JP2006032863A - Electrode for n-type nitride semiconductor layer and its manufacturing method and light emitting element containing same - Google Patents
Electrode for n-type nitride semiconductor layer and its manufacturing method and light emitting element containing same Download PDFInfo
- Publication number
- JP2006032863A JP2006032863A JP2004213562A JP2004213562A JP2006032863A JP 2006032863 A JP2006032863 A JP 2006032863A JP 2004213562 A JP2004213562 A JP 2004213562A JP 2004213562 A JP2004213562 A JP 2004213562A JP 2006032863 A JP2006032863 A JP 2006032863A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- layer
- alloy
- semiconductor layer
- nitride semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 92
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 229910000583 Nd alloy Inorganic materials 0.000 claims abstract description 47
- 239000010409 thin film Substances 0.000 claims abstract description 26
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 17
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 9
- 239000010931 gold Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 15
- 230000004888 barrier function Effects 0.000 claims description 11
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 238000004544 sputter deposition Methods 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910000765 intermetallic Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 abstract description 39
- 238000000034 method Methods 0.000 abstract description 27
- 230000003746 surface roughness Effects 0.000 abstract description 5
- 239000006104 solid solution Substances 0.000 abstract description 3
- 230000006735 deficit Effects 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 146
- 229910002601 GaN Inorganic materials 0.000 description 67
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 67
- 239000000463 material Substances 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 238000005253 cladding Methods 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000005219 brazing Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000002932 luster Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 229910002704 AlGaN Inorganic materials 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000001947 vapour-phase growth Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005477 sputtering target Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910018575 Al—Ti Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910015363 Au—Sn Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000009718 spray deposition Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
Abstract
Description
本発明は、発光素子、受光素子、電子デバイス等といった窒化物半導体素子が有するn型窒化物半導体層上にオーミック接触が得られるように形成される、n型窒化物半導体層用の電極、その製造方法およびそれを有する、窒化物半導体からなる発光素子に関する。 The present invention relates to an electrode for an n-type nitride semiconductor layer formed so as to obtain ohmic contact on an n-type nitride semiconductor layer of a nitride semiconductor element such as a light-emitting element, a light-receiving element, and an electronic device, The present invention relates to a manufacturing method and a light emitting device made of a nitride semiconductor having the manufacturing method.
窒化物半導体とは、式AlαInβGaγN(0≦α≦1、0≦β≦1、0≦γ≦1、0≦α+β+γ≦1)で決定される3族窒化物からなる化合物半導体であって、例えば、GaN(窒化ガリウム)AlN(窒化アルミニウム)、InN(窒化インジウム)や、これらの混晶組成物であるInGaN、AlGaN、AlInGaNなど、任意の組成のものが例示される。近年、n型GaN系半導体層、発光層およびp型GaN系半導体層がこの順に積層された構造の窒化物半導体発光素子が実用化されており、発光層に用いられる窒化物半導体の材料組成を選択することによって、青色〜紫外に至る短波長光を発生させることが可能となっている。
以下、「窒化物半導体」を「GaN系半導体」とも呼び、例えば「窒化物半導体発光素子」であれば「GaN系半導体発光素子」などとも呼んで、従来技術および本発明を説明する。
A nitride semiconductor is a compound composed of a group III nitride determined by the formula Al α In β Ga γ N (0 ≦ α ≦ 1, 0 ≦ β ≦ 1, 0 ≦ γ ≦ 1, 0 ≦ α + β + γ ≦ 1). Examples of semiconductors include GaN (gallium nitride) AlN (aluminum nitride), InN (indium nitride), and mixed compositions such as InGaN, AlGaN, and AlInGaN. In recent years, a nitride semiconductor light emitting device having a structure in which an n-type GaN-based semiconductor layer, a light-emitting layer, and a p-type GaN-based semiconductor layer are stacked in this order has been put into practical use, and the material composition of the nitride semiconductor used for the light-emitting layer has been changed. By selecting, it is possible to generate short wavelength light ranging from blue to ultraviolet.
