[go: up one dir, main page]

JP2006100153A - Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell - Google Patents

Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell Download PDF

Info

Publication number
JP2006100153A
JP2006100153A JP2004285834A JP2004285834A JP2006100153A JP 2006100153 A JP2006100153 A JP 2006100153A JP 2004285834 A JP2004285834 A JP 2004285834A JP 2004285834 A JP2004285834 A JP 2004285834A JP 2006100153 A JP2006100153 A JP 2006100153A
Authority
JP
Japan
Prior art keywords
gas
solid oxide
fuel
fuel cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004285834A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Iwata
光由 岩田
Shigenori Koga
重徳 古賀
Yoshinori Kobayashi
由則 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004285834A priority Critical patent/JP2006100153A/en
Publication of JP2006100153A publication Critical patent/JP2006100153A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operating method of a solid oxide fuel cell in which power generation can be resumed rapidly even if operation has been stopped in a high temperature state, and provide a power generating facility of the solid oxide fuel cell using this method. <P>SOLUTION: In this method, a stopping process of power generation operation is carried out in which, after feeding of a fuel gas 1 and air 2 is stopped in the high temperature state by purging the interior of the solid oxide fuel cell 22 with nitrogen gas 3, the power generation operation is stopped in the high temperature state, and a resuming process of power generation operation to resume the power generation operation is carried out in which, after the nitrogen gas 3 is supplied and circulated to fuel electrode sides and oxidation electrode sides of respective cells of the solid oxide fuel cell 22 during stopping of the power generation operation in the high temperature state, the fuel gas 1 is fed and circulated to the fuel electrode sides of respective cells of the solid oxide type fuel cell 22 while gradually increasing it and the air 2 is fed to air electrode sides of respective cells of the solid oxide type fuel cell 22 while gradually increasing it. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体酸化物形燃料電池を高温状態に維持したままで再起動するための運転方法及びこの方法を使用する固体酸化物形燃料電池発電設備に関する。   The present invention relates to an operation method for restarting a solid oxide fuel cell while maintaining a high temperature state, and a solid oxide fuel cell power generation facility using the method.

固体酸化物形燃料電池は、固体酸化物からなる電解質を金属酸化物からなる空気極と金属からなる燃料極とで挟んでセルを構成し、当該セルと導電性を有するセパレータとを交互に複数積層してスタックを構成し、当該スタックを高温(約700〜1000℃)状態に維持しながら、当該スタックの各セルの空気極側に空気供給マニホールドを介して酸素を含有する酸化ガスである空気を供給すると共に、当該スタックの各セルの燃料極側に燃料供給マニホールドを介して水素又は一酸化炭素を含有する燃料ガスを供給して、酸素と水素又は一酸化炭素とを各セルで電気化学的に反応させることにより、電力を得ることができるようになっており、家庭等での分散電源や電力会社の事業用電源等として有望視されている。   In a solid oxide fuel cell, a cell is formed by sandwiching an electrolyte made of a solid oxide between an air electrode made of a metal oxide and a fuel electrode made of a metal, and a plurality of such cells and conductive separators are alternately arranged. Air that is an oxidizing gas containing oxygen via an air supply manifold on the air electrode side of each cell of the stack while stacking to form a stack and maintaining the stack at a high temperature (about 700 to 1000 ° C.) In addition, a fuel gas containing hydrogen or carbon monoxide is supplied to the fuel electrode side of each cell of the stack via a fuel supply manifold, and oxygen and hydrogen or carbon monoxide are electrochemically reacted in each cell. It is possible to obtain electric power by reacting automatically, and it is considered promising as a distributed power source in homes or a business power source of an electric power company.

このような固体酸化物形燃料電池においては、高温状態で、燃料ガスが空気極側に漏れ入ったり、空気が燃料極側に漏れ入ったりすると、金属酸化物からなる空気極が還元されたり、金属からなる燃料極が酸化されたりして、発電性能が低下してしまう可能性があるだけでなく、空気と燃料ガスとが燃焼反応を生じてスタックを損傷させてしまうおそれがある。このため、従来の固体酸化物形燃料電池では、空気極側と燃料極側との間に各種のシール材を適用することにより、これらガスのリークを防止するようにしている(例えば、下記特許文献1等参照)。   In such a solid oxide fuel cell, when the fuel gas leaks to the air electrode side or the air leaks to the fuel electrode side at a high temperature state, the air electrode made of metal oxide is reduced, There is a possibility that the fuel electrode made of metal is oxidized and power generation performance is deteriorated, and there is a possibility that air and fuel gas cause a combustion reaction and damage the stack. For this reason, in a conventional solid oxide fuel cell, various kinds of sealing materials are applied between the air electrode side and the fuel electrode side to prevent leakage of these gases (for example, the following patents) Reference 1 etc.).

特開2004−146131号公報JP 2004-146131 A

しかしながら、前述したようなシール材を適用した固体酸化物形燃料電池であっても、空気や燃料ガスのリークを完全に防止することは難しく、例えば、家庭等において、負荷の変動に合わせて発電を一時的に停止(高温状態で空気及び燃料ガスの送給を一時中断)した後に発電を再開(高温状態で空気及び燃料ガスの送給を開始)するとき、すなわち、高温状態で空気及び燃料ガスを送給するときには、送給開始直後の空気及び燃料ガスの流量や流速が不安定でこれらガスが発電に寄与されずにリークしやすいと共に高温状態であるため、前述したような不具合が生じやすくなってしまう。   However, it is difficult to completely prevent air and fuel gas leakage even in the case of a solid oxide fuel cell to which a sealing material as described above is applied. Is temporarily stopped (the supply of air and fuel gas is temporarily interrupted in a high temperature state) and then the power generation is resumed (the supply of air and fuel gas is started in a high temperature state), that is, air and fuel in a high temperature state. When feeding gas, the flow and flow rate of air and fuel gas immediately after the start of feeding are unstable, and these gases do not contribute to power generation and are likely to leak and are in a high temperature state. It becomes easy.

そこで、上述したような場合には、スタックを低温状態(約300℃程度)にまで一旦冷却した後に、空気及び燃料ガスの送給を開始して、これらガスの流量や流速が安定化してから、スタックを運転温度(700〜1000℃)にまで再び加熱することにより、前述した不具合の発生を防止するようにしている。このため、運転の再開にあたっては、エネルギ的に多くの無駄を生じてしまうだけでなく、スタックの降温及び昇温に多くの時間を要してしまい、発電を早急に再開することができず、家庭等での分散電源や電力会社の事業用電源等としての実用性に弱点を有していた。   Therefore, in the case described above, after the stack is cooled to a low temperature (about 300 ° C.), air and fuel gas supply is started, and the flow rate and flow rate of these gases are stabilized. By heating the stack again to the operating temperature (700 to 1000 ° C.), the occurrence of the above-described problems is prevented. For this reason, in resuming operation, not only a lot of energy is wasted, but it takes a lot of time to lower and raise the temperature of the stack, and power generation cannot be resumed quickly, It has weaknesses in practicality as a distributed power source in homes and business power sources of electric power companies.

このようなことから、本発明は、高温状態で運転を停止しても発電を早急に再開することができる固体酸化物形燃料電池の運転方法及びこの方法を使用する固体酸化物形燃料電池発電設備を提供することを目的とする。   Therefore, the present invention provides a method for operating a solid oxide fuel cell capable of quickly restarting power generation even when operation is stopped in a high temperature state, and a solid oxide fuel cell power generation using this method. The purpose is to provide equipment.

前述した課題を解決するための、第一番目の発明に係る固体酸化物形燃料電池の運転方法は、固体酸化物形燃料電池のスタックの各セルの燃料極側に水素又は一酸化炭素を含有する燃料ガスを送給し、当該固体酸化物形燃料電池のスタックの各セルの空気極側に酸素を含有する酸化ガスを送給し、当該燃料ガスと当該酸化ガスとを各セルの固体酸化物からなる電解質において高温状態で電気化学的に反応させることにより電力を得る固体酸化物形燃料電池の運転方法であって、前記燃料ガス及び前記酸化ガスの送給を高温状態で停止した後、前記固体酸化物形燃料電池内を不活性ガスでパージすることにより、高温状態で発電運転を停止させる発電運転停止工程と、高温状態で発電運転停止中の前記固体酸化物形燃料電池の各セルの前記燃料極側及び前記空気極側に前記不活性ガスを送給して流通させた後、当該固体酸化物形燃料電池の各セルの当該燃料極側に前記燃料ガスを送給して流通させると共に、当該固体酸化物形燃料電池の各セルの当該空気極側に前記酸化ガスを送給して流通させることにより、セルの高温状態を維持した状態で発電運転を再開する発電運転再開工程とを行うことを特徴とする。   In order to solve the above-described problem, the solid oxide fuel cell operating method according to the first invention includes hydrogen or carbon monoxide on the fuel electrode side of each cell of the stack of the solid oxide fuel cell. The fuel gas is fed, the oxidizing gas containing oxygen is fed to the air electrode side of each cell of the stack of the solid oxide fuel cell, and the fuel gas and the oxidizing gas are fed into the solid oxide of each cell. An operation method of a solid oxide fuel cell that obtains electric power by electrochemically reacting in a high temperature state in an electrolyte composed of a substance, and after stopping the supply of the fuel gas and the oxidizing gas in a high temperature state, A power generation operation stopping step of stopping the power generation operation at a high temperature by purging the inside of the solid oxide fuel cell with an inert gas, and each cell of the solid oxide fuel cell being stopped at a high temperature Of the fuel And supplying the inert gas to the air electrode side and the air electrode side, and then supplying and distributing the fuel gas to the fuel electrode side of each cell of the solid oxide fuel cell, Performing a power generation operation restarting step of restarting the power generation operation in a state where the high temperature state of the cell is maintained by supplying and circulating the oxidizing gas to the air electrode side of each cell of the solid oxide fuel cell It is characterized by.

