JP2007200771A - Reforming catalyst temperature control system and control method for fuel cell power generator - Google Patents
Reforming catalyst temperature control system and control method for fuel cell power generator Download PDFInfo
- Publication number
- JP2007200771A JP2007200771A JP2006019467A JP2006019467A JP2007200771A JP 2007200771 A JP2007200771 A JP 2007200771A JP 2006019467 A JP2006019467 A JP 2006019467A JP 2006019467 A JP2006019467 A JP 2006019467A JP 2007200771 A JP2007200771 A JP 2007200771A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- flow rate
- reformer
- fuel
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
【課題】発電停止を極力避け、より安定した発電量を継続して得られる運転制御幅の広い燃料電池発電装置の改質触媒温度制御システムおよびその制御方法を提供する。
【解決手段】燃料電池の設定電流に対応して改質器の設定温度を定める温度設定手段と、改質器の実測温度と設定温度との温度差に対応して定めた水素利用率および空燃比になるような原燃料供給流量および燃焼空気供給流量を演算する流量演算手段と、改質器に原燃料を供給する原燃料供給手段または改質器に燃焼空気を供給する燃焼空気供給手段の少なくとも一方が供給限界に達した場合は、設定電流を低減する制御を行う設定電流制御手段とを備える。
【選択図】図1The present invention provides a reforming catalyst temperature control system for a fuel cell power generation apparatus and a control method therefor, which has a wide operation control range that can avoid power generation stoppage as much as possible and continuously obtain a more stable power generation amount.
SOLUTION: Temperature setting means for determining a reformer set temperature corresponding to a set current of a fuel cell; a hydrogen utilization rate and an empty capacity determined corresponding to a temperature difference between the measured temperature and the set temperature of the reformer. A flow rate calculating means for calculating a raw fuel supply flow rate and a combustion air supply flow rate so as to achieve an fuel ratio, and a raw fuel supply means for supplying raw fuel to the reformer or a combustion air supply means for supplying combustion air to the reformer. When at least one of them reaches the supply limit, there is provided set current control means for performing control for reducing the set current.
[Selection] Figure 1
Description
改質触媒を加熱するバーナーを有し該改質触媒によって原燃料を改質して水素に富む改質ガスを生成する改質器と、該改質ガスに含まれる水素と酸化ガスとを電気化学的に反応させて発電する燃料電池と、該燃料電池から排出された燃料オフガスを燃焼させて前記改質触媒を加熱する燃料電池発電装置に関し、特に、改質触媒の温度制御システムおよびその制御方法に関する。 A reformer that has a burner for heating the reforming catalyst and reforms the raw fuel with the reforming catalyst to generate a reformed gas rich in hydrogen, and electrically connects the hydrogen and the oxidizing gas contained in the reformed gas More particularly, the present invention relates to a fuel cell that generates electricity through chemical reaction, and a fuel cell power generator that heats the reforming catalyst by burning a fuel off-gas discharged from the fuel cell. Regarding the method.
燃料電池は、燃料の有する化学エネルギーを機械エネルギーや熱エネルギーを経由することなく直接電気エネルギーに変換する装置であり、高いエネルギー効率が実現可能である。良く知られた燃料電池の形態としては、電解質層を挟んで一対の電極を配置し、一方の電極(アノード側)に水素を含有する燃料ガスを供給するとともに他方の電極(カソード側)に酸素を含有する酸化ガスを供給するものであり、両極間で起きる電気化学反応を利用して起電力を得る。以下に、燃料電池で起きる電気化学反応を表す式を示す。式(1)はアノード側に於ける反応、式(2)はカソード側に於ける反応を表し、燃料電池全体では式(3)に表す反応が進行する。 A fuel cell is a device that directly converts chemical energy of fuel into electrical energy without passing through mechanical energy or thermal energy, and can achieve high energy efficiency. As a well-known form of a fuel cell, a pair of electrodes are arranged with an electrolyte layer in between, a fuel gas containing hydrogen is supplied to one electrode (anode side), and oxygen is supplied to the other electrode (cathode side). The electromotive force is obtained by utilizing an electrochemical reaction that occurs between the two electrodes. Below, an equation representing an electrochemical reaction occurring in the fuel cell is shown. Formula (1) represents the reaction on the anode side, Formula (2) represents the reaction on the cathode side, and the reaction represented by Formula (3) proceeds in the entire fuel cell.
H2→2H++2e- ・・・(1)
1/2O2+2H++2e-→H2O ・・・(2)
H2+1/2O2→H2O ・・・(3)
燃料電池発電装置は、使用する電解質の種類により分類されるが、これらの燃料電池の中で、固体高分子型燃料電池、リン酸型燃料電池、溶融炭酸塩型燃料電池等では、その電解質の性質から、二酸化炭素を含んだ酸化ガスや炭酸ガスを使用することが可能である。そこで通常これらの燃料電池では、空気を酸化ガスとして用い、天然ガス等の炭化水素系の原燃料を燃料改質装置により水蒸気改質して生成した水素を含むガスを燃料ガスとして用いている。
H 2 → 2H ++ 2e − (1)
1 / 2O 2 + 2H + + 2e − → H 2 O (2)
H 2 + 1 / 2O 2 → H 2 O (3)
Fuel cell power generators are classified according to the type of electrolyte used. Among these fuel cells, solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, etc. Due to the nature, it is possible to use oxidizing gas or carbon dioxide containing carbon dioxide. Therefore, in these fuel cells, normally, air is used as an oxidizing gas, and a gas containing hydrogen generated by steam reforming a hydrocarbon-based raw fuel such as natural gas by a fuel reformer is used as a fuel gas.
そのため、この様な燃料電池を備える燃料電池システムには改質器および一酸化炭素変成器が設けられており、この改質器および一酸化炭素変成器において原燃料の改質を行ない燃料ガスを生成している。 For this reason, a fuel cell system including such a fuel cell is provided with a reformer and a carbon monoxide converter, and the reformer and the carbon monoxide converter reform the raw fuel to supply fuel gas. Is generated.
