[go: up one dir, main page]

JP2004067717A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2004067717A
JP2004067717A JP2002224598A JP2002224598A JP2004067717A JP 2004067717 A JP2004067717 A JP 2004067717A JP 2002224598 A JP2002224598 A JP 2002224598A JP 2002224598 A JP2002224598 A JP 2002224598A JP 2004067717 A JP2004067717 A JP 2004067717A
Authority
JP
Japan
Prior art keywords
epoxy resin
same
different
carbon atoms
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002224598A
Other languages
Japanese (ja)
Inventor
Yusuke Ito
伊藤 祐輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002224598A priority Critical patent/JP2004067717A/en
Publication of JP2004067717A publication Critical patent/JP2004067717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for semiconductor sealing excellent in flame retardance even without containing a halogenous flame retardant and an antimony compound and excellent in moldability, solder resistance, and high-temperature storage characteristics. <P>SOLUTION: This epoxy resin composition for semiconductor sealing is characterized by comprising (A) a phenolaralkyl epoxy resin having a biphenylene skeleton, (B) a phenolaralkyl resin having a biphenylene skeleton, (C) a curing accelerator, (D) an inorganic filler, and (E) a phosphate compound in an amount of 0.05-5 wt.% based on the total amount of the composition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲン系難燃剤、アンチモン化合物を含まなくとも難燃性に優れた特性を有する半導体封止用エポキシ樹脂組成物及び半導体装置に関するものである。
【0002】
【従来の技術】
従来、ダイオード、トランジスタ、集積回路等の電子部品は、主にエポキシ樹脂組成物で封止されている。これらのエポキシ樹脂組成物中には、難燃性を付与するために、通常ハロゲン系難燃剤及び三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等のアンチモン化合物が配合されている。しかしながら、世界的な環境保護の意識の高まりの中、ハロゲン系難燃剤やアンチモン化合物を使用しないで、難燃性を有するエポキシ樹脂組成物の要求が大きくなってきている。又ハロゲン系難燃剤及びアンチモン化合物を含むエポキシ樹脂組成物で封止された半導体装置を高温下で保管した場合、これらの難燃剤成分から熱分解したハロゲン化物が遊離し、半導体素子の接合部を腐食し、半導体装置の信頼性を損なうことが知られており、難燃剤としてハロゲン系難燃剤とアンチモン化合物を使用しなくても難燃グレードがUL94のV−0を達成できるエポキシ樹脂組成物が要求されている。
【0003】
このように、半導体装置を高温下(例えば、185℃等)に保管した後の半導体素子の接合部(ボンディングパッド部)の耐腐食性のことを高温保管特性といい、この高温保管特性を改善する手法としては、五酸化二アンチモンを使用する方法(特開昭55−146950号公報)や、酸化アンチモンと有機ホスフィンとを組み合わせる方法(特開昭61−53321号公報)等が提案され、効果が確認されているが、最近の半導体装置に対する高温保管特性の高い要求レベルに対して、エポキシ樹脂組成物の種類によっては不満足なものもある。
【0004】
これらの要求に対して、種々の難燃剤が検討されている。例えば水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物、ホウ素系化合物が検討されてきたが、これらは多量に配合しないと難燃性の効果が発現せず、しかも硬化性を低下させる傾向にある。又半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田処理時に高温にさらされ、気化した水蒸気の爆発的応力により半導体装置にクラックが発生したり、或いは半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との界面に剥離が発生することにより、電気的信頼性を大きく損なう不良が生じ、これらの不良の防止、即ち耐半田性の向上が大きな課題となっている。更に近年の環境問題に対して、半導体装置の実装に用いる半田に含まれる有鉛半田を無鉛半田にする方向になってきており、それに伴い半田処理の温度が高くなってきており、要求される耐半田性はより厳しくなると考えられる。
【0005】
この耐半田性の向上のために、エポキシ樹脂組成物に無機充填材を多量に配合することにより、これを用いて得られる半導体装置の低吸湿化、低熱膨張化、高強度化を図ってきている。このため、樹脂成分としては低粘度型のものや、常温では結晶性であるが融点を越えると極めて低粘性を示す結晶性エポキシ樹脂を使用して、無機充填材の配合量の増加に伴うエポキシ樹脂組成物の成形時の流動性の低下を防止する手法、或いは樹脂骨格自体が疎水性であり、硬化物も低吸湿性を示すようなエポキシ樹脂やフェノール樹脂を用いる等が一般的に手法となっている。
【0006】
結晶性エポキシ樹脂、疎水性エポキシ樹脂やフェノール樹脂を用いたエポキシ樹脂組成物の硬化物は、ガラス転移温度が低いため、ハロゲン系難燃剤とアンチモン化合物を併用した場合、高温保管特性が低下する傾向にあり、これを向上させるためには、ハロゲン系難燃剤及びアンチモン化合物を使用しないエポキシ樹脂組成物が求められている。又結晶性エポキシ樹脂は低粘度であるがために硬化が遅く、更に疎水性エポキシ樹脂や疎水性フェノール樹脂は架橋点間距離が長い分子構造を含むために、これを用いたエポキシ樹脂組成物の硬化物は柔らかく、離型性を向上し生産性を高めるためには、エポキシ樹脂の硬化阻害を起こすような難燃剤の使用は難しい。即ちハロゲン系難燃剤及びアンチモン化合物を含まないで、難燃性を維持し、成形性、耐半田性、高温保管特性に優れたエポキシ樹脂組成物が求められている。
【0007】
【発明が解決しようとする課題】
本発明は、ハロゲン系難燃剤及びアンチモン化合物を含まなくとも難燃性に優れ、かつ成形性、耐半田性、高温保管特性に優れた特性を有する半導体封止用エポキシ樹脂組成物及びこれを用いて半導体素子を封止してなる半導体装置を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、
[1] (A)一般式(1)〜一般式(3)から選ばれるエポキシ樹脂、(B)一般式(4)〜一般式(6)から選ばれるフェノール樹脂、(C)硬化促進剤、(D)無機充填材及び(E)一般式(7)で示されるリン酸エステル化合物を含み、リン酸エステル化合物が全エポキシ樹脂組成物中0.05〜5重量%であることを特徴とする半導体封止用エポキシ樹脂組成物、
【0009】
【化8】

Figure 2004067717
【0010】
(Rは、炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。Rは、水素原子又は炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。aは0又は1〜3。nは平均値で、1〜10の正数)
【0011】
【化9】
Figure 2004067717
【0012】
(Rは、炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。Rは、水素原子又は炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。aは0又は1〜3。nは平均値で、1〜10の正数)
【0013】
【化10】
Figure 2004067717
【0014】
(Rは、水素原子又は炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。bは1又は2。nは平均値で、1〜10の正数。)
【0015】
【化11】
Figure 2004067717
【0016】
(Rは、炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。Rは、水素原子又は炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。aは0又は1〜3。nは平均値で、1〜10の正数)
【0017】
【化12】
Figure 2004067717
【0018】
(Rは、炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。Rは、水素原子又は炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。aは0又は1〜3。nは平均値で、1〜10の正数)
【0019】
【化13】
Figure 2004067717
【0020】
(Rは、炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。Rは、水素原子又は炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。bは1又は2。nは平均値で、1〜10の正数。)
【0021】
【化14】
Figure 2004067717
【0022】
(Rは、有機基を表し、互いに同一もしくは異なっていてもよい)
[2] 一般式(7)で示されるリン酸エステル化合物のRが、置換又は無置換アリール基である第[1]項記載の半導体封止用エポキシ樹脂組成物、
[3] 第[1]項又は[2]項記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0023】
【発明の実施の形態】
本発明に用いられる一般式(1)〜一般式(3)で示されるエポキシ樹脂は、疎水性の樹脂骨格を有しているので、これを用いたエポキシ樹脂組成物の硬化物は低吸湿性となると共に、硬化物の架橋点間距離が長くなるため半田処理温度での弾性率が低くなる特徴を有している。このため発生する応力が小さく、密着性に優れるため、耐半田性が良好である。又一般式(1)〜一般式(3)で示されるエポキシ樹脂は、樹脂中の芳香族環含有率が高いために、樹脂自体が耐燃性の特性を有しており、難燃剤の配合量を低く抑えることができる。
一般式(1)〜一般式(3)で示されるエポキシ樹脂の特性を損なわない範囲で、他のエポキシ樹脂を併用してもよい。併用するエポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、例えばビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられ、これらは単独でも混合して用いても差し支えない。
【0024】
本発明に用いられる一般式(4)〜一般式(6)で示されるフェノール樹脂は、疎水性の樹脂骨格を有しているので、これを用いたエポキシ樹脂組成物の硬化物は低吸湿性となると共に、硬化物の架橋点間距離が長くなるため半田処理温度での弾性率が低くなる特徴を有している。このため発生する応力が小さく、密着性に優れるため、耐半田性が良好である。又一般式(4)〜一般式(6)で示されるエポキシ樹脂は、樹脂中の芳香族環含有率が高いために、樹脂自体が耐燃性の特性を有しており、難燃剤の配合量を低く抑えることができる。
一般式(4)〜一般式(6)で示されるフェノール樹脂の特性を損なわない範囲で、他のフェノール樹脂を併用してもよい。併用するフェノール樹脂としては、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂樹脂等が挙げられ、これらは単独でも混混合して用いても差し支えない。
又一般式(1)〜一般式(3)で示されるエポキシ樹脂及び一般式(4)〜一般式(6)で示されるフェノール樹脂は、前記したように優れた特徴を有しているが、硬化性や離型性等の成形性において、若干劣る傾向にあり、成形性を阻害する添加物は極力少なくする必要がある。
これらの配合量としては、全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の比が0.8〜1.3の範囲が好ましい。0.8未満であれば硬化性と硬化物の耐熱性が低下し、吸湿率が増大するという問題があり、1.3を越えると硬化物の耐熱性と耐燃性が低下すると傾向にある。
【0025】
本発明に用いられる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止材料に使用するものを用いることができる。例えば1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリフェニルホスフィン、2−メチルイミダゾール、テトラフェニルホスホニウム・テトラフェニルボレート等が挙げられ、これらは単独でも混合して用いても差し支えない。
【0026】
本発明に用いられる無機充填材としては、一般に封止材料に使用されているものを用いることができる。例えば溶融シリカ、結晶シリカ、タルク、アルミナ、窒化珪素等が挙げられ、これらは単独でも混合して用いても差し支えない。無機充填材の配合量としては、成形性と耐半田性のバランスから、全エポキシ樹脂組成物中に60〜95重量%が好ましい。60重量%未満だと、吸湿率の上昇に伴う耐半田性が低下し、95重量%を越えると、ワイヤースィープ及びパッドシフト等の成形性の問題が生じ好ましくない。
【0027】
本発明に用いられる一般式(7)で示されるリン酸エステル化合物は、リンによる炭化促進、即ちエポキシ樹脂組成物の硬化物の表面に不燃性の炭化層を形成することにより、硬化物表面の保護及び酸素を遮断することにより、高い難燃性を付与するものと推定されている。式中のRは、互いに同一もしくは異なる有機基を示すが、耐熱性、耐湿性の点から置換又は無置換のアリール基が好ましい。一般式(7)で示されるリン酸エステル化合物の具体例としては、トリフェニルホスフェート、トリキシレニルホスフェート、トリクレジニル、クレジニルジフェニルホスフェート、レゾルシノールビス(ジフェニル)ホスフェート、ビスフェノールAビス(ジフェニル)ホスフェート、2−エチルヘキシルジフェニルホスフェート等が挙げられる。
本発明に用いられる一般式(7)で示されるリン酸エステル化合物には、一般式(8)で示される複数のリン酸エステル化合物が、二価の有機基(R)を介して結合した構造の化合物も含まれる。リン酸エステル化合物同士を結合する二価の有機基としては、ハイドロキノン、4,4’−ビスフェノール、ビスフェノールA等の二官能フェノール化合物の水酸基から2個の水素原子を除いた残基等が好ましい。結合しているリン酸エステル化合物は同一でも異なっていてもよい。
【0028】
【化15】
Figure 2004067717
【0029】
本発明におけるリン酸エステル化合物は、単独でも併用してもよい。リン酸エステル化合物の配合量としては、全エポキシ樹脂組成物中の0.05〜5重量%が好ましく、更に好ましくは0.3〜3重量%が望ましい。下限値未満であると難燃性向上の効果を得ることが出来ず、上限値を越えると強度の低下、吸水率の増大等による半田耐熱性の低下や硬化性の悪化により成形性が低下する。この範囲内ならば、本発明に用いられるエポキシ樹脂とフェノール樹脂の組み合わせでも成形性、耐半田性に優れたエポキシ樹脂組成物を得ることができる。
【0030】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分の他、必要に応じて他の難燃剤、酸化ビスマス水和物等の無機イオン交換体、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力化剤、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を配合することができる。
【0031】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分、及びその他の添加剤等をミキサーを用いて混合後、熱ロール、加熱ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形すればよい。
【0032】
【実施例】
以下、本発明を実施例で具体的に説明するが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
実施例1
式(9)のエポキシ樹脂(軟化点60℃、エポキシ当量270g/eq.)6.3重量部
【0033】
【化16】
Figure 2004067717
【0034】
式(10)のフェノール樹脂(軟化点73℃、水酸基当量199g/eq.)4.7重量部
【0035】
【化17】
Figure 2004067717
【0036】
溶融球状シリカ(平均粒径20μm)           86.0重量部
式(11)のリン酸エステル化合物               2.0重量部
【0037】
【化18】
Figure 2004067717
【0038】
トリフェニルホスフィン                  0.2重量部
エポキシシラン(γ−グリシドキシプロピルトリメトキシシラン)0.2重量部
カーボンブラック                     0.3重量部
カルナバワックス                     0.3重量部
をミキサーを用いて常温で混合した後、表面温度が90℃と45℃の2本ロールを用いて混練し、冷却後粉砕して、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0039】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
硬化性:低圧トランスファー成形機を用いて金型温度175℃、注入圧力9.8MPa、硬化時間120秒で成形した。金型が開いて10秒後のランナーの表面硬度をバコール硬度計#935で測定した。バコール硬度は硬化性の指標であり、数値が大きい方が硬化性が良好である。
吸湿率:低圧トランスファー成形機を用いて金型温度175℃、注入圧力9.8MPa、硬化時間120秒で直径50mm、厚さ3mmの円板を成形し、175℃、8時間で後硬化し、85℃、相対湿度85%の環境下で168時間放置し、重量変化を測定して吸湿率を求めた。単位は重量%。
熱時曲げ強度:JIS K 6911に準じて240℃での曲げ強度を測定した。単位はMPa。
難燃性:低圧トランスファー成形機を用いて金型温度175℃、注入圧力9.8MPa、硬化時間120秒で試験片(127mm×12.7mmで厚みは1.0mm、1.6mm、3.2mmの3種類)を成形し、175℃、8時間で後硬化した後、UL−94垂直法に準じてΣF、Fmaxを測定し、難燃性を判定した。
【0040】
耐湿信頼性:低圧トランスファー成形機を用いて金型温度175℃、注入圧力9.8MPa、硬化時間120秒で16pSOP(模擬素子のTEG3使用、配線幅20μm)を成形し、175℃、8時間で後硬化した後、耐湿信頼性評価(140℃/相対湿度85%で10Vの印加電圧をかけて処理)を行い、配線間のオープン不良を確認した。20個のパッケージについて、処理500時間後と1000時間後での不良パッケージ個数を不良率として百分率で示した。単位は%。
耐半田性:低圧トランスファー成形機を用いて、金型温度175℃、注入圧力8.3MPa、硬化時間120秒で80pQFP(2mm厚、チップサイズ9.0mm×9.0mm)を成形し、175℃、8時間で後硬化し、85℃、相対湿度85%で168時間放置し、その後240℃の半田槽に10秒間浸漬した。顕微鏡で観察し、クラック発生率[(クラック発生率)={(外部クラック発生パッケージ数)/(全パッケージ数)}×100]を求めた。単位は%。又半導体素子とエポキシ樹脂組成物の硬化物との界面の剥離面積を超音波探傷装置を用いて測定し、剥離率[(剥離率)={(剥離面積)/(半導体素子面積)}×100]を求めた。単位は%。
高温保管特性:低圧トランスファー成形機を用いて金型温度175℃、注入圧力9.8MPa、硬化時間120秒で16pDIP(チップサイズ3.0mm×3.5mm)を成形し、175℃、8時間で後硬化した後、高温保管試験(185℃、1000時間)を行い、配線間の電気抵抗値が初期値に対し20%増加したパッケージを不良と判定した。15個のパッケージ中の不良なパッケージ個数の率(不良率)を百分率で示した。単位は%。
キュラストメーターのトルク値:キュラストメーターV型((株)オリエンテック・製)を用い、35φのダイス、振幅角1度、温度175℃で測定した。90秒後のトルク値を測定し、硬化性を評価した。キュラストトルクという。単位はNm。
【0041】
実施例2〜7、比較例1〜4
表1の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得、実施例1と同様にして評価した。結果を表1、表2に示す。
【0042】
式(12)のエポキシ樹脂(軟化点62℃、エポキシ当量227g/eq.)