第二番目の発明に係る固体酸化物形燃料電池の運転方法は、第一番目の発明において、前記発電運転再開工程が、高温状態で発電運転停止中の前記固体酸化物形燃料電池の各セルの前記燃料極側及び前記空気極側に前記不活性ガスを送給して流通させる不活性ガス送給工程と、前記不活性ガスを送給して流通させた後、当該不活性ガスと前記燃料ガスとを混合した燃料用混合ガスを前記固体酸化物形燃料電池の各セルの前記燃料極側に送給して流通させると共に、当該不活性ガスと前記酸化ガスとを混合した酸化用混合ガスを前記固体酸化物形燃料電池の各セルの前記空気極側に送給して流通させる混合ガス送給工程と、前記混合ガスをそれぞれ送給して流通させた後、前記燃料ガスのみを前記固体酸化物形燃料電池の各セルの前記燃料極側に送給して流通させると共に、前記酸化ガスのみを前記固体酸化物形燃料電池の各セルの前記空気極側に送給して流通させる発電用ガス送給工程とを行うことを特徴とする。   The operation method of the solid oxide fuel cell according to the second invention is the operation method of the solid oxide fuel cell according to the first invention, wherein the power generation operation resuming step is stopped at a high temperature state in the power generation operation. An inert gas feeding step for feeding and circulating the inert gas to the fuel electrode side and the air electrode side, and after feeding and circulating the inert gas, the inert gas and the A mixed gas for fuel mixed with a fuel gas is fed to the fuel electrode side of each cell of the solid oxide fuel cell and circulated, and the mixed gas for oxidation is mixed with the inert gas and the oxidizing gas. A mixed gas feeding step of feeding and circulating gas to the air electrode side of each cell of the solid oxide fuel cell; and after feeding and circulating the mixed gas, respectively, only the fuel gas The fuel electrode side of each cell of the solid oxide fuel cell With circulating by feed, characterized in that only the oxidizing gas performs a power generation gas delivery step be distributed to feed to the air electrode side of each cell of the solid oxide fuel cell.

第三番目の発明に係る固体酸化物形燃料電池の運転方法は、第二番目の発明において、前記混合ガス送給工程が、送給する前記燃料用混合ガス中の前記燃料ガスの割合を徐々に増加させると共に、送給する前記酸化用混合ガス中の前記酸化ガスの割合を徐々に増加させるものであることを特徴とする。   According to a third aspect of the present invention, there is provided the solid oxide fuel cell operating method according to the second aspect of the invention, wherein the mixed gas feeding step gradually determines the ratio of the fuel gas in the fuel mixed gas to be fed. And the ratio of the oxidizing gas in the oxidizing gas mixture to be fed is gradually increased.

第四番目の発明に係る固体酸化物形燃料電池の運転方法は、第三番目の発明において、前記混合ガス送給工程が、前記燃料ガス及び前記酸化ガスの前記固体酸化物形燃料電池内でのリークによる異常反応を生じさせない割合で、前記燃料用混合ガス中の当該燃料ガスを徐々に増加させると共に、前記酸化用混合ガス中の当該酸化ガスを徐々に増加させるものであることを特徴とする。   According to a fourth aspect of the present invention, there is provided a method for operating a solid oxide fuel cell according to the third aspect, wherein the mixed gas feeding step includes the fuel gas and the oxidizing gas in the solid oxide fuel cell. The fuel gas in the fuel mixed gas is gradually increased at a rate that does not cause an abnormal reaction due to leakage of the fuel, and the oxidizing gas in the oxidizing gas mixture is gradually increased. To do.

また、前述した課題を解決するための、第五番目の発明に係る固体酸化物形燃料電池発電設備は、固体酸化物形燃料電池と、前記固体酸化物形燃料電池のスタックの各セルの燃料極側に水素又は一酸化炭素を含有する燃料ガスを送給する燃料ガス送給手段と、前記固体酸化物形燃料電池の前記スタックの各セルの空気極側に酸素を含有する酸化ガスを送給する酸化ガス送給手段と、前記固体酸化物形燃料電池のスタックの各セルの燃料極側に不活性ガスを送給する燃料側不活性ガス送給手段と、前記固体酸化物形燃料電池の前記スタックの各セルの空気極側に不活性ガスを送給する酸化側不活性ガス送給手段と、前記固体酸化物形燃料電池への前記燃料ガス及び前記酸化ガスの送給を高温状態で停止させるように前記燃料ガス送給手段及び前記酸化ガス送給手段を制御した後、当該固体酸化物形燃料電池内を不活性ガスでパージするように前記燃料側不活性ガス送給手段及び前記酸化側不活性ガス送給手段を制御することにより、高温状態で発電運転を停止させると共に、高温状態で発電運転停止中の前記固体酸化物形燃料電池の各セルの前記燃料極側及び前記空気極側に前記不活性ガスを送給して流通させるように前記燃料側不活性ガス送給手段及び前記酸化側不活性ガス送給手段を制御した後、当該固体酸化物形燃料電池の各セルの当該燃料極側に前記燃料ガスを送給して流通させるように前記燃料ガス送給手段を制御し、かつ、当該固体酸化物形燃料電池の各セルの当該空気極側に前記酸化ガスを送給して流通させるように前記酸化ガス送給手段を制御することにより、発電運転を再開させる制御手段とを備えていることを特徴とする。   In order to solve the above-described problem, a solid oxide fuel cell power generation facility according to a fifth invention includes a solid oxide fuel cell and a fuel for each cell of the stack of the solid oxide fuel cell. A fuel gas feeding means for feeding a fuel gas containing hydrogen or carbon monoxide to the pole side; and an oxidizing gas containing oxygen to the air electrode side of each cell of the stack of the solid oxide fuel cell. Oxidizing gas feeding means for feeding, fuel-side inert gas feeding means for feeding an inert gas to the fuel electrode side of each cell of the stack of the solid oxide fuel cell, and the solid oxide fuel cell The oxidizing side inert gas feeding means for feeding an inert gas to the air electrode side of each cell of the stack, and the feeding of the fuel gas and the oxidizing gas to the solid oxide fuel cell in a high temperature state The fuel gas supply means and the front to stop at After controlling the oxidizing gas feeding means, the fuel side inert gas feeding means and the oxidizing side inert gas feeding means are controlled so as to purge the inside of the solid oxide fuel cell with an inert gas. The power generation operation is stopped at a high temperature state, and the inert gas is supplied to the fuel electrode side and the air electrode side of each cell of the solid oxide fuel cell being stopped at a high temperature state. After controlling the fuel-side inert gas feeding means and the oxidation-side inert gas feeding means so as to circulate, the fuel gas is fed to the fuel electrode side of each cell of the solid oxide fuel cell. The fuel gas supply means is controlled so as to be circulated, and the oxidant gas is supplied so as to be circulated to the air electrode side of each cell of the solid oxide fuel cell. By controlling the power supply means Characterized in that a control means for resuming the transfer.

第六番目の発明に係る固体酸化物形燃料電池発電設備は、第五番目の発明において、前記制御手段が、高温状態で発電運転停止中の前記固体酸化物形燃料電池の各セルの前記燃料極側及び前記空気極側に前記不活性ガスを送給して流通させるように前記燃料側不活性ガス送給手段及び前記酸化側不活性ガス送給手段を制御してから、前記不活性ガスと前記燃料ガスとを混合した燃料用混合ガスを前記固体酸化物形燃料電池の各セルの前記燃料極側に送給して流通させるように前記燃料側不活性ガス送給手段及び前記燃料ガス送給手段を制御すると共に、前記不活性ガスと前記酸化ガスとを混合した酸化用混合ガスを前記固体酸化物形燃料電池の各セルの前記空気極側に送給して流通させるように前記酸化側不活性ガス送給手段及び前記酸化ガス送給手段を制御した後、前記燃料ガスのみを前記固体酸化物形燃料電池の各セルの前記燃料極側に送給して流通させるように前記燃料側不活性ガス送給手段及び前記燃料ガス送給手段を制御すると共に、前記酸化ガスのみを前記固体酸化物形燃料電池の各セルの前記空気極側に送給して流通させるように前記酸化側不活性ガス送給手段及び前記酸化ガス送給手段を制御するものであることを特徴とする。   The solid oxide fuel cell power generation facility according to a sixth aspect of the present invention is the solid oxide fuel cell power generation facility according to the fifth aspect of the present invention, wherein the control means has the fuel of each cell of the solid oxide fuel cell being stopped in a power generation operation at a high temperature. The fuel-side inert gas feeding means and the oxidation-side inert gas feeding means are controlled so that the inert gas is fed and circulated to the electrode side and the air electrode side, and then the inert gas The fuel-side inert gas feeding means and the fuel gas so as to feed and circulate a mixed gas for fuel, which is a mixture of fuel and the fuel gas, to the fuel electrode side of each cell of the solid oxide fuel cell Controlling the feeding means, and feeding and circulating the mixed gas for oxidation, which is a mixture of the inert gas and the oxidizing gas, to the air electrode side of each cell of the solid oxide fuel cell Oxidizing side inert gas feeding means and said oxidized gas After controlling the feeding means, the fuel-side inert gas feeding means and the fuel gas are fed so that only the fuel gas is fed to the fuel electrode side of each cell of the solid oxide fuel cell. The oxidizing side inert gas feeding means and the oxidizing gas so as to control the feeding means and feed only the oxidizing gas to the air electrode side of each cell of the solid oxide fuel cell. It is characterized by controlling the feeding means.

