JP2006081367A - 回転電機の回転子 - Google Patents
回転電機の回転子 Download PDFInfo
- Publication number
- JP2006081367A JP2006081367A JP2004265217A JP2004265217A JP2006081367A JP 2006081367 A JP2006081367 A JP 2006081367A JP 2004265217 A JP2004265217 A JP 2004265217A JP 2004265217 A JP2004265217 A JP 2004265217A JP 2006081367 A JP2006081367 A JP 2006081367A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- ventilation
- rotating electrical
- electrical machine
- ventilation groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009423 ventilation Methods 0.000 claims abstract description 192
- 239000000112 cooling gas Substances 0.000 claims abstract description 63
- 230000002093 peripheral effect Effects 0.000 claims abstract description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 17
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 238000005192 partition Methods 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract description 8
- 238000012545 processing Methods 0.000 abstract description 5
- 238000011161 development Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Motor Or Generator Cooling System (AREA)
Abstract
【課題】 回転子コイルに通風溝を加工することなく回転子コイルを効率的かつ均一に冷却し、大きな界磁電流を許容し信頼性の高い回転電機の回転子を提供すること。
【解決手段】 回転子鉄心に設けられた鉄心スロットに磁極を中心として多重環状に積層して装着された回転子コイル1、鉄心外側の回転子コイルを支持するためのエンドリング6、回転子コイルとエンドリングとの間を電気的に絶縁するための絶縁筒9、エンドリング端部の内周側にエンドリング支え7を備え、エンドリング内の回転子コイルの間隙に間隔片を配置した回転電機の回転子である。回転子コイルと間隔片で半径方向流路19,19bを構成し、その位置に対応した絶縁筒に通風孔12を設け、これらの通風孔が連通するように絶縁筒の外周表面に通風溝13を加工し、さらに通風溝から回転子鉄心の外表面への流路を構成する。エンドリング支え内径からエンドリング内へ流入した冷却ガスを、半径方向流路へと導入し、絶縁筒9a,9b外周に設けた通風溝を通り回転子鉄心の外表面へ排出する。
【選択図】 図1
【解決手段】 回転子鉄心に設けられた鉄心スロットに磁極を中心として多重環状に積層して装着された回転子コイル1、鉄心外側の回転子コイルを支持するためのエンドリング6、回転子コイルとエンドリングとの間を電気的に絶縁するための絶縁筒9、エンドリング端部の内周側にエンドリング支え7を備え、エンドリング内の回転子コイルの間隙に間隔片を配置した回転電機の回転子である。回転子コイルと間隔片で半径方向流路19,19bを構成し、その位置に対応した絶縁筒に通風孔12を設け、これらの通風孔が連通するように絶縁筒の外周表面に通風溝13を加工し、さらに通風溝から回転子鉄心の外表面への流路を構成する。エンドリング支え内径からエンドリング内へ流入した冷却ガスを、半径方向流路へと導入し、絶縁筒9a,9b外周に設けた通風溝を通り回転子鉄心の外表面へ排出する。
【選択図】 図1
Description
本発明は、タービン発電機などの回転電機の回転子に係り、とくにその冷却性能の改良に関する。
タービン発電機等の回転電機では、回転子コイルの冷却性能が発電機の性能や体格を左右する重要な要素である。回転子コイルは、コイルの長手方向に沿って通風溝を設けて、その溝に冷却ガスを通風して冷却する。
従来の回転子コイルの回転子軸方向断面図を図14に、回転子コイルの水平展開図を図15に示す。回転子コイル1は、回転子シャフト2の鉄心3に所定の間隔で円周方向に設けたスロット4内に多重環状に積層して装着されており、鉄心端5から外側に突出した回転子コイル1の端部は、エンドリング6およびエンドリング支え7により回転遠心力に対し保持される。
エンドリング6内の回転子コイル1は、コイル間に間隔片8を配置して所定の間隔で保持され、回転子コイル1の最外周部とエンドリング6との間の電気的絶縁を保つために絶縁筒9が挿入される。
回転子コイル1には、励磁するための界磁電流が流れるため、電気的発熱が発生し、コイル温度が上昇する。回転子コイル1は、絶縁筒9や図示していないが積層された回転子コイル相互間や鉄心スロット4と回転子コイル1との間に絶縁物が挿入されており、それらの絶縁物の耐熱等により温度上限が規定されている。
回転子コイル1には、図示していないが、コイルの長手方向に通風溝が設けられており、その通風溝に冷却ガス10を通風することにより回転子コイル1を冷却している。
冷却ガス10は,回転子シャフト2とエンドリング支え7との空隙を通ってエンドリング6の内部へ導入され、その一部は回転子コイル側面に設けられた通風取り入れ口より回転子コイル1内の通風溝へ導入される。回転子コイル1の通風溝に導入された冷却ガス10は、通風溝内を回転子コイル1の長手方向に流れて回転子コイル1を冷却した後、鉄心内部において半径方向ダクト11を通って回転子外周へ排出される。
特開平10−336964号公報
このような冷却方法では、多重環状に積層された回転子コイル1本毎に冷却ガス通風用の通風溝を加工する必要がある。例えば、2極の回転電機で1極当り64ターンのコイル巻き数とすれば、1ターン当り4本の溝が必要であり、64ターン×2極×4本=512本もの溝加工が必要となる。このようにコイル長手方向の溝を多数加工するには、多大な時間とコストが掛かるという問題点がある。
図16に、従来の方式による回転子コイル1および冷却ガス10の回転子コイル1における長手方向の温度分布を示した。
従来の冷却方式では、冷却ガスがコイルの長手方向に流れるため、冷却ガス温度が流れの下流ほど高くなり、回転子コイル温度も冷却ガスの取入口のある磁極中心付近のコイル温度に比べて鉄心端付近のコイル温度が高くなる。さらに、外周側に巻線されたコイルほど回転子コイルが長くなるため、内周側のコイルよりも外周側コイルの温度が高くなる。このように、従来の冷却方式では、回転子コイルに通風溝を設ける冷却方法では、回転子コイルの軸方向および周方向に温度分布が大きくなる可能性が大きい。
回転子コイル温度は、コイルの絶縁物に用いる部材の温度上限により厳しく制限されており、局所的にコイル温度の高い部位が生じた場合、他の部位のコイル温度はそれほど高くないのに界磁電流を制限して発熱量を押さえなければならず,回転電機の出力を上げることができない、という問題点がある。
また、多数巻いたコイル間でコイル温度が異なると、回転子コイルの熱膨張のアンバランスによる軸振動が生じ発電機の信頼性が低下するという問題点がある。
さらに、回転子コイルに通風溝を加工するため、回転子コイルの強度が低下し強大な遠心力により変形したり、また、コイル曲げ部に通風溝を設けた場合、曲げ加工時に通風溝が変形する可能性がある。
回転子コイルが変形した場合、局所的にコイル間の絶縁が破壊して短絡し、所定の性能が得られなかったり、通風流路の断面積が減少したり積層したコイル間に隙間が生じたりして冷却ガスが漏れ、必要冷却風量が確保できずに回転子コイル温度が高くなるといった問題点がある。
本発明は、上述の点を考慮してなされたもので、回転子コイルに通風溝を加工することなく回転子コイルを効率的かつ均一に冷却して大きな界磁電流を許容し高い信頼性を持つ回転電機の回転子を提供することを目的とする。
上記目的達成のため、本発明では、
円筒状の回転子鉄心に所定の間隔で設けられた鉄心スロットに磁極を中心として多重環状に積層されて装着された回転子コイルと、前記回転子鉄心の端部から突出した前記回転子コイル端部を支持するためのエンドリングと、前記回転子コイルと前記エンドリングとの間に介挿され両者間を電気的に絶縁するための絶縁筒と、前記エンドリングの端部内周側に設けられたエンドリング支えとを備え、前記エンドリング内に多重に配置された前記回転子コイル端部相互の間隙に間隔片が配置されて構成された回転電機の回転子において、前記回転子コイル端部と前記間隔片とにより前記回転子の半径方向に沿うように構成された半径方向流路と、前記半径方向流路の位置に対応して前記絶縁筒に開けられた通風孔と、前記通風孔が連通するように前記絶縁筒の外周表面に設けられた通風溝と、前記通風溝から前記回転子鉄心の外表面へ冷却ガスを排出するように形成された排気スロットとをそなえ、前記エンドリング支えの内径から前記エンドリング内へ流入した冷却ガスを、前記半径方向流路へと導入し、前記通風溝を通り前記回転子鉄心の外表面方向へ排出するようにしたことを特徴とする。
このように構成することにより、回転子シャフトとエンドリング支えとの空隙を通ってエンドリング内部へ流入した冷却ガスは、回転子の遠心ファン効果により回転子コイルと間隔片で構成される半径方向流路へと導入され、回転子コイル外表面を冷却する。回転子コイルを冷却したガスは、絶縁筒に設けた通風孔より絶縁筒外周に設けた通風溝へと流れる。通風溝へ流入した冷却ガスは、通風溝に沿って設けられた通風孔から流入する冷却ガスと合流しながら、通風溝をエンドリング支え側から鉄心側へと流れ、さらに回転子鉄心外表面へ排出される。
円筒状の回転子鉄心に所定の間隔で設けられた鉄心スロットに磁極を中心として多重環状に積層されて装着された回転子コイルと、前記回転子鉄心の端部から突出した前記回転子コイル端部を支持するためのエンドリングと、前記回転子コイルと前記エンドリングとの間に介挿され両者間を電気的に絶縁するための絶縁筒と、前記エンドリングの端部内周側に設けられたエンドリング支えとを備え、前記エンドリング内に多重に配置された前記回転子コイル端部相互の間隙に間隔片が配置されて構成された回転電機の回転子において、前記回転子コイル端部と前記間隔片とにより前記回転子の半径方向に沿うように構成された半径方向流路と、前記半径方向流路の位置に対応して前記絶縁筒に開けられた通風孔と、前記通風孔が連通するように前記絶縁筒の外周表面に設けられた通風溝と、前記通風溝から前記回転子鉄心の外表面へ冷却ガスを排出するように形成された排気スロットとをそなえ、前記エンドリング支えの内径から前記エンドリング内へ流入した冷却ガスを、前記半径方向流路へと導入し、前記通風溝を通り前記回転子鉄心の外表面方向へ排出するようにしたことを特徴とする。
このように構成することにより、回転子シャフトとエンドリング支えとの空隙を通ってエンドリング内部へ流入した冷却ガスは、回転子の遠心ファン効果により回転子コイルと間隔片で構成される半径方向流路へと導入され、回転子コイル外表面を冷却する。回転子コイルを冷却したガスは、絶縁筒に設けた通風孔より絶縁筒外周に設けた通風溝へと流れる。通風溝へ流入した冷却ガスは、通風溝に沿って設けられた通風孔から流入する冷却ガスと合流しながら、通風溝をエンドリング支え側から鉄心側へと流れ、さらに回転子鉄心外表面へ排出される。
本発明によれば、回転子コイルを冷却する冷却ガスの通風経路を回転子コイル側面と間隔片とで構成したため、回転子コイルには通風溝を加工する必要がなく、容易に回転子コイルの加工ができ、かつ、通風溝を設けないため回転子コイルが変形する危険性も少なくなり信頼性の高い回転子を提供できる。
また、回転子コイルに通風溝を設けた場合と比較して、冷却パス1本あたりの長さが短く、かつ複数ある冷却パスの長さもほぼ均一となるため冷却ガスの温度分布を小さく保つことができ、回転子コイルの軸方向および周方向の温度分布を均一化することが可能であり、効率的な設計が可能となる。さらに、局所的な熱膨張に起因する軸振動が生じる可能性が低く、発電機の信頼性を向上させることができる。
以下、図1ないし図13を参照して本発明の幾つかの実施形態を説明する。
図1は、本発明の実施形態1である回転電機の回転子の構成を示す部分破断斜視図であり、図2は、回転電機の回転子の軸方向断面図である。
回転子コイル1は、回転子シャフト2と一体に形成された回転子鉄心3に所定の間隔で設けられた鉄心スロット4に、磁極20を中心として所定の間隔で多重環状に積層して装着されており、回転子鉄心3の端部から突出したコイルエンド部は、エンドリング6およびエンドリング支え7により回転遠心力に抗するように保持される。
そして、回転子コイル1の最外周部とエンドリング6との間の電気的絶縁を保つために、外周面にスペーサ9aが貼設された絶縁筒9bが挿入される。絶縁筒9は、円筒状であって外周面にスペーサが形成されるものであれば、2つの部材を組み合わせずに溝加工による一体構造であってもよい。
エンドリング6内の回転子コイル1は、コイル間に間隔片8を等間隔または不等間隔に配置して半径方向流路19を複数形成する。その半径方向流路19の位置に対応した絶縁筒9に通風孔12(図2には図示せず)を開け、これらの通風孔12が連通するように絶縁筒9の外周表面に通風溝13を設ける。さらに、通風溝13から回転子鉄心3の外径方向へ冷却ガスを排出するように、排気スロット14を構成する。
冷却ガス10は、回転子シャフト2とエンドリング支え7との空隙を通ってエンドリング6内部へ流入し、回転子の遠心ファン効果によって回転子コイル1と間隔片8とで構成した半径方向流路19へと導入されて外周方向に流れ、回転子コイル1の外表面を冷却する。
回転子コイル1を冷却したガス10は、絶縁筒9に設けられた通風孔12より、絶縁筒9の外周に設けられた通風溝13へと流入する。通風溝13へ流入した冷却ガス10は、通風溝13に沿って設けられた通風孔12から流入する冷却ガス13と合流しながら、通風溝13をエンドリング支え7側から鉄心3側へと流れ、排気スロット14を通って回転子鉄心3の外表面へ排出される。
実施形態1によれば、回転子コイル1を冷却する冷却ガス10の通風経路を回転子コイル1の側面と間隔片8とで構成したため、回転子コイル1には通風溝を設ける必要がなく、回転子コイル1の加工が容易になり、かつ、通風溝を設けないため回転子コイル1が変形する危険性も少なくなり、信頼性の高い回転子を提供できる。
図3は、回転子コイル長手方向の距離に対する回転子コイル1および回転子コイル1側面を通過する冷却ガス10の温度分布を示している。
回転子コイル1に通風溝を設けた場合と比較して、半径方向流路19は、冷却パス1本当りの長さが短く、かつ、複数ある冷却パスの長さもほぼ均一となるため、図3に示したように冷却ガス10の半径方向流路19の出口と入口の温度差を小さくすることができ、また、複数ある半径方向流路19相互間の冷却ガス温度分布も小さくすることができるため、回転子コイル1の軸方向および周方向の温度分布を均一化することが可能である。
回転子コイル温度は、コイルの絶縁物に用いる部材の温度上限により厳しく制限されている。局所的にコイル温度の高い部位が生じた場合、他の部位のコイル温度はそれほど高くないのに界磁電流を制限する必要があるが、回転子コイルの温度を均一化することによって、より大きな界磁電流を許容する効率的な回転子の設計が可能となる。
さらに、回転子コイルの軸方向および周方向の温度分布が小さくなるため、熱膨張に起因する軸振動が生じる可能性が低く、発電機の信頼性を向上させることができる。
実施形態1によれば、絶縁筒9の外周面に通風溝13を加工する場合と比較して、通風溝13を容易に形成することができ、さらに通風孔12の配置に合わせて効率的に通風を行うように複雑な形状であっても容易に構成することができる。
実施形態1の変形例として、図1に示した実施形態では絶縁筒9の外周面に通風溝13を設けたが、絶縁筒に開けた通風孔12を連通させるようにエンドリング6の内周表面に通風溝13を設けてもよい。その作用・効果は同様である。
図4は、本発明の実施形態2である回転電機の回転子の軸方向断面図、図5は回転子コイルの水平展開図、図6は回転子コイルの軸方向断面図をそれぞれ示している。図1と同様の構成および作用効果については、説明を省略する。
実施形態2では、通風溝13から回転子鉄心3の外表面へ冷却ガス10を排出するように連通する流路14のうち鉄心スロット部15に位置する流路14については、回転子鉄心3の端部に位置する特定半径方向流路19bの内周面に閉止板21を取り付けて、内径側からの冷却ガス10の流入を閉止する。
特定半径方向流路19bと、この特定半径方向流路19bに連通するように回転子コイル1に設けられた一本以上の通風溝(冷却ガス10の通風経路のみ図示)と、それらの通風溝と回転子鉄心3の外周面とを連通する半径方向ダクト11とで構成する。
実施形態2によれば、鉄心スロット部15に位置する絶縁筒9の外周の通風溝13を通った冷却ガス10は、絶縁筒9に設けられた通風孔12を通って鉄心端部5の特定半径方向流路19bに流入する。この時、特定半径方向流路19bには、その内周面に閉止板21を取り付けてあるため、内周側からの冷却ガス10の流入はなく、通風孔12からの冷却ガス10の流入が阻害されることはない。
特定半径方向流路19bに流入した冷却ガス10は、特定半径方向流路19bに連通する回転子コイル1に設けた1本以上の通風溝に流入し、さらに、それらの通風溝と回転子鉄心3の外表面とを連通する半径方向ダクト11を通って鉄心3の外表面へと排出される。
実施形態2では、鉄心3のスロット部15に冷却ガス10の通風経路を設けないため、鉄心3の歯先部の強度が強く、図1の場合と比較して回転子コイル1の断面積を大きくすることができる。回転子の通電発熱損失、すなわち界磁損失は、コイルの断面積に反比例して小さくなるため、回転子コイル1の温度を低く保つことができるとともに、回転電機の効率も向上する。
実施形態2では、回転子コイル1に通風溝を加工する必要があるが、図14、図15に示した従来構造の回転子コイル1の通風溝(冷却ガス10の通風経路のみ図示)と比較して短く、その加工が問題になることはない。
図7は、本発明の実施形態3である回転電機における回転子の構成を示している。図1と同様の構成およびその作用効果については、説明を省略する。
