[go: up one dir, main page]

JP2006082871A - Flat container made of polyester resin - Google Patents

Flat container made of polyester resin Download PDF

Info

Publication number
JP2006082871A
JP2006082871A JP2004272637A JP2004272637A JP2006082871A JP 2006082871 A JP2006082871 A JP 2006082871A JP 2004272637 A JP2004272637 A JP 2004272637A JP 2004272637 A JP2004272637 A JP 2004272637A JP 2006082871 A JP2006082871 A JP 2006082871A
Authority
JP
Japan
Prior art keywords
container
flat
polyester resin
flat container
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004272637A
Other languages
Japanese (ja)
Other versions
JP4721138B2 (en
Inventor
Atsushi Komiya
温 小宮
Hiroyuki Honda
宏行 本田
Takuya Fujikawa
卓哉 藤川
Akihiko Morofuji
明彦 諸藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004272637A priority Critical patent/JP4721138B2/en
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to CN2010102028732A priority patent/CN101920553B/en
Priority to US11/575,435 priority patent/US8784957B2/en
Priority to PCT/JP2005/017442 priority patent/WO2006030972A1/en
Priority to AT05785865T priority patent/ATE493340T1/en
Priority to DE602005025660T priority patent/DE602005025660D1/en
Priority to CN2005800312267A priority patent/CN101035714B/en
Priority to EP05785865.6A priority patent/EP1795449B2/en
Priority to KR1020077008373A priority patent/KR101237729B1/en
Publication of JP2006082871A publication Critical patent/JP2006082871A/en
Application granted granted Critical
Publication of JP4721138B2 publication Critical patent/JP4721138B2/en
Priority to US14/284,697 priority patent/US20140332490A1/en
Priority to US14/284,681 priority patent/US20140346717A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0861Other specified values, e.g. values or ranges
    • B29C2949/0862Crystallinity

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a polyester resin flat container obtained by blow molding, which is excellent in physical properties, such as heat resistance, by specifying a flat container and imparting properties to it, thereby improving mechanical strength, heat resistance, etc., peculiar to the flat container. <P>SOLUTION: The polyester resin flat container is obtained by blow-molding a polyester resin. In the polyester resin flat container, a flat ratio, or a ratio between a long diameter and a short diameter, is not smaller than 1.3, a ratio between the maximum thickness and minimum thickness of the barrel 2 of the container is not larger than 1.6, and a difference between the maximum extendible part and the minimum extendible part of the barrel 2 of the container in terms of tensile test at 95°C is not more than 150%. Further, the degree of crystallinity of the barrel 2 of the container is not less than 30%, and a difference between the maximum extendible part and the minimum extendible part of the barrel 2 of the container in terms of an amount of TMA no-load variation is not more than 500 μm at 75°C and 100°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ポリエステル樹脂からなる扁平容器に関し、詳しくは、断面が楕円形または矩形であって、容器の胴部の肉厚が均一に形成され、耐熱性が高く高温において容器が変形しないことを特徴とする扁平容器に係わるものである。   The present invention relates to a flat container made of a polyester resin. More specifically, the cross section is elliptical or rectangular, the container body has a uniform wall thickness, has high heat resistance, and does not deform at high temperatures. It relates to the flat container which is characterized.

ペットボトルなどのポリエステル容器は、優れた機械的強度や透明性あるいは高いガス遮蔽性や資源再利用性などにより、飲食品用の容器として認可されて以来、非常に需要が高くなっているが、特に、最近では携帯用の飲料用小型容器として消費者に重用され、また、二段ブロー成形法などの開発によって耐熱耐圧性が著しく改良され、高温の飲料や高温殺菌を要す飲料用にも使用可能となって、日常における冬季用の携帯高温飲料への消費者の強い要望にも応えられるようになっている。   Polyester containers such as PET bottles have been in great demand since they were approved as containers for food and drink due to their excellent mechanical strength, transparency, high gas shielding properties, and resource reusability. In particular, it has recently been used by consumers as a small portable container for beverages, and the heat and pressure resistance has been remarkably improved by the development of a two-stage blow molding method, etc., and it can also be used for high temperature beverages and beverages that require high temperature sterilization. It can be used to meet the strong demands of consumers for portable high temperature beverages for winter.

そして、最近の消費者には、飲料ボトルの持ちやすさや複雑形状による審美性から、断面が矩形のような扁平形状のボトルが好まれ、断面が円形のボトルは滑りやすさによる把持のし難さや円形の単純形状による美的感のなさなどにより敬遠される傾向にある。   And, because of the ease of holding beverage bottles and the aesthetics of complex shapes, recent consumers prefer flat bottles with a rectangular cross section, and bottles with a circular cross section are difficult to grip due to slipperiness. It tends to be shunned by the lack of aesthetic feeling due to the simple shape of the circle.

付加価値性が高くて、需要の非常に高い断面が扁平形状の、ポリエステル樹脂扁平容器は、予備成形した有底パリソンを断面が扁平の金型内に挿着して吹込みによる成形(ブロー成形)によって製造されるが、扁平形状に成形する際には容器壁の肉厚が不均一になりがちで、その対策として、例えば、扁平形状の長径方向に延伸される部分よりも短径方向に延伸される部分のほうが高温となるように、有底コールドパリソンをブロー成形前に加熱し、あるいは長径方向延伸部分の肉厚を厚く、短径方向延伸部分の肉厚を薄くなるように偏肉形成した有底パリソンを用い、有底パリソンを軸方向に回転させつつその周囲から放射加熱する、有底コールドパリソンブロー成形法、などにより扁平ボトルが製造されている(特許文献1を参照)。
この他、ブロー成形により扁平容器を製造する方法はいくつか開示されているが、一般に、断面が扁平であることによって有底パリソンのキャビティ内での延伸膨張が均一にならないために、容器壁の肉厚の均質性が得られ難く、また、短径側の延伸不足による肉溜りの発生もあり、容器の胴部の肉厚が均一な扁平容器の製造は困難である。肉厚が不均一になると薄肉部による容器の機械的な強度や耐熱性などの低下が起こり、高温時の容器内飲料による内圧負荷や温度低下時の内部収縮による外圧負荷に耐えられずに容器の変形が起こる惧れがある。
Polyester resin flat containers with a flat shape with high added value and a very high demand, are molded by blowing a preformed bottomed parison into a flat cross section mold (blow molding) However, when forming into a flat shape, the wall thickness of the container wall tends to be non-uniform, and as a countermeasure, for example, in the shorter diameter direction than the portion extending in the longer diameter direction of the flat shape Heat the bottomed cold parison before blow molding so that the stretched part is hotter, or increase the thickness of the stretched part in the major axis direction and increase the thickness of the stretched part in the minor axis direction. A flat bottle is manufactured by a bottomed cold parison blow molding method or the like in which the formed bottomed parison is used to rotate the bottomed parison in the axial direction and radiatively heat from the surroundings (see Patent Document 1).
In addition, several methods for manufacturing a flat container by blow molding have been disclosed, but generally, since the cross section is flat, the expansion and expansion in the cavity of the bottomed parison is not uniform. It is difficult to obtain a uniform thickness, and there is a possibility of a reservoir due to insufficient stretching on the short diameter side, making it difficult to produce a flat container having a uniform thickness on the body of the container. If the thickness is not uniform, the mechanical strength and heat resistance of the container will decrease due to the thin wall, and the container will not be able to withstand the external pressure load due to the internal pressure load due to the beverage in the container at high temperature and the internal contraction when the temperature drops. There is a risk of deformation.

一方、ブロー成形による扁平容器において、ブロー成形法の改良志向とは異なる観点から、扁平容器への特定化や特性の付与などにより、扁平容器における特有の機械的な強度や耐熱性などの向上を図り、高温時の容器内飲料による内圧負荷や温度低下時の内部収縮による外圧負荷に耐えて容器の変形が起こる惧れを防ぐ改良提案は未だ殆どなされていず、単に扁平率(胴部最大長径/胴部最小短径)と肉厚が規定された、ポリオレフィン系射出ブロー成形扁平容器が示されている程度である(特許文献2を参照)。   On the other hand, in the flat container by blow molding, from the viewpoint different from the improvement intention of the blow molding method, the specific mechanical strength and heat resistance of the flat container can be improved by specifying and imparting characteristics to the flat container. However, there has been almost no improvement proposal to prevent the possibility of deformation of the container by enduring the internal pressure load due to the beverage in the container at high temperature and the external pressure load due to the internal contraction when the temperature drops, and simply the flatness (the maximum length of the trunk) That is, a polyolefin-type injection blow-molded flat container in which the thickness is specified (refer to Patent Document 2).

特開2000−127230号公報(特許請求の範囲及び段落0005〜0008)JP 2000-127230 A (Claims and paragraphs 0005 to 0008) 特開平11−170344号公報(特許請求の範囲の請求項1〜3)JP-A-11-170344 (Claims 1 to 3 of Claims)

段落0002〜0005に前述した従来技術を踏まえて、本発明者らは、飲料用プラスチック容器として消費者に非常に好まれ、需要が特に増大している、ブロー成形により得られるポリエステル樹脂扁平容器において、扁平容器を特定化し特性を付与して、扁平容器における特有の機械的な強度や耐熱性などの向上を図り、機械的な物性と耐熱性の優れた扁平容器を実現せしめることを、発明が解決すべき課題とするものである。   In light of the prior art described in paragraphs 0002 to 0005, the present inventors are very favored by consumers as plastic containers for beverages, and in polyester resin flat containers obtained by blow molding, where demand is particularly increasing. Inventing a flat container with excellent mechanical properties and heat resistance by specifying the flat container and imparting characteristics to improve the mechanical strength and heat resistance unique to the flat container. This is a problem to be solved.

本発明者らは、ブロー成形による扁平容器における上記の発明の課題の解決を目指して、機械的な強度や耐熱性などに優れた扁平容器を明確に実体化するために、扁平容器における特定化や特性の付与などを詳しく検討しそれらを具体化するための手法を物性や容器構造などの多観点から考察して、それらの過程において、扁平性を表す容器の胴部断面の長径と短径の比(扁平比)及び容器の胴部全体の肉厚の均一性を示す指標である容器の胴部の肉厚比などが、高温での容器の胴部における伸長性や高温での容器の胴部の熱的な無荷重変化量あるいは容器の胴部の結晶化度などと関連して、それらが扁平容器の機械的な強度や耐熱性などに深く関わることを知見することができ、その結果としてそれらの相関を数値として規定することによって、本願発明を創作するに至った。   The present inventors aim to solve the above-mentioned problems in the flat container by blow molding, and in order to clearly materialize the flat container excellent in mechanical strength and heat resistance, the specification in the flat container Considering in detail the provision of properties and characteristics, and considering the methods to embody them from various viewpoints such as physical properties and container structure, in the process, the major axis and minor axis of the trunk section of the container representing flatness Ratio (flat ratio) and the thickness ratio of the container body, which is an index indicating the uniformity of the thickness of the entire body of the container. In connection with the amount of thermal no-load change in the body or the crystallinity of the body of the container, it can be found that they are deeply related to the mechanical strength and heat resistance of the flat container. As a result, by specifying those correlations as numerical values Te, which resulted in the creation of the present invention.

具体的には、上記の扁平比と肉厚比とを実験的に選択して数値範囲として特定化し、高温での容器の胴部における伸長性の特定化として、容器の胴部の最大延伸部と最小延伸部における95℃引張り試験での伸びの差を採用し、高温での容器の胴部の熱的な無荷重変化量の特定化として、75℃と100℃の範囲での容器の胴部の最大延伸部と最小延伸部におけるTMA無荷重変化量の差を選び、さらにそれらの関係を相関化することなどによって、機械的な強度や耐熱性などに優れた扁平容器を明確に具現化し実体化することが可能となった。   Specifically, the flattening ratio and the thickness ratio are experimentally selected and specified as a numerical range, and the extension of the container body at high temperature is specified as the maximum stretched part of the container body. The difference in elongation in the 95 ° C tensile test at the minimum stretched part is adopted to specify the amount of thermal no-load change in the container body at high temperature, and the container body in the range of 75 ° C and 100 ° C. A flat container with excellent mechanical strength, heat resistance, etc. is clearly realized by selecting the difference in TMA no-load change between the maximum stretched part and the minimum stretched part and correlating the relationship between them. It became possible to materialize.

本願発明は、次の発明単位群から構成されるものであって、[1]〜[3]の発明を基本発明とし、それ以下の発明は、基本発明を具体化ないしは実施態様化するものである。
[1]ポリエステル樹脂をブロー成形した扁平容器であって、長径と短径の比である扁平比が1.3以上であり、容器の胴部の最大肉厚部と最小肉厚部の肉厚比が1.6以下であり、容器の胴部の最大延伸部と最小延伸部における95℃引張り試験での伸びの差が150%以下であることを特徴とするポリエステル樹脂扁平容器。
[2]ポリエステル樹脂をブロー成形した扁平容器であって、長径と短径の比である扁平比が1.3以上であり、容器の胴部の最大肉厚部と最小肉厚部の肉厚比が1.6以下であり、容器の胴部の結晶化度が30%以上であり、容器の胴部の最大延伸部と最小延伸部におけるTMA無荷重変化量の差が75℃と100℃において500μm以下であることを特徴とするポリエステル樹脂扁平容器。
[3]ポリエステル樹脂をブロー成形した扁平容器であって、長径と短径の比である扁平比が1.3以上であり、容器の胴部の最大肉厚部と最小肉厚部の肉厚比が1.6以下であり、容器の胴部の最大延伸部と最小延伸部における95℃引張り試験での伸びの差が150%以下であり、容器の胴部の結晶化度が30%以上であり、容器の胴部の最大延伸部と最小延伸部におけるTMA無荷重変化量の差が75℃と100℃において500μm以下であることを特徴とするポリエステル樹脂扁平容器。
[4]扁平容器の胴部の断面形状が矩形又は楕円形であることを特徴とする、[1]〜[3]のいずれかにおけるポリエステル樹脂扁平容器。
[5]扁平容器が二段ブロー成形法により成形された二軸延伸容器であることを特徴とする、[1]〜[4]のいずれかにおけるポリエステル樹脂扁平容器。
[6]ポリエステル樹脂がポリエチレンテレフタレートであることを特徴とする、[1]〜[5]のいずれかにおけるポリエステル樹脂扁平容器。
[7]扁平容器がポリエステル樹脂層及び機能性熱可塑性樹脂層の多層構造からなることを特徴とする、[1]〜[6]のいずれかにおけるポリエステル樹脂扁平容器。
The present invention is composed of the following invention unit groups, and the inventions [1] to [3] are used as basic inventions, and the inventions below that embody the basic inventions or embodiments. is there.
[1] A flat container in which a polyester resin is blow-molded, wherein the ratio of the major axis to the minor axis is 1.3 or more, and the maximum thickness part and the minimum thickness part of the barrel part of the container A polyester resin flat container having a ratio of 1.6 or less and a difference in elongation in a 95 ° C. tensile test between a maximum stretched part and a minimum stretched part of a body part of the container being 150% or less.
[2] A flat container in which a polyester resin is blow-molded, wherein the ratio of the major axis to the minor axis is 1.3 or more, and the maximum thickness part and the minimum thickness part of the trunk part of the container The ratio is 1.6 or less, the crystallinity of the body of the container is 30% or more, and the difference in TMA no-load change between the maximum stretched part and the minimum stretched part of the container body is 75 ° C and 100 ° C. A flat polyester resin container having a thickness of 500 μm or less.
[3] A flat container in which a polyester resin is blow-molded, wherein the ratio of the major axis to the minor axis is 1.3 or more, and the maximum thickness part and the minimum thickness part of the trunk part of the container The ratio is 1.6 or less, the difference in elongation in the 95 ° C. tensile test between the maximum stretched portion and the minimum stretched portion of the container body is 150% or less, and the crystallinity of the container body is 30% or more. A polyester resin flat container, wherein the difference in TMA no-load change between the maximum stretched portion and the minimum stretched portion of the body portion of the container is 500 μm or less at 75 ° C. and 100 ° C.
[4] The polyester resin flat container according to any one of [1] to [3], wherein the cross-sectional shape of the body of the flat container is rectangular or elliptical.
[5] The polyester resin flat container according to any one of [1] to [4], wherein the flat container is a biaxially stretched container formed by a two-stage blow molding method.
[6] The polyester resin flat container according to any one of [1] to [5], wherein the polyester resin is polyethylene terephthalate.
[7] The polyester resin flat container according to any one of [1] to [6], wherein the flat container has a multilayer structure of a polyester resin layer and a functional thermoplastic resin layer.

本願発明における扁平容器は、機械的な強度と耐熱性に優れ、高温においても容器の形状が安定し、高温時の容器内飲料による内圧負荷や温度低下時の内部収縮による外圧負荷に耐えられずに容器の変形が起こる惧れがない。
したがって、当扁平容器は、高温飲料用容器あるいは高温殺菌飲料容器として特に優れたものであり、他に、食品一般や医薬品用としても好適である。
The flat container in the present invention is excellent in mechanical strength and heat resistance, the shape of the container is stable even at high temperatures, and cannot withstand the external pressure load due to internal pressure load due to the beverage in the container at high temperature and internal contraction when the temperature drops. There is no risk of deformation of the container.
Therefore, the flat container is particularly excellent as a high temperature beverage container or a high temperature sterilized beverage container, and is also suitable for general foods and medicines.

以下においては、前述した本願発明群の発明の実施の形態を、図面を参照しながら、具体的に詳しく説明する。
(1)扁平容器
図3〜図4に示すように本願発明の扁平容器は、好ましくは口部を除き、容器の断面が矩形や楕円形などの扁平形状を有す容器である。図3〜図4において、扁平容器における、正面図と側面図及び矢視図などの外観図並びに断面図が図示されている。
扁平形状により、消費者の手指の把持による飲料ボトルの持ちやすさに優れ、使用時に容器表面が濡れていても滑らず、また、複雑形状による審美性をも有す。
Hereinafter, embodiments of the invention of the present invention group described above will be described in detail with reference to the drawings.
(1) Flat container As shown in FIGS. 3 to 4, the flat container of the present invention is preferably a container having a flat cross section such as a rectangle or an ellipse, except for the mouth. In FIGS. 3-4, the external view and sectional drawing, such as a front view, a side view, and an arrow view, in a flat container are illustrated.
The flat shape makes it easy to hold a beverage bottle by grasping a consumer's fingers, does not slip even when the container surface is wet during use, and has aesthetics due to its complicated shape.

(2)ポリエステル樹脂をブロー成形した扁平容器
本願発明の特定化された扁平容器は、ポリエステル樹脂から予備成形された有底パリソンをブロー成形することにより製造されるものである。
なお、本願の発明者らは、本願発明の創作より先に、肉厚が均一であり、機械的な強度と耐熱性に優れ、高温においても容器の形状が安定する扁平容器を製造するための、扁平容器のブロー成形方法の発明を案出して、先に出願しているので(特願2003−314851)、本願発明の扁平容器の成形には、容器壁の肉厚を均一に成形し所望の扁平容器を製造するために、好ましくはこの先願発明に係るブロー成形法を援用することができる。
(2) A flat container in which a polyester resin is blow-molded The specified flat container of the present invention is manufactured by blow-molding a bottomed parison that is preformed from a polyester resin.
In addition, the inventors of the present application, prior to the creation of the present invention, for producing a flat container having a uniform thickness, excellent mechanical strength and heat resistance, and stable container shape even at high temperatures. Since the invention of the flat container blow molding method has been devised and filed earlier (Japanese Patent Application No. 2003-314851), the flat wall of the present invention can be formed by uniformly forming the wall thickness of the container. In order to manufacture the flat container, preferably, the blow molding method according to the prior invention can be used.

具体的には、予め形成した横断面の肉厚が均一で断面が略円形の有底パリソンを1次ブロー成形して、2次ブロー成形のための金型の短径(扁平容器の短径に相当)よりも、径が大きい円形有底パリソンに延伸し、一方、成形品の扁平容器の断面形状のキャビティを有す金型を準備し、この有底延伸パリソンを2次ブロー成形のための当金型のキャビティ内に収容しキャビティの短径方向に有底延伸パリソンを扁平状に押圧して型締めして、2次ブロー成形を行う。その結果、キャビティの短径側よりも長径側に有底延伸パリソンの断面が長くなって有底パリソンが収納され、有底パリソンが扁平状に押圧変形し、2次ブロー成形すると、形成される扁平容器の短径側と長径側との肉厚が均一に、あるいは充分に均一になる。結果として、二軸延伸の二段ブローを行うこととなり、これによって、有底パリソンの延伸や結晶化が充分に行われるようになり、扁平容器の耐熱性と耐圧性が著しく改良されるという副次的な作用も伴う。   Specifically, a preformed parison having a uniform cross-sectional wall thickness and a substantially circular cross section is subjected to primary blow molding, and a short diameter of a mold for secondary blow molding (short diameter of a flat container). A mold having a cavity with a cross-sectional shape of a flat container of a molded product, and this bottomed parison is used for secondary blow molding. The bottomed stretched parison is pressed in a flat shape in the minor axis direction of the cavity and clamped in the mold to perform secondary blow molding. As a result, the bottomed stretched parison has a longer cross section on the longer diameter side than the minor diameter side of the cavity, and the bottomed parison is accommodated. The thickness of the flat container on the short diameter side and the long diameter side is uniform or sufficiently uniform. As a result, the biaxially stretched two-stage blow is performed, whereby the bottomed parison is sufficiently stretched and crystallized, and the heat resistance and pressure resistance of the flat container are remarkably improved. The following actions are also involved.

有底パリソンの1次ブローは、ブロー後の形状安定のために金型を使用しているが、経済面からして、金型を用いないフリーブローで行ってもよい。
1次ブローの横延伸倍率は3〜5倍、縦延伸倍率は2〜4倍まで上げることができ、結晶の高配向と延伸の均質化がもたらされる。また、短径側の延伸倍率(容器の短径/プリフォームの中心径)は2.5倍程度に抑えることもできる。1次ブローの金型温度条件は、PETにおいては150℃程度とされ、フリーブローでは空冷により冷却する。ブロー成形は、成形品の物性を高めるために、二軸延伸の二段ブロー法が好ましい。
なお、一般に容器の口部は延伸されないので、別途に加熱結晶化して強度と耐熱性を向上させる。
本願発明の特定化された扁平容器は、好適には以上の段落0013〜0015に記載したような方法によって、ポリエステル樹脂から予備成形された有底パリソンをブロー成形することにより製造されるものであり、以下に記載した扁平比や肉厚比などの諸特性は、成形条件などの設定により、また後記する各実施例においてなされているように、適宜に付与されるものである。
The primary blow of the bottomed parison uses a mold for stabilizing the shape after the blow, but may be performed by a free blow that does not use a mold in terms of economy.
The primary blow can have a transverse stretching ratio of 3 to 5 times and a longitudinal stretching ratio of 2 to 4 times, resulting in high crystal orientation and uniform stretching. Further, the draw ratio on the short diameter side (the short diameter of the container / the center diameter of the preform) can be suppressed to about 2.5 times. The mold temperature condition of the primary blow is about 150 ° C. in the PET, and the free blow is cooled by air cooling. Blow molding is preferably a biaxially stretched two-stage blow method in order to improve the physical properties of the molded product.
In general, since the mouth of the container is not stretched, it is separately heated and crystallized to improve strength and heat resistance.
The specified flat container of the present invention is preferably produced by blow molding a bottomed parison preformed from a polyester resin by the method as described in the above paragraphs 0013 to 0015. Various characteristics such as the flatness ratio and the wall thickness ratio described below are appropriately given depending on the setting of the molding conditions and the like and in each example described later.

(3)扁平比
扁平性を表す容器の胴部断面の長径と短径(共に外径)の比であり、容器の扁平性の指標となる扁平率を表す。具体的には、図3〜図4に示す扁平性を有す容器において、容器(1,101)の胴部(2,102)の水平断面(B−B,D−D)における長径(6,106)と短径(7,107)の比で表示される。
本願発明においては、扁平比が、容器の胴部の肉厚比などと共に、高温での容器の胴部における伸長性及び高温での容器の胴部の熱的な無荷重変化量あるいは容器の胴部の結晶化度などと関連して、扁平容器の機械的な強度や耐熱性などに深く関わるので、扁平比は実験データ(後記の表1に掲示)からして1.3以上であることが必要であり、この数値規定は、消費者の手指の把持による飲料ボトルの持ち易さ、及び複雑形状による審美性をももたらす。
(3) Flatness ratio A ratio of a major axis and a minor axis (both outer diameters) of the trunk section of the container representing flatness, and represents a flatness ratio that is an indicator of the flatness of the container. Specifically, in the container having flatness shown in FIGS. 3 to 4, the major axis (6) in the horizontal section (BB, DD) of the body (2,102) of the container (1,101). , 106) and the minor axis (7, 107).
In the present invention, the flatness ratio is the thickness ratio of the container body, the extensibility of the container body at a high temperature, the amount of change in thermal no-load of the container body at a high temperature, or the container body. The flatness ratio is 1.3 or more based on experimental data (posted in Table 1 below) because it is deeply related to the mechanical strength and heat resistance of the flat container in relation to the degree of crystallinity of the part. This numerical specification also provides ease of holding a beverage bottle by grasping a consumer's finger and aesthetics by a complicated shape.

(4)容器胴部の肉厚比
容器の胴部の肉厚比は、容器の胴部全体の肉厚の均一性を示す指標であり、数値1により近いほうが肉厚が全体的に均一となり好ましく、容器首部及び接地部を除く容器胴部の断面の最大肉厚部と最小肉厚部の肉厚比として示される。
肉厚比は、扁平比と同様に、高温での容器の胴部における伸長性及び高温での容器の胴部の熱的な無荷重変化量あるいは容器の胴部の結晶化度などと関連して、扁平容器の機械的な強度や耐熱性などに深く関わるので、実験データ(後記の表1に掲示)からして1.6以下であることが必要である。
(4) Thickness ratio of the container body The thickness ratio of the container body is an index indicating the uniformity of the thickness of the entire body of the container. Preferably, it is shown as the thickness ratio of the maximum thickness portion and the minimum thickness portion of the cross section of the container body excluding the container neck and the ground contact portion.
Like the flatness ratio, the wall thickness ratio is related to extensibility in the container body at high temperature, thermal no-load change in the container body at high temperature, or crystallinity of the container body. Since it is deeply related to the mechanical strength and heat resistance of the flat container, it must be 1.6 or less from the experimental data (posted in Table 1 below).

(5)高温での伸びの差
高温での伸びの差は、扁平容器の機械的な強度や耐熱性などに深く関わるので、具体的には、容器の胴部の最大延伸部(柱部)と最小延伸部(パネル中央部)における95℃引張り試験での伸びの差を採用する。段落0025に後記する実験法により算出され、実験データ(後記の表1に掲示)からして150%以下であることが必要である。
最大延伸部と最小延伸部での伸びの差が150%以下であると、収容内容物を95℃程度の高温で充填しても形状的に安定しており、従来の扁平容器のように形状が変形して歪むことはない。
(5) Difference in elongation at high temperature The difference in elongation at high temperature is deeply related to the mechanical strength and heat resistance of the flat container. Specifically, the maximum stretched part (column part) of the body of the container And the difference in elongation in the 95 ° C. tensile test at the minimum stretched portion (panel central portion). It is calculated by the experimental method described later in paragraph 0025 and needs to be 150% or less from the experimental data (posted in Table 1 below).
If the difference in elongation between the maximum stretched part and the minimum stretched part is 150% or less, the shape is stable even when the contents of the container are filled at a high temperature of about 95 ° C. Will not be deformed and distorted.

(6)結晶化度
扁平容器の胴部の結晶性を示す指標(単位:%)であり、扁平比などと共に、扁平容器の機械的な強度や耐熱性などに関わるので、実験データ(後記の表1に掲示)からして30%以上であることが必要である。
結晶化度は特に容器の耐熱性の向上に必須の数値であり、段落0024に後記する実験計算式により算出される。
(6) Crystallinity This is an index (unit:%) indicating the crystallinity of the body of the flat container, and is related to the mechanical strength and heat resistance of the flat container as well as the flatness ratio. It is necessary to be 30% or more based on (posted in Table 1).
The degree of crystallinity is a numerical value essential for improving the heat resistance of the container, and is calculated by an experimental calculation formula described later in paragraph 0024.

(7)無荷重変化量の差
扁平容器の無荷重変化量の差は、高温での伸びの差と共に、扁平容器の機械的な強度や耐熱性などに深く関わるので、具体的には、75℃と100℃の範囲での容器の胴部における最大延伸部と最小延伸部のTMA(熱機械分析)無荷重変化量の差を採用する。段落0026に後記する実験法により算出され、実験データ(後記の表1に掲示)からして500μm以下であることが必要である。
TMA無荷重変化量の差は、特に耐熱性の評価を示し、500μm以下であると、収容内容物を95℃程度の高温で充填しても形状的に安定しており、従来の扁平容器のように形状が変形して歪むことはない。
扁平容器は、容器の胴部における最大延伸部と最小延伸部の延伸倍率又は二次加工量が異なるため、柱部とパネル部の耐熱性が異なり、収容内容物を高温で充填するとパネル部が出っ張り耐熱性が不良となる傾向があるが、この規定を満たす本願発明の扁平容器は、従来法のものに比べて、最大延伸部と最小延伸部の配向状態の差が小さくて耐熱性に優れており、収容内容物を高温で充填してもパネル部が出っ張ることはない。
(7) Difference in unloaded change amount The difference in unloaded change amount of the flat container is deeply related to the mechanical strength and heat resistance of the flat container as well as the difference in elongation at high temperature. The difference between the TMA (thermomechanical analysis) no-load change amount of the maximum stretched portion and the minimum stretched portion in the body portion of the container in the range of ° C and 100 ° C is adopted. It is calculated by the experimental method described later in paragraph 0026 and needs to be 500 μm or less from the experimental data (posted in Table 1 described later).
The difference in the amount of TMA no-load change particularly shows the evaluation of heat resistance, and if it is 500 μm or less, it is stable in shape even when the containing contents are filled at a high temperature of about 95 ° C. Thus, the shape is not deformed and distorted.
Since flat containers have different stretch ratios or secondary processing amounts for the maximum stretched part and the minimum stretched part in the body part of the container, the heat resistance of the column part and the panel part is different. Although the bulging heat resistance tends to be poor, the flat container of the present invention that satisfies this rule has excellent heat resistance because the difference in orientation between the maximum stretched portion and the minimum stretched portion is smaller than that of the conventional method. Therefore, the panel part does not protrude even if the contents are filled at a high temperature.

(8)ポリエステル樹脂材料
扁平容器の樹脂材料はポリエステル樹脂であり、ポリ乳酸なども例示できるが、機械的強度と耐熱性を考慮し、主として通常のポリエチレンテレフタレート(PET)が使用される。ポリエチレンテレフタレートは、主たる繰り返し単位がエチレンテレフタレートであり、好ましくは、酸成分の90モル%以上がテレフタル酸で、グリコール成分の90モル%以上がエチレングリコールである結晶性の樹脂を使用する。このPETの他の酸成分としてはイソフタル酸やナフタリンジカルボン酸など、他のグリコール成分としてはジエチレングリコール、1,4‐ブタンジオール、シクロヘキサンジメタノールやプロピレングリコールなどが例示できる。
容器を構成する樹脂には酸素吸収性ないしは酸素遮蔽性などの機能性樹脂をブレンドすることもできる。また、用途に応じて、通常の着色剤や紫外線吸収剤あるいは酸化防止剤や抗菌剤などの各種の添加剤を適宜に配合してもよい。
(8) Polyester resin material The resin material of the flat container is a polyester resin, and examples include polylactic acid. However, in consideration of mechanical strength and heat resistance, ordinary polyethylene terephthalate (PET) is mainly used. Polyethylene terephthalate is a crystalline resin whose main repeating unit is ethylene terephthalate, and preferably 90 mol% or more of the acid component is terephthalic acid and 90 mol% or more of the glycol component is ethylene glycol. Examples of other acid components of this PET include isophthalic acid and naphthalene dicarboxylic acid, and examples of other glycol components include diethylene glycol, 1,4-butanediol, cyclohexanedimethanol and propylene glycol.
The resin constituting the container may be blended with a functional resin such as oxygen absorbing property or oxygen shielding property. In addition, various additives such as a normal colorant, an ultraviolet absorber, an antioxidant, and an antibacterial agent may be appropriately blended depending on the application.

(9)多層材料
本願発明は、扁平容器がポリエステル樹脂層及び機能性熱可塑性樹脂層の多層構造からなることを特徴とするポリエステル樹脂扁平容器をも対象とし、そのために、本願発明においては、適宜に多層材料である積層有底パリソンを使用もでき、例えば、ポリアミドやエバールなどと積層すると酸素遮蔽性が向上する。また、酸素吸収層を中間層に設けて酸素吸収性を向上させてもよい。酸素吸収層に用いる酸化可能有機成分はポリエンから誘導される重合体が好ましい。かかるポリエンとしては、炭素原子数4〜20のポリエン、鎖状又は環状の共役又は非共役ポリエンから誘導された単位を含む樹脂が好適に使用される。
(9) Multilayer material The present invention is also directed to a polyester resin flat container characterized in that the flat container has a multilayer structure of a polyester resin layer and a functional thermoplastic resin layer. In addition, a laminated bottomed parison which is a multilayer material can be used. For example, when laminated with polyamide or Eval, oxygen shielding properties are improved. In addition, an oxygen absorption layer may be provided in the intermediate layer to improve oxygen absorption. The oxidizable organic component used in the oxygen absorbing layer is preferably a polymer derived from polyene. As such a polyene, a resin containing a unit derived from a polyene having 4 to 20 carbon atoms, a linear or cyclic conjugated or non-conjugated polyene is preferably used.

以下において、実施例によって、比較例を対照して図面を参照しながら、本願発明をより詳細に具体的に示すが、以下の実施例と比較例は、本願発明の好ましい実施の態様を例示し本願発明をより明瞭に説明し、さらに本願発明の構成要件の合理性を実証するためのものである。   In the following, the present invention will be described in more detail with reference to the drawings by comparing the comparative examples, but the following examples and comparative examples illustrate preferred embodiments of the present invention. This is to more clearly explain the present invention and to prove the rationality of the constituent elements of the present invention.

[測定法]
1.)結晶化度の測定
扁平容器の胴部より試験片を切り出し、密度勾配管法により試験片の密度ρ(g/cm)を求める。結晶化度は次式により計算する。
結晶化度(%)={ρc(ρ−ρa)/ρ(ρc−ρa)}×100
ρc:結晶密度(1.455g/cm
ρa:非晶密度(1.335g/cm
[Measurement method]
1. ) Cut out from the test piece body portion of the measurement the flat container crystallinity, of the test piece by a density gradient tube method Density ρ Request (g / cm 3). The crystallinity is calculated by the following formula.
Crystallinity (%) = {ρc (ρ−ρa) / ρ (ρc−ρa)} × 100
ρc: Crystal density (1.455 g / cm 3 )
ρa: amorphous density (1.335 g / cm 3 )

2.)95℃引張り試験伸び量差の測定
図3に示すように扁平容器の胴部の同一高さ上での最大延伸部(柱部)9と最小延伸部(パネル中央部)10より縦(高さ)方向に切り出した5×40mmの短冊状試験片を、95℃の恒温器の中で引張り試験を行う。その2箇所の最大の伸びの差を95℃引張り伸び量の差とする。
なお、チャック間距離を10mm、クロスヘッドスピードを10mm/分で測定し、チャック間距離をL、サンプルの伸びた距離をΔLとして、伸び(%)=(ΔL/L)×100で表示した。
装置は、(株)オリエンテック社製テンシロン万能試験機UCT−500を使用した。
なお、図1に95℃引張り試験伸び量差の測定結果の例を表すグラフ図を例示する。図1においては、最大延伸部と最小延伸部における最大の伸び量の差は、389−333=56%となる。
2. ) Measurement of 95 ° C. tensile test elongation difference As shown in FIG. 3, it is longer (higher) than the maximum extension part (column part) 9 and the minimum extension part (panel center part) 10 on the same height of the body part of the flat container. A) A 5 × 40 mm strip test piece cut in the direction is subjected to a tensile test in a thermostatic chamber at 95 ° C. The difference between the maximum elongation at the two locations is defined as the difference in the tensile elongation at 95 ° C.
The distance between chucks is measured at 10 mm, the crosshead speed is measured at 10 mm / min, the distance between chucks is L 0 , and the distance that the sample is extended is ΔL, and displayed as elongation (%) = (ΔL / L 0 ) × 100. did.
The apparatus used was Tensilon Universal Testing Machine UCT-500 manufactured by Orientec Co., Ltd.
In addition, the graph figure showing the example of the measurement result of 95 degreeC tensile test elongation amount difference is illustrated in FIG. In FIG. 1, the maximum difference in elongation between the maximum stretched portion and the minimum stretched portion is 389-333 = 56%.

3.)TMA無荷重変化量の差の測定
図3に示すように扁平容器の胴部の同一高さ上での最大延伸部(柱部)9と最小延伸部(パネル中央部)10より縦(高さ)方向に切り出した5×40mmの短冊状試験片を、TMA(熱機械分析法)により測定する。その2箇所の変化量の差をTMA無荷重変化量の差とする。
なお、TMA無荷重変化量の差の測定方法としては、試験片にかける応力を0とし、チャック間距離を20mm、室温から100℃まで昇温速度5℃/分にて測定する。変化量の数値化はガラス転移温度付近の75℃を起点とし100℃までの変化量にて算出する。装置は、セイコーインスツルメンツ(株)社製のDMS−6100を使用した。
なお、図2にTMA無荷重変化量の差の測定結果の例を表すグラフ図を例示する。図2より、75℃を基準として100℃になったときの最大延伸部と最小延伸部の変化量の差を表わすと、42−(−68)=110μmとなる。(実施例−1に相当)
3. ) Measurement of difference in TMA no-load change amount As shown in FIG. 3, vertical (higher) than the maximum extension part (column part) 9 and the minimum extension part (panel center part) 10 on the same height of the body part of the flat container 5) A strip-shaped test piece of 5 × 40 mm cut in the direction is measured by TMA (thermomechanical analysis). The difference between the two amounts of change is defined as the difference in the TMA no-load change amount.
In addition, as a measuring method of the difference in TMA no-load change amount, the stress applied to the test piece is 0, the distance between chucks is 20 mm, and the temperature is increased from room temperature to 100 ° C. at a heating rate of 5 ° C./min. The change amount is digitized by calculating the change amount up to 100 ° C. starting from 75 ° C. near the glass transition temperature. As the apparatus, DMS-6100 manufactured by Seiko Instruments Inc. was used.
In addition, the graph figure showing the example of the measurement result of the difference of TMA no-load change amount is illustrated in FIG. From FIG. 2, the difference in the amount of change between the maximum stretched portion and the minimum stretched portion when the temperature reaches 100 ° C. with 75 ° C. as a reference is 42 − (− 68) = 110 μm. (Equivalent to Example-1)

4.)耐熱性評価方法
扁平容器に87℃の熱水充填を行い、密栓後さらに75℃温水シャワーを5分間行い、容器の変形の有無を目視にて評価した。(○:変形無し ×:変形有り)
4). ) Method for evaluating heat resistance A flat container was filled with hot water at 87 ° C., sealed and further subjected to a 75 ° C. hot water shower for 5 minutes, and the presence or absence of deformation of the container was visually evaluated. (○: No deformation ×: With deformation)

[実施例−1]
市販のポリエチレンテレフタレート(PET)を使用して、外径22mm,厚さ3.4mm,高さ80mmの有底パリソンを予備成形し、フリーブローにより加熱空気を吹き込んで、外径90mmに1次延伸ブローした。
1次ブローした有底パリソンを、600℃のオーブン内で8秒間収縮固定して、外径60mmの収縮有底パリソンとした。
2次ブロー用金型(140℃に設定)の断面矩形のキャビティ(断面:短径50m,長径66mm)内に、収縮有底パリソンを短径方向に押し潰して収納した。
押し潰して変形された収縮有底パリソン内に、20℃,3MPaの空気を送入して2次ブロー成形を行い、断面が矩形の扁平比1.3の扁平容器を成形した。
この扁平容器の胴部の結晶化度、容器の断面の最大肉厚部と最小肉厚部の肉厚比、容器の胴部の最大延伸部と最小延伸部における95℃引張り試験での伸び量差、及び容器の胴部の最大延伸部と最小延伸部における75℃と100℃の範囲でのTMA無荷重変化量の差の測定結果を表1に示す。
表1に記載された数値のとおり、各比較例に比して、容器の胴部の周方向肉厚比が小さく、容器の胴部の最大延伸部と最小延伸部における物性差が小さく、したがって、耐熱性も良好であり機械的な強度も充分なものであった。
[Example-1]
Using commercially available polyethylene terephthalate (PET), a bottomed parison with an outer diameter of 22 mm, a thickness of 3.4 mm, and a height of 80 mm is preformed, and heated air is blown by free blow, and primary stretching is performed to an outer diameter of 90 mm. Blowed.
The primary blown bottomed parison was shrunk and fixed in an oven at 600 ° C. for 8 seconds to obtain a shrunk bottomed parison having an outer diameter of 60 mm.
The contracted bottom parison was crushed in the minor axis direction and stored in a rectangular cavity (cross section: minor axis 50 m, major axis 66 mm) of the secondary blow mold (set at 140 ° C.).
In a shrunk bottomed parison deformed by crushing, air at 20 ° C. and 3 MPa was fed and subjected to secondary blow molding to form a flat container having a rectangular cross section of 1.3.
The crystallinity of the body of this flat container, the thickness ratio of the maximum thickness part and the minimum thickness part of the cross section of the container, the amount of elongation in the 95 ° C tensile test at the maximum extension part and the minimum extension part of the container body part Table 1 shows the measurement results of the difference and the difference in TMA no-load change in the range of 75 ° C. and 100 ° C. in the maximum stretched portion and the minimum stretched portion of the body of the container.
As shown in Table 1, the thickness ratio in the circumferential direction of the body of the container is small as compared with each comparative example, and the difference in physical properties between the maximum stretched portion and the minimum stretched portion of the body of the container is small. Also, the heat resistance was good and the mechanical strength was sufficient.

[実施例−2]
1次ブロー成形をフリーブローでなく1次ブロー用金型を使用し、2次ブロー用金型として断面楕円形のキャビティ(断面:短径47mm,長径70mm)を使用した以外は、実施例−1と同様に行い、断面が楕円形の扁平比1.5の扁平容器を成形した。
[Example-2]
Example except that the primary blow molding was not a free blow, but a primary blow mold was used, and a cavity with an elliptical cross section (cross section: minor axis 47 mm, major axis 70 mm) was used as the secondary blow mold. 1. A flat container having an elliptical flatness ratio of 1.5 was formed.

[実施例−3]
1次ブロー成形をフリーブローでなく1次ブロー用金型を使用し、2次ブロー用金型として断面矩形のキャビティ(断面:短径40mm,長径80mm)を使用した以外は、実施例−1と同様に行い断面が矩形の扁平比2.0の扁平容器を成形した。
[Example-3]
Example-1 except that a primary blow mold was used for primary blow molding instead of free blow, and a cavity with a rectangular cross section (cross section: minor axis 40 mm, major axis 80 mm) was used as the secondary blow mold. A flat container having a flatness ratio of 2.0 having a rectangular cross section was formed.

[実施例−4]
1次ブロー成形をフリーブローでなく1次ブロー用金型を使用し、2次ブロー用金型として断面矩形のキャビティ(断面:短径36mm,長径90mm)を使用した以外は、実施例−1と同様に行い断面が矩形の扁平比2.5の扁平容器を成形した。
実施例2〜4で成形した扁平容器の胴部の結晶化度、容器の断面の最大肉厚部と最小肉厚部の肉厚比、容器の胴部の最大延伸部と最小延伸部における95℃引張り試験での伸び量の差、及び容器の胴部の最大延伸部と最小延伸部における75℃と100℃の範囲でのTMA無荷重変化量の差の測定結果を表1に示す。
実施例2〜4は、表1に記載された数値のとおり、各比較例に比して、容器の胴部の周方向肉厚比が小さく、容器の胴部の最大延伸部と最小延伸部における物性差が小さく、したがって、耐熱性も良好であり機械的な強度も充分なものであった。
[Example-4]
Example-1 except that a primary blow mold was used for primary blow molding instead of free blow, and a cavity with a rectangular cross section (cross section: minor axis 36 mm, major axis 90 mm) was used as the secondary blow mold. A flat container having a flatness ratio of 2.5 and a rectangular cross section was formed.
Crystallinity of the body of the flat container formed in Examples 2 to 4, the thickness ratio of the maximum thickness part and the minimum thickness part of the cross section of the container, 95 in the maximum extension part and the minimum extension part of the container body part Table 1 shows the measurement results of the difference in elongation in the tensile test at 0 ° C. and the difference in TMA no-load change in the range of 75 ° C. and 100 ° C. in the maximum stretched portion and the minimum stretched portion of the body of the container.
In Examples 2 to 4, as shown in Table 1, the thickness ratio in the circumferential direction of the body of the container is small as compared with the comparative examples, and the maximum stretched portion and the minimum stretched portion of the body of the container Thus, the difference in physical properties was small, and therefore the heat resistance was good and the mechanical strength was sufficient.

[比較例−1]
実施例−1で用いたものと同じ予備成形有底パリソンを使用して、予備有底パリソンを1次ブロー用金型で延伸して、収縮有底パリソンを短径方向に押し潰さない大きさで金型に収納して、実施例−1で用いたものと同じ2次ブロー用の金型を使用して、同じブロー条件にてブロー成形を行い、断面が矩形の扁平比1.3の扁平容器を成形した。
[Comparative Example-1]
Using the same preformed bottomed parison as used in Example 1, the preformed bottomed parison was stretched with a primary blow mold, and the contracted bottomed parison was not crushed in the minor axis direction. In the mold, and using the same secondary blow mold as used in Example-1, blow molding is performed under the same blowing conditions, and the cross section is rectangular with a flatness ratio of 1.3. A flat container was formed.

[比較例−2]
実施例−1で用いたものと同じ予備成形有底パリソンを使用して、予備有底パリソンを1次ブロー用金型で延伸して、収縮有底パリソンを短径方向に押し潰さない大きさで金型に収納して、実施例−3で用いたものと同じ2次ブロー用の金型を使用して、同じブロー条件にてブロー成形を行い、断面が矩形の扁平比2.0の扁平容器を成形した。
比較例1〜2で成形した扁平容器の胴部の結晶化度、容器の断面の最大肉厚部と最小肉厚部の肉厚比、容器の胴部の最大延伸部と最小延伸部における95℃引張り試験での伸び量差、及び容器の胴部の最大延伸部と最小延伸部における75℃と100℃の範囲でのTMA無荷重変化量の差の測定結果を表1に示す。
各比較例は、表1に記載された数値のとおり、容器の胴部の周方向肉厚比及び容器の胴部の最大延伸部と最小延伸部における物性差が大きく、したがって、耐熱性及び機械的な強度が劣るものであった。
[Comparative Example-2]
Using the same preformed bottomed parison as used in Example 1, the preformed bottomed parison was stretched with a primary blow mold, and the contracted bottomed parison was not crushed in the minor axis direction. In the mold, and using the same secondary blow mold as used in Example-3, blow molding is performed under the same blow conditions, and the cross section is rectangular with a flatness ratio of 2.0. A flat container was formed.
Crystallinity of the barrel portion of the flat container molded in Comparative Examples 1 and 2, the thickness ratio of the maximum thickness portion and the minimum thickness portion of the cross section of the container, 95 in the maximum extension portion and the minimum extension portion of the container barrel portion Table 1 shows the measurement results of the difference in elongation in the tensile test at 0 ° C. and the difference in TMA no-load change in the range of 75 ° C. and 100 ° C. in the maximum stretched portion and the minimum stretched portion of the body of the container.
In each comparative example, as shown in Table 1, the circumferential thickness ratio of the container body and the difference in physical properties between the maximum stretched portion and the minimum stretched portion of the container body are large. The mechanical strength was inferior.

Figure 2006082871
Figure 2006082871

[各実施例と各比較例の結果の考察]
各実施例及び各比較例を対比することにより、本願発明における、扁平比や肉厚比あるいは95℃引張り試験伸び量の差及びTMA差などの構成要件を満たす扁平容器であれば、耐熱性が優れていることが明確となっている。
各実施例では、最大延伸部と最小延伸部の高温での伸びの差が各比較例に比べて小さく、また、TMA無荷重変化量の差も、各比較例に比べて小さく、耐熱性に優れて、収容内容物を高温で充填しても形状的に安定しており、従来の扁平容器のように形状が変形して歪むことはない。
したがって、本願発明の各構成の要件における有意性及び合理性が実証されている。
[Consideration of results of Examples and Comparative Examples]
By comparing each example and each comparative example, in the present invention, if it is a flat container that satisfies the structural requirements such as the flat ratio, thickness ratio, 95 ° C tensile test elongation difference and TMA difference, the heat resistance is improved. It is clear that it is excellent.
In each example, the difference in elongation at high temperature between the maximum stretched portion and the minimum stretched portion is smaller than that in each comparative example, and the difference in TMA no-load change is also smaller than that in each comparative example. Excellent and stable in shape even when the contents are filled at a high temperature, and the shape is not deformed and distorted unlike a conventional flat container.
Therefore, the significance and rationality in the requirements of each component of the present invention are demonstrated.

95℃引張り試験伸び量の差の測定結果の例を示すグラフ図である。It is a graph which shows the example of the measurement result of the difference in 95 degreeC tensile test elongation amount. TMA無荷重変化量の差の測定結果の例を示すグラフ図である。It is a graph which shows the example of the measurement result of the difference of TMA no load change amount. 本願発明の矩形型ポリエステル樹脂扁平容器と測定サンプル採取箇所を示す、外観図及び断面図である。It is the external view and sectional drawing which show the rectangular polyester resin flat container of this invention, and a measurement sample collection location. 本願発明の楕円型ポリエステル樹脂扁平容器を示す、外観図及び断面図である。It is the external view and sectional drawing which show the elliptical-type polyester resin flat container of this invention.

符号の説明Explanation of symbols

1,101 ポリエステル樹脂扁平容器
2,102 容器胴部
3,103 容器底部
4,108 容器首部
5,105 容器肩部
6,106 容器胴部長径
7,107 容器胴部短径
8,104 容器口部
9 最大延伸部(柱部)測定サンプル採取位置
10 最小延伸部(パネル中央部)測定サンプル採取位置
1,101 Polyester resin flat container 2,102 Container trunk 3,103 Container bottom 4,108 Container neck 5,105 Container shoulder 6,106 Container trunk major axis 7,107 Container trunk minor axis 8,104 Container mouth 9 Maximum stretched part (column) measurement sample collection position 10 Minimum stretched part (panel center) measurement sample collection position

Claims (7)

ポリエステル樹脂をブロー成形した扁平容器であって、長径と短径の比である扁平比が1.3以上であり、容器の胴部の最大肉厚部と最小肉厚部の肉厚比が1.6以下であり、容器の胴部の最大延伸部と最小延伸部における95℃引張り試験での伸びの差が150%以下であることを特徴とするポリエステル樹脂扁平容器。 A flat container in which a polyester resin is blow-molded, a ratio of a major axis to a minor axis is 1.3 or more, and a thickness ratio between a maximum thickness part and a minimum thickness part of the trunk of the container is 1 A polyester resin flat container, wherein the difference in elongation in a 95 ° C. tensile test between the maximum stretched portion and the minimum stretched portion of the body portion of the container is 150% or less. ポリエステル樹脂をブロー成形した扁平容器であって、長径と短径の比である扁平比が1.3以上であり、容器の胴部の最大肉厚部と最小肉厚部の肉厚比が1.6以下であり、容器の胴部の結晶化度が30%以上であり、容器の胴部の最大延伸部と最小延伸部におけるTMA無荷重変化量の差が75℃と100℃において500μm以下であることを特徴とするポリエステル樹脂扁平容器。 A flat container in which a polyester resin is blow-molded, a ratio of a major axis to a minor axis is 1.3 or more, and a thickness ratio of a maximum thickness part to a minimum thickness part of a body part of the container is 1 .6 or less, the crystallinity of the body of the container is 30% or more, and the difference in TMA no-load change between the maximum stretched part and the minimum stretched part of the container body is 500 μm or less at 75 ° C. and 100 ° C. Polyester resin flat container characterized by being. ポリエステル樹脂をブロー成形した扁平容器であって、長径と短径の比である扁平比が1.3以上であり、容器の胴部の最大肉厚部と最小肉厚部の肉厚比が1.6以下であり、容器の胴部の最大延伸部と最小延伸部における95℃引張り試験での伸びの差が150%以下であり、容器の胴部の結晶化度が30%以上であり、容器の胴部の最大延伸部と最小延伸部におけるTMA無荷重変化量の差が75℃と100℃において500μm以下であることを特徴とするポリエステル樹脂扁平容器。 A flat container in which a polyester resin is blow-molded, a ratio of a major axis to a minor axis is 1.3 or more, and a thickness ratio of a maximum thickness part to a minimum thickness part of a body part of the container is 1 .6 or less, the difference in elongation in the 95 ° C. tensile test between the maximum stretched part and the minimum stretched part of the container body is 150% or less, and the crystallinity of the container body is 30% or more, A polyester resin flat container characterized in that the difference in TMA no-load change between the maximum stretched portion and the minimum stretched portion of the body portion of the container is 500 μm or less at 75 ° C. and 100 ° C. 扁平容器の胴部の断面形状が矩形又は楕円形であることを特徴とする、請求項1〜請求項3のいずれかに記載されたポリエステル樹脂扁平容器。 The polyester resin flat container according to any one of claims 1 to 3, wherein a cross-sectional shape of a body portion of the flat container is a rectangle or an ellipse. 扁平容器が二段ブロー成形法により成形された二軸延伸容器であることを特徴とする、請求項1〜請求項4のいずれかに記載されたポリエステル樹脂扁平容器。 The flat resin container according to any one of claims 1 to 4, wherein the flat container is a biaxially stretched container formed by a two-stage blow molding method. ポリエステル樹脂がポリエチレンテレフタレートであることを特徴とする、請求項1〜請求項5のいずれかに記載されたポリエステル樹脂扁平容器。 The polyester resin flat container according to any one of claims 1 to 5, wherein the polyester resin is polyethylene terephthalate. 扁平容器がポリエステル樹脂層及び機能性熱可塑性樹脂層の多層構造からなることを特徴とする、請求項1〜請求項6のいずれかに記載されたポリエステル樹脂扁平容器。 The flat container according to any one of claims 1 to 6, wherein the flat container has a multilayer structure of a polyester resin layer and a functional thermoplastic resin layer.
JP2004272637A 2004-09-17 2004-09-17 Flat container made of polyester resin Expired - Fee Related JP4721138B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2004272637A JP4721138B2 (en) 2004-09-17 2004-09-17 Flat container made of polyester resin
KR1020077008373A KR101237729B1 (en) 2004-09-17 2005-09-15 Flat container comprising thermoplastic resin and method for molding the same
PCT/JP2005/017442 WO2006030972A1 (en) 2004-09-17 2005-09-15 Flat container comprising thermoplastic resin and method for molding the same
AT05785865T ATE493340T1 (en) 2004-09-17 2005-09-15 FLAT CONTAINER COMPRISING THERMOPLASTIC RESIN AND INJECTION MOLDING METHOD THEREOF
DE602005025660T DE602005025660D1 (en) 2004-09-17 2005-09-15 THERMOPLASTIC RESIN COMPRISING FLAT TANK AND INJECTION MOLDING METHOD THEREFOR
CN2005800312267A CN101035714B (en) 2004-09-17 2005-09-15 Flat container comprising thermoplastic resin and method for molding the same
CN2010102028732A CN101920553B (en) 2004-09-17 2005-09-15 Flat container made of thermoplastic resin and its forming method
US11/575,435 US8784957B2 (en) 2004-09-17 2005-09-15 Flat container comprising thermoplastic resin and method for molding the same
EP05785865.6A EP1795449B2 (en) 2004-09-17 2005-09-15 Flat container comprising thermoplastic resin and method for molding the same
US14/284,697 US20140332490A1 (en) 2004-09-17 2014-05-22 Flat container comprising thermoplastic resin and method for molding the same
US14/284,681 US20140346717A1 (en) 2004-09-17 2014-05-22 Flat container comprising thermoplastic resin and method for molding the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004272637A JP4721138B2 (en) 2004-09-17 2004-09-17 Flat container made of polyester resin

Publications (2)

Publication Number Publication Date
JP2006082871A true JP2006082871A (en) 2006-03-30
JP4721138B2 JP4721138B2 (en) 2011-07-13

Family

ID=36161703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004272637A Expired - Fee Related JP4721138B2 (en) 2004-09-17 2004-09-17 Flat container made of polyester resin

Country Status (2)

Country Link
JP (1) JP4721138B2 (en)
CN (1) CN101035714B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297058A (en) * 2006-04-27 2007-11-15 Coca Cola Co:The Plastic bottle
JP2011104934A (en) * 2009-11-20 2011-06-02 Toyo Seikan Kaisha Ltd Bottle made of polyester resin having suppressed molding strain and method of producing the same
JP2014080223A (en) * 2012-10-18 2014-05-08 Kobayashi Pharmaceutical Co Ltd Resin container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108162361B (en) * 2017-12-22 2019-12-13 亚普汽车部件股份有限公司 Hollow pipe body forming method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159471A (en) * 1978-06-06 1979-12-17 Sumitomo Heavy Ind Ltd Molding of flat container by injection blow molding
JPH05200839A (en) * 1991-04-25 1993-08-10 Yoshino Kogyosho Co Ltd Production of heat and pressure-resistant bottle
JPH08294958A (en) * 1995-04-26 1996-11-12 Kyoraku Co Ltd Method and mold for molding flat container
JP2002283441A (en) * 2001-03-27 2002-10-03 Yoshino Kogyosho Co Ltd Bottle type container made of synthetic resin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2636040B2 (en) * 1988-07-22 1997-07-30 三井石油化学工業株式会社 Hollow forming method of flat container having parts with greatly different wall thickness
KR100635292B1 (en) * 1998-12-07 2006-10-19 미쓰이 가가쿠 가부시키가이샤 Hollow vessel for heat sterilization
CA2418562C (en) * 2002-02-15 2008-07-22 Kuraray Co., Ltd. Coinjection stretch blow molded container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159471A (en) * 1978-06-06 1979-12-17 Sumitomo Heavy Ind Ltd Molding of flat container by injection blow molding
JPH05200839A (en) * 1991-04-25 1993-08-10 Yoshino Kogyosho Co Ltd Production of heat and pressure-resistant bottle
JPH08294958A (en) * 1995-04-26 1996-11-12 Kyoraku Co Ltd Method and mold for molding flat container
JP2002283441A (en) * 2001-03-27 2002-10-03 Yoshino Kogyosho Co Ltd Bottle type container made of synthetic resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297058A (en) * 2006-04-27 2007-11-15 Coca Cola Co:The Plastic bottle
JP2011104934A (en) * 2009-11-20 2011-06-02 Toyo Seikan Kaisha Ltd Bottle made of polyester resin having suppressed molding strain and method of producing the same
JP2014080223A (en) * 2012-10-18 2014-05-08 Kobayashi Pharmaceutical Co Ltd Resin container

Also Published As

Publication number Publication date
CN101035714B (en) 2010-08-11
JP4721138B2 (en) 2011-07-13
CN101035714A (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP4599900B2 (en) Preform and blow molded container comprising the preform
JP5533515B2 (en) Polyester expanded foam container
AU2010287698B2 (en) Synthetic resin bottle and process for manufacturing the same
US20140332490A1 (en) Flat container comprising thermoplastic resin and method for molding the same
JPWO2007083396A1 (en) Method for producing biaxially stretched polyester bottle
KR101422308B1 (en) Thin Biaxially Oriented Polyester Bottle
JP4292918B2 (en) Preforms for plastic bottle containers
JP5239480B2 (en) Polyethylene terephthalate bottle
JP2004066624A (en) Method for stretching/blow-molding plastic bottle
JP4721138B2 (en) Flat container made of polyester resin
JP4780443B2 (en) Flat container two-stage blow molding
JP4148065B2 (en) Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method
JPS6357312B2 (en)
CN109415134B (en) Polyester stretch blow molding container and production method thereof
JP2018083630A (en) Polyester stretch blow molding vessel and its manufacturing method
JP2006306452A (en) Polyester resin container excellent in retort-capability and manufacturing method therefor
JPS5850177B2 (en) Method for manufacturing biaxially oriented bottles
JPH06143397A (en) Heat-fixation polyester molded container and manufacture thereof
WO2018003790A1 (en) Polyester stretch blow-molded container and manufacturing method therefor
JPH02269636A (en) Heat resistant plastic bottle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees