

実施例3
酸化剤溶液としてp‐トルエンスルホン酸第2鉄/ブタノール=0.3mol/200ml溶液を調製した。
Example 3
A solution of ferric p-toluenesulfonate / butanol = 0.3 mol / 200 ml was prepared as an oxidant solution.

次に、誘電体酸化皮膜を形成させた200μm厚のエッチングアルミニウム箔(6×4mm)上に、ピロール溶液、ついで先に調製した酸化剤溶液を塗布し、室温で化学酸化重合を行い、ポリピロール層を形成させた。   Next, a pyrrole solution and then the previously prepared oxidant solution are applied onto an etching aluminum foil (6 × 4 mm) having a thickness of 200 μm on which a dielectric oxide film is formed, followed by chemical oxidative polymerization at room temperature, and a polypyrrole layer Formed.

上記素子をエタノールで洗浄した後に、キレート化合物としてジピリジル0.2mol/L及び2‐ニトロソ‐1‐ナフトール0.2mol/L、p‐トルエンスルホン酸0.4mol/L含み、pH4に調整した温度80℃の洗浄液中に10分間浸漬し、ついで純水で洗浄した。   After the device was washed with ethanol, the temperature was adjusted to pH 4 containing dipyridyl 0.2 mol / L, 2-nitroso-1-naphthol 0.2 mol / L, and p-toluenesulfonic acid 0.4 mol / L as chelate compounds. It was immersed in a cleaning solution at 0 ° C. for 10 minutes and then washed with pure water.

上記工程をポリピロール層の厚みが25μmとなるまで繰り返した後、カーボン層、銀ペースト層からなる陰極導電層を形成させ、図1に示すアルミニウム固体電解コンデンサを10個完成させた。   The above process was repeated until the thickness of the polypyrrole layer became 25 μm, then a cathode conductive layer composed of a carbon layer and a silver paste layer was formed, and 10 aluminum solid electrolytic capacitors shown in FIG. 1 were completed.

得られたアルミニウム固体電解コンデンサについて、実施例1と同様にして、初期及び耐熱・耐湿試験後の静電容量、tanδ、ESR及び漏れ電流を各々測定し平均値を算出した。また、実施例1と同様にして、コンデンサ素子中の鉄イオンの定量を行った。コンデンサの電気特性測定結果を表1に、コンデンサ素子中の鉄イオン含有量を表2に示す。表1及び表2の結果から、鉄イオンは非常に少なく、素子の劣化は初期値の2%以内であり、高い耐熱性・耐湿性を有することが確認できた。   With respect to the obtained aluminum solid electrolytic capacitor, in the same manner as in Example 1, the initial value and the capacitance, tan δ, ESR, and leakage current after the heat and humidity resistance test were measured, and the average value was calculated. Further, in the same manner as in Example 1, iron ions in the capacitor element were quantified. The results of measuring the electrical characteristics of the capacitor are shown in Table 1, and the iron ion content in the capacitor element is shown in Table 2. From the results shown in Tables 1 and 2, it was confirmed that the amount of iron ions was very small, the deterioration of the device was within 2% of the initial value, and it had high heat resistance and moisture resistance.

実施例4
酸化剤溶液としてp‐トルエンスルホン酸第2鉄/ブタノール=0.4mol/200ml溶液を調製した。
Example 4
As an oxidizing agent solution, a solution of ferric p-toluenesulfonate / butanol = 0.4 mol / 200 ml was prepared.

次に、誘電体酸化皮膜を形成させた200μm厚のエッチングアルミニウム箔(6×4mm)上に、EDOT溶液、ついで先に調製した酸化剤溶液を塗布し、120℃の雰囲気中で溶媒を除去しながら化学酸化重合を行い、PEDOT層を形成させた。   Next, an EDOT solution and then the previously prepared oxidant solution are applied onto a 200 μm thick etched aluminum foil (6 × 4 mm) on which a dielectric oxide film is formed, and the solvent is removed in an atmosphere at 120 ° C. Then, chemical oxidation polymerization was performed to form a PEDOT layer.

上記素子をエタノールで洗浄した後に、キレート化合物としてエノール型ジチゾンを0.4mol/L、テトラエチルアンモニウム‐p‐トルエンスルホン酸を0.4mol/Lを含み、pH4に調整した温度60℃の洗浄液中に10分間浸漬し、ついで純水で洗浄した。   After the device was washed with ethanol, the enol-type dithizone was added as a chelate compound in an amount of 0.4 mol / L, tetraethylammonium-p-toluenesulfonic acid was added in an amount of 0.4 mol / L, and the pH was adjusted to 4 in a cleaning solution at a temperature of 60 ° C. It was immersed for 10 minutes and then washed with pure water.

上記工程をPEDOT層厚みが18μmとなるまで繰り返した後、カーボン層、銀ペースト層をからなる陰極導電層を形成させ、図1に示すアルミニウム固体電解コンデンサを10個完成させた。   After repeating the above steps until the PEDOT layer thickness became 18 μm, a cathode conductive layer composed of a carbon layer and a silver paste layer was formed, and 10 aluminum solid electrolytic capacitors shown in FIG. 1 were completed.

得られたアルミニウム固体電解コンデンサについて、実施例1と同様にして、初期及び耐熱・耐湿試験後の静電容量、tanδ、ESR及び漏れ電流を各々測定し平均値を算出した。また、実施例1と同様にして、コンデンサ素子中の鉄イオンの定量を行った。コンデンサの電気特性測定結果を表1に、コンデンサ素子中の鉄イオン含有量を表2に示す。表1及び表2の結果から、鉄イオンは非常に少なく、素子の劣化は初期値の7%以内であり、高い耐熱性・耐湿性を有することが確認できた。   With respect to the obtained aluminum solid electrolytic capacitor, in the same manner as in Example 1, the initial value and the capacitance, tan δ, ESR, and leakage current after the heat and humidity resistance test were measured, and the average value was calculated. Further, in the same manner as in Example 1, iron ions in the capacitor element were quantified. Table 1 shows the measurement results of electrical characteristics of the capacitor, and Table 2 shows the iron ion content in the capacitor element. From the results shown in Tables 1 and 2, iron ions were very small and the deterioration of the device was within 7% of the initial value, confirming that it had high heat resistance and moisture resistance.

比較例1
特開平10‐251384号公報に準じて、酸化剤溶液としてp‐トルエンスルホン酸第2鉄0.1mol/L 、 5‐スルホサリチル酸0.4mol/Lのアセトニトリル溶液を使用してPEDOT層を形成させ、洗浄液として純水及びエタノールを使用して洗浄し、それ以外は実施例1と同様にして図1に示すアルミニウム固体電解コンデンサを10個完成させた。
Comparative Example 1
According to Japanese Patent Laid-Open No. 10-251384, a PEDOT layer is formed using an acetonitrile solution of 0.1 mol / L of ferric p-toluenesulfonic acid and 0.4 mol / L of 5-sulfosalicylic acid as an oxidant solution. Washing was performed using pure water and ethanol as the cleaning liquid, and 10 aluminum solid electrolytic capacitors shown in FIG. 1 were completed in the same manner as in Example 1 except that.

得られたアルミニウム固体電解コンデンサについて、実施例1と同様にして、初期及び耐熱・耐湿試験後の静電容量、tanδ、ESR及び漏れ電流を各々測定し平均値を算出した。また、実施例1と同様にして、コンデンサ素子中の鉄イオンの定量を行った。コンデンサの電気特性測定結果を表1に、コンデンサ素子中の鉄イオン含有量を表2に示す。表1及び表2の結果から、鉄イオンは多く残存し、コンデンサ特性の劣化は初期値の40%以上であり、耐熱性・耐湿性に劣ることが確認された。   With respect to the obtained aluminum solid electrolytic capacitor, in the same manner as in Example 1, the initial value and the capacitance, tan δ, ESR, and leakage current after the heat and humidity resistance test were measured, and the average value was calculated. Further, in the same manner as in Example 1, iron ions in the capacitor element were quantified. The results of measuring the electrical characteristics of the capacitor are shown in Table 1, and the iron ion content in the capacitor element is shown in Table 2. From the results in Tables 1 and 2, it was confirmed that a large amount of iron ions remained and the capacitor characteristics were deteriorated by 40% or more of the initial value, which was inferior in heat resistance and moisture resistance.

比較例2
特開平2000‐106329号公報に準じて、酸化剤溶液としてナフタレンスルホン酸鉄37.15質量%、水5.2質量%、エタノール57.65質量%の組成を有する溶液を使用してPEDOT層を形成させ、洗浄液として純水及びエタノールを使用して洗浄し、それ以外は実施例1と同様にして図1に示すアルミニウム固体電解コンデンサを10個完成させた。
Comparative Example 2
According to Japanese Patent Laid-Open No. 2000-106329, a PEDOT layer is formed using a solution having a composition of 37.15% by mass of iron naphthalenesulfonate, 5.2% by mass of water, and 57.65% by mass of ethanol as an oxidant solution. The aluminum solid electrolytic capacitor shown in FIG. 1 was completed in the same manner as in Example 1 except that it was cleaned using pure water and ethanol as the cleaning liquid.

得られたアルミニウム固体電解コンデンサについて、実施例1と同様にして、初期及び耐熱・耐湿試験後の静電容量、tanδ、ESR及び漏れ電流を各々測定し平均値を算出した。また、実施例1と同様にして、コンデンサ素子中の鉄イオンの定量を行った。コンデンサの電気特性測定結果を表1に、コンデンサ素子中の鉄イオン含有量を表2に示す。表1及び表2の結果から、鉄イオンは多く残存し、素子内部の腐食により、コンデンサが激しく劣化し、電気特性の測定は不可能であった。   With respect to the obtained aluminum solid electrolytic capacitor, in the same manner as in Example 1, the initial value and the capacitance, tan δ, ESR, and leakage current after the heat and humidity resistance test were measured, and the average value was calculated. Further, in the same manner as in Example 1, iron ions in the capacitor element were quantified. The results of measuring the electrical characteristics of the capacitor are shown in Table 1, and the iron ion content in the capacitor element is shown in Table 2. From the results shown in Tables 1 and 2, a large amount of iron ions remained, the capacitor was severely deteriorated due to corrosion inside the device, and measurement of electrical characteristics was impossible.

Figure 2006104314
Figure 2006104314

Figure 2006104314
Figure 2006104314

アルミニウム固体電解コンデンサの断面模式図である。It is a cross-sectional schematic diagram of an aluminum solid electrolytic capacitor.

符号の説明Explanation of symbols

1 アルミニウム箔
2 誘電体酸化皮膜
3 固体電解質層
4 陰極導電層
5 陽極端子部
6 外部陽極リード
7 導電性接着剤
8 外部陰極リード
9 外装樹脂

DESCRIPTION OF SYMBOLS 1 Aluminum foil 2 Dielectric oxide film 3 Solid electrolyte layer 4 Cathode conductive layer 5 Anode terminal part 6 External anode lead 7 Conductive adhesive 8 External cathode lead 9 Exterior resin

Claims (8)

π共役系導電性高分子の単量体から芳香族スルホン酸金属塩を酸化剤とする酸化重合反応によって生成されるπ共役系導電性高分子を精製する方法であって、前記π共役系導電性高分子を、キレート化合物を含む洗浄液を用いて洗浄することにより、該π共役系導電性高分子中に残渣する金属イオンを除去することを特徴とするπ共役系導電性高分子の精製方法。 A method for purifying a π-conjugated conductive polymer produced from a monomer of a π-conjugated conductive polymer by an oxidative polymerization reaction using an aromatic sulfonic acid metal salt as an oxidizing agent. A method for purifying a π-conjugated conductive polymer, characterized in that metal ions remaining in the π-conjugated conductive polymer are removed by washing the conductive polymer with a cleaning liquid containing a chelate compound . ピロール、アルキレンジオキシチオフェン、アニリン及びそれらの誘導体からなる群から選ばれる少なくとも1種から芳香族スルホン酸金属塩を酸化剤とする酸化重合反応によって生成されるπ共役系導電性高分子を精製する方法であって、前記π共役系導電性高分子を、キレート化合物を含む洗浄液を用いて洗浄することにより、該π共役系導電性高分子中に残渣する金属イオンを除去することを特徴とするπ共役系導電性高分子の精製方法。 A π-conjugated conductive polymer produced by an oxidative polymerization reaction using an aromatic sulfonic acid metal salt as an oxidizing agent is purified from at least one selected from the group consisting of pyrrole, alkylenedioxythiophene, aniline and derivatives thereof. The method is characterized in that metal ions remaining in the π-conjugated conductive polymer are removed by cleaning the π-conjugated conductive polymer with a cleaning liquid containing a chelate compound. A method for purifying a π-conjugated conductive polymer. キレート化合物が、ジピリジル、テルピリジル、フェナントロリン、ジフェニルチオカルバゾン化合物、ニトロソナフトール化合物及びアミノポリカルボン酸化合物からなる群から選ばれる少なくとも1種であることを特徴とする請求項1または請求項2のいずれかに記載のπ共役系導電性高分子の精製方法。 The chelate compound is at least one selected from the group consisting of dipyridyl, terpyridyl, phenanthroline, diphenylthiocarbazone compound, nitrosonaphthol compound, and aminopolycarboxylic acid compound. A method for purifying the π-conjugated conductive polymer according to claim 1. キレート化合物を含む洗浄液が、キレート化合物を0.2mol/L未満含有することを特徴とする請求項1から請求項3のいずれか1項に記載のπ共役系導電性高分子の精製方法。 The method for purifying a π-conjugated conductive polymer according to any one of claims 1 to 3, wherein the cleaning liquid containing the chelate compound contains less than 0.2 mol / L of the chelate compound. キレート化合物を含む洗浄液が、pH3〜8に制御されてなり、かつ芳香族スルホン酸イオンを含有することを特徴する請求項1から請求項4のいずれか1項に記載のπ共役系導電性高分子の精製方法。 5. The π-conjugated system high conductivity according to claim 1, wherein the cleaning liquid containing the chelate compound is controlled to have a pH of 3 to 8 and contains an aromatic sulfonate ion. Molecular purification method. キレート化合物を含む洗浄液が、30〜80℃の温度に制御されてなることを特徴する請求項1から請求項5のいずれか1項に記載のπ共役系導電性高分子の精製方法。 The method for purifying a π-conjugated conductive polymer according to any one of claims 1 to 5, wherein the cleaning liquid containing the chelate compound is controlled at a temperature of 30 to 80 ° C. 請求項1から請求項6のいずれか1項に記載の精製方法により得られたπ共役系導電性高分子から構成される電気エネルギー蓄積デバイス。 An electrical energy storage device comprising a π-conjugated conductive polymer obtained by the purification method according to any one of claims 1 to 6. 請求項1から請求項6のいずれか1項に記載の精製方法により得られたπ共役系導電性高分子から構成される半導体デバイス。

A semiconductor device comprising a π-conjugated conductive polymer obtained by the purification method according to any one of claims 1 to 6.

JP2004292150A 2004-10-05 2004-10-05 Purification method of π-conjugated conductive polymer, electric energy storage device and semiconductor device Pending JP2006104314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292150A JP2006104314A (en) 2004-10-05 2004-10-05 Purification method of π-conjugated conductive polymer, electric energy storage device and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292150A JP2006104314A (en) 2004-10-05 2004-10-05 Purification method of π-conjugated conductive polymer, electric energy storage device and semiconductor device

Publications (1)

Publication Number Publication Date
JP2006104314A true JP2006104314A (en) 2006-04-20

Family

ID=36374419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292150A Pending JP2006104314A (en) 2004-10-05 2004-10-05 Purification method of π-conjugated conductive polymer, electric energy storage device and semiconductor device

Country Status (1)

Country Link
JP (1) JP2006104314A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119548A (en) * 2005-10-26 2007-05-17 Shin Etsu Polymer Co Ltd Conductive polymer coating and conductive coating film
JP2008205164A (en) * 2007-02-20 2008-09-04 Rohm Co Ltd Solid state electrolytic capacitor and its manufacturing method
JP2008258568A (en) * 2007-03-15 2008-10-23 Sanyo Electric Co Ltd Method for manufacturing solid electrolytic capacitor and solid electrolytic capacitor
JP2009170412A (en) * 2007-12-18 2009-07-30 Sumitomo Chemical Co Ltd Purification method of polymer electrolyte
JP2009252913A (en) * 2008-04-04 2009-10-29 Nichicon Corp Method of manufacturing solid electrolytic capacitor
JP2010275548A (en) * 2009-05-28 2010-12-09 Showa Denko Kk Method for producing poly(3,4-alkylenedioxythiophene) having high electrical conductivity
JP2015074721A (en) * 2013-10-09 2015-04-20 東ソー株式会社 Method for producing arylamine compound
US20230197491A1 (en) * 2021-12-22 2023-06-22 Entegris, Inc. Methods and systems having conductive polymer coating for electrostatic discharge applications

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119548A (en) * 2005-10-26 2007-05-17 Shin Etsu Polymer Co Ltd Conductive polymer coating and conductive coating film
JP2008205164A (en) * 2007-02-20 2008-09-04 Rohm Co Ltd Solid state electrolytic capacitor and its manufacturing method
JP2008258568A (en) * 2007-03-15 2008-10-23 Sanyo Electric Co Ltd Method for manufacturing solid electrolytic capacitor and solid electrolytic capacitor
JP2009170412A (en) * 2007-12-18 2009-07-30 Sumitomo Chemical Co Ltd Purification method of polymer electrolyte
JP2009252913A (en) * 2008-04-04 2009-10-29 Nichicon Corp Method of manufacturing solid electrolytic capacitor
JP2010275548A (en) * 2009-05-28 2010-12-09 Showa Denko Kk Method for producing poly(3,4-alkylenedioxythiophene) having high electrical conductivity
JP2015074721A (en) * 2013-10-09 2015-04-20 東ソー株式会社 Method for producing arylamine compound
US20230197491A1 (en) * 2021-12-22 2023-06-22 Entegris, Inc. Methods and systems having conductive polymer coating for electrostatic discharge applications

Similar Documents

Publication Publication Date Title
JP5484995B2 (en) Solid electrolytic capacitor and manufacturing method thereof
EP2146359B1 (en) Solid electrolytic capacitor and method for producing the same
JP3065286B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2006104314A (en) Purification method of π-conjugated conductive polymer, electric energy storage device and semiconductor device
JP2733618B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3076259B2 (en) Oxidant solution for synthesis of heat-resistant conductive polymer and method for producing conductive polymer
KR100262709B1 (en) Electrically-conductive polymer and production method thereof and solid-electrolytic capacitor
JP2605596B2 (en) Conductive polymer film and method for producing the same, conductive polymer compound solution, and solid electrolytic capacitor and method for producing the same
EP2202765A2 (en) Electrically conducting polymer, solid electrolytic capacitor and manufacturing method thereof
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JP4259794B2 (en) Manufacturing method of solid electrolytic capacitor
JP5557638B2 (en) Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same
JPH1036687A (en) Conductive polymer compound, solid electrolyte capacitor using the same and its production
JP4035639B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2612007B2 (en) Method for manufacturing solid electrolytic capacitor
JP2632944B2 (en) Solid electrolytic capacitors
JP4126746B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR0146612B1 (en) Solid electrolytic capacitor using conductive polymer as counter electrode
JP3365211B2 (en) Method for manufacturing solid electrolytic capacitor
JP3060958B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2003203826A (en) Aluminum electrolytic capacitor and its manufacturing method
JPH04245613A (en) Solid electrolytic capacitor
JPH0541337A (en) Manufacture of solid electrolytic capacitor
JPH10308327A (en) Manufacturing method of capacitor
JPH05175080A (en) Solid electrolytic capacitor