第七番目の発明に係る固体酸化物形燃料電池発電設備は、第六番目の発明において、前記制御手段が、送給する前記燃料用混合ガス中の前記燃料ガスの割合を徐々に増加させるように前記燃料側不活性ガス送給手段及び前記燃料ガス送給手段を制御すると共に、送給する前記酸化用混合ガス中の前記酸化ガスの割合を徐々に増加させるように前記酸化側不活性ガス送給手段及び前記酸化ガス送給手段を制御するものであることを特徴とする。   In a solid oxide fuel cell power generation facility according to a seventh invention, in the sixth invention, the control means gradually increases the ratio of the fuel gas in the fuel mixed gas to be fed. And controlling the fuel-side inert gas feeding means and the fuel gas feeding means, and gradually increasing the ratio of the oxidizing gas in the oxidizing gas mixture to be fed. It controls the feeding means and the oxidizing gas feeding means.

第八番目の発明に係る固体酸化物形燃料電池発電設備は、第七番目の発明において、前記燃料ガス及び前記酸化ガスの前記固体酸化物形燃料電池内でのリークによる異常反応を検知する異常反応検知手段を備えると共に、前記制御手段が、前記燃料ガス及び前記酸化ガスの前記固体酸化物形燃料電池内でのリークによる異常反応を生じさせない割合で、前記燃料用混合ガス中の当該燃料ガスを徐々に増加させるように前記異常反応検知手段からの信号に基づいて前記燃料側不活性ガス送給手段及び前記燃料ガス送給手段を制御すると共に、前記酸化用混合ガス中の当該酸化ガスを徐々に増加させるように前記異常反応検知手段からの信号に基づいて前記酸化側不活性ガス送給手段及び前記酸化ガス送給手段を制御するものであることを特徴とする。   According to an eighth aspect of the present invention, there is provided a solid oxide fuel cell power generation facility according to the seventh aspect of the present invention, wherein the abnormality detects an abnormal reaction due to leakage of the fuel gas and the oxidizing gas in the solid oxide fuel cell. The fuel gas in the mixed gas for fuel is provided at a rate that does not cause an abnormal reaction due to leakage of the fuel gas and the oxidizing gas in the solid oxide fuel cell. The fuel-side inert gas supply means and the fuel gas supply means are controlled based on a signal from the abnormal reaction detection means so as to gradually increase the oxidant gas in the oxidation mixed gas. The oxidation side inert gas supply means and the oxidation gas supply means are controlled based on a signal from the abnormal reaction detection means so as to gradually increase. That.

第九番目の発明に係る固体酸化物形燃料電池発電設備は、第八番目の発明において、前記異常反応検知手段が、前記固体酸化物形燃料電池の内部の電圧を計測する電圧計測手段と、前記固体酸化物形燃料電池の内部の温度を計測する内部温度計測手段と、前記固体酸化物形燃料電池から排出される使用済みの前記燃料ガスの温度を計測する排出燃料ガス温度計測手段と、前記固体酸化物形燃料電池から排出される使用済みの前記酸化ガスの温度を計測する排出酸化ガス温度計測手段と、前記固体酸化物形燃料電池から排出される使用済みの前記燃料ガスの圧力を計測する排出燃料ガス圧力計測手段と、前記固体酸化物形燃料電池から排出される使用済みの前記酸化ガスの圧力を計測する排出酸化ガス圧力計測手段とのうちの少なくとも一つであることを特徴とする。   A solid oxide fuel cell power generation facility according to a ninth invention is the eighth invention, wherein the abnormal reaction detection means measures voltage inside the solid oxide fuel cell; and An internal temperature measuring means for measuring the temperature inside the solid oxide fuel cell; an exhaust fuel gas temperature measuring means for measuring the temperature of the used fuel gas discharged from the solid oxide fuel cell; Exhaust oxidizing gas temperature measuring means for measuring the temperature of the used oxidizing gas discharged from the solid oxide fuel cell, and the pressure of the used fuel gas discharged from the solid oxide fuel cell. At least one of an exhaust fuel gas pressure measuring means for measuring and an exhaust oxidizing gas pressure measuring means for measuring the pressure of the used oxidizing gas discharged from the solid oxide fuel cell; And wherein the Rukoto.

第十番目の発明に係る固体酸化物形燃料電池発電設備は、第五番目から第九番目の発明のいずれかにおいて、前記固体酸化物形燃料電池から排出された使用済みの前記燃料ガスの流路に配設された燃料側開閉弁と、前記固体酸化物形燃料電池から排出された使用済みの前記酸化ガスの流路に配設された酸化側開閉弁とのうちの少なくとも前記燃料側開閉弁を備えていることを特徴とする。   According to a tenth aspect of the present invention, there is provided the solid oxide fuel cell power generation facility according to any one of the fifth to ninth aspects, wherein the flow of the spent fuel gas discharged from the solid oxide fuel cell is At least the fuel-side opening / closing valve among a fuel-side opening / closing valve disposed in the passage and an oxidation-side opening / closing valve disposed in the flow path of the used oxidizing gas discharged from the solid oxide fuel cell It is provided with a valve.

本発明に係る固体酸化物形燃料電池の運転方法及びこの方法を使用する固体酸化物形燃料電池発電設備によれば、固体酸化物形燃料電池のスタックを高温状態で運転を停止しても降温させることなく発電を早急に再開することができるので、熱エネルギの無駄を大幅に削減することができると共に、運転応答性を非常に高めることができ、家庭等での分散電源や電力会社の事業用電源等としての実用性を非常に高めることができる。   According to the solid oxide fuel cell operation method and the solid oxide fuel cell power generation facility using this method according to the present invention, the temperature of the solid oxide fuel cell stack is lowered even when the operation is stopped in a high temperature state. Power generation can be resumed quickly without making it possible to drastically reduce waste of thermal energy and greatly improve operation responsiveness. Practicality as a power source can be greatly enhanced.

本発明に係る固体酸化物形燃料電池の運転方法及びこの方法を使用する固体酸化物形燃料電池発電設備の実施形態を図1〜3に基づいて説明する。図1は固体酸化物形燃料電池発電設備の概略構成図、図2は固体酸化物形燃料電池の運転方法の運転停止の際のフロー図、図3は固体酸化物形燃料電池の運転方法の運転再開の際のフロー図である。   An embodiment of a solid oxide fuel cell operation method according to the present invention and a solid oxide fuel cell power generation facility using this method will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a solid oxide fuel cell power generation facility, FIG. 2 is a flowchart when the operation method of the solid oxide fuel cell is stopped, and FIG. 3 is an operation method of the solid oxide fuel cell. It is a flowchart in the case of a driving | operation restart.

図1に示すように、水素又は一酸化炭素を含有する燃料ガス1を供給する燃料ガス供給源11は、流量調整弁11a及び流量検出器11bを介して送給ファン13の受入口に連絡している。送給ファン13の送出口は、熱交換器21の一方の受入口に連絡している。送給ファン13の送出口と熱交換器21の一方の受入口との間には、不活性ガスである窒素ガス3を送給する窒素ガスボンベ12が流量調整弁12a及び流量検出器12bを介して連絡している。   As shown in FIG. 1, a fuel gas supply source 11 for supplying a fuel gas 1 containing hydrogen or carbon monoxide communicates with an inlet of a feed fan 13 via a flow rate adjusting valve 11a and a flow rate detector 11b. ing. The delivery port of the feed fan 13 communicates with one receiving port of the heat exchanger 21. A nitrogen gas cylinder 12 for supplying nitrogen gas 3 which is an inert gas is provided between the outlet of the supply fan 13 and one of the inlets of the heat exchanger 21 via a flow rate adjusting valve 12a and a flow rate detector 12b. Contact.

熱交換器21の一方の送出口は、固体酸化物形燃料電池22の燃料供給マニホールドに連絡している。固体酸化物形燃料電池22の燃料排出マニホールドは、排出燃料ガス温度計測手段である温度センサ17a及び排出燃料ガス圧力計測手段である圧力センサ18a並びに燃料側開閉弁19aを介して燃焼器23の受入口に連絡すると共に前記送給ファン13の受入口にも連絡している。   One outlet of the heat exchanger 21 communicates with the fuel supply manifold of the solid oxide fuel cell 22. The fuel discharge manifold of the solid oxide fuel cell 22 is received by the combustor 23 via a temperature sensor 17a that is an exhaust fuel gas temperature measurement means, a pressure sensor 18a that is an exhaust fuel gas pressure measurement means, and a fuel side on-off valve 19a. In addition to communicating with the inlet, it also communicates with the inlet of the feeding fan 13.

燃焼器23の排気口は、熱交換器24の一方の受入口に連絡している。熱交換器24の一方の送出口は、排熱再利用手段である排ガスボイラ25の排ガス受入口に連絡している。排ガスボイラ25の排ガス送出口は、煙突26に連絡している。   The exhaust port of the combustor 23 communicates with one receiving port of the heat exchanger 24. One outlet of the heat exchanger 24 communicates with an exhaust gas inlet of an exhaust gas boiler 25 that is an exhaust heat reuse means. The exhaust gas outlet of the exhaust gas boiler 25 communicates with the chimney 26.