実施形態3では、絶縁筒9の外周に設けた通風溝13を周方向の通風溝17で互いに連通させ、さらに回転子鉄心3の端部から回転子鉄心3の外表面に連通させる排気スロット14を磁極部16のみに設けて通風経路を構成する。また、実施形態3では、周方向の通風溝17を絶縁筒9のエンドリング支え7側の端部に設けたが、回転子鉄心3の端部側でもよいし、また、その中間でもよい。
周方向位置が鉄心スロット部15に当る通風溝13に流入した冷却ガス10は、通風溝13に沿って設けられた通風孔12から流入する冷却ガス10と合流しながら、回転子の軸方向を周方向通風溝17に向かって流れ、さらに周方向通風溝17を通って磁極部16の回転子の軸方向に設けた通風溝13へ流入する。
そして、磁極部16の通風溝13に沿って設けられた通風孔12から流入する冷却ガス10と合流しながら鉄心3に向かって流れ、磁極部16に設けた排気スロット14から回転子鉄心3の外表面へ排出される。
実施形態3では、鉄心3のスロット部15に冷却ガス10の通風経路を設けないため、鉄心3の歯先部の強度が強く、図1の場合と比較して回転子コイル1の断面積を大きくすることができる。回転子の通電発熱損失、すなわち界磁損失は、コイルの断面積に反比例して小さくなるため、回転子コイル1の温度が下がるとともに、回転電機の効率も向上する。
図8は、本発明の実施形態4である回転電機における回転子の絶縁筒の水平展開図を示している。その他の構成は図7と同様であり、説明を省略する。
実施形態4では、絶縁筒9の外周に設けた通風溝13を連通させる周方向の通風溝17を一本または複数本設けて通風経路を構成した。また、実施形態4では、周方向の通風溝17を4本設け、鉄心スロット部15の通風溝13と磁極部16の通風溝13とを連通させている。
実施形態4によれば、周方向の通風溝17を複数本設けることにより、冷却ガスが通過する流路断面積を大きく取ることができる。その結果、周方向の通風溝17を通過する冷却ガスの流速が低下し、摩擦による圧力損失が低減し、このため、より多くの冷却ガスを通風することが可能であり、効率的に回転子コイルを冷却することができる。
図9は、本発明の実施形態5である回転電機における回転子の絶縁筒の水平展開図を示している。その他の構成は図8と同様であり、説明を省略する。
実施形態5では、絶縁筒の外周に設けた通風溝13のうち、磁極部16の通風溝13は回転子の軸方向に、鉄心スロット部15の通風溝13は周方向に配設し、互いに連結させて冷却流路を構成する。
実施形態5によれば、実施形態4と比較して、鉄心スロット部15の通風溝13を周方向にのみ配設したため、通風溝の流路長さを短くすることができる。その結果、摩擦による圧力損失が低減し、このためより多くの冷却ガスを通風することが可能であり、効率的に回転子コイルを冷却することができる。
図10は、本発明の実施形態6である回転電機における回転子の絶縁筒の水平展開図を示している。その他の構成は図7と同様であり、説明を省略する。
実施形態6では、絶縁筒の外周に設けた通風溝13のうち、流路長さが長い通風経路の磁極部16の部位の通風孔8の間隔を、それより短い通風経路の通風孔8の間隔よりも大きくして構成する。
絶縁筒9の外周に設けた通風溝13および周方向通風溝17で構成される通風経路に流れる冷却ガス10の流量は、流路の下流に行くにしたがって通風孔12からの冷却ガス10が合流するため増加する。通風孔12を一定間隔で設けた場合、流路長さが長い通風経路ほど合流する通風孔12の数が多くなり、このため、通風孔12の1個当りの冷却ガス10の風量は減少する。
そのため、流路長さが長い通風経路の位置に対応する回転子コイル1の温度が、流路長さが短い通風経路の位置の回転子コイル1に比べて高くなり、回転子コイル1に温度分布が生じる可能性がある。
実施形態6では、流路長さが長い通風経路の磁極部16の部位における通風孔12の間隔を、それより短い通風経路の通風孔12の間隔と比較して大きくしたため、流路長さが長い通風経路に合流する通風孔12の数が減少し、これにより、各通風孔12を流れる冷却ガス10の流量のアンバランスを解消し、回転子コイル1の温度分布の差を小さく保つことができる。
図11は、本発明の実施形態7である回転電機における回転子の絶縁筒外周面に設けた通風溝の構成を示している。その他の構成は図1または図7と同様であり、説明を省略する。
実施形態7では、絶縁筒9の外周に設けた通風溝13および周方向通風溝17で構成される通風経路に沿って配設された通風孔12の大きさを、通風経路に流れる冷却ガスの上流側ほど大きくして構成する。
多数の分岐管から主管に合流する流路の場合、下流側で合流する分岐管の流量が上流側の分岐管からの流量より大きくなり、分岐管の流量にアンバランスが生じることが知られている。
