JP2006034042A - Thermosetting resin composite for vacuum and its production - Google Patents
Thermosetting resin composite for vacuum and its production Download PDFInfo
- Publication number
- JP2006034042A JP2006034042A JP2004211670A JP2004211670A JP2006034042A JP 2006034042 A JP2006034042 A JP 2006034042A JP 2004211670 A JP2004211670 A JP 2004211670A JP 2004211670 A JP2004211670 A JP 2004211670A JP 2006034042 A JP2006034042 A JP 2006034042A
- Authority
- JP
- Japan
- Prior art keywords
- thermosetting resin
- resin composition
- hydrophobic polymer
- vacuum
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920001187 thermosetting polymer Polymers 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000805 composite resin Substances 0.000 title 1
- 229920001600 hydrophobic polymer Polymers 0.000 claims abstract description 37
- 229920005989 resin Polymers 0.000 claims abstract description 36
- 239000011347 resin Substances 0.000 claims abstract description 36
- 239000011256 inorganic filler Substances 0.000 claims abstract description 24
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 24
- 239000011342 resin composition Substances 0.000 claims abstract description 24
- 238000000465 moulding Methods 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 5
- 239000002861 polymer material Substances 0.000 claims abstract description 3
- -1 polyethylene Polymers 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000010521 absorption reaction Methods 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- 238000007788 roughening Methods 0.000 claims description 4
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 3
- 239000002134 carbon nanofiber Substances 0.000 claims description 3
- 239000003575 carbonaceous material Substances 0.000 claims description 3
- 239000004927 clay Substances 0.000 claims description 3
- 229910003472 fullerene Inorganic materials 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 239000010445 mica Substances 0.000 claims description 3
- 229910052618 mica group Inorganic materials 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 150000004760 silicates Chemical class 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229920005992 thermoplastic resin Polymers 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims 1
- 238000007747 plating Methods 0.000 description 17
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Description
本発明は、半導体製造装置内におけるウエハ搬送等の真空環境で使用される真空用モータのモールド樹脂に関する。 The present invention relates to a mold resin for a vacuum motor used in a vacuum environment such as wafer conveyance in a semiconductor manufacturing apparatus.
真空環境で使用される機器には、ガス放出が少ないことが要求される。真空雰囲気でのガスの放出は、材料表面に吸着された物質の離脱や、材料内部に吸蔵されるガスの拡散により生ずる。そこで、真空環境で使用される機器は、ガス放出が少ない材料で構成される。
従来のガス放出速度を低減したモータは、モールド樹脂の表面を、めっきなどの低ガス放出の金属皮膜で被覆している (例えば、特許文献1参照)。
図3は、従来のめっき処理構造物でモールドした真空用アキシャルギャップモータのステータを示す側断面図である。図3において、1はステータコア、2はコイル、3はモールド樹脂、4はステータハウジング、7はモールド樹脂表面に施しためっきである。
このように、従来の真空用モータは、モールド樹脂表面の全面を一様にめっき処理したものである。
In a conventional motor with a reduced gas release rate, the surface of the mold resin is covered with a low-gas release metal film such as plating (see, for example, Patent Document 1).
FIG. 3 is a side sectional view showing a stator of a vacuum axial gap motor molded with a conventional plating structure. In FIG. 3, 1 is a stator core, 2 is a coil, 3 is a mold resin, 4 is a stator housing, and 7 is a plating applied to the surface of the mold resin.
Thus, the conventional vacuum motor is obtained by uniformly plating the entire surface of the mold resin.
ところが、従来の熱硬化性樹脂にてモールドされたモータのめっきは、モールド樹脂の成形・硬化後にめっき処理されるため、製造工数がかかるという問題があった。また、モールド樹脂の表面全体にわたって施されていて、めっきの面積が大きいため、めっきの収縮による応力が大きいので網目状のクラックが発生し、真空中でのモールド表面からのガス放出速度が増大するというような問題もあった。
本発明は、このような問題点に鑑みてなされたものであり、製造コストが安価で、クラックの発生がなく、ガス放出の極めて少ない熱硬化性樹脂組成物を提供することを目的とする。
However, the conventional plating of a motor molded with a thermosetting resin has a problem that it takes a number of manufacturing steps because it is plated after the molding resin is molded and cured. Moreover, since it is applied over the entire surface of the mold resin and the plating area is large, the stress due to the contraction of the plating is large, so that a mesh-like crack is generated and the gas release rate from the mold surface in vacuum is increased. There was also a problem like this.