また、エアフィルタ14は、流量調整弁14a及び流量検出器14bを介して送給ファン16の受入口に連絡している。送給ファン16の送出口は、前記熱交換器24の他方の受入口に連絡している。送給ファン16の送出口と前記熱交換器24の他方の受入口との間には、窒素ガス3を送給する窒素ガスボンベ15が流量調整弁15a及び流量検出器15bを介して連絡している。   The air filter 14 communicates with the inlet of the feed fan 16 via the flow rate adjusting valve 14a and the flow rate detector 14b. The outlet of the supply fan 16 communicates with the other inlet of the heat exchanger 24. A nitrogen gas cylinder 15 for feeding nitrogen gas 3 communicates between the delivery port of the feed fan 16 and the other receiving port of the heat exchanger 24 via a flow rate adjusting valve 15a and a flow rate detector 15b. Yes.

熱交換器24の他方の送出口は、前記熱交換器21の他方の受入口に連絡している。熱交換器21の他方の送出口は、前記燃料電池22の空気供給マニホールドに連絡している。前記燃料電池22の空気排出マニホールドは、排出酸化ガス温度計測手段である温度センサ17b及び排出酸化ガス圧力計測手段である圧力センサ18b並びに酸化側開閉弁19bを介して前記燃焼器23の受入口に連絡している。   The other outlet of the heat exchanger 24 communicates with the other receiving port of the heat exchanger 21. The other outlet of the heat exchanger 21 communicates with the air supply manifold of the fuel cell 22. The air discharge manifold of the fuel cell 22 is connected to the receiving port of the combustor 23 via a temperature sensor 17b as exhaust oxidant gas temperature measuring means, a pressure sensor 18b as exhaust oxidant gas pressure measuring means, and an oxidation side on-off valve 19b. I'm in touch.

前記燃料ガス供給源11、前記ボンベ12,15、前記エアフィルタ14の各前記流量検出器11b,12b,14b,15b並びに前記燃料電池22の前記排出マニホールド近傍の前記温度センサ17a,17b及び前記圧力センサ18a,18bは、制御手段である制御装置20の入力部に電気的に接続されている。制御装置20の出力部は、前記ボンベ11,12,15及び前記エアフィルタ14の前記流量調整弁11a,12a,14a,15a並びに前記送給ファン13,16に電気的に接続すると共に、前記燃焼器23の受入口近傍に配設された前記開閉弁19a,19bに電気的に接続している。   The fuel gas supply source 11, the cylinders 12, 15, the flow rate detectors 11 b, 12 b, 14 b, 15 b of the air filter 14, the temperature sensors 17 a, 17 b near the exhaust manifold of the fuel cell 22, and the pressure The sensors 18a and 18b are electrically connected to the input unit of the control device 20 which is a control means. The output unit of the control device 20 is electrically connected to the cylinders 11, 12, 15 and the flow rate adjusting valves 11 a, 12 a, 14 a, 15 a of the air filter 14 and the feed fans 13, 16, and the combustion It is electrically connected to the on-off valves 19a and 19b disposed near the receiving port of the vessel 23.

また、制御装置20の入力部には、前記燃料電池22の内部の温度を計測する内部温度計測手段である温度検知器(図示省略)及び前記燃料電池22の内部の電圧を計測する電圧計測手段である電圧計(図示省略)が電気的に接続されており、当該制御装置20は、前記流量検出器11b,12b,14b,15b、前記温度センサ17a,17b、前記圧力センサ18a,18b、前記温度検知器、前記電圧計からの信号に基づいて、前記流量調整弁11a,12a,14a,15a、前記送給ファン13、16、前記開閉弁19a,19bを調整することができるようになっている(詳細は後述する)。   Further, a temperature detector (not shown), which is an internal temperature measuring means for measuring the internal temperature of the fuel cell 22, and a voltage measuring means for measuring the internal voltage of the fuel cell 22 are input to the control device 20. The control device 20 includes the flow rate detectors 11b, 12b, 14b, and 15b, the temperature sensors 17a and 17b, the pressure sensors 18a and 18b, Based on the signals from the temperature detector and the voltmeter, the flow rate adjusting valves 11a, 12a, 14a, 15a, the feed fans 13, 16, and the on-off valves 19a, 19b can be adjusted. (Details will be described later).

なお、本実施形態においては、燃料ガス供給源11、流量調整弁11a、流量検出器11b、送給ファン13等により燃料ガス送給手段を構成し、エアフィルタ14、流量調整弁14a、流量検出器14b、送給ファン16等により酸化ガス送給手段を構成し、窒素ガスボンベ12、流量調整弁12a、流量検出器12b等により燃料側不活性ガス送給手段を構成し、窒素ガスボンベ15、流量調整弁15a、流量検出器15b等により酸化側不活性ガス送給手段を構成し、熱交換器21、燃焼器23等により燃料ガス加熱手段を構成し、燃焼器23、熱交換器24等により酸化ガス加熱手段を構成し、前記温度センサ17a,17b、前記圧力センサ18a,18b、前記温度検知器、前記電圧計等により異常反応検知手段を構成しているが、本発明は、このような本実施形態で適用した上述した各種部材に限定されるものではなく、同様な機能を有する他の各種部材等を適用することも可能である。   In this embodiment, the fuel gas supply unit 11, the flow rate adjustment valve 11 a, the flow rate detector 11 b, the supply fan 13, etc. constitute a fuel gas supply means, and the air filter 14, the flow rate adjustment valve 14 a, the flow rate detection The oxidizing gas feeding means is constituted by the vessel 14b, the feeding fan 16 and the like, and the fuel side inert gas feeding means is constituted by the nitrogen gas cylinder 12, the flow rate adjusting valve 12a, the flow rate detector 12b and the like, and the nitrogen gas cylinder 15 and the flow rate are set. The regulating valve 15a, the flow rate detector 15b, etc. constitute the oxidizing side inert gas feeding means, the heat exchanger 21, the combustor 23, etc. constitute the fuel gas heating means, and the combustor 23, the heat exchanger 24, etc. Oxidizing gas heating means is constituted, and abnormal reaction detecting means is constituted by the temperature sensors 17a and 17b, the pressure sensors 18a and 18b, the temperature detector, the voltmeter and the like. The present invention provides such is not limited to various members described above was applied in the present embodiment, we are also possible to apply various other members or the like having a similar functionality.

次に、本実施形態に係る固体酸化物形燃料電池発電設備10の作動、すなわち、固体酸化物形燃料電池22の運転方法を次に説明する。   Next, the operation of the solid oxide fuel cell power generation facility 10 according to this embodiment, that is, the operation method of the solid oxide fuel cell 22 will be described.

前記制御装置20を作動させて送給ファン13,16を作動させ、前記流量検出器11b,14bからの信号に基づいて前記流量調整弁11a,14aを調整しながら燃料ガス1及び酸化ガスである空気2を所定流量で送給し、熱交換器21を介して燃料ガス1を加熱しつつ(約900〜1000℃前後)、前記燃料電池22の燃料供給マニホールドからスタック内の各セルの燃料極側に送給すると共に、熱交換器24を介して空気2を加熱しつつ(約900〜1000℃前後)、前記燃料電池22の空気供給マニホールドからスタック内の各セルの空気極側に送給すると、燃料ガス1及び空気2が電気化学的に反応して電力が発生する。   The control device 20 is operated to operate the feed fans 13 and 16, and the fuel gas 1 and the oxidizing gas are adjusted while adjusting the flow rate adjusting valves 11a and 14a based on signals from the flow rate detectors 11b and 14b. While supplying the air 2 at a predetermined flow rate and heating the fuel gas 1 through the heat exchanger 21 (about 900 to 1000 ° C.), the fuel electrode of each cell in the stack from the fuel supply manifold of the fuel cell 22. The air 2 is heated through the heat exchanger 24 (about 900 to 1000 ° C.) while being fed from the air supply manifold of the fuel cell 22 to the air electrode side of each cell in the stack. Then, the fuel gas 1 and the air 2 react electrochemically to generate electric power.

反応に供された使用済みの燃料ガス1は、未反応の水素又は一酸化炭素等を含有しているため、その一部が前記熱交換器21の一方の受入口に再び送給され、新たな燃料ガス1と共に発電に再び供される一方、その残りが、反応に供された使用済みの空気2と共に燃焼器23内に送給されて燃焼され、無害化された排ガス4となって熱交換器24に送給され、前記燃料電池22に供給する空気2及び燃料ガス1の加熱用の熱源に利用された後、排ガスボイラ25に送給されてボイラ用の熱源としてさらに利用されてから、煙突26を介して外部に排出される。   Since the spent fuel gas 1 used for the reaction contains unreacted hydrogen, carbon monoxide, or the like, a part thereof is sent again to one of the inlets of the heat exchanger 21 to newly The remaining fuel gas 1 is again used for power generation, while the remainder is fed into the combustor 23 together with the used air 2 subjected to the reaction and burned to become detoxified exhaust gas 4 and heat. After being supplied to the exchanger 24 and used as a heat source for heating the air 2 and the fuel gas 1 supplied to the fuel cell 22, it is supplied to the exhaust gas boiler 25 and further used as a heat source for the boiler. Then, it is discharged to the outside through the chimney 26.