流れが合流する箇所では合流損失が生じるが、絶縁筒9の外周に設けた本発明の通風経路のように多数の合流が存在する場合、上流側の通風孔12から流入した冷却ガス10ほど合流する回数が多く、その度に生じる合流損失が積算されるため、圧力損失が大きくなる。そのため、下流の通風から流入する冷却ガス10より、上流の通風から流入する冷却ガス10の方が少なくなり、流量にアンバランスが生じる可能性がある。
実施形態7では、絶縁筒9の外周に設けた通風溝13で構成される通風経路に沿って配設された通風孔12の大きさを、通風経路に流れる冷却ガス10の上流側ほど大きくする。このようにすることで、通風孔12を通過する時に生じる通風損失が上流側ほど小さくなり、合流損の多少によって生じる各通風孔12の冷却ガス流量のアンバランスを解消し、回転子コイルの温度分布の差を小さく保つことができる。
図12は、本発明の実施形態8である回転電機における回転子の絶縁筒9の外周面に設けた通風溝の構成を示している。その他の構成は、図1または図4と同様であり、説明を省略する。
実施形態8では、絶縁筒9の外周に設けた通風溝13の流路面積を通風溝13の下流ほど大きくして構成する。図12の構成では、通風溝13の溝幅を流路の下流ほど広くして構成した。
絶縁筒9の外周に設けた通風溝13には、複数の半径方向流路19からの冷却ガス10が合流するため、下流になるほど通風溝13を流れる流量が増加する。そのため、流速が速くなり摩擦損失等の通風抵抗が増加し、冷却ガス10の風量が低下する可能性がある。
実施形態8によれば、通風溝13の流路面積を下流ほど大きくすることにより、流量が増加しても流速の増加を押さえることができ、効率的に冷却ガス10を通風して回転子コイル1の温度を低く保つことができる。
図13は、本発明の実施形態9である回転電機における回転子の絶縁筒外周面に設けた通風溝の構成を示している。その他の構成は、図1または図7と同様であり、説明を省略する。
実施形態9では、絶縁筒9の外周面に設けた通風溝13の側面に窪み18を設け、半径方向流路19と通風溝13とを連通させる通風孔8をその窪み19に配置した。
実施形態9によれば、通風孔12を通って絶縁筒9の外周面の通風溝13に流入する冷却ガス10が、通風溝13を流れる冷却ガス10に直接流入しないため、合流損失を低減することができ、効率的に冷却ガス10を通風して回転子コイル1の温度を低く保つことができる。
1 回転子コイル、2 回転子シャフト、3 鉄心、4 鉄心スロット、5 鉄心端、
6 エンドリング、7 センタリングリング、8 間隔片、9a、9b 絶縁筒、
10 冷却ガス、11 半径方向ダクト、12 通風孔、13 通風溝、
14 排気スロット、15 鉄心スロット部、16 磁極部、17 周方向通風溝、
18 通風孔配置用窪み、19 半径方向流路、19b 特定半径方向流路、20 磁極、21 閉止板。
6 エンドリング、7 センタリングリング、8 間隔片、9a、9b 絶縁筒、
10 冷却ガス、11 半径方向ダクト、12 通風孔、13 通風溝、
14 排気スロット、15 鉄心スロット部、16 磁極部、17 周方向通風溝、
18 通風孔配置用窪み、19 半径方向流路、19b 特定半径方向流路、20 磁極、21 閉止板。
Claims (13)
- 円筒状の回転子鉄心に所定の間隔で設けられた鉄心スロットに磁極を中心として多重環状に積層されて装着された回転子コイルと、前記回転子鉄心の端部から突出した前記回転子コイル端部を支持するためのエンドリングと、前記回転子コイルと前記エンドリングとの間に介挿され両者間を電気的に絶縁するための絶縁筒と、前記エンドリングの端部内周側に設けられたエンドリング支えとを備え、前記エンドリング内に多重に配置された前記回転子コイル端部相互の間隙に間隔片が配置されて構成された回転電機の回転子において、
前記回転子コイル端部と前記間隔片とにより前記回転子の半径方向に沿うように構成された半径方向流路と、
前記半径方向流路の位置に対応して前記絶縁筒に開けられた通風孔と、
前記通風孔が連通するように前記絶縁筒の外周表面に設けられた通風溝と、
前記通風溝から前記回転子鉄心の外表面へ冷却ガスを排出するように形成された排気スロットとをそなえ、
前記エンドリング支えの内径から前記エンドリング内へ流入した冷却ガスを、前記半径方向流路へと導入し、前記通風溝を通り前記回転子鉄心の外表面方向へ排出するようにした
ことを特徴とする回転電機の回転子。 - 請求項1記載の回転電機の回転子において、
前記絶縁筒は円筒形であり、該絶縁筒の外周面に仕切りブロックが取り付けられることにより前記通風溝が構成された
ことを特徴とする回転電機の回転子。 - 請求項1または2記載の回転電機の回転子において、
前記通風溝から前記回転子鉄心の外表面へ冷却ガスを排出するように連通する排気スロットのうち前記回転子鉄心スロット部に位置する流路が、