式(4)は、例えば、改質器におけるメタンの改質反応について示したものである。
CH4 + H2O → CO + 3H2 (+206.14 kJ/mol:吸熱反応) ・・・(4)
式(4)に示される通り、メタンの改質反応は吸熱反応であるため、メタンに水蒸気を添加したうえで、燃料電池からの燃料オフガスを燃焼させた燃焼排ガスにて粒状改質触媒を600〜700℃に保つことにより、水素に富む改質ガスを生成する。
Formula (4) shows, for example, the reforming reaction of methane in the reformer.
CH 4 + H 2 O → CO + 3H 2 (+206.14 kJ / mol: endothermic reaction) (4)
Since the reforming reaction of methane is an endothermic reaction as shown in the equation (4), the granular reforming catalyst is converted to 600 by using the combustion exhaust gas obtained by burning the fuel off-gas from the fuel cell after adding water vapor to the methane. By maintaining at ˜700 ° C., a reformed gas rich in hydrogen is produced.
改質器を出たこの改質ガスは、改質ガス中の一酸化炭素を低減するために一酸化炭素変成器に供給され、ここで一酸化炭素は1%以下に低減され、リン酸形燃料電池(PAFC)であれば、このガスを燃料電池へと導入して発電を行なうことが出来る。 This reformed gas leaving the reformer is fed to a carbon monoxide converter to reduce the carbon monoxide in the reformed gas, where the carbon monoxide is reduced to less than 1% and is in phosphoric acid form. In the case of a fuel cell (PAFC), this gas can be introduced into the fuel cell to generate electricity.
一方、固体高分子形燃料電池(PEFC)は、その動作温度が60〜80℃と低いために、改質ガス中に一酸化炭素が存在すると、これが触媒毒となって性能が劣化することから、一酸化炭素濃度をさらに低減するために改質ガスは所定の温度に制御された一酸化炭素除去器に供給され、ここで一酸化炭素濃度を10ppm以下に低減させる。 On the other hand, the polymer electrolyte fuel cell (PEFC) has a low operating temperature of 60 to 80 ° C., so if carbon monoxide is present in the reformed gas, it becomes a catalyst poison and deteriorates its performance. In order to further reduce the carbon monoxide concentration, the reformed gas is supplied to a carbon monoxide remover controlled at a predetermined temperature, where the carbon monoxide concentration is reduced to 10 ppm or less.
図4は、この種の燃料改質装置を使用する従来の固体高分子形燃料電池発電装置の概略構成図である。図4において、脱硫器1にて硫黄分を取りかれた原燃料12は、改質用水供給ポンプ8で供給された改質用水と混合した後、蒸気発生器2に供給され、改質用水が気化された後に改質器3に供給されて、前記式(4)に示した水蒸気改質反応によって水素リッチな改質ガスに改質される。その後、一酸化炭素変成器4に供給されて一酸化炭素変成反応によって水素濃度が高められ、さらに、図示しない一定量の空気とともに一酸化炭素除去器5に供給されて、一酸化炭素選択酸化反応によって一酸化炭素濃度が10ppm以下に低減された後、燃料電池6へ供給される。 FIG. 4 is a schematic configuration diagram of a conventional polymer electrolyte fuel cell power generator using this type of fuel reformer. In FIG. 4, the raw fuel 12 from which the sulfur content has been removed by the desulfurizer 1 is mixed with the reforming water supplied by the reforming water supply pump 8, and then supplied to the steam generator 2. After being vaporized, it is supplied to the reformer 3 and reformed into a hydrogen-rich reformed gas by the steam reforming reaction shown in the formula (4). Thereafter, the carbon concentration is supplied to the carbon monoxide converter 4 to increase the hydrogen concentration by the carbon monoxide conversion reaction, and is further supplied to the carbon monoxide remover 5 together with a certain amount of air (not shown) to selectively oxidize the carbon monoxide. As a result, the carbon monoxide concentration is reduced to 10 ppm or less, and then supplied to the fuel cell 6.
燃料電池6においては、通常、水素利用率(燃料電池の消費水素量/供給水素量で定義される)が75〜85%に制御されており、即ち、燃料電池で75〜85%の水素が消費された後、燃料電池から排出される燃料オフガス14は改質器3に還流し、バーナー3aにおいて燃焼空気13と混合され燃焼される。この燃焼熱は、前記式(4)に示した水蒸気改質反応(吸熱反応)に供せられる。また、バーナー3aでの燃焼排ガス9の熱は蒸気発生器2において改質用水の蒸発に供せられる。 In the fuel cell 6, the hydrogen utilization rate (defined by the amount of hydrogen consumed by the fuel cell / the amount of supplied hydrogen) is normally controlled to 75 to 85%, that is, 75 to 85% of hydrogen is consumed in the fuel cell. After being consumed, the fuel off-gas 14 discharged from the fuel cell returns to the reformer 3 and is mixed with the combustion air 13 and burned in the burner 3a. This combustion heat is supplied to the steam reforming reaction (endothermic reaction) shown in the formula (4). Further, the heat of the combustion exhaust gas 9 in the burner 3a is used for evaporation of the reforming water in the steam generator 2.
なお、図4において、部番7は改質用水タンク、10は原燃料ガスブロワ、11は燃焼空気ブロワ、15は後述する加熱用燃料、21は改質用水供給経路である。 In FIG. 4, part number 7 is a reforming water tank, 10 is a raw fuel gas blower, 11 is a combustion air blower, 15 is a heating fuel described later, and 21 is a reforming water supply path.
ところで、図4に示す燃料電池発電装置において、特許文献1の装置では、改質器の温度制御システムは次のように構成されている。触媒層に流入する改質原料の温度を検出する改質原料温度検出器と、触媒層の改質原料の流れ方向に複数箇所に配した触媒層の温度を検出する複数の触媒層温度検出器と、これらの触媒層温度検出器での検出温度を平均して触媒平均温度を算出する平均温度演算器と、この平均温度演算器から出力する触媒平均温度と触媒平均基準温度とのずれから修正する修正温度を演算する修正温度演算器と、負荷指令による負荷に対応する設定温度を修正温度演算器からの修正温度で補正した補正設定温度を設定する温度設定器とを備え、温度設定器からの補正設定温度と改質原料温度検出器での検出改質原料温度との偏差から触媒層の温度を制御する。また、改質器の触媒層出口(最も温度が高い部位)に温度検出器を設け、触媒層出口温度を対象として制御上の所望温度を設定し、触媒層出口の実測温度(実温度)がその設定温度になるよう制御する構成としてもいいことが記載されている。図5において、目標状態は、上述の制御により算出した補正設定温度と実温度との差が0の状態である。 By the way, in the fuel cell power generator shown in FIG. 4, in the apparatus of Patent Document 1, the temperature control system of the reformer is configured as follows. A reforming raw material temperature detector for detecting the temperature of the reforming raw material flowing into the catalyst layer, and a plurality of catalyst layer temperature detectors for detecting the temperatures of the catalyst layers arranged at a plurality of locations in the flow direction of the reforming raw material of the catalyst layer. The average temperature calculator that calculates the average catalyst temperature by averaging the temperatures detected by these catalyst layer temperature detectors, and the deviation from the average catalyst temperature output from the average temperature calculator and the average catalyst reference temperature A correction temperature calculator for calculating a correction temperature to be set, and a temperature setter for setting a correction set temperature obtained by correcting the set temperature corresponding to the load by the load command with the correction temperature from the correction temperature calculator. The temperature of the catalyst layer is controlled from the deviation between the corrected preset temperature and the reforming raw material temperature detected by the reforming raw material temperature detector. In addition, a temperature detector is provided at the catalyst layer outlet (the highest temperature part) of the reformer, a desired control temperature is set for the catalyst layer outlet temperature, and the measured temperature (actual temperature) at the catalyst layer outlet is It is described that the configuration may be such that the set temperature is controlled. In FIG. 5, the target state is a state where the difference between the corrected set temperature calculated by the above-described control and the actual temperature is zero.
そして、改質器の実温度が設定温度よりも高い場合には、その差分に比例して、改質器バーナーへの燃焼空気流量を増加させて改質器を冷却する(図5のa制御)。逆に、改質器の実温度が設定温度よりも低い場合には、その差分に比例して、加熱用燃料15の供給量を増加させ、その分必要になる改質器バーナーへの燃焼空気量も増加させていく(図5のh制御)。 When the actual temperature of the reformer is higher than the set temperature, the flow rate of combustion air to the reformer burner is increased in proportion to the difference to cool the reformer (a control in FIG. 5). ). Conversely, when the actual temperature of the reformer is lower than the set temperature, the supply amount of the heating fuel 15 is increased in proportion to the difference, and the required combustion air to the reformer burner. The amount is also increased (h control in FIG. 5).
上記図5に示す燃料電池発電装置の温度制御システムの場合、下記のような問題がある。一つには、加熱用燃料15の供給手段および増減制御手段が必要となって、システムが複雑化する問題がある。さらに、改質器の実温度と設定温度の差が大きすぎると、それが高すぎても低すぎても、改質器バーナーへの燃焼空気量または加熱用燃料の供給量の上限値を超えて制御することはできず、結果として、改質器温度異常で燃料電池発電装置の運転を停止せざるを得なくなるという問題があった。 The temperature control system for the fuel cell power generator shown in FIG. 5 has the following problems. For example, the heating fuel 15 supplying means and the increase / decrease control means are required, which complicates the system. Furthermore, if the difference between the actual temperature of the reformer and the set temperature is too large, it will exceed the upper limit of the amount of combustion air or heating fuel supplied to the reformer burner, whether it is too high or too low. As a result, there is a problem that the operation of the fuel cell power generation apparatus has to be stopped due to an abnormal reformer temperature.
上記のように、加熱用燃料15の供給を行わない改質器温度制御に関わる燃料電池発電装置の改質触媒温度制御システムとして、特許文献2が知られている。特許文献2には、当該明細書の従来の技術の項および図6および7に記載された温度制御システムと、特許文献2の要約書の解決手段の項および図1〜5に記載された温度制御システムの2種類が開示されている。 As described above, Patent Document 2 is known as a reforming catalyst temperature control system for a fuel cell power generator related to reformer temperature control in which the heating fuel 15 is not supplied. Patent Document 2 includes the temperature control system described in the prior art section of the specification and FIGS. 6 and 7, the solution section of the abstract of Patent Document 2, and the temperatures described in FIGS. Two types of control systems are disclosed.
前記特許文献2の前者の温度制御システムは、後述する本発明の温度制御システムと関連し、特許文献2の図7に開示されたグラフは、「温度センサで測定される温度が目標値になるように、燃焼空気流量および原燃料(都市ガス)流量を制御する温度制御システムの温度制御出力特性を示すグラフ」である。図6は前記特許文献2の図7と同一の温度制御出力特性を示す説明図である。そして、図6における原燃料流量の増加は、電池出力一定の場合には結果として水素利用率の低下となるので、図5の加熱用燃料流量の増加と実質的に同一の作用がある。図6の詳細説明は、本発明との関連から後述することとする。 The former temperature control system of Patent Document 2 is related to the temperature control system of the present invention, which will be described later, and the graph disclosed in FIG. 7 of Patent Document 2 indicates that “the temperature measured by the temperature sensor becomes the target value. Thus, it is a graph showing temperature control output characteristics of a temperature control system that controls the flow rate of combustion air and the flow rate of raw fuel (city gas). FIG. 6 is an explanatory diagram showing the same temperature control output characteristics as those in FIG. The increase in the raw fuel flow rate in FIG. 6 results in a decrease in the hydrogen utilization rate when the battery output is constant, and thus has substantially the same effect as the increase in the heating fuel flow rate in FIG. The detailed description of FIG. 6 will be described later in connection with the present invention.