このようにして発電運転を行っている際に、負荷の変動に合わせて発電を一時的に停止する場合には、図2に示すように、制御装置20は、燃料ガス1及び空気2の送給を停止させるように前記流量調整弁11a,14aを調整すると共に前記送給ファン13,16の作動を停止して発電を停止した後(S11)、窒素ガス3を前記燃料電池22内に送給するように前記流量検出器12b,15bからの信号に基づいて前記流量調整弁12a,15aを調整しながら前記窒素ガスボンベ12,15から窒素ガス3を所定流量で送給し、前記燃料電池22のスタック内の各セルの燃料極側及び空気極側を窒素ガス3でパージしたら(S12)、前記開閉弁19a,19bを閉止し、燃焼器23に残留する空気2が前記燃料電池22のスタック内の各セルの燃料極側に逆流入することを防止すると共に、燃焼器23に残留する燃料ガス1が前記燃料電池22のスタック内の各セルの空気極側に逆流入することを防止する(S13)。なお、このとき、上記燃料電池22は、降温させることなく高温状態を維持しておく(以上、発電運転停止工程)。   When the power generation operation is performed in this manner, when the power generation is temporarily stopped in accordance with the load fluctuation, the control device 20 sends the fuel gas 1 and the air 2 as shown in FIG. After adjusting the flow rate adjusting valves 11a and 14a to stop supply and stopping the operation of the supply fans 13 and 16 to stop power generation (S11), the nitrogen gas 3 is sent into the fuel cell 22. Nitrogen gas 3 is supplied from the nitrogen gas cylinders 12 and 15 at a predetermined flow rate while adjusting the flow rate adjusting valves 12a and 15a based on signals from the flow rate detectors 12b and 15b so that the fuel cell 22 is supplied. When the fuel electrode side and the air electrode side of each cell in the stack are purged with nitrogen gas 3 (S12), the on-off valves 19a and 19b are closed, and the air 2 remaining in the combustor 23 is stacked in the fuel cell 22 stack. Inside The fuel gas 1 remaining in the combustor 23 is prevented from flowing backward into the air electrode side of each cell in the stack of the fuel cell 22 while preventing the reverse flow into the fuel electrode side of each cell (S13). ). At this time, the fuel cell 22 maintains a high temperature state without lowering the temperature (the power generation operation stopping step).

続いて、負荷の変動に合わせて発電を再開する場合には、図3に示すように、制御装置20は、前記開閉弁19a,19bを開放して(S21)、窒素ガス3を前記燃料電池22内に再び送給するように前記流量検出器12b,15bからの信号に基づいて前記流量調整弁12a,15aを調整しながら前記窒素ガスボンベ12,15から窒素ガス3を所定流量で送給して流通させ始めたら(S22:不活性ガス送給工程)、前記燃料電池22内に燃料ガス1及び空気2を徐々に送給するように、前記送給ファン13,16を作動さて前記流量検出器11b,14bからの信号に基づいて前記流量調整弁11a,14aを調整しながら燃料ガス1及び空気2の流量を徐々に増加させると共に、この燃料ガス1及び空気2の流量の増加に合わせて、前記燃料電池22内への窒素ガス3の送給量を徐々に減少させるように前記流量検出器12b,15bからの信号に基づいて前記流量調整弁12a,15aを調整する、すなわち、燃料ガス1の割合を徐々に増加させるように当該燃料ガス1と窒素ガス3とを混合した燃料用混合ガスを前記燃料電池22のスタック内の各セルの燃料極側に送給して流通させると共に、空気2の割合を徐々に増加させるように当該空気2と窒素ガス3とを混合した酸化用混合ガスを前記燃料電池22のスタック内の各セルの空気極側に送給して流通させる(S23:混合ガス送給工程)。   Subsequently, when the power generation is resumed in accordance with the load fluctuation, as shown in FIG. 3, the control device 20 opens the on-off valves 19a and 19b (S21), and the nitrogen gas 3 is supplied to the fuel cell. The nitrogen gas 3 is fed at a predetermined flow rate from the nitrogen gas cylinders 12 and 15 while adjusting the flow rate regulating valves 12a and 15a based on the signals from the flow rate detectors 12b and 15b so as to be fed again into the inside. When the flow is started (S22: inert gas feeding step), the feed fans 13 and 16 are operated so that the fuel gas 1 and air 2 are gradually fed into the fuel cell 22 to detect the flow rate. The flow rates of the fuel gas 1 and the air 2 are gradually increased while adjusting the flow rate adjusting valves 11a and 14a based on the signals from the devices 11b and 14b, and the flow rates of the fuel gas 1 and the air 2 are increased. The flow rate adjusting valves 12a and 15a are adjusted based on signals from the flow rate detectors 12b and 15b so as to gradually reduce the amount of nitrogen gas 3 fed into the fuel cell 22, that is, the fuel gas A fuel mixed gas in which the fuel gas 1 and the nitrogen gas 3 are mixed so as to gradually increase the ratio of 1 is sent to the fuel electrode side of each cell in the stack of the fuel cell 22 and distributed. An oxidizing gas mixture in which the air 2 and the nitrogen gas 3 are mixed so as to gradually increase the ratio of the air 2 is sent to the air electrode side of each cell in the stack of the fuel cell 22 and circulated (S23). : Mixed gas feeding process).

このとき、制御装置20は、前記燃料電池22内でのリークによる異常反応を生じさせない割合で燃料ガス1及び空気2の送給量の増加並びに窒素ガス3の送給量の削減を行うように、前記温度センサ17a,17b(リークに伴う異常反応を生じると前記燃料電池22からの排出ガス温度が上昇する)、前記圧力センサ18a,18b(リークを生じると前記燃料電池22からの排出ガス圧力が大きく変動する)、前記温度検知器(リークに伴う異常反応を生じると前記燃料電池22内の温度が上昇する)、前記電圧計(リークに伴う異常反応を生じると前記燃料電池22の電圧が低下する)からの信号に基づいて、前記流量調整弁11a,12a,14a,15aを制御する。   At this time, the control device 20 increases the supply amount of the fuel gas 1 and the air 2 and reduces the supply amount of the nitrogen gas 3 at a rate that does not cause an abnormal reaction due to leakage in the fuel cell 22. The temperature sensors 17a and 17b (exhaust gas temperature from the fuel cell 22 rises when an abnormal reaction due to leak occurs), the pressure sensors 18a and 18b (exhaust gas pressure from the fuel cell 22 when leak occurs) ), The temperature detector (the temperature in the fuel cell 22 rises when an abnormal reaction due to leakage occurs), the voltmeter (the voltage of the fuel cell 22 when the abnormal reaction due to leakage occurs) The flow rate adjusting valves 11a, 12a, 14a and 15a are controlled based on a signal from

そして、窒素ガス3の送給が停止し、燃料ガス1及び空気2のみが送給される、すなわち、燃料ガス1及び空気2が定常送給されると(S24:発電用ガス送給工程)、発電が再び開始される(S25)(以上、発電運転再開工程)。   When the supply of the nitrogen gas 3 is stopped and only the fuel gas 1 and the air 2 are supplied, that is, when the fuel gas 1 and the air 2 are constantly supplied (S24: gas generation process for power generation). Then, power generation is started again (S25) (the power generation operation resuming step).

つまり、前記燃料電池22内にガスを流通させるとき、流通開始当初は、ガスの流量や流速が不安定となるため、燃料ガス1及び空気2を前記燃料電池22内に当初から全量送給してしまうと、燃料ガス1及び空気2が発電に寄与できずにリークして異常反応を生じやすいことから、本実施形態では、前記燃料電池22内で窒素ガス3を先に流通させて、当該燃料電池22内を流通するガスの流量や流速の安定化を図ってから、当該燃料電池22内に燃料ガス1及び空気2を送給するようにしたのである。   That is, when gas is circulated in the fuel cell 22, since the gas flow rate and flow rate are unstable at the beginning of distribution, the fuel gas 1 and air 2 are all fed into the fuel cell 22 from the beginning. In this embodiment, the fuel gas 1 and the air 2 leak without being able to contribute to power generation and easily cause an abnormal reaction. Therefore, in this embodiment, the nitrogen gas 3 is first circulated in the fuel cell 22, After stabilizing the flow rate and flow velocity of the gas flowing through the fuel cell 22, the fuel gas 1 and air 2 are fed into the fuel cell 22.

このため、本実施形態では、ガスの流量や流速が不安定となる流通開始当初に燃料ガス1及び空気2が前記燃料電池22内を流通せずにガスの流量や流速が安定化してから燃料ガス1及び空気2が前記燃料電池22内を流通するので、高温状態であってもリークに伴う異常反応の発生を防止することができる。   For this reason, in the present embodiment, the fuel gas 1 and air 2 do not flow through the fuel cell 22 at the beginning of the flow when the gas flow rate and flow rate become unstable, and the fuel flow is stabilized after the gas flow rate and flow rate are stabilized. Since the gas 1 and the air 2 circulate in the fuel cell 22, it is possible to prevent the occurrence of an abnormal reaction due to leakage even in a high temperature state.