前記半径方向流路中で前記回転子鉄心の端部に接する位置にある特定半径方向流路と、
前記特定半径方向流路の内周面に取り付けられた閉止板と、
前記特定半径方向流路に連通するように回転子コイルに設けられた少なくとも1つの前記通風溝と、
前記通風溝と前記回転子鉄心の外周面とを連通する半径方向ダクトと
で構成されたことを特徴とする回転電機の回転子。 - 請求項1または2記載の回転電機の回転子において、
前記通風溝が、前記回転子の軸方向の通風溝とそれらを連通させるための周方向の通風溝とにより構成され、前記回転子の軸方向の通風溝から前記回転子鉄心の外表面に連通させる流路が磁極部のみに設けられて通風経路が構成され、
前記半径方向流路から前記通風孔を通って前記通風溝に導入した冷却ガスが、前記磁極部から前記回転子鉄心の外径へ排出されるようにした
ことを特徴とする回転電機の回転子。 - 請求項4記載の回転電機の回転子において、
前記通風溝を連通する周方向の通風溝が複数本設けられた
ことを特徴とする回転電機の回転子。 - 請求項4記載の回転電機の回転子において、
前記磁極部の通風溝は回転子軸方向に、前記鉄心スロット部の通風溝は周方向に配設され、互いに連結されて冷却流路が構成された
ことを特徴とする回転電機の回転子。 - 請求項4ないし6の何れかに記載の回転電機の回転子において、
前記通風溝で構成される通風経路のうち、長い通風経路における前記磁極部の通風溝に連通する前記通風孔の間隔が、短い通風経路における前記磁極部の通風溝に連通する前記通風孔の間隔よりも大きくされた
ことを特徴とする回転電機の回転子。 - 請求項1ないし7の何れかに記載の回転電機の回転子において、
前記通風溝で構成される通風経路に沿って配設された前記通風孔の大きさが、1個毎または複数個毎に、前記通風経路の上流側ほど大きくされた
ことを特徴とする回転電機の回転子。 - 請求項1ないし8の何れかに記載の回転電機の回転子において、
前記通風溝の流路面積が流路の下流になるほど大きくされた
ことを特徴とする回転電機の回転子。 - 請求項9記載の回転電機の回転子において、
前記通風溝の溝深さが流路の下流ほど深くされることにより、前記通風溝の流路面積が大きくされた
ことを特徴とする回転電機の回転子。 - 請求項9または10記載の回転電機の回転子において、
前記通風溝の溝幅が流路の下流ほど広くされることにより、前記通風溝の流路面積が大きくされた
ことを特徴とする回転電機の回転子。 - 請求項1ないし11の何れかに記載の回転電機の回転子において、
前記絶縁筒の外周面に設けた通風溝の側面に窪みが設けられ、前記半径方向流路と前記通風溝とを連通させる前記通風孔が前記窪みに配された
ことを特徴とする回転電機の回転子。 - 請求項1ないし12の何れかに記載の回転電機の回転子を備えた回転電機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004265217A JP2006081367A (ja) | 2004-09-13 | 2004-09-13 | 回転電機の回転子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004265217A JP2006081367A (ja) | 2004-09-13 | 2004-09-13 | 回転電機の回転子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006081367A true JP2006081367A (ja) | 2006-03-23 |
Family
ID=36160354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004265217A Pending JP2006081367A (ja) | 2004-09-13 | 2004-09-13 | 回転電機の回転子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006081367A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101921004B1 (ko) * | 2017-09-05 | 2018-11-21 | 두산중공업 주식회사 | 로터 및 이를 포함하는 발전기 |
EP3629449A1 (en) * | 2018-09-27 | 2020-04-01 | Ge Aviation Systems Llc, Inc. | Method and apparatus for cooling a rotor assembly |
EP3709483A1 (en) * | 2019-03-11 | 2020-09-16 | Ge Aviation Systems Llc, Inc. | Rotor assembly |