一方、前記特許文献2の後者の温度制御システムは、要約書の記載を引用すれば、下記のような温度制御システムである。「改質器の温度を温度センサで測定し、測定温度が目標温度よりも高いときには、直流電流値制御手段により直流電流値を増加させ、燃料電池本体で消費する改質ガスの量を増加させ、燃料電池本体から取り出されて改質器に供給されるオフガスの量を減少し、改質器で燃焼するガス量を減少して改質器の温度を低下させ、目標温度に近づける。一方、改質器の温度が目標温度よりも低いときには、直流電流値制御手段により直流電流値を減少させ、燃料電池本体で消費する改質ガスの量を減少させ、燃料電池本体から取り出されて改質器に供給されるオフガスの量を増加し、改質器で燃焼するガス量を増加して改質器の温度を上昇させ、目標温度に近づける。」
即ち、上記温度制御システムは、改質器の温度に対応させて発電量(負荷率)を増加または減少することにより、オフガス量を減少または増加させて、温度センサで測定される温度が目標値になるように制御する温度制御システムである(図7参照)。
That is, the temperature control system increases or decreases the power generation amount (load factor) corresponding to the temperature of the reformer, thereby decreasing or increasing the amount of off-gas, and the temperature measured by the temperature sensor becomes the target value. It is the temperature control system which controls to become (refer FIG. 7).
ところで、前記特許文献1、前記特許文献2に開示された前者および後者の温度制御システムは、いずれも、燃焼空気流量または原燃料流量が供給限界に到達した際の運転方法に関する記載はなく、供給限界に到達した際には、燃料電池発電装置の運転を停止することを前提にしていると考えられる。また、特許文献2の後者の温度制御システムは、発電量(負荷率)を増加または減少することにより改質器の温度制御を行うが、需要家サイドからは、通常運転時においては、できる限り発電量(負荷率)が一定で、安定した発電量が継続して得られることが望ましい。 By the way, neither of the former and the latter temperature control systems disclosed in Patent Document 1 and Patent Document 2 are described regarding the operation method when the combustion air flow rate or raw fuel flow rate reaches the supply limit. It is considered that when the limit is reached, it is assumed that the operation of the fuel cell power generator is stopped. Moreover, although the latter temperature control system of patent document 2 performs the temperature control of the reformer by increasing or decreasing the power generation amount (load factor), from the consumer side, as much as possible during normal operation. It is desirable that the power generation amount (load factor) is constant and a stable power generation amount can be obtained continuously.
この発明は、上記のような従来技術の問題点に鑑みてなされたもので、本発明の課題は、改質器の温度制御に当り、発電停止は極力避け、より安定した発電量が継続して得られる運転制御幅の広い燃料電池発電装置の改質触媒温度制御システムおよびその制御方法を提供することにある。 The present invention has been made in view of the above-described problems of the prior art. The object of the present invention is to avoid the stoppage of power generation as much as possible in the temperature control of the reformer, and to maintain a more stable power generation amount. It is an object of the present invention to provide a reforming catalyst temperature control system and a control method thereof for a fuel cell power generator having a wide operation control range.
上記課題は、以下により達成される。即ち、改質触媒を加熱するバーナーを有し該改質触媒によって原燃料を改質して水素に富む改質ガスを生成する改質器と、該改質ガスに含まれる水素と酸化ガスとを電気化学的に反応させて発電する燃料電池と、該燃料電池から排出された燃料オフガスを燃焼させて前記改質触媒を加熱する燃料電池発電装置の改質触媒温度制御システムにおいて、前記燃料電池の設定電流に対応して前記改質器の設定温度を定める温度設定手段と、前記改質器の実測温度と前記設定温度との温度差に対応して定めた水素利用率および空燃比になるような原燃料供給流量および燃焼空気供給流量を演算する流量演算手段と、前記改質器に原燃料を供給する原燃料供給手段または前記改質器に燃焼空気を供給する燃焼空気供給手段の少なくとも一方が供給限界に達した場合は、設定電流を低減する制御を行う設定電流制御手段とを備えたことを特徴とする(請求項1)。 The above-mentioned subject is achieved by the following. That is, a reformer that has a burner that heats the reforming catalyst and reforms the raw fuel with the reforming catalyst to generate a reformed gas rich in hydrogen, hydrogen and oxidizing gas contained in the reformed gas, In a reforming catalyst temperature control system of a fuel cell power generation apparatus that heats the reforming catalyst by burning fuel off-gas discharged from the fuel cell and generating electricity by electrochemically reacting the fuel cell, the fuel cell A temperature setting means for determining a set temperature of the reformer corresponding to the set current of the gas, and a hydrogen utilization rate and an air-fuel ratio determined corresponding to a temperature difference between the measured temperature of the reformer and the set temperature. At least of a flow rate calculating means for calculating the raw fuel supply flow rate and the combustion air supply flow rate, and a raw fuel supply means for supplying raw fuel to the reformer or a combustion air supply means for supplying combustion air to the reformer. One is at supply limit If it is, it is characterized in that a set current control means for controlling to reduce the set current (claim 1).
設定電流の減少量は、式(5)に従って算出し制御を行ってもよい。 The amount of decrease in the set current may be calculated and controlled according to equation (5).
設定電流の減少量 = 係数 × 温度差の絶対値 + 定数 ・・・(5)
また、請求項1に記載の改質触媒温度制御システムの制御方法において、前記燃料電池の設定電流を低減する際、その低減量を前記実測温度が前記設定温度に近づくように前記原燃料供給手段、前記燃焼空気供給手段、および前記設定電流制御手段を制御することを特徴とする(請求項2)。
Amount of decrease in set current = coefficient x absolute value of temperature difference + constant (5)
2. The control method for a reforming catalyst temperature control system according to claim 1, wherein when the set current of the fuel cell is reduced, the amount of reduction is reduced so that the measured temperature approaches the set temperature. The combustion air supply means and the set current control means are controlled (claim 2).