The present invention has been made in view of such problems, and an object of the present invention is to provide a thermosetting resin composition that is low in production cost, does not generate cracks, and emits very little gas.
上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、 熱硬化性樹脂の表面に、ナノメートルサイズの無機充填材を充填した疎水性高分子皮膜を設けたことを特徴とする真空用熱硬化性樹脂組成物。
ものである。
請求項2に記載の発明は、前記疎水性高分子は、23℃での吸水率が0.05%以下の熱可塑性樹脂または熱硬化性樹脂とするものである。
請求項3に記載の発明は、前記疎水性高分子の材質は、ポリエチレン、ポリプロピレン、塩化ビニル、ポリスチレン、ふっ素樹脂、ポリイミド、シリコン樹脂の少なくとも一つとするものである。
請求項4に記載の発明は、前記無機充填材の材質は、カーボンナノチューブ、カーボンナノファイバー、フラーレンなどの炭素材料、クレイやマイカなどの層状ケイ酸塩、シリカ、酸化チタンなどの酸化物の少なくとも一つからなるものである。
請求項5に記載の発明は、前記無機充填材の大きさは、粒子状や繊維状の場合は直径が100nm以下、箔状の場合は厚さが100nm以下するものである。
請求項6に記載の発明は、疎水性高分子材料にナノメートルサイズの無機充填材を配合して疎水性高分子皮膜を形成する皮膜形成工程と、熱硬化性樹脂の原料に硬化剤を配合してモールドし熱硬化性樹脂組成物を形成するモールド工程と、前記熱硬化性樹脂組成物の表面に前記疎水性高分子皮膜を設ける密着工程とからなるものである。
請求項7に記載の発明は、前記皮膜形成工程は、前記疎水性高分子皮膜の表面を粗し処理する工程を含むものである。
請求項8に記載の発明は、前記密着工程は、前記疎水性高分子皮膜を金型に設けた後、モールド工程を行うものである。
請求項9に記載の発明は、前記密着工程は、前記疎水性高分子皮膜の融点以上の温度で前記モールド工程を行うものである。
In order to solve the above problems, the present invention is configured as follows.
The invention according to claim 1 is a vacuum thermosetting resin composition characterized in that a hydrophobic polymer film filled with a nanometer-sized inorganic filler is provided on the surface of a thermosetting resin.
Is.
According to a second aspect of the present invention, the hydrophobic polymer is a thermoplastic resin or a thermosetting resin having a water absorption at 23 ° C. of 0.05% or less.
According to a third aspect of the present invention, the material of the hydrophobic polymer is at least one of polyethylene, polypropylene, vinyl chloride, polystyrene, fluorine resin, polyimide, and silicon resin.
In the invention according to claim 4, the material of the inorganic filler is at least carbon materials such as carbon nanotubes, carbon nanofibers and fullerenes, layered silicates such as clay and mica, and oxides such as silica and titanium oxide. It consists of one.
In the invention according to claim 5, the size of the inorganic filler is such that the diameter is 100 nm or less in the case of particles or fibers, and the thickness is 100 nm or less in the case of foil.
The invention according to claim 6 is a film forming step of forming a hydrophobic polymer film by blending a nanometer-sized inorganic filler with a hydrophobic polymer material, and a curing agent is blended with the raw material of the thermosetting resin. And molding to form a thermosetting resin composition, and an adhesion process for forming the hydrophobic polymer film on the surface of the thermosetting resin composition.
According to a seventh aspect of the present invention, the film forming step includes a step of roughening the surface of the hydrophobic polymer film.
According to an eighth aspect of the present invention, in the adhesion step, the molding step is performed after the hydrophobic polymer film is provided on the mold.
In the invention according to claim 9, the adhesion step performs the molding step at a temperature equal to or higher than the melting point of the hydrophobic polymer film.
請求項1に記載の発明によると、熱硬化性樹脂との密着性が良く、クラックの発生しにくい皮膜で熱硬化性樹脂組成物の表面を疎水性にすることができ、クラックの発生を防止し、真空中での水分ガス放出を抑制することができる。
また、請求項2に記載の発明によると、熱硬化性樹脂組成物の表面を疎水性にすることができ、真空中での水分ガス放出を抑制することができる。
請求項3に記載の発明によると、クラックの発生しにくい皮膜で熱硬化性樹脂組成物の表面を疎水性にすることができ、水分ガス放出の増大を防止することができる。
請求項4に記載の発明によると、皮膜の摺動性や耐磨耗性を高めることができ、皮膜の傷を防止することができる。
請求項5に記載の発明によると、無機充填材の表面を疎水性樹脂で完全に覆うことことができ、水分が無機充填材界面を通過して内部に浸入することを防止することができる。
請求項6に記載の発明によると、熱硬化性樹脂との密着性が良く、クラックの発生しにくい皮膜で熱硬化性樹脂組成物の表面を疎水性にすることができ、成形コストを低減し、クラックの発生を防止し、真空中での水分ガス放出を抑制することができる。
請求項7に記載の発明によると、無機充填材と熱硬化性樹脂が接触することで皮膜と熱硬化性樹脂との密着性を高めることができ、一体成形することができる。
請求項8に記載の発明によると、皮膜と熱硬化性樹脂とを液状でなじませることで密着性を高めることができ、一体成形することができる。
請求項9に記載の発明によると、皮膜と熱硬化性樹脂とを液状でなじませることで密着性を高めることができ、一体成形することができる。
According to the first aspect of the present invention, the surface of the thermosetting resin composition can be made hydrophobic with a film that has good adhesion to the thermosetting resin and is less likely to generate cracks, thereby preventing the occurrence of cracks. In addition, the release of moisture gas in a vacuum can be suppressed.
Further, according to the invention described in claim 2, the surface of the thermosetting resin composition can be made hydrophobic, and moisture gas emission in a vacuum can be suppressed.
According to the third aspect of the present invention, the surface of the thermosetting resin composition can be made hydrophobic by a film in which cracks do not easily occur, and an increase in moisture gas emission can be prevented.
According to the fourth aspect of the present invention, the slidability and wear resistance of the film can be improved, and the film can be prevented from being damaged.
According to the fifth aspect of the present invention, the surface of the inorganic filler can be completely covered with the hydrophobic resin, and moisture can be prevented from entering the inside through the inorganic filler interface.
According to the sixth aspect of the present invention, the surface of the thermosetting resin composition can be made hydrophobic with a film that has good adhesion to the thermosetting resin and is less likely to generate cracks, thereby reducing molding costs. The generation of cracks can be prevented, and the release of moisture gas in a vacuum can be suppressed.
According to the seventh aspect of the present invention, the contact between the inorganic filler and the thermosetting resin can increase the adhesion between the film and the thermosetting resin, and the integral molding can be performed.
According to the eighth aspect of the present invention, the adhesion can be enhanced by blending the film and the thermosetting resin in a liquid state, and the film can be integrally formed.
According to the ninth aspect of the present invention, the adhesion can be enhanced by blending the film and the thermosetting resin in a liquid state, and the film can be integrally formed.
以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明のめっき処理構造物でモールドした真空用アキシャルギャップモータの側断面図である。図1において、1はステータコア、2はコイル、3はモールド樹脂、4はステータハウジング、5はモールド樹脂3の表面に施した疎水性高分子皮膜、6はナノメートルサイズの無機充填材である。図2は、疎水性高分子皮膜5の拡大断面図である。
本発明が特許文献1と異なる部分は、めっき7の代わりに、ナノメートルサイズの無機充填材6を充填した疎水性高分子皮膜5を備えた部分である。疎水性高分子皮膜5は疎水性であるため水分のバリア効果が高い。このため、真空中での水分ガスの放出を、めっき7と同等に抑制することができる。また、疎水性高分子皮膜5は高分子であるため、クラックを防止することができる。また、疎水性高分子皮膜5にはナノメートルサイズの無機充填材6が充填されているため、摺動性や耐磨耗性を高めることができる。また、ナノメートルサイズとすることで、ミクロンサイズ充填材の界面で生じやすい、水分が充填材界面を伝って早期に内部に侵入する現象を防止することができる。
FIG. 1 is a cross-sectional side view of a vacuum axial gap motor molded with a plating structure of the present invention. In FIG. 1, 1 is a stator core, 2 is a coil, 3 is a mold resin, 4 is a stator housing, 5 is a hydrophobic polymer film applied to the surface of the mold resin 3, and 6 is a nanometer-sized inorganic filler. FIG. 2 is an enlarged cross-sectional view of the hydrophobic polymer film 5.