-
2004
- 2004-09-13 JP JP2004265217A patent/JP2006081367A/ja active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101921004B1 (ko) * | 2017-09-05 | 2018-11-21 | 두산중공업 주식회사 | 로터 및 이를 포함하는 발전기 |
US10784735B2 (en) | 2017-09-05 | 2020-09-22 | DOOSAN Heavy Industries Construction Co., LTD | Rotor and generator including the same |
EP3629449A1 (en) * | 2018-09-27 | 2020-04-01 | Ge Aviation Systems Llc, Inc. | Method and apparatus for cooling a rotor assembly |
CN110957859A (zh) * | 2018-09-27 | 2020-04-03 | 通用电气航空系统有限责任公司 | 用于冷却转子组件的方法和设备 |
US10931171B2 (en) | 2018-09-27 | 2021-02-23 | Ge Aviation Systems Llc | Method and apparatus for cooling a rotor assembly |
CN110957859B (zh) * | 2018-09-27 | 2022-09-13 | 通用电气航空系统有限责任公司 | 用于冷却转子组件的方法和设备 |
US11682947B2 (en) | 2018-09-27 | 2023-06-20 | Ge Aviation Systems Llc | Method and apparatus for cooling a rotor assembly |
EP3709483A1 (en) * | 2019-03-11 | 2020-09-16 | Ge Aviation Systems Llc, Inc. | Rotor assembly |
CN111682692A (zh) * | 2019-03-11 | 2020-09-18 | 通用电气航空系统有限责任公司 | 转子组件 |
US11381142B2 (en) | 2019-03-11 | 2022-07-05 | Ge Aviation Systems Llc | Rotor assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5016843B2 (ja) | 回転電機の回転子 | |
CN103636103A (zh) | 旋转电机 | |
US20110175468A1 (en) | Electric rotating machine | |
EP3174180B1 (en) | Rotating electric machine | |
JP2020156264A (ja) | 回転電機およびロータシャフト | |
JP4897587B2 (ja) | 回転電機 | |
JP2004312898A (ja) | 回転子、固定子および回転機 | |
CN105391200A (zh) | 全封闭旋转电机 | |
JP5918656B2 (ja) | 回転電機 | |
JP2007189849A (ja) | 突極形回転電機の回転子 | |
JP2002010574A (ja) | アウターロータ形磁石式回転機 | |
JP2006081367A (ja) | 回転電機の回転子 | |
JP2006074866A (ja) | 回転電機 | |
JP2018538775A (ja) | 電気機械用スリップリング装置 | |
JP2007089255A (ja) | 回転電機 | |
JPH03239138A (ja) | 突極機に用いられる冷媒を強制的に供給する装置 | |
JPS596135B2 (ja) | 突極形回転電機 | |
JPH11146587A (ja) | 回転電機の回転子 | |
KR100858290B1 (ko) | 공랭식 전동장치 | |
JP2001231193A (ja) | 回転電機 | |
JP2020182325A (ja) | 回転電機の回転子 | |
JPH11113222A (ja) | 回転電気機械の円筒形回転子 | |
JP2000050576A (ja) | 回転電機の回転子冷却装置 | |
JP2019022257A (ja) | 回転電機 | |
JPH0951655A (ja) | タービン発電機の回転子コイルエンド冷却装置 |