また、請求項2に記載の改質触媒温度制御システムの制御方法において、前記実測温度が前記設定温度より高いときには、前記バーナーへ供給する燃焼空気流量を増加し、さらに燃焼空気流量が供給限界に到達した場合には、空燃比を一定に維持した状態で燃料電池の設定電流を低減することを特徴とする(請求項3)。 Further, in the control method of the reforming catalyst temperature control system according to claim 2, when the measured temperature is higher than the set temperature, the flow rate of combustion air supplied to the burner is increased, and the flow rate of combustion air reaches the supply limit. When it reaches, the set current of the fuel cell is reduced in a state where the air-fuel ratio is kept constant (claim 3).
また、請求項2に記載の改質触媒温度制御システムの制御方法において、前記実測温度が設定温度より低いときには、前記改質器への原燃料供給流量を増加するとともに、空燃比が一定となるようにバーナーへ供給する燃焼空気流量を増加し、さらに前記原燃料供給流量または前記燃焼空気流量の少なくとも一方が供給限界に到達した場合には、空燃比を一定に維持した状態で燃料電池の設定電流を低減することを特徴とする(請求項4)。この時、原燃料流量に対する燃料オフガス流量の比は増加する。 Also, in the control method of the reforming catalyst temperature control system according to claim 2, when the measured temperature is lower than a set temperature, the raw fuel supply flow rate to the reformer is increased and the air-fuel ratio becomes constant. When the flow rate of the combustion air supplied to the burner is increased, and when at least one of the raw fuel supply flow rate or the combustion air flow rate reaches the supply limit, the fuel cell is set with the air-fuel ratio maintained constant. The current is reduced (claim 4). At this time, the ratio of the fuel off-gas flow rate to the raw fuel flow rate increases.
本発明によれば、発電停止を極力避け、より安定した発電量を継続して得られる運転制御幅の広い燃料電池発電装置の改質触媒温度制御システムおよびその制御方法を提供できる。特に、請求項3の発明によれば、改質器の周囲環境が暑い場合は、発電停止を極力避け、より安定した発電量を継続して得ることができる。また、請求項4の発明によれば、改質器の周囲環境が寒い場合、メタン濃度が変動するバイオガスを原燃料に用いておりこのメタン濃度が低下した場合、および、原燃料の元圧が一時的に低下した場合は、発電停止を極力避け、より安定した発電量を継続して得ることができる。 According to the present invention, it is possible to provide a reforming catalyst temperature control system for a fuel cell power generation apparatus with a wide operation control range that avoids power generation stoppage as much as possible and continuously obtains a more stable power generation amount and a control method therefor. In particular, according to the invention of claim 3, when the ambient environment of the reformer is hot, it is possible to avoid power generation stop as much as possible and continuously obtain a more stable power generation amount. According to the invention of claim 4, when the ambient environment of the reformer is cold, biogas with a varying methane concentration is used as the raw fuel, and when this methane concentration is reduced, and the original pressure of the raw fuel In the case of a temporary decrease, it is possible to avoid power generation stop as much as possible and continuously obtain a more stable power generation amount.
次に、この発明の実施形態に関して、図1、図2および図3に基いて説明する。
図1は本発明の実施形態に関わる改質触媒温度制御システムのブロック図である。改質触媒温度制御システムは、一定周期で原燃料流量と燃焼空気流量を演算する。原燃料供給手段に出力される原燃料供給流量、ならびに燃焼空気供給手段に出力される燃焼空気流量は、設定電流と改質触媒温度センサで測定された改質触媒温度を入力として計算される。温度設定手段は、式(6)のように、設定電流に応じて設定温度を定める。
設定温度 =(−20 × 設定電流 / 最大設定電流) + 700 ・・・(6)
次いで、温度差演算手段は、前記設定温度から改質触媒温度センサで測定した改質触媒温度を引き、温度差を計算する。次に、流量演算手段は、制御演算の次サイクルの原燃料流量と燃焼空気流量を図2に示す手順で算出する。供給限界検出手段は、流量演算手段で算出した前記原燃料流量および前記燃焼空気流量と、原燃料ガスブロワ10および燃焼空気ブロワ11の各流量上限値とを比較し、少なくとも一方が流量上限値を超える場合は設定電流制御手段で設定電流を変更し、新たな設定電流値で再計算を行う。前記流量上限値以下の場合は、原燃料供給手段および燃焼空気供給手段は、前記流量演算手段で算出された原燃料流量および燃焼空気流量で作動し、燃料電池電流制御手段は前記設定電流の条件で燃料電池の電流を制御する。運転継続可否判断手段は、改質触媒温度センサの温度が予め定めた値と比較して異常値であるか判断する。温度が異常の場合、運転停止制御手段は、当該改質器の運転を停止させる。
Next, an embodiment of the present invention will be described with reference to FIG. 1, FIG. 2, and FIG.
FIG. 1 is a block diagram of a reforming catalyst temperature control system according to an embodiment of the present invention. The reforming catalyst temperature control system calculates the raw fuel flow rate and the combustion air flow rate at regular intervals. The raw fuel supply flow rate output to the raw fuel supply unit and the combustion air flow rate output to the combustion air supply unit are calculated using the set current and the reforming catalyst temperature measured by the reforming catalyst temperature sensor as inputs. The temperature setting means determines the set temperature according to the set current as shown in Equation (6).
Setting temperature = (− 20 × setting current / maximum setting current) +700 (6)
Next, the temperature difference calculating means subtracts the reforming catalyst temperature measured by the reforming catalyst temperature sensor from the set temperature to calculate the temperature difference. Next, the flow rate calculation means calculates the raw fuel flow rate and the combustion air flow rate in the next cycle of the control calculation according to the procedure shown in FIG. The supply limit detection means compares the raw fuel flow rate and the combustion air flow rate calculated by the flow rate calculation means with the respective flow rate upper limit values of the raw fuel gas blower 10 and the combustion air blower 11, and at least one exceeds the flow rate upper limit value. In this case, the set current is changed by the set current control means, and recalculation is performed with a new set current value. When the flow rate upper limit value is not exceeded, the raw fuel supply means and the combustion air supply means operate at the raw fuel flow rate and the combustion air flow rate calculated by the flow rate calculation means, and the fuel cell current control means is a condition of the set current. To control the fuel cell current. The operation continuity determining unit determines whether the temperature of the reforming catalyst temperature sensor is an abnormal value by comparing with a predetermined value. When the temperature is abnormal, the operation stop control means stops the operation of the reformer.