したがって、本実施形態によれば、前記燃料電池22のスタックを高温状態で運転を停止しても降温させることなく発電を早急に再開することができるので、熱エネルギの無駄を大幅に削減することができると共に、運転応答性を非常に高めることができ、家庭等での分散電源や電力会社の事業用電源等としての実用性を非常に高めることができる。   Therefore, according to this embodiment, even if the stack of the fuel cell 22 is stopped in a high temperature state, power generation can be resumed quickly without lowering the temperature, so that waste of heat energy can be greatly reduced. In addition, the driving responsiveness can be greatly enhanced, and the utility as a distributed power source at home or a business power source of a power company can be greatly enhanced.

なお、本実施形態では、異常反応検知手段として、温度センサ17a,17b、圧力センサ18a,18b、前記温度検知器、前記電圧計のすべてを適用するようにしたが、各種条件によっては、温度センサ17a,17b、圧力センサ18a,18b、前記温度検知器、前記電圧計のうちの少なくとも一つを適用することも可能である。   In the present embodiment, all of the temperature sensors 17a and 17b, the pressure sensors 18a and 18b, the temperature detector, and the voltmeter are applied as the abnormal reaction detection means. However, depending on various conditions, the temperature sensor It is also possible to apply at least one of 17a and 17b, pressure sensors 18a and 18b, the temperature detector, and the voltmeter.

また、本実施形態では、燃料側開閉弁19a及び酸化側開閉弁19bの両者を適用するようにしたが、酸化側開閉弁19bを省略して燃料側開閉弁19aのみとすることも可能である。   In this embodiment, both the fuel side on / off valve 19a and the oxidation side on / off valve 19b are applied. However, the oxidation side on / off valve 19b may be omitted and only the fuel side on / off valve 19a may be used. .

また、前記混合ガス送給工程(S23)における燃料ガス1及び空気2の増加傾向(窒素ガス3の減少傾向)は、各種条件に応じて、漸次状(グラデーション状)又は階段状(ステップ状)を適宜選択するとよい。   Further, the increasing tendency of the fuel gas 1 and air 2 (the decreasing tendency of the nitrogen gas 3) in the mixed gas feeding process (S23) is gradually (gradient) or stepped (step) depending on various conditions. May be selected as appropriate.

また、本実施形態では、図1に示したように、窒素ガスボンベ12,15を送給ファン13,16の送出口側に連絡するようにしたが、窒素ガスボンベ12,15の送給圧が低い場合には、例えば、図4に示すように、窒素ガスボンベ12,15を送給ファン13,16の受入口側に連絡するとよい。   Further, in this embodiment, as shown in FIG. 1, the nitrogen gas cylinders 12 and 15 are connected to the outlet side of the supply fans 13 and 16, but the supply pressure of the nitrogen gas cylinders 12 and 15 is low. In such a case, for example, as shown in FIG. 4, the nitrogen gas cylinders 12 and 15 may be connected to the receiving side of the feeding fans 13 and 16.

本発明に係る固体酸化物形燃料電池の運転方法及び固体酸化物形燃料電池発電設備は、家庭等での分散電源や電力会社の事業用電源等としての実用性が非常に高く、産業上、極めて有益に利用することができる。   The solid oxide fuel cell operation method and the solid oxide fuel cell power generation facility according to the present invention have very high practicality as a distributed power source at home or business power source of an electric power company, etc. It can be used extremely beneficially.

本発明に係る固体酸化物形燃料電池発電設備の実施形態の概略構成図である。1 is a schematic configuration diagram of an embodiment of a solid oxide fuel cell power generation facility according to the present invention. 本発明に係る固体酸化物形燃料電池の運転方法の運転停止の際のフロー図である。It is a flowchart in the case of the operation stop of the operating method of the solid oxide fuel cell which concerns on this invention. 本発明に係る固体酸化物形燃料電池の運転方法の運転再開の際のフロー図である。It is a flowchart in the case of the restarting of the operation method of the solid oxide fuel cell which concerns on this invention. 本発明に係る固体酸化物形燃料電池発電設備の他の実施形態の概略構成図である。It is a schematic block diagram of other embodiment of the solid oxide fuel cell power generation equipment which concerns on this invention.

符号の説明Explanation of symbols

1 燃料ガス
2 空気
3 窒素ガス
4 排ガス
10 固体酸化物形燃料電池発電設備
11 燃料ガスボンベ
11a 流量調整弁
11b 流量検出器
12 窒素ガスボンベ
12a 流量調整弁
12b 流量検出器
13 送給ファン
14 エアフィルタ
14a 流量調整弁
14b 流量検出器
15 窒素ガスボンベ
15a 流量調整弁
15b 流量検出器
16 送給ファン
17a,17b 温度センサ
18a,18b 圧力センサ
19a 燃料側開閉弁
19b 酸化側開閉弁
20 制御装置
21 熱交換器
22 固体酸化物形燃料電池
23 燃焼器
24 熱交換器
25 排ガスボイラ
26 煙突
DESCRIPTION OF SYMBOLS 1 Fuel gas 2 Air 3 Nitrogen gas 4 Exhaust gas 10 Solid oxide fuel cell power generation equipment 11 Fuel gas cylinder 11a Flow control valve 11b Flow rate detector 12 Nitrogen gas cylinder 12a Flow rate adjustment valve 12b Flow rate detector 13 Feed fan 14 Air filter 14a Flow rate Adjustment valve 14b Flow rate detector 15 Nitrogen gas cylinder 15a Flow rate adjustment valve 15b Flow rate detector 16 Supply fan 17a, 17b Temperature sensor 18a, 18b Pressure sensor 19a Fuel side on / off valve 19b Oxidation side on / off valve 20 Controller 21 Heat exchanger 22 Solid Oxide fuel cell 23 Combustor 24 Heat exchanger 25 Exhaust gas boiler 26 Chimney

Claims (10)