Hereinafter, the “nitride semiconductor” is also referred to as “GaN-based semiconductor”, and for example, if “nitride semiconductor light-emitting device” is also referred to as “GaN-based semiconductor light-emitting device”, the prior art and the present invention are described.
図2は、GaN系半導体素子の1つであるGaN系LEDの一般的な素子構造の一例を示した図であって、サファイア基板などの結晶基板B1上に、GaN系低温成長バッファ層B2を介して、GaN系半導体層からなる積層体が形成されている。該積層体は、n型GaN系半導体層とp型GaN系半導体層からなるpn接合構造を構成しており、接合部分に発光層が形成されている。具体的には、下側(結晶基板側)から順に、n型クラッド層1(この例ではn型コンタクト層を兼用している)、発光層(多重量子井戸などの積層構造であってもよい)2、p型クラッド層(この例ではp型コンタクト層を兼用している)3が気相成長によって積層されている。P1、P2は、それぞれ、n側電極、p側電極である。 FIG. 2 is a diagram showing an example of a general element structure of a GaN-based LED which is one of GaN-based semiconductor elements. A GaN-based low-temperature growth buffer layer B2 is formed on a crystal substrate B1 such as a sapphire substrate. Thus, a laminated body composed of GaN-based semiconductor layers is formed. The laminate has a pn junction structure composed of an n-type GaN-based semiconductor layer and a p-type GaN-based semiconductor layer, and a light emitting layer is formed at the junction. Specifically, a laminated structure such as an n-type cladding layer 1 (which also serves as an n-type contact layer in this example) and a light-emitting layer (multiple quantum wells) may be sequentially formed from the lower side (crystal substrate side). 2) A p-type cladding layer 3 (which also serves as a p-type contact layer in this example) 3 is laminated by vapor phase growth. P1 and P2 are an n-side electrode and a p-side electrode, respectively.
n型窒化物半導体とは、上述の窒化物半導体のうちで、電荷を運ぶキャリアが主として電子である窒化物半導体であり、一般的には窒化物半導体にSi(ケイ素)、Ge(ゲルマニウム)、C(炭素)、Se(セレン)、Te(テルル)などといったn型ドーパントをドープすることによって得られる。以下、n型窒化物半導体を「n型GaN系半導体」とも呼ぶ。 The n-type nitride semiconductor is a nitride semiconductor in which the carriers that carry charge are mainly electrons among the above-described nitride semiconductors. Generally, the nitride semiconductor includes Si (silicon), Ge (germanium), It is obtained by doping with an n-type dopant such as C (carbon), Se (selenium), Te (tellurium) or the like. Hereinafter, the n-type nitride semiconductor is also referred to as “n-type GaN-based semiconductor”.
GaN系半導体素子においては、GaN系半導体層にオーミック接触する電極が必要となる。n型GaN系半導体層とオーミック接触する電極(「n側電極」ともいう)としてAl(アルミニウム)単体からなる電極が知られている(特許文献1)。
しかし、Al単体からなるAl電極は、電極材料と半導体との密着性を高め、接触抵抗を低下させるために通常行われる350℃〜600℃での熱処理の際に、表面荒れ(具体的には、ヒロックとも呼ばれる突起や、ボイドまたはピットとも呼ばれる孔の生成)を起こし易かった。電極が表面荒れを起すと、電極に通電用のAu(金)ワイヤをボンディングする際の接合性が低下するという問題がある。同様に、素子をフリップチップボンディングする場合には、リード電極との接合に用いるろう材(半田等)や導電性接着剤との接合性が低下するという問題がある。
また、Alは表面に酸化膜が形成され易く、そのために化学的に安定となる反面、溶融した金属による濡れ性が低下するため、上記Auワイヤやろう材との接合性の点では余り良いとはいえない。
In a GaN-based semiconductor element, an electrode that makes ohmic contact with the GaN-based semiconductor layer is required. As an electrode that is in ohmic contact with an n-type GaN-based semiconductor layer (also referred to as “n-side electrode”), an electrode made of Al (aluminum) alone is