図2は、本発明の実施形態に関わる改質触媒温度制御システムの一部について、より詳しいブロック図である。前記温度差が、0以下の場合、水素利用率は式(7)により計算する。 FIG. 2 is a more detailed block diagram of a part of the reforming catalyst temperature control system according to the embodiment of the present invention. When the temperature difference is 0 or less, the hydrogen utilization rate is calculated by the equation (7).
水素利用率 = 0.5 × 温度差 + 80 ・・・(7)
前記温度差が0より大きい場合、水素利用率は、現状の値を変更しない。
Hydrogen utilization rate = 0.5 × temperature difference + 80 (7)
If the temperature difference is greater than 0, the hydrogen utilization rate does not change the current value.
燃料電池水素消費流量演算手段は設定電流に対応した水素消費流量を演算する。原燃料流量演算手段は、前記水素消費流量と前記水素利用率から原燃料流量を計算する。 The fuel cell hydrogen consumption flow rate calculation means calculates a hydrogen consumption flow rate corresponding to the set current. The raw fuel flow rate calculation means calculates the raw fuel flow rate from the hydrogen consumption flow rate and the hydrogen utilization rate.
前記温度差が、0以下の場合、現状の空燃比は変更しない。前記温度差が0より大きい場合は、以下の処理を行う。まず、次サイクルの空燃比を式(8)により試算する。 When the temperature difference is 0 or less, the current air-fuel ratio is not changed. When the temperature difference is larger than 0, the following processing is performed. First, the air-fuel ratio of the next cycle is calculated by equation (8).
試算された空燃比 = 0.025 × 温度差 +1.5 ・・・(8)
試算された空燃比が空燃比上限以下なら空燃比を試算された空燃比に変更し、試算された空燃比が空燃比上限より大きい場合は、現状の空燃比を変更しない。燃焼空気流量演算手段は、前記原燃料流量と前記空燃比から燃焼空気流量を演算する。このようにして、流量演算手段は、原燃料流量および燃焼空気流量を算出する。
Estimated air-fuel ratio = 0.025 × temperature difference +1.5 (8)
If the calculated air / fuel ratio is equal to or lower than the upper limit of the air / fuel ratio, the air / fuel ratio is changed to the calculated air / fuel ratio. If the calculated air / fuel ratio is larger than the upper limit of the air / fuel ratio, the current air / fuel ratio is not changed. The combustion air flow rate calculation means calculates a combustion air flow rate from the raw fuel flow rate and the air-fuel ratio. In this way, the flow rate calculation means calculates the raw fuel flow rate and the combustion air flow rate.
図3は、本発明の実施形態に関わる水素利用率および空燃比を制御する手段の説明図である。また、図6は、図3のベースとなる改質触媒温度制御システムの出力特性図であり、前述のように、特許文献2の図7と実質的に同一の運転方法を示す説明図である。 FIG. 3 is an explanatory diagram of a means for controlling the hydrogen utilization rate and the air-fuel ratio according to the embodiment of the present invention. FIG. 6 is an output characteristic diagram of the reforming catalyst temperature control system serving as the base of FIG. 3, and is an explanatory diagram showing the operation method substantially the same as FIG. 7 of Patent Document 2 as described above. .
図3と図6は、目標状態の左右に示すa制御およびb制御は共通で、図3においては、さらに、その左右に示すc制御とd制御が追加されている点が図6と異なる。 3 and FIG. 6 are common to the a control and b control shown on the left and right of the target state, and FIG. 3 is different from FIG. 6 in that c control and d control shown on the left and right are further added.
まず、図3における各制御について説明する。目標状態およびa制御に関しては、図6と同等である。即ち、改質器の実温度が設定温度よりも高い場合には、設定電流を一定に維持し、かつ改質器の実温度から設定温度を引いた温度差に比例して、改質器バーナーへの燃焼空気流量を増加させて改質器を冷却する(a制御)。なお、この場合、設定電流、原燃料流量および燃料オフガス量が一定、つまり水素利用率は一定である。 First, each control in FIG. 3 will be described. The target state and a control are the same as in FIG. That is, when the actual temperature of the reformer is higher than the set temperature, the set current is kept constant, and the reformer burner is proportional to the temperature difference obtained by subtracting the set temperature from the actual temperature of the reformer. The reformer is cooled by increasing the flow rate of combustion air to (a control). In this case, the set current, the raw fuel flow rate, and the fuel off-gas amount are constant, that is, the hydrogen utilization rate is constant.
改質器の実温度が設定温度よりも低い場合には、設定電流を一定に維持し、かつ改質器の実温度から設定温度を引いた温度差に比例して、水素利用率を下げる(b制御)。水素利用率を下げるために実質上は、改質器への原燃料流量を増加する。これにより、燃料オフガス量が増加し、改質器の温度を上昇させるように作用する。また、この際、バーナーにおける空燃比が一定となるようにバーナーへ供給する燃焼空気流量も増加する。なお、図3に示したa制御、b制御、c制御およびd制御において、改質用水流量は原燃料流量に対して一定比率で制御する。 When the actual temperature of the reformer is lower than the set temperature, the set current is kept constant, and the hydrogen utilization rate is reduced in proportion to the temperature difference obtained by subtracting the set temperature from the actual temperature of the reformer ( b control). In order to reduce the hydrogen utilization rate, the raw fuel flow rate to the reformer is substantially increased. This increases the amount of fuel off-gas and acts to raise the temperature of the reformer. At this time, the flow rate of the combustion air supplied to the burner also increases so that the air-fuel ratio in the burner becomes constant. In the a control, b control, c control, and d control shown in FIG. 3, the reforming water flow rate is controlled at a constant ratio with respect to the raw fuel flow rate.