固体酸化物形燃料電池のスタックの各セルの燃料極側に水素又は一酸化炭素を含有する燃料ガスを送給し、当該固体酸化物形燃料電池のスタックの各セルの空気極側に酸素を含有する酸化ガスを送給し、当該燃料ガスと当該酸化ガスとを各セルの固体酸化物からなる電解質において高温状態で電気化学的に反応させることにより電力を得る固体酸化物形燃料電池の運転方法であって、
前記燃料ガス及び前記酸化ガスの送給を高温状態で停止した後、前記固体酸化物形燃料電池内を不活性ガスでパージすることにより、高温状態で発電運転を停止させる発電運転停止工程と、
高温状態で発電運転停止中の前記固体酸化物形燃料電池の各セルの前記燃料極側及び前記空気極側に前記不活性ガスを送給して流通させた後、当該固体酸化物形燃料電池の各セルの当該燃料極側に前記燃料ガスを送給して流通させると共に、当該固体酸化物形燃料電池の各セルの当該空気極側に前記酸化ガスを送給して流通させることにより、セルの高温状態を維持した状態で発電運転を再開する発電運転再開工程と
を行うことを特徴とする固体酸化物形燃料電池の運転方法。
A fuel gas containing hydrogen or carbon monoxide is supplied to the fuel electrode side of each cell of the stack of the solid oxide fuel cell, and oxygen is supplied to the air electrode side of each cell of the stack of the solid oxide fuel cell. Operation of a solid oxide fuel cell that supplies electric power by supplying an oxidizing gas contained therein and electrochemically reacting the fuel gas and the oxidizing gas in a high-temperature state in an electrolyte composed of a solid oxide in each cell A method,
After stopping the supply of the fuel gas and the oxidizing gas in a high temperature state, the power generation operation stopping step of stopping the power generation operation in a high temperature state by purging the inside of the solid oxide fuel cell with an inert gas;
After the inert gas is supplied and circulated to the fuel electrode side and the air electrode side of each cell of the solid oxide fuel cell that is stopped in power generation at a high temperature, the solid oxide fuel cell By supplying and distributing the fuel gas to the fuel electrode side of each cell, and supplying and distributing the oxidizing gas to the air electrode side of each cell of the solid oxide fuel cell, A method of operating a solid oxide fuel cell, comprising: performing a power generation operation resuming step of resuming power generation operation while maintaining a high temperature state of the cell.
請求項1において、
前記発電運転再開工程が、
高温状態で発電運転停止中の前記固体酸化物形燃料電池の各セルの前記燃料極側及び前記空気極側に前記不活性ガスを送給して流通させる不活性ガス送給工程と、
前記不活性ガスを送給して流通させた後、当該不活性ガスと前記燃料ガスとを混合した燃料用混合ガスを前記固体酸化物形燃料電池の各セルの前記燃料極側に送給して流通させると共に、当該不活性ガスと前記酸化ガスとを混合した酸化用混合ガスを前記固体酸化物形燃料電池の各セルの前記空気極側に送給して流通させる混合ガス送給工程と、
前記混合ガスをそれぞれ送給して流通させた後、前記燃料ガスのみを前記固体酸化物形燃料電池の各セルの前記燃料極側に送給して流通させると共に、前記酸化ガスのみを前記固体酸化物形燃料電池の各セルの前記空気極側に送給して流通させる発電用ガス送給工程と
を行うことを特徴とする固体酸化物形燃料電池の運転方法。
In claim 1,
The power generation operation resuming step includes
An inert gas feeding step for feeding and circulating the inert gas to the fuel electrode side and the air electrode side of each cell of the solid oxide fuel cell that is stopped in a power generation operation at a high temperature;
After supplying and distributing the inert gas, a mixed gas for fuel obtained by mixing the inert gas and the fuel gas is supplied to the fuel electrode side of each cell of the solid oxide fuel cell. And a mixed gas feeding step for feeding and circulating the mixed gas for oxidation, which is a mixture of the inert gas and the oxidizing gas, to the air electrode side of each cell of the solid oxide fuel cell; ,
After each of the mixed gases is fed and circulated, only the fuel gas is fed to the fuel electrode side of each cell of the solid oxide fuel cell and circulated, and only the oxidizing gas is circulated. A method of operating a solid oxide fuel cell, comprising: a power generation gas supply step of supplying and distributing the gas to the air electrode side of each cell of the oxide fuel cell.
請求項2において、
前記混合ガス送給工程が、
送給する前記燃料用混合ガス中の前記燃料ガスの割合を徐々に増加させると共に、送給する前記酸化用混合ガス中の前記酸化ガスの割合を徐々に増加させるものである
ことを特徴とする固体酸化物形燃料電池の運転方法。
In claim 2,
The mixed gas feeding step includes
The ratio of the fuel gas in the fuel gas mixture to be fed is gradually increased, and the ratio of the oxidizing gas in the fuel gas mixture to be fed is gradually increased. Operation method of solid oxide fuel cell.
請求項3において、
前記混合ガス送給工程が、
前記燃料ガス及び前記酸化ガスの前記固体酸化物形燃料電池内でのリークによる異常反応を生じさせない割合で、前記燃料用混合ガス中の当該燃料ガスを徐々に増加させると共に、前記酸化用混合ガス中の当該酸化ガスを徐々に増加させるものである
ことを特徴とする固体酸化物形燃料電池の運転方法。
In claim 3,
The mixed gas feeding step includes
The fuel gas in the fuel mixed gas is gradually increased at a rate that does not cause an abnormal reaction due to leakage of the fuel gas and the oxidizing gas in the solid oxide fuel cell, and the oxidizing gas mixture A method of operating a solid oxide fuel cell, characterized by gradually increasing the oxidizing gas therein.
固体酸化物形燃料電池と、
前記固体酸化物形燃料電池のスタックの各セルの燃料極側に水素又は一酸化炭素を含有する燃料ガスを送給する燃料ガス送給手段と、
前記固体酸化物形燃料電池の前記スタックの各セルの空気極側に酸素を含有する酸化ガスを送給する酸化ガス送給手段と、
前記固体酸化物形燃料電池のスタックの各セルの燃料極側に不活性ガスを送給する燃料側不活性ガス送給手段と、
前記固体酸化物形燃料電池の前記スタックの各セルの空気極側に不活性ガスを送給する酸化側不活性ガス送給手段と、
前記固体酸化物形燃料電池への前記燃料ガス及び前記酸化ガスの送給を高温状態で停止させるように前記燃料ガス送給手段及び前記酸化ガス送給手段を制御した後、当該固体酸化物形燃料電池内を不活性ガスでパージするように前記燃料側不活性ガス送給手段及び前記酸化側不活性ガス送給手段を制御することにより、高温状態で発電運転を停止させると共に、高温状態で発電運転停止中の前記固体酸化物形燃料電池の各セルの前記燃料極側及び前記空気極側に前記不活性ガスを送給して流通させるように前記燃料側不活性ガス送給手段及び前記酸化側不活性ガス送給手段を制御した後、当該固体酸化物形燃料電池の各セルの当該燃料極側に前記燃料ガスを送給して流通させるように前記燃料ガス送給手段を制御し、かつ、当該固体酸化物形燃料電池の各セルの当該空気極側に前記酸化ガスを送給して流通させるように前記酸化ガス送給手段を制御することにより、発電運転を再開させる制御手段と
を備えていることを特徴とする固体酸化物形燃料電池発電設備。
A solid oxide fuel cell;
Fuel gas supply means for supplying a fuel gas containing hydrogen or carbon monoxide to the fuel electrode side of each cell of the stack of the solid oxide fuel cell;
An oxidizing gas supply means for supplying an oxidizing gas containing oxygen to the air electrode side of each cell of the stack of the solid oxide fuel cell;
Fuel-side inert gas feeding means for feeding an inert gas to the fuel electrode side of each cell of the stack of the solid oxide fuel cell;
Oxidation side inert gas feeding means for feeding inert gas to the air electrode side of each cell of the stack of the solid oxide fuel cell;
After controlling the fuel gas feeding means and the oxidizing gas feeding means to stop the feeding of the fuel gas and the oxidizing gas to the solid oxide fuel cell in a high temperature state, the solid oxide form By controlling the fuel-side inert gas feeding means and the oxidation-side inert gas feeding means so as to purge the inside of the fuel cell with an inert gas, the power generation operation is stopped at a high temperature state and at a high temperature state. The fuel-side inert gas feeding means and the fuel-side inert gas feeding means so as to feed and circulate the inert gas to the fuel electrode side and the air electrode side of each cell of the solid oxide fuel cell that is in the power generation stoppage After controlling the oxidizing side inert gas feeding means, the fuel gas feeding means is controlled so as to feed and circulate the fuel gas to the fuel electrode side of each cell of the solid oxide fuel cell. And the solid oxide form Control means for restarting the power generation operation by controlling the oxidizing gas supply means so as to supply and circulate the oxidizing gas to the air electrode side of each cell of the rechargeable battery. Solid oxide fuel cell power generation facility.
請求項5において、
前記制御手段が、
高温状態で発電運転停止中の前記固体酸化物形燃料電池の各セルの前記燃料極側及び前記空気極側に前記不活性ガスを送給して流通させるように前記燃料側不活性ガス送給手段及び前記酸化側不活性ガス送給手段を制御してから、
前記不活性ガスと前記燃料ガスとを混合した燃料用混合ガスを前記固体酸化物形燃料電池の各セルの前記燃料極側に送給して流通させるように前記燃料側不活性ガス送給手段及び前記燃料ガス送給手段を制御すると共に、前記不活性ガスと前記酸化ガスとを混合した酸化用混合ガスを前記固体酸化物形燃料電池の各セルの前記空気極側に送給して流通させるように前記酸化側不活性ガス送給手段及び前記酸化ガス送給手段を制御した後、
前記燃料ガスのみを前記固体酸化物形燃料電池の各セルの前記燃料極側に送給して流通させるように前記燃料側不活性ガス送給手段及び前記燃料ガス送給手段を制御すると共に、前記酸化ガスのみを前記固体酸化物形燃料電池の各セルの前記空気極側に送給して流通させるように前記酸化側不活性ガス送給手段及び前記酸化ガス送給手段を制御する
ものであることを特徴とする固体酸化物形燃料電池発電設備。
In claim 5,
The control means is
The fuel-side inert gas supply so that the inert gas is supplied to and distributed through the fuel electrode side and the air electrode side of each cell of the solid oxide fuel cell that is suspended in power generation at a high temperature. And controlling the oxidizing side inert gas feeding means,
The fuel-side inert gas feeding means so that a fuel mixed gas obtained by mixing the inert gas and the fuel gas is fed to the fuel electrode side of each cell of the solid oxide fuel cell and circulated. And controlling the fuel gas supply means, and supplying an oxidative mixed gas obtained by mixing the inert gas and the oxidizing gas to the air electrode side of each cell of the solid oxide fuel cell for distribution After controlling the oxidizing side inert gas feeding means and the oxidizing gas feeding means,
Controlling the fuel-side inert gas feeding means and the fuel gas feeding means so that only the fuel gas is fed to the fuel electrode side of each cell of the solid oxide fuel cell and circulated; The oxidizing side inert gas feeding means and the oxidizing gas feeding means are controlled so that only the oxidizing gas is sent and circulated to the air electrode side of each cell of the solid oxide fuel cell. There is a solid oxide fuel cell power generation facility.
請求項6において、
前記制御手段が、
送給する前記燃料用混合ガス中の前記燃料ガスの割合を徐々に増加させるように前記燃料側不活性ガス送給手段及び前記燃料ガス送給手段を制御すると共に、送給する前記酸化用混合ガス中の前記酸化ガスの割合を徐々に増加させるように前記酸化側不活性ガス送給手段及び前記酸化ガス送給手段を制御する
ものであることを特徴とする固体酸化物形燃料電池発電設備。
In claim 6,
The control means is
The fuel-side inert gas feeding means and the fuel gas feeding means are controlled so as to gradually increase the ratio of the fuel gas in the fuel mixed gas to be fed, and the oxidizing mixture to be fed A solid oxide fuel cell power generation facility characterized by controlling the oxidizing side inert gas feeding means and the oxidizing gas feeding means so as to gradually increase the ratio of the oxidizing gas in the gas .
請求項7において、
前記燃料ガス及び前記酸化ガスの前記固体酸化物形燃料電池内でのリークによる異常反応を検知する異常反応検知手段を備えると共に、
前記制御手段が、
前記燃料ガス及び前記酸化ガスの前記固体酸化物形燃料電池内でのリークによる異常反応を生じさせない割合で、前記燃料用混合ガス中の当該燃料ガスを徐々に増加させるように前記異常反応検知手段からの信号に基づいて前記燃料側不活性ガス送給手段及び前記燃料ガス送給手段を制御すると共に、前記酸化用混合ガス中の当該酸化ガスを徐々に増加させるように前記異常反応検知手段からの信号に基づいて前記酸化側不活性ガス送給手段及び前記酸化ガス送給手段を制御するものである
ことを特徴とする固体酸化物形燃料電池発電設備。
In claim 7,
An abnormal reaction detecting means for detecting an abnormal reaction due to leakage of the fuel gas and the oxidizing gas in the solid oxide fuel cell;
The control means is
The abnormal reaction detecting means so as to gradually increase the fuel gas in the fuel mixed gas at a rate not causing an abnormal reaction due to leakage of the fuel gas and the oxidizing gas in the solid oxide fuel cell. And controlling the fuel-side inert gas feeding means and the fuel gas feeding means based on the signal from the abnormal reaction detection means so as to gradually increase the oxidizing gas in the oxidizing gas mixture. The solid oxide fuel cell power generation facility is characterized in that the oxidation side inert gas supply means and the oxidation gas supply means are controlled on the basis of the above signal.
請求項8において、
前記異常反応検知手段が、
前記固体酸化物形燃料電池の内部の電圧を計測する電圧計測手段と、
前記固体酸化物形燃料電池の内部の温度を計測する内部温度計測手段と、
前記固体酸化物形燃料電池から排出される使用済みの前記燃料ガスの温度を計測する排出燃料ガス温度計測手段と、
前記固体酸化物形燃料電池から排出される使用済みの前記酸化ガスの温度を計測する排出酸化ガス温度計測手段と、
前記固体酸化物形燃料電池から排出される使用済みの前記燃料ガスの圧力を計測する排出燃料ガス圧力計測手段と、
前記固体酸化物形燃料電池から排出される使用済みの前記酸化ガスの圧力を計測する排出酸化ガス圧力計測手段と
のうちの少なくとも一つである
ことを特徴とする固体酸化物形燃料電池発電設備。
In claim 8,
The abnormal reaction detection means,
Voltage measuring means for measuring the internal voltage of the solid oxide fuel cell;
An internal temperature measuring means for measuring an internal temperature of the solid oxide fuel cell;
Exhaust fuel gas temperature measuring means for measuring the temperature of the spent fuel gas discharged from the solid oxide fuel cell;
Exhaust oxidant gas temperature measuring means for measuring the temperature of the used oxidant gas discharged from the solid oxide fuel cell;
Exhaust fuel gas pressure measuring means for measuring the pressure of the spent fuel gas discharged from the solid oxide fuel cell;
A solid oxide fuel cell power generation facility, characterized in that it is at least one of exhausted oxidant gas pressure measuring means for measuring the pressure of the used oxidizing gas discharged from the solid oxide fuel cell. .
請求項5から請求項9のいずれかにおいて、
前記固体酸化物形燃料電池から排出された使用済みの前記燃料ガスの流路に配設された燃料側開閉弁と、
前記固体酸化物形燃料電池から排出された使用済みの前記酸化ガスの流路に配設された酸化側開閉弁と
のうちの少なくとも前記燃料側開閉弁を備えている
ことを特徴とする固体酸化物形燃料電池発電設備。
In any one of Claims 5-9,
A fuel-side on-off valve disposed in a flow path of the spent fuel gas discharged from the solid oxide fuel cell;
Solid oxidation characterized by comprising at least the fuel side on / off valve of an oxidation side on / off valve disposed in a flow path of the used oxidizing gas discharged from the solid oxide fuel cell. Physical fuel cell power generation facility.
JP2004285834A 2004-09-30 2004-09-30 Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell Pending JP2006100153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285834A JP2006100153A (en) 2004-09-30 2004-09-30 Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285834A JP2006100153A (en) 2004-09-30 2004-09-30 Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2006100153A true JP2006100153A (en) 2006-04-13