The part where the present invention differs from Patent Document 1 is a part provided with a hydrophobic polymer film 5 filled with a nanometer-sized inorganic filler 6 instead of the plating 7. Since the hydrophobic polymer film 5 is hydrophobic, it has a high moisture barrier effect. For this reason, the release of moisture gas in vacuum can be suppressed to be equivalent to that of the plating 7. Moreover, since the hydrophobic polymer film 5 is a polymer, cracks can be prevented. Moreover, since the hydrophobic polymer film 5 is filled with the nanometer-sized inorganic filler 6, the slidability and wear resistance can be improved. In addition, by using the nanometer size, it is possible to prevent a phenomenon that moisture easily occurs at the interface of the micron-size filler and enters the interior at an early stage through the filler interface.
表1に本発明の疎水性高分子皮膜と熱硬化性樹脂とで一体成形したステータの作製条件および評価結果を示す。作製条件は、粗し処理や成形・硬化温度、皮膜や無機充填材の材質などであり、評価結果は成形後の観察結果および真空中でのガス放出速度である。なお、表2に従来例のめっき処理を施したステータおよび比較例の高分子皮膜や条件で一体モールドしたステータについて、同様に作製条件および評価結果を示す。
疎水性高分子皮膜や無機充填材、めっき、熱硬化性樹脂に用いた材料は以下のとおりである。
(イ)皮膜の高分子
ポリプロピレン(PP)は、融点130℃、吸水率0.02〜0.05%、ポリテトラフルオロエチレン(PTFE)は、吸水率0.01〜0.02%、ナイロンは吸水率2%以上である。
(ロ)皮膜中の無機充填材
カーボンナノチューブ(CNT)は、直径10〜100nm、モンモリロナイト(クレイ)は、厚さ1〜100nmで層間剥離させたもの、炭素繊維(CF)は、直径10μm、長さ100μmである。
(ハ)めっき
無電解ニッケルめっきにより厚さ10μmとした。
(ニ)熱硬化性モールド樹脂
・主剤:ビスフェノールA型エポキシ
・硬化剤:DDMベース芳香族アミン
・充填材:シリカ(平均粒子径15μm)
なお、疎水性高分子皮膜の厚さは50μmとした。また、疎水性高分子皮膜表面の粗し処理は#600のサンドペーパにて行った。また、皮膜の高分子の吸水率は、ASTM D570に従い、厚さ1mmの板状試料を、110℃、1hrと50℃、24hrの空気中加熱乾燥後の重量と、加熱乾燥後、23℃、24hrの純水中浸漬後の重量にて測定した。
ガス放出速度の評価基準は、従来のめっきを被覆(特許文献1に記載)したステータに多く見られたクラックの発生したステータと比較して、その2分の1以下であれば○印、2分の1以上であれば×印とした。
Table 1 shows the production conditions and evaluation results of a stator integrally molded with the hydrophobic polymer film of the present invention and a thermosetting resin. The production conditions are roughening treatment, molding / curing temperature, the material of the film and the inorganic filler, and the evaluation results are the observation results after molding and the gas release rate in vacuum. Table 2 shows the manufacturing conditions and evaluation results for the stator plated with the conventional example and the stator integrally molded with the polymer film and conditions of the comparative example.
The materials used for the hydrophobic polymer film, inorganic filler, plating, and thermosetting resin are as follows.
(A) Polymer of film Polypropylene (PP) has a melting point of 130 ° C., water absorption of 0.02 to 0.05%, polytetrafluoroethylene (PTFE) has a water absorption of 0.01 to 0.02%, nylon is The water absorption is 2% or more.
(B) Inorganic filler in the film Carbon nanotubes (CNT) have a diameter of 10 to 100 nm, montmorillonite (clay) has a thickness of 1 to 100 nm, and carbon fibers (CF) have a diameter of 10 μm and are long. The thickness is 100 μm.
(C) Plating The thickness was set to 10 μm by electroless nickel plating.