【0043】
【化19】
Figure 2004067717
【0044】
式(13)のエポキシ樹脂(軟化点73℃、エポキシ当量269g/eq.)
【0045】
【化20】
Figure 2004067717
【0046】
式(14)のエポキシ樹脂(軟化点81℃、エポキシ当量265g/eq.)
【0047】
【化21】
Figure 2004067717
【0048】
式(15)のフェノール樹脂(軟化点77℃、水酸基当量174g/eq.)
【0049】
【化22】
Figure 2004067717
【0050】
式(16)のフェノール樹脂(軟化点87℃、水酸基当量210g/eq.)
【0051】
【化23】
Figure 2004067717
【0052】
式(17)のリン酸エステル化合物
【0053】
【化24】
Figure 2004067717
【0054】
式(18)のリン酸エステル化合物
【0055】
【化25】
Figure 2004067717
【0056】
比較例4で用いた臭素化ビスフェノールA型エポキシ樹脂は、エポキシ当量365g/eq.、臭素原子含有率48重量%である。
【0057】
【表1】
Figure 2004067717
【0058】
【表2】
Figure 2004067717
【0059】
【発明の効果】
本発明に従うと、ハロゲン系難燃剤及びアンチモン化合物を含まなくとも難燃性に優れ、かつ硬化性や離型性等の成形性、耐半田性、高温保管特性に優れた特性を有する半導体封止用エポキシ樹脂組成物が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device having excellent flame retardancy even without containing a halogen-based flame retardant and an antimony compound.
[0002]
[Prior art]
Conventionally, electronic components such as diodes, transistors, and integrated circuits have been mainly sealed with an epoxy resin composition. These epoxy resin compositions usually contain a halogen-based flame retardant and an antimony compound such as antimony trioxide, antimony tetroxide, or antimony pentoxide in order to impart flame retardancy. However, with increasing awareness of environmental protection worldwide, there is an increasing demand for epoxy resin compositions having flame retardancy without using halogen-based flame retardants or antimony compounds. In addition, when semiconductor devices sealed with an epoxy resin composition containing a halogen-based flame retardant and an antimony compound are stored at a high temperature, a thermally decomposed halide is released from these flame retardant components, and a junction of the semiconductor element is formed. Corrosion is known to impair the reliability of semiconductor devices, and an epoxy resin composition capable of achieving a flame retardant grade of UL94 V-0 without using a halogen-based flame retardant and an antimony compound as a flame retardant is known. Is required.
[0003]
As described above, the corrosion resistance of the bonding portion (bonding pad portion) of the semiconductor element after the semiconductor device is stored at a high temperature (for example, 185 ° C.) is called a high-temperature storage characteristic, and the high-temperature storage characteristic is improved. As a method of performing this, a method using diantimony pentoxide (JP-A-55-146950), a method of combining antimony oxide with an organic phosphine (JP-A-61-53321), and the like have been proposed. However, some types of epoxy resin compositions are not satisfactory with respect to the recent high level of high-temperature storage characteristics required for semiconductor devices.
[0004]
To meet these requirements, various flame retardants have been studied. For example, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and boron-based compounds have been studied. However, unless these are blended in a large amount, the flame-retardant effect does not appear, and the curability tends to decrease. is there. In the current situation where surface mounting of semiconductor devices is becoming common, a semiconductor device that has absorbed moisture is exposed to high temperatures during soldering, and cracks occur in the semiconductor device due to the explosive stress of vaporized water vapor. The occurrence of peeling at the interface between the element and the lead frame and the cured product of the epoxy resin composition causes defects that greatly impair the electrical reliability.Prevention of these defects, that is, improvement of solder resistance is a major issue. Has become. Furthermore, in response to recent environmental problems, the trend has been to change leaded solder contained in solder used for mounting semiconductor devices to lead-free solder, and accordingly, the temperature of solder processing has been increased, which is required. It is believed that the solder resistance will be more severe.
[0005]
In order to improve the soldering resistance, a large amount of an inorganic filler is added to the epoxy resin composition to reduce the moisture absorption, lower the thermal expansion, and increase the strength of the semiconductor device obtained using the same. I have. For this reason, as a resin component, a low-viscosity type resin or a crystalline epoxy resin which is crystalline at room temperature but exhibits an extremely low viscosity above the melting point is used. Techniques to prevent a decrease in fluidity during molding of the resin composition, or a method in which the resin skeleton itself is hydrophobic and the cured product also uses an epoxy resin or a phenol resin that exhibits low moisture absorption, etc. Has become.
[0006]
The cured product of the epoxy resin composition using crystalline epoxy resin, hydrophobic epoxy resin or phenol resin has a low glass transition temperature, so when a halogen-based flame retardant and an antimony compound are used in combination, the high-temperature storage characteristics tend to decrease. In order to improve this, an epoxy resin composition that does not use a halogen-based flame retardant and an antimony compound is required. In addition, crystalline epoxy resin has low viscosity, but cures slowly because it has a low viscosity. In addition, hydrophobic epoxy resin and hydrophobic phenol resin have a molecular structure with a long distance between cross-linking points. The cured product is soft, and it is difficult to use a flame retardant that inhibits the curing of the epoxy resin in order to improve the releasability and increase the productivity. That is, there is a need for an epoxy resin composition that does not contain a halogen-based flame retardant and an antimony compound, maintains flame retardancy, and is excellent in moldability, solder resistance, and high-temperature storage characteristics.
[0007]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for semiconductor encapsulation having excellent flame retardancy without containing a halogen-based flame retardant and an antimony compound, and having excellent moldability, solder resistance, and high-temperature storage characteristics, and the use thereof. To provide a semiconductor device in which a semiconductor element is sealed.