Family

ID=36239739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285834A Pending JP2006100153A (en) 2004-09-30 2004-09-30 Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2006100153A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102290A1 (en) * 2010-02-16 2011-08-25 Toto株式会社 Fuel cell system
JP2013171782A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Operational method of solid oxide fuel battery, operational method of hybrid power generation system, solid oxide fuel battery system and hybrid power generation system
JPWO2017110303A1 (en) * 2015-12-25 2018-09-27 日産自動車株式会社 Fuel cell system and control method thereof
JP2020061268A (en) * 2018-10-10 2020-04-16 大阪瓦斯株式会社 Solid oxide type fuel cell system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304668A (en) * 1988-06-01 1989-12-08 Toshiba Corp Phosphoric acid type fuel cell power generating plant
JPH0233866A (en) * 1988-07-22 1990-02-05 Mitsubishi Electric Corp Operation discontinuing method for fuel cell
JPH07272740A (en) * 1994-03-30 1995-10-20 Mazda Motor Corp Control device for fuel cell system
JPH0837018A (en) * 1994-07-22 1996-02-06 Kyocera Corp Power generation method in solid oxide fuel cell
JPH09147895A (en) * 1995-11-17 1997-06-06 Honda Motor Co Ltd Method and apparatus for detecting combustion in solid polymer electrolyte fuel cell
JPH10144334A (en) * 1996-11-13 1998-05-29 Toshiba Corp Fuel cell system power plant, and starting and stopping method therefor
JPH1140181A (en) * 1997-07-23 1999-02-12 Tokyo Gas Co Ltd Method for starting / stopping a solid oxide fuel cell and maintaining high temperature in operation or standby state
JP2004192919A (en) * 2002-12-10 2004-07-08 Toyota Motor Corp Fuel cell system
JP2004220942A (en) * 2003-01-15 2004-08-05 Tokyo Electric Power Co Inc:The Solid oxide fuel cell system and fuel cell combined cycle power plant

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304668A (en) * 1988-06-01 1989-12-08 Toshiba Corp Phosphoric acid type fuel cell power generating plant
JPH0233866A (en) * 1988-07-22 1990-02-05 Mitsubishi Electric Corp Operation discontinuing method for fuel cell
JPH07272740A (en) * 1994-03-30 1995-10-20 Mazda Motor Corp Control device for fuel cell system
JPH0837018A (en) * 1994-07-22 1996-02-06 Kyocera Corp Power generation method in solid oxide fuel cell
JPH09147895A (en) * 1995-11-17 1997-06-06 Honda Motor Co Ltd Method and apparatus for detecting combustion in solid polymer electrolyte fuel cell
JPH10144334A (en) * 1996-11-13 1998-05-29 Toshiba Corp Fuel cell system power plant, and starting and stopping method therefor
JPH1140181A (en) * 1997-07-23 1999-02-12 Tokyo Gas Co Ltd Method for starting / stopping a solid oxide fuel cell and maintaining high temperature in operation or standby state
JP2004192919A (en) * 2002-12-10 2004-07-08 Toyota Motor Corp Fuel cell system
JP2004220942A (en) * 2003-01-15 2004-08-05 Tokyo Electric Power Co Inc:The Solid oxide fuel cell system and fuel cell combined cycle power plant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102290A1 (en) * 2010-02-16 2011-08-25 Toto株式会社 Fuel cell system
JP2011170983A (en) * 2010-02-16 2011-09-01 Toto Ltd Fuel cell system
JP2013171782A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Operational method of solid oxide fuel battery, operational method of hybrid power generation system, solid oxide fuel battery system and hybrid power generation system
JPWO2017110303A1 (en) * 2015-12-25 2018-09-27 日産自動車株式会社 Fuel cell system and control method thereof
EP3396762A4 (en) * 2015-12-25 2019-03-13 Nissan Motor Co., Ltd. FUEL CELL SYSTEM AND METHOD OF CONTROLLING THE SAME
EP3579320A1 (en) * 2015-12-25 2019-12-11 Nissan Motor Co., Ltd. Fuel cell system and control method for fuel cell system
US11211620B2 (en) 2015-12-25 2021-12-28 Nissan Motor Co., Ltd. Fuel cell system with anode degradation reduction control
JP2020061268A (en) * 2018-10-10 2020-04-16 大阪瓦斯株式会社 Solid oxide type fuel cell system
JP7221641B2 (en) 2018-10-10 2023-02-14 大阪瓦斯株式会社 Solid oxide fuel cell system

Similar Documents

Publication Publication Date Title
CN108963301B (en) Method for cold starting proton exchange membrane fuel cell and fuel cell power generation system
JP5521467B2 (en) Method for stopping solid oxide fuel cell
US20080152961A1 (en) Purging a fuel cell system
CN101682065B (en) Fuel cell system and method of operating the same
US8092953B2 (en) Fuel cell system and method of operating the fuel cell system
JP2009217951A (en) Fuel cell system
KR20190094123A (en) Methods for Transitioning a Fuel Cell System between Modes of Operation
JP5233064B2 (en) Fuel cell system
US20070281201A1 (en) Fuel Release Management For Fuel Cell Systems
US20070154745A1 (en) Purging a fuel cell system
JP5244504B2 (en) Solid oxide fuel cell system and operation method thereof
JP4828078B2 (en) Method for controlling oxidant flow rate in fuel cell system
JP2017142935A (en) Fuel cell system
JP2006100153A (en) Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell
US20070154752A1 (en) Starting up and shutting down a fuel cell stack
JPH07183039A (en) Stopping method for power generation at fuel cell plant
WO2006062010A2 (en) Fuel cell system
KR20190094121A (en) Methods for Transitioning a Fuel Cell System between Modes of Operation
JP2006196402A (en) Control unit of fuel cell system
JP2007200771A (en) Reforming catalyst temperature control system and control method for fuel cell power generator
JP5659868B2 (en) Fuel cell system
JP2006244821A (en) Fuel cell system and control method of fuel cell system
JPH0654674B2 (en) Fuel cell power generator
JP2013033673A (en) Fuel cell system and residual gas purging method therefor
KR20190094122A (en) Methods for Transitioning a Fuel Cell System between Modes of Operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816