次に、図6をベースにした本発明の運転方法に係る図3について述べる。前述のように、図3において、目標状態の左右に示すa制御およびb制御は、前記図6と同様である。図3では、前記温度差がさらにプラスに大きくなり、かつ改質器バーナーへの燃焼空気流量が上限に達したら、空燃比はその後一定に制御して、設定電流(発電量)を下げる(c制御)。この場合、発電量の減少に伴い、原燃料流量(相応する改質用水量)および燃料オフガス量は減少する。また、空燃比一定のため燃焼空気流量も減少する。これにより、改質器の温度を下げる方向に作用しつつ、設定電流を下げた状態で燃料電池の継続運転が可能となる。 Next, FIG. 3 relating to the operation method of the present invention based on FIG. 6 will be described. As described above, in FIG. 3, the a control and b control shown on the left and right of the target state are the same as those in FIG. In FIG. 3, when the temperature difference is further increased to a positive value and the combustion air flow rate to the reformer burner reaches the upper limit, the air-fuel ratio is thereafter controlled to be constant to lower the set current (power generation amount) (c control). In this case, as the power generation amount decreases, the raw fuel flow rate (corresponding reforming water amount) and the fuel off-gas amount decrease. Further, since the air-fuel ratio is constant, the combustion air flow rate is also reduced. As a result, the fuel cell can be continuously operated while the set current is lowered while acting in the direction of lowering the temperature of the reformer.
一方、前記温度差がさらにマイナスに大きくなり、水素利用率を下げても改質器の実温度が設定温度に近づくことができず、やがて、原燃料流量、または改質器バーナーへの燃焼空気流量のいずれかが上限に達したら、空燃比はその後一定に制御して、設定電流(発電量)を下げる(d制御)。すると、原燃料流量に対する燃料オフガス流量の比は増加する。すなわち、改質反応による吸熱量が減る一方、燃料オフガスの燃焼により供給される熱量は増加するので、改質器の温度を上げる方向に作用しつつ、設定電流を下げた状態で燃料電池の継続運転が可能となる。 On the other hand, even if the temperature difference becomes further negative and the hydrogen utilization rate is lowered, the actual temperature of the reformer cannot approach the set temperature, and eventually the raw fuel flow rate or the combustion air to the reformer burner When any of the flow rates reaches the upper limit, the air-fuel ratio is thereafter controlled to be constant and the set current (power generation amount) is lowered (d control). Then, the ratio of the fuel off gas flow rate to the raw fuel flow rate increases. That is, while the amount of heat absorbed by the reforming reaction is reduced, the amount of heat supplied by the combustion of the fuel off-gas is increased, so that the fuel cell continues with the set current lowered while acting to increase the temperature of the reformer. Driving is possible.
1:脱硫器、2:蒸気発生器、3:改質器、3a:バーナー、4:一酸化炭素変成器、5:一酸化炭素除去器、6:燃料電池、7:改質用水タンク、8:改質用水供給ポンプ、10:原燃料ガスブロワ、11:燃焼空気ブロワ、12:原燃料、13:燃焼空気、14:燃料オフガス、16:温度センサ。 1: desulfurizer, 2: steam generator, 3: reformer, 3a: burner, 4: carbon monoxide converter, 5: carbon monoxide remover, 6: fuel cell, 7: water tank for reforming, 8 : Reforming water supply pump, 10: raw fuel gas blower, 11: combustion air blower, 12: raw fuel, 13: combustion air, 14: fuel off gas, 16: temperature sensor.
Claims (4)
前記燃料電池の設定電流に対応して前記改質器の設定温度を定める温度設定手段と、前記改質器の実測温度と前記設定温度との温度差に対応して定めた水素利用率および空燃比になるような原燃料供給流量および燃焼空気供給流量を演算する流量演算手段と、前記改質器に原燃料を供給する原燃料供給手段または前記改質器に燃焼空気を供給する燃焼空気供給手段の少なくとも一方が供給限界に達した場合は、設定電流を低減する制御を行う設定電流制御手段とを備えたことを特徴とする改質触媒温度制御システム。 A reformer that has a burner for heating the reforming catalyst and reforms the raw fuel with the reforming catalyst to generate a reformed gas rich in hydrogen, and electrically connects the hydrogen and the oxidizing gas contained in the reformed gas In a reforming catalyst temperature control system for a fuel cell that generates electricity by chemically reacting, and a fuel cell power generator that heats the reforming catalyst by burning a fuel off-gas discharged from the fuel cell,
Temperature setting means for determining a set temperature of the reformer corresponding to the set current of the fuel cell; a hydrogen utilization factor and an empty rate determined corresponding to a temperature difference between the measured temperature of the reformer and the set temperature; A flow rate calculating means for calculating a raw fuel supply flow rate and a combustion air supply flow rate so as to achieve an fuel ratio, and a raw fuel supply means for supplying raw fuel to the reformer or a combustion air supply for supplying combustion air to the reformer A reforming catalyst temperature control system comprising: a set current control unit that performs control to reduce a set current when at least one of the units reaches a supply limit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006019467A JP2007200771A (en) | 2006-01-27 | 2006-01-27 | Reforming catalyst temperature control system and control method for fuel cell power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006019467A JP2007200771A (en) | 2006-01-27 | 2006-01-27 | Reforming catalyst temperature control system and control method for fuel cell power generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007200771A true JP2007200771A (en) | 2007-08-09 |
Family
ID=38455163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006019467A Pending JP2007200771A (en) | 2006-01-27 | 2006-01-27 | Reforming catalyst temperature control system and control method for fuel cell power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007200771A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009123095A1 (en) * | 2008-03-31 | 2009-10-08 | 独立行政法人石油天然ガス・金属鉱物資源機構 | Method for operating synthesis gas reformer in gtl plant |