[0008]
[Means for Solving the Problems]
The present invention
[1] (A) an epoxy resin selected from the general formulas (1) to (3), (B) a phenol resin selected from the general formulas (4) to (6), (C) a curing accelerator, It contains (D) an inorganic filler and (E) a phosphoric ester compound represented by the general formula (7), and the phosphoric ester compound accounts for 0.05 to 5% by weight of the entire epoxy resin composition. Epoxy resin composition for semiconductor encapsulation,
[0009]
Embedded image
Figure 2004067717
[0010]
(R represents an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. A is 0 or 1 to 3. n is an average value and is a positive number of 1 to 10.)
[0011]
Embedded image
Figure 2004067717
[0012]
(R represents an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. A is 0 or 1 to 3. n is an average value and is a positive number of 1 to 10.)
[0013]
Embedded image
Figure 2004067717
[0014]
(R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other. B is 1 or 2. n is an average number and a positive number of 1 to 10.)
[0015]
Embedded image
Figure 2004067717
[0016]
(R represents an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. A is 0 or 1 to 3. n is an average value and is a positive number of 1 to 10.)
[0017]
Embedded image
Figure 2004067717
[0018]
(R represents an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. A is 0 or 1 to 3. n is an average value and is a positive number of 1 to 10.)
[0019]
Embedded image
Figure 2004067717
[0020]
(R represents an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. .B is 1 or 2. n is an average value and a positive number of 1 to 10.)
[0021]
Embedded image
Figure 2004067717
[0022]
(R represents an organic group and may be the same or different from each other)
[2] The epoxy resin composition for semiconductor encapsulation according to [1], wherein R of the phosphate compound represented by the general formula (7) is a substituted or unsubstituted aryl group.
[3] A semiconductor device obtained by sealing a semiconductor element with the epoxy resin composition according to the item [1] or [2],
It is.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Since the epoxy resins represented by the general formulas (1) to (3) used in the present invention have a hydrophobic resin skeleton, a cured product of the epoxy resin composition using the epoxy resin has low hygroscopicity. And the distance between the cross-linking points of the cured product becomes longer, so that the elastic modulus at the soldering temperature is lowered. Therefore, the generated stress is small and the adhesiveness is excellent, so that the solder resistance is good. The epoxy resins represented by the general formulas (1) to (3) have a high aromatic ring content in the resin, so that the resin itself has the property of flame resistance, and the amount of the flame retardant compounded. Can be kept low.
Other epoxy resins may be used in combination as long as the properties of the epoxy resins represented by the general formulas (1) to (3) are not impaired. The epoxy resin used in combination includes all monomers, oligomers and polymers having two or more epoxy groups in one molecule, such as biphenyl epoxy resin, bisphenol epoxy resin, stilbene epoxy resin, phenol novolak epoxy resin, and cresol. Novolak-type epoxy resin, triphenolmethane-type epoxy resin, alkyl-modified triphenolmethane-type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene-modified phenol-type epoxy resin, and the like. No problem.
[0024]
Since the phenolic resins represented by the general formulas (4) to (6) used in the present invention have a hydrophobic resin skeleton, a cured product of the epoxy resin composition using the phenolic resin has low hygroscopicity. And the distance between the cross-linking points of the cured product becomes longer, so that the elastic modulus at the soldering temperature is lowered. Therefore, the generated stress is small and the adhesiveness is excellent, so that the solder resistance is good. Further, the epoxy resins represented by the general formulas (4) to (6) have a high aromatic ring content in the resin, so that the resin itself has the property of flame resistance, and the amount of the flame retardant compounded. Can be kept low.
Other phenol resins may be used in combination as long as the properties of the phenol resins represented by the general formulas (4) to (6) are not impaired. The phenol resin used in combination includes all monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule, such as phenol novolak resin, cresol novolak resin, dicyclopentadiene-modified phenol resin, terpene-modified phenol resin, Phenol methane type resin resins and the like may be mentioned, and these may be used alone or as a mixture.
The epoxy resins represented by the general formulas (1) to (3) and the phenolic resins represented by the general formulas (4) to (6) have excellent characteristics as described above. Moldability such as curability and mold release properties tend to be slightly inferior, and it is necessary to minimize the amount of additives that inhibit moldability.
The ratio of the number of epoxy groups of all epoxy resins to the number of phenolic hydroxyl groups of all phenolic resins is preferably in the range of 0.8 to 1.3. If it is less than 0.8, the curability and the heat resistance of the cured product decrease, and the moisture absorption rate increases. If it exceeds 1.3, the heat resistance and the flame resistance of the cured product tend to decrease.
[0025]
As the curing accelerator used in the present invention, any one can be used as long as it promotes the curing reaction between the epoxy group and the phenolic hydroxyl group, and those generally used for a sealing material can be used. For example, 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, 2-methylimidazole, tetraphenylphosphonium / tetraphenylborate and the like can be mentioned, and these may be used alone or in combination. .
[0026]
As the inorganic filler used in the present invention, those generally used for a sealing material can be used. For example, fused silica, crystalline silica, talc, alumina, silicon nitride and the like can be mentioned, and these may be used alone or in combination. The blending amount of the inorganic filler is preferably 60 to 95% by weight in the total epoxy resin composition from the balance between moldability and solder resistance. If the amount is less than 60% by weight, the soldering resistance decreases with an increase in the moisture absorption. If the amount exceeds 95% by weight, problems such as wire sweep and pad shift are caused, which is not preferable.
[0027]
The phosphoric ester compound represented by the general formula (7) used in the present invention promotes carbonization by phosphorus, that is, forms a non-combustible carbonized layer on the surface of the cured product of the epoxy resin composition, whereby the surface of the cured product is It is presumed that protection and blocking of oxygen provide high flame retardancy. R in the formulas represent the same or different organic groups, but a substituted or unsubstituted aryl group is preferable from the viewpoint of heat resistance and moisture resistance. Specific examples of the phosphate compound represented by the general formula (7) include triphenyl phosphate, trixylenyl phosphate, tricredinyl, credinyl diphenyl phosphate, resorcinol bis (diphenyl) phosphate, bisphenol A bis (diphenyl) phosphate, -Ethylhexyl diphenyl phosphate and the like.
The phosphate compound represented by the general formula (7) used in the present invention has a plurality of phosphate ester compounds represented by the general formula (8) bonded thereto via a divalent organic group (R 1 ). Also included are compounds of the structure. As the divalent organic group that bonds the phosphoric ester compounds, a residue obtained by removing two hydrogen atoms from a hydroxyl group of a bifunctional phenol compound such as hydroquinone, 4,4'-bisphenol, and bisphenol A is preferable. The phosphate compound bound may be the same or different.
[0028]
Embedded image
Figure 2004067717
[0029]
The phosphate compound in the present invention may be used alone or in combination. The amount of the phosphate compound is preferably 0.05 to 5% by weight, more preferably 0.3 to 3% by weight, based on the total epoxy resin composition. If the value is less than the lower limit, the effect of improving the flame retardancy cannot be obtained, and if the value exceeds the upper limit, the moldability decreases due to a decrease in strength, a decrease in solder heat resistance due to an increase in water absorption, and a deterioration in curability. . Within this range, an epoxy resin composition excellent in moldability and solder resistance can be obtained even with a combination of the epoxy resin and the phenol resin used in the present invention.
[0030]
The epoxy resin composition of the present invention comprises, in addition to the components (A) to (E), if necessary, other flame retardants, inorganic ion exchangers such as bismuth oxide hydrate, colorants such as carbon black and red iron oxide, Various additives such as a low stress agent such as silicone oil and silicone rubber, a release agent such as natural wax and synthetic wax, higher fatty acid and its metal salts or paraffin, and an antioxidant can be blended.
[0031]
The epoxy resin composition of the present invention is obtained by mixing the components (A) to (E) and other additives using a mixer, and then melt-kneading with a kneader such as a hot roll, a heating kneader, an extruder, and cooling. It is obtained by subsequent grinding.
In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor element using the epoxy resin composition of the present invention, it is sufficient to cure and mold by a molding method such as a transfer mold, a compression mold, and an injection mold.
[0032]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. The mixing ratio is by weight.
Example 1
6.3 parts by weight of an epoxy resin of the formula (9) (softening point: 60 ° C., epoxy equivalent: 270 g / eq.)
Embedded image
Figure 2004067717
[0034]
4.7 parts by weight of a phenol resin of the formula (10) (softening point 73 ° C., hydroxyl equivalent 199 g / eq.)
Embedded image
Figure 2004067717
[0036]
86.0 parts by weight of fused spherical silica (average particle size: 20 μm) 2.0 parts by weight of phosphoric ester compound of formula (11)
Embedded image
Figure 2004067717
[0038]
Triphenylphosphine 0.2 part by weight Epoxysilane (γ-glycidoxypropyltrimethoxysilane) 0.2 part by weight Carbon black 0.3 part by weight Carnauba wax 0.3 part by weight after mixing at room temperature using a mixer The mixture was kneaded using two rolls having a surface temperature of 90 ° C. and 45 ° C., cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following method. Table 1 shows the results.
[0039]
Evaluation method Spiral flow: Measurement was performed using a mold for spiral flow measurement according to EMMI-1-66 at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.
Curability: Molding was performed using a low-pressure transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds. Ten seconds after the mold was opened, the surface hardness of the runner was measured with a Bacol hardness meter # 935. Bacol hardness is an index of curability, and the larger the value, the better the curability.
Moisture absorption: Using a low-pressure transfer molding machine, mold a mold with a mold temperature of 175 ° C, an injection pressure of 9.8 MPa, a curing time of 120 seconds, a diameter of 50 mm and a thickness of 3 mm, and post-curing at 175 ° C for 8 hours. It was left for 168 hours in an environment of 85 ° C. and a relative humidity of 85%, and a change in weight was measured to determine a moisture absorption rate. The unit is% by weight.
Flexural strength at heating: Flexural strength at 240 ° C. was measured according to JIS K 6911. The unit is MPa.
Flame retardancy: Specimen (127 mm × 12.7 mm, 1.0 mm, 1.6 mm, 3.2 mm thick) with mold temperature of 175 ° C., injection pressure of 9.8 MPa, curing time of 120 seconds using low pressure transfer molding machine After molding at 175 ° C. for 8 hours, ΔF and Fmax were measured according to the UL-94 vertical method, and the flame retardancy was determined.
[0040]
Moisture resistance reliability: Using a low-pressure transfer molding machine, mold at 175 ° C, injection pressure of 9.8MPa, curing time of 120 seconds, mold 16pSOP (using TEG3 of simulated element, wiring width 20μm), and form at 175 ° C, 8 hours After the post-curing, the moisture resistance reliability was evaluated (processed by applying an applied voltage of 10 V at 140 ° C./85% relative humidity), and an open defect between wirings was confirmed. For 20 packages, the number of defective packages after 500 hours and 1000 hours of processing is shown as a percentage of defectives as a percentage. Units%.
Solder resistance: Using a low-pressure transfer molding machine, 80pQFP (2 mm thick, chip size 9.0 mm × 9.0 mm) was molded at a mold temperature of 175 ° C., an injection pressure of 8.3 MPa, and a curing time of 120 seconds. After hardening for 8 hours, the substrate was left for 168 hours at 85 ° C. and a relative humidity of 85%, and then immersed in a solder bath at 240 ° C. for 10 seconds. Observation with a microscope was performed to determine the crack occurrence rate [(crack occurrence rate) = {(number of external crack occurrence packages) / (total number of packages)} × 100]. Units%. The peeling area at the interface between the semiconductor element and the cured product of the epoxy resin composition was measured using an ultrasonic flaw detector, and the peeling rate [(peeling rate) = {(peeling area) / (semiconductor element area)} × 100 ]. Units%.
High temperature storage characteristics: 16pDIP (chip size 3.0mm x 3.5mm) was molded using a low pressure transfer molding machine at a mold temperature of 175 ° C, an injection pressure of 9.8MPa, and a curing time of 120 seconds, and at 175 ° C for 8 hours. After post-curing, a high-temperature storage test (185 ° C., 1000 hours) was performed, and a package in which the electric resistance between wirings increased by 20% from the initial value was determined to be defective. The percentage of defective packages out of the 15 packages (defective rate) is shown in percentage. Units%.
Torque value of curast meter: Measured using a curast meter V type (manufactured by Orientec Co., Ltd.) at a 35φ die, an amplitude angle of 1 °, and a temperature of 175 ° C. The torque value after 90 seconds was measured, and the curability was evaluated. It is called “curast torque”. The unit is Nm.
[0041]
Examples 2 to 7, Comparative Examples 1 to 4
According to the formulation in Table 1, an epoxy resin composition was obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
[0042]
Epoxy resin of the formula (12) (softening point 62 ° C., epoxy equivalent 227 g / eq.)
[0043]
Embedded image
Figure 2004067717
[0044]
Epoxy resin of formula (13) (softening point 73 ° C., epoxy equivalent 269 g / eq.)
[0045]
Embedded image
Figure 2004067717
[0046]
Epoxy resin of the formula (14) (softening point: 81 ° C., epoxy equivalent: 265 g / eq.)
[0047]
Embedded image
Figure 2004067717
[0048]
Phenolic resin of formula (15) (softening point 77 ° C., hydroxyl equivalent 174 g / eq.)
[0049]
Embedded image
Figure 2004067717
[0050]
Phenolic resin of formula (16) (softening point 87 ° C., hydroxyl equivalent 210 g / eq.)
[0051]
Embedded image
Figure 2004067717
[0052]
Phosphate ester compound of formula (17)
Embedded image
Figure 2004067717
[0054]
Phosphate compound of formula (18)
Embedded image
Figure 2004067717
[0056]
The brominated bisphenol A type epoxy resin used in Comparative Example 4 had an epoxy equivalent of 365 g / eq. And a bromine atom content of 48% by weight.
[0057]
[Table 1]
Figure 2004067717
[0058]
[Table 2]
Figure 2004067717
[0059]
【The invention's effect】
According to the present invention, a semiconductor encapsulation having excellent flame retardancy without containing a halogen-based flame retardant and an antimony compound, and having excellent moldability such as curability and mold release, solder resistance, and high-temperature storage characteristics. Epoxy resin composition is obtained.

Claims (3)

(A)一般式(1)〜一般式(3)から選ばれるエポキシ樹脂、(B)一般式(4)〜一般式(6)から選ばれるフェノール樹脂、(C)硬化促進剤、(D)無機充填材及び(E)一般式(7)で示されるリン酸エステル化合物を含み、リン酸エステル化合物が全エポキシ樹脂組成物中0.05〜5重量%であることを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 2004067717
(Rは、炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。Rは、水素原子又は炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。aは0又は1〜3。nは平均値で、1〜10の正数)
Figure 2004067717
(Rは、炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。Rは、水素原子又は炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。aは0又は1〜3。nは平均値で、1〜10の正数)
Figure 2004067717
(Rは、水素原子又は炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。bは1又は2。nは平均値で、1〜10の正数。)
Figure 2004067717
(Rは、炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。Rは、水素原子又は炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。aは0又は1〜3。nは平均値で、1〜10の正数)
Figure 2004067717
(Rは、炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。Rは、水素原子又は炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。aは0又は1〜3。nは平均値で、1〜10の正数)
Figure 2004067717
(Rは、炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。Rは、水素原子又は炭素数1〜4のアルキル基を表し、互いに同一もしくは異なっていてもよい。bは1又は2。nは平均値で、1〜10の正数。)
Figure 2004067717
(Rは、有機基を表し、互いに同一もしくは異なっていてもよい)
(A) an epoxy resin selected from the general formulas (1) to (3), (B) a phenolic resin selected from the general formulas (4) to (6), (C) a curing accelerator, and (D) Semiconductor encapsulation comprising an inorganic filler and (E) a phosphate compound represented by the general formula (7), wherein the phosphate compound is present in an amount of 0.05 to 5% by weight of the total epoxy resin composition. Epoxy resin composition for use.
Figure 2004067717
(R represents an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. A is 0 or 1 to 3. n is an average value and is a positive number of 1 to 10.)
Figure 2004067717
(R represents an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. A is 0 or 1 to 3. n is an average value and is a positive number of 1 to 10.)
Figure 2004067717
(R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other. B is 1 or 2. n is an average number and a positive number of 1 to 10.)
Figure 2004067717
(R represents an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. A is 0 or 1 to 3. n is an average value and is a positive number of 1 to 10.)
Figure 2004067717
(R represents an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. A is 0 or 1 to 3. n is an average value and is a positive number of 1 to 10.)
Figure 2004067717
(R represents an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other. .B is 1 or 2. n is an average value and a positive number of 1 to 10.)
Figure 2004067717
(R represents an organic group and may be the same or different from each other)
一般式(7)で示されるリン酸エステル化合物のRが、置換又は無置換アリール基である請求項1記載の半導体封止用エポキシ樹脂組成物。The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein R of the phosphate compound represented by the general formula (7) is a substituted or unsubstituted aryl group. 請求項1又は2記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition according to claim 1.
JP2002224598A 2002-08-01 2002-08-01 Epoxy resin composition and semiconductor device Pending JP2004067717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224598A JP2004067717A (en) 2002-08-01 2002-08-01 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224598A JP2004067717A (en) 2002-08-01 2002-08-01 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2004067717A true JP2004067717A (en) 2004-03-04

Family

ID=32012516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224598A Pending JP2004067717A (en) 2002-08-01 2002-08-01 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2004067717A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344081A (en) * 2004-06-07 2005-12-15 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product
JP2006034042A (en) * 2004-07-20 2006-02-02 Yaskawa Electric Corp Thermosetting resin composite for vacuum and its production
WO2006049156A1 (en) * 2004-11-02 2006-05-11 Sumitomo Bakelite Company, Ltd. Epoxy resin composition and semiconductor device
JP2006131655A (en) * 2004-11-02 2006-05-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006182803A (en) * 2004-12-24 2006-07-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006206748A (en) * 2005-01-28 2006-08-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006274185A (en) * 2005-03-30 2006-10-12 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2008007692A (en) * 2006-06-30 2008-01-17 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing and electronic part device
JP2011246545A (en) * 2010-05-25 2011-12-08 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
CN111051374A (en) * 2017-09-11 2020-04-21 明和化成株式会社 Phenolic resin composition for photoresist and photoresist composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045874A (en) * 1996-07-31 1998-02-17 Sumitomo Bakelite Co Ltd Resin composition for sealing of semiconductor
JPH11189704A (en) * 1997-10-24 1999-07-13 Hitachi Chem Co Ltd Epoxy resin molding material for sealing electronic part and electronic part
JP2000040708A (en) * 1998-05-21 2000-02-08 Toray Ind Inc Semiconductor sealing resin pellet, manufacture thereof and semiconductor device
JP2000344862A (en) * 1999-06-03 2000-12-12 Sumitomo Bakelite Co Ltd Flame-retardant resin composition, prepreg using same, and laminate
JP2001196508A (en) * 2000-01-11 2001-07-19 Toshiba Chem Corp Epoxy resin composition and semiconductor sealing device
JP2001226563A (en) * 2000-02-14 2001-08-21 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002179773A (en) * 2000-12-15 2002-06-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003012769A (en) * 2001-06-26 2003-01-15 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2003286388A (en) * 2002-03-29 2003-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045874A (en) * 1996-07-31 1998-02-17 Sumitomo Bakelite Co Ltd Resin composition for sealing of semiconductor
JPH11189704A (en) * 1997-10-24 1999-07-13 Hitachi Chem Co Ltd Epoxy resin molding material for sealing electronic part and electronic part
JP2000040708A (en) * 1998-05-21 2000-02-08 Toray Ind Inc Semiconductor sealing resin pellet, manufacture thereof and semiconductor device
JP2000344862A (en) * 1999-06-03 2000-12-12 Sumitomo Bakelite Co Ltd Flame-retardant resin composition, prepreg using same, and laminate
JP2001196508A (en) * 2000-01-11 2001-07-19 Toshiba Chem Corp Epoxy resin composition and semiconductor sealing device
JP2001226563A (en) * 2000-02-14 2001-08-21 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002179773A (en) * 2000-12-15 2002-06-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003012769A (en) * 2001-06-26 2003-01-15 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2003286388A (en) * 2002-03-29 2003-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344081A (en) * 2004-06-07 2005-12-15 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product
JP2006034042A (en) * 2004-07-20 2006-02-02 Yaskawa Electric Corp Thermosetting resin composite for vacuum and its production
KR101235075B1 (en) 2004-11-02 2013-02-19 스미토모 베이클라이트 가부시키가이샤 Epoxy resin composition and semiconductor device
JP2006131655A (en) * 2004-11-02 2006-05-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
WO2006049156A1 (en) * 2004-11-02 2006-05-11 Sumitomo Bakelite Company, Ltd. Epoxy resin composition and semiconductor device
KR101254524B1 (en) * 2004-11-02 2013-04-19 스미토모 베이클라이트 가부시키가이샤 Epoxy resin composition and semiconductor device
KR101254523B1 (en) * 2004-11-02 2013-04-19 스미토모 베이클라이트 가부시키가이샤 Epoxy resin composition and semiconductor device
JP2006182803A (en) * 2004-12-24 2006-07-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006206748A (en) * 2005-01-28 2006-08-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006274185A (en) * 2005-03-30 2006-10-12 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2008007692A (en) * 2006-06-30 2008-01-17 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing and electronic part device
JP2011246545A (en) * 2010-05-25 2011-12-08 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
CN111051374A (en) * 2017-09-11 2020-04-21 明和化成株式会社 Phenolic resin composition for photoresist and photoresist composition
CN111051374B (en) * 2017-09-11 2023-02-28 Ube株式会社 Phenolic resin composition for photoresist and photoresist composition

Similar Documents

Publication Publication Date Title
CN101223207A (en) Epoxy resin composition and semiconductor device
JP2004067717A (en) Epoxy resin composition and semiconductor device
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP2002212397A (en) Epoxy resin composition and semiconductor device
JP4172065B2 (en) Epoxy resin composition and electronic component device
JP2002356539A (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP4765150B2 (en) Epoxy resin composition and semiconductor device
JP4765294B2 (en) Semiconductor device
JP2004027062A (en) Epoxy resin composition and semicondcutor device
JP4380101B2 (en) Epoxy resin composition and semiconductor device
JP2001158852A (en) Epoxy resin composition and semiconductor device
JP4899273B2 (en) Epoxy resin composition and semiconductor device
JP2004091533A (en) Epoxy resin composition and semiconductor device
JP2004035781A (en) Epoxy resin composition and semiconductor device
JP2003286388A (en) Epoxy resin composition and semiconductor device
JP2004010800A (en) Epoxy resin composition and semiconductor device
JP4513136B2 (en) Epoxy resin composition and semiconductor device
JP2003138098A (en) Epoxy resin composition and semiconductor device
JP2001329143A (en) Epoxy resin composition and semiconductor device
JP2002047393A (en) Epoxy resin composition and semiconductor device
JP4040370B2 (en) Epoxy resin composition and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5673613B2 (en) Epoxy resin composition and semiconductor device
JP2004059689A (en) Epoxy resin composition and semiconductor apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513