(D) Thermosetting mold resin ・ Main agent: bisphenol A type epoxy ・ Curing agent: DDM-based aromatic amine ・ Filler: Silica (average particle size 15 μm)
The thickness of the hydrophobic polymer film was 50 μm. The surface of the hydrophobic polymer film was roughened using # 600 sandpaper. In addition, the water absorption rate of the polymer of the film is as follows: according to ASTM D570, a 1 mm thick plate sample is heated and dried in air at 110 ° C., 1 hr and 50 ° C., 24 hr, The weight was measured after immersion in pure water for 24 hours.
The evaluation standard of the gas release rate is ◯, 2 if it is less than half that of the stator with cracks often seen in the stator coated with conventional plating (described in Patent Document 1). If it was 1 / min or more, it was marked with x.
表1から分かるとおり、本発明の実施例では、疎水性高分子皮膜にクラックや傷やはがれは発生しなかった。また、ガス放出速度は、従来のめっきを被覆したステータに多く見られたクラックの発生したステータと比較して、全て従来の2分の1以下と良好な結果であった。中でも試料番号1,2,5は10分の1以下と優れた結果が得られた。親水性高分子であるナイロン皮膜を施した比較例1では、クラックや傷やはがれは生じていないが、ガス放出抑制効果が小さかった。疎水性高分子とナノメートルサイズの無機充填材で構成された皮膜を施した比較例2,3では、粗し処理や融点以上での成形・硬化がなされていないため熱硬化性樹脂との密着性が悪く、皮膜が一部はがれていた。ミクロンサイズの無機充填材を充填した皮膜を施した比較例4は、密着性を確保してもガス放出抑制効果が小さかった。 As can be seen from Table 1, in the examples of the present invention, no cracks, scratches or peeling occurred in the hydrophobic polymer film. In addition, the gas release rate was a good result of less than half of the conventional one, as compared with the conventional cracked stator, which was often found in the stator coated with plating. In particular, Sample Nos. 1, 2, and 5 gave excellent results of 1/10 or less. In Comparative Example 1 in which a nylon film, which is a hydrophilic polymer, was applied, cracks, scratches, and peeling did not occur, but the effect of suppressing gas release was small. In Comparative Examples 2 and 3, which were coated with a hydrophobic polymer and nanometer-sized inorganic filler, roughening treatment and molding / curing above the melting point were not performed, so adhesion with the thermosetting resin The film was bad and part of the film was peeled off. In Comparative Example 4 in which a film filled with a micron-sized inorganic filler was applied, the effect of suppressing gas release was small even when the adhesion was ensured.
なお、皮膜の疎水性高分子の材質については、疎水性が高ければ、例えばASTM D570に規定された23℃での吸水率が約0.05%以下であれば、本実施例に用いた材質以外でも、ポリエチレン、ポリスチレン、塩化ビニル、ポリイミド、シリコン樹脂など、熱可塑性樹脂や硬化性樹脂なら何でも良い。ナノメートルサイズの無機充填材も、本実施例に用いた材質以外でも、マイカなどの層状ケイ酸塩、カーボンナノファイバー、フラーレンなどの炭素材料、酸化チタンなどの酸化物など何でも良い。 In addition, as for the material of the hydrophobic polymer of the film, if the hydrophobicity is high, for example, if the water absorption at 23 ° C. defined in ASTM D570 is about 0.05% or less, the material used in this example Other than the above, any thermoplastic resin or curable resin such as polyethylene, polystyrene, vinyl chloride, polyimide, or silicone resin may be used. The nanometer-sized inorganic filler may be anything other than the material used in the present embodiment, such as layered silicates such as mica, carbon materials such as carbon nanofibers and fullerenes, and oxides such as titanium oxide.
モールド樹脂表面に、吸水率の小さい疎水性高分子とナノメートルサイズの無機充填材で構成された皮膜を、一体成形にて被覆することによって、成形コストは増加させずに、クラックや傷やはがれも発生せず、ガス放出速度は低減することができるので、高真空用や宇宙分野のキャンレスモータという用途にも適用できる。 By coating the surface of the mold resin with a hydrophobic polymer with a low water absorption rate and a nanometer-size inorganic filler by integral molding, without increasing the molding cost, cracks, scratches and peeling Therefore, it can be applied to applications such as high vacuum and spaceless canless motors.