JP2012206905A (en) * | 2011-03-30 | 2012-10-25 | Osaka Gas Co Ltd | Hydrogen-containing gas producing apparatus |
KR101216456B1 (en) * | 2010-04-29 | 2012-12-28 | 에스티엑스중공업 주식회사 | Reformer |
KR101237778B1 (en) * | 2010-04-29 | 2013-02-28 | 에스티엑스중공업 주식회사 | Reformer having spiral reactor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63146367A (en) * | 1986-12-08 | 1988-06-18 | Fuji Electric Co Ltd | fuel cell power generator |
JPH04243538A (en) * | 1991-01-24 | 1992-08-31 | Fuji Electric Co Ltd | Catalyst layer temperature control method and device for fuel reformer for fuel cells |
JP2001143731A (en) * | 1999-11-16 | 2001-05-25 | Daikin Ind Ltd | Fuel cell system |
JP2003187848A (en) * | 2001-12-19 | 2003-07-04 | Sanyo Electric Co Ltd | Fuel cell system |
WO2003078311A1 (en) * | 2002-03-15 | 2003-09-25 | Matsushita Electric Works, Ltd. | Reforming device and method for operation thereof |
JP2004047438A (en) * | 2002-05-15 | 2004-02-12 | Fuji Electric Holdings Co Ltd | Operation control method of fuel cell power generator |
JP2005158661A (en) * | 2003-11-28 | 2005-06-16 | Fuji Electric Holdings Co Ltd | Fuel cell power generating system |
-
2006
- 2006-01-27 JP JP2006019467A patent/JP2007200771A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63146367A (en) * | 1986-12-08 | 1988-06-18 | Fuji Electric Co Ltd | fuel cell power generator |
JPH04243538A (en) * | 1991-01-24 | 1992-08-31 | Fuji Electric Co Ltd | Catalyst layer temperature control method and device for fuel reformer for fuel cells |
JP2001143731A (en) * | 1999-11-16 | 2001-05-25 | Daikin Ind Ltd | Fuel cell system |
JP2003187848A (en) * | 2001-12-19 | 2003-07-04 | Sanyo Electric Co Ltd | Fuel cell system |
WO2003078311A1 (en) * | 2002-03-15 | 2003-09-25 | Matsushita Electric Works, Ltd. | Reforming device and method for operation thereof |
JP2004047438A (en) * | 2002-05-15 | 2004-02-12 | Fuji Electric Holdings Co Ltd | Operation control method of fuel cell power generator |
JP2005158661A (en) * | 2003-11-28 | 2005-06-16 | Fuji Electric Holdings Co Ltd | Fuel cell power generating system |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009123095A1 (en) * | 2008-03-31 | 2009-10-08 | 独立行政法人石油天然ガス・金属鉱物資源機構 | Method for operating synthesis gas reformer in gtl plant |
JP2009242158A (en) * | 2008-03-31 | 2009-10-22 | Japan Oil Gas & Metals National Corp | Method for operating synthesis gas reformer in gtl plant |
US8303848B2 (en) | 2008-03-31 | 2012-11-06 | Japan Oil, Gas And Metals National Corporation | Operation method of synthesis gas reformer in GTL plant |
EA017674B1 (en) * | 2008-03-31 | 2013-02-28 | Джэпэн Ойл, Гэз Энд Металз Нэшнл Корпорейшн | Method for operating synthesis gas reformer in gtl (gas to liquid) plant |
KR101216456B1 (en) * | 2010-04-29 | 2012-12-28 | 에스티엑스중공업 주식회사 | Reformer |
KR101237778B1 (en) * | 2010-04-29 | 2013-02-28 | 에스티엑스중공업 주식회사 | Reformer having spiral reactor |
JP2012206905A (en) * | 2011-03-30 | 2012-10-25 | Osaka Gas Co Ltd | Hydrogen-containing gas producing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6826436B2 (en) | Fuel cell system and its operation method | |
JP5289361B2 (en) | Fuel cell system and current control method thereof | |
EP1587157A2 (en) | Fuel cell operation method | |
JP6857846B2 (en) | Fuel cell system and how to operate it | |
US8148023B2 (en) | Regulating an oxidizer in an electrochemical cell pumping system | |
JP4870909B2 (en) | Fuel cell power generator | |
JP2011076943A (en) | Solid oxide fuel cell | |
JP5829936B2 (en) | Solid oxide fuel cell system and method for operating solid oxide fuel cell system | |
JP2004047438A (en) | Operation control method of fuel cell power generator | |
JP2007200771A (en) | Reforming catalyst temperature control system and control method for fuel cell power generator | |
JP6901231B2 (en) | Fuel cell control device and fuel cell control method | |
JP4727642B2 (en) | Operation method of hydrogen production power generation system | |
JP6721363B2 (en) | Fuel cell system and operating method thereof | |
JP2007141744A (en) | Fuel cell system | |
JP4466049B2 (en) | Water flow control method for reforming steam | |
JP4742540B2 (en) | Fuel cell system | |
JPH09199153A (en) | Fuel cell power generator and method for detecting deterioration of reformer thereof | |
JP5659868B2 (en) | Fuel cell system | |
JP2012038608A (en) | Fuel cell system and control method of reforming water supply amount in fuel cell system | |
JP5378252B2 (en) | FUEL CELL SYSTEM AND METHOD FOR SETTING GENERATED POWER TARGET VALUE | |
JP2009117170A (en) | Hydrogen production power generation system and load following power generation method thereof | |
JP2007137719A (en) | FUEL REFORMER AND FUEL CELL POWER GENERATOR USING SAME AND ITS OPERATION METHOD | |
JP6382623B2 (en) | FUEL CELL SYSTEM, FUEL CELL SYSTEM CONTROL DEVICE, AND FUEL CELL SYSTEM CONTROL METHOD | |
JP4929565B2 (en) | Fuel cell power generator | |
JP2011076942A (en) | Solid oxide fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111018 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120228 |