1 ステータコア
2 コイル
3 モールド樹脂
4 ステータハウジング
5 疎水性高分子皮膜
6 無機充填材
7 めっき
1 Stator Core 2 Coil 3 Mold Resin 4 Stator Housing 5 Hydrophobic Polymer Film 6 Inorganic Filler 7 Plating
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004211670A JP2006034042A (en) | 2004-07-20 | 2004-07-20 | Thermosetting resin composite for vacuum and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004211670A JP2006034042A (en) | 2004-07-20 | 2004-07-20 | Thermosetting resin composite for vacuum and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006034042A true JP2006034042A (en) | 2006-02-02 |
Family
ID=35899707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004211670A Pending JP2006034042A (en) | 2004-07-20 | 2004-07-20 | Thermosetting resin composite for vacuum and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006034042A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100348650C (en) * | 2006-06-08 | 2007-11-14 | 上海交通大学 | Process for preparing hydrophobic polyimide thin film |
JP2008004595A (en) * | 2006-06-20 | 2008-01-10 | Yaskawa Electric Corp | Coil molding and linear motor for vacuum using the same |
JP2008050469A (en) * | 2006-08-24 | 2008-03-06 | Yaskawa Electric Corp | Film with graft polymerized film, method for producing the same, photograft polymerization apparatus, stretchable polymer film, and method for producing the same |
JP2008160938A (en) * | 2006-12-21 | 2008-07-10 | Toyota Motor Corp | Motor stator and stator manufacturing method |
JP2008178256A (en) * | 2007-01-19 | 2008-07-31 | Toyota Motor Corp | Stator, manufacturing method thereof and motor |
JP2008237005A (en) * | 2007-02-20 | 2008-10-02 | Yaskawa Electric Corp | Vacuum motor coil, manufacturing method thereof, and vacuum motor |
JP2010028905A (en) * | 2008-07-16 | 2010-02-04 | Yaskawa Electric Corp | Vacuum apparatus and method of manufacturing the same |
CN109135052A (en) * | 2018-07-17 | 2019-01-04 | 浙江大学宁波理工学院 | Can resistance to high temperature oxidation polypropylene material and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09220518A (en) * | 1995-12-15 | 1997-08-26 | Sekisui Chem Co Ltd | Article bearing water-repelling coating film and manufacture thereof |
JPH10172354A (en) * | 1996-12-16 | 1998-06-26 | Showa Electric Wire & Cable Co Ltd | Insulating wire and electrical machinery and apparatus using thereof |
WO2001085848A1 (en) * | 2000-05-09 | 2001-11-15 | Daikin Industries, Ltd. | Polymer composition containing clean filler incorporated therein |
JP2004504436A (en) * | 2000-07-14 | 2004-02-12 | アーベーベー・リサーチ・リミテッド | Volume-modified casting material based on polymer matrix resin |
JP2004067717A (en) * | 2002-08-01 | 2004-03-04 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2004137367A (en) * | 2002-10-17 | 2004-05-13 | Nippon Paint Co Ltd | Cationic electrodeposition coating and method for controlling gloss level of electrodeposition coating film |
JP2004140316A (en) * | 2002-03-20 | 2004-05-13 | Nippon Steel Corp | High temperature operating electrical equipment and method of manufacturing the same |
JP2004168829A (en) * | 2002-11-18 | 2004-06-17 | Yaskawa Electric Corp | Epoxy resin composition and vacuum equipment using the same |
JP2004292486A (en) * | 2003-03-25 | 2004-10-21 | Nichias Corp | Fluororubber molded article and molding method thereof |
-
2004
- 2004-07-20 JP JP2004211670A patent/JP2006034042A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09220518A (en) * | 1995-12-15 | 1997-08-26 | Sekisui Chem Co Ltd | Article bearing water-repelling coating film and manufacture thereof |
JPH10172354A (en) * | 1996-12-16 | 1998-06-26 | Showa Electric Wire & Cable Co Ltd | Insulating wire and electrical machinery and apparatus using thereof |
WO2001085848A1 (en) * | 2000-05-09 | 2001-11-15 | Daikin Industries, Ltd. | Polymer composition containing clean filler incorporated therein |
JP2004504436A (en) * | 2000-07-14 | 2004-02-12 | アーベーベー・リサーチ・リミテッド | Volume-modified casting material based on polymer matrix resin |
JP2004140316A (en) * | 2002-03-20 | 2004-05-13 | Nippon Steel Corp | High temperature operating electrical equipment and method of manufacturing the same |
JP2004067717A (en) * | 2002-08-01 | 2004-03-04 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2004137367A (en) * | 2002-10-17 | 2004-05-13 | Nippon Paint Co Ltd | Cationic electrodeposition coating and method for controlling gloss level of electrodeposition coating film |
JP2004168829A (en) * | 2002-11-18 | 2004-06-17 | Yaskawa Electric Corp | Epoxy resin composition and vacuum equipment using the same |
JP2004292486A (en) * | 2003-03-25 | 2004-10-21 | Nichias Corp | Fluororubber molded article and molding method thereof |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100348650C (en) * | 2006-06-08 | 2007-11-14 | 上海交通大学 | Process for preparing hydrophobic polyimide thin film |
JP2008004595A (en) * | 2006-06-20 | 2008-01-10 | Yaskawa Electric Corp | Coil molding and linear motor for vacuum using the same |
JP2008050469A (en) * | 2006-08-24 | 2008-03-06 | Yaskawa Electric Corp | Film with graft polymerized film, method for producing the same, photograft polymerization apparatus, stretchable polymer film, and method for producing the same |
JP2008160938A (en) * | 2006-12-21 | 2008-07-10 | Toyota Motor Corp | Motor stator and stator manufacturing method |
US8063518B2 (en) | 2006-12-21 | 2011-11-22 | Toyota Jidosha Kabushiki Kaisha | Motor stator and stator manufacturing method |
JP2008178256A (en) * | 2007-01-19 | 2008-07-31 | Toyota Motor Corp | Stator, manufacturing method thereof and motor |
JP2008237005A (en) * | 2007-02-20 | 2008-10-02 | Yaskawa Electric Corp | Vacuum motor coil, manufacturing method thereof, and vacuum motor |
JP2010028905A (en) * | 2008-07-16 | 2010-02-04 | Yaskawa Electric Corp | Vacuum apparatus and method of manufacturing the same |
CN109135052A (en) * | 2018-07-17 | 2019-01-04 | 浙江大学宁波理工学院 | Can resistance to high temperature oxidation polypropylene material and preparation method thereof |
CN109135052B (en) * | 2018-07-17 | 2020-12-29 | 浙江大学宁波理工学院 | Polypropylene material resistant to high temperature oxidation and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5471868B2 (en) | Thermally conductive silicone rubber composite sheet | |
JP4572056B2 (en) | Thermally conductive silicone rubber composite sheet | |
JP6662458B2 (en) | Thermal conductive silicone rubber composite sheet | |
TWI632042B (en) | Release film and method of manufacturing semiconductor package | |
JP6068733B2 (en) | Thermally conductive resin molded product | |
JP6625659B2 (en) | Thermal radiation coating composition and thermal radiation unit formed using the same | |
TWI713674B (en) | Heat conduction sheet, heat conduction sheet manufacture method, heat radiation member, and semiconductor device | |
JP2006034042A (en) | Thermosetting resin composite for vacuum and its production | |
JPWO2015093260A1 (en) | Thermosetting resin composition and metal resin composite | |
TWI761435B (en) | Thermally conductive sheet | |
JP2005292218A (en) | Fixing roller | |
CN103963214A (en) | Method for bonding aluminum-containing base material and plastic | |
JP2017022265A (en) | Metal circuit board and method for manufacturing the same | |
JP2008038070A (en) | Epoxy adhesive, cast-molded product using the same, and method for producing the cast-molded product using the same | |
JP2008158332A (en) | Fixing member and method of manufacturing the same | |
JP2018134779A (en) | Multilayer resin sheet, method for producing multilayer resin sheet, multilayer resin sheet cured product, multilayer resin sheet laminate, and multilayer resin sheet laminate cured product | |
US20110195879A1 (en) | Inert wear resistant fluoropolymer-based solid lubricants, methods of making and methods of use | |
JP7370537B2 (en) | Release film and method for producing release film | |
JP2021062582A (en) | Release film and method for producing release film | |
JP2019071380A (en) | Thermally-conductive composite sheet and manufacturing method thereof | |
JP2004359712A (en) | High heat-conducting member and method for producing the same | |
TW202035637A (en) | Conductive adhesive agent composition | |
CN1147919C (en) | Resin molder article for chamber liner | |
JP2015129800A (en) | fixing belt | |
CN102046713A (en) | Thermally conductive composite material comprising aluminum powder, process for producing the composite material and use of the composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070531 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100527 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110126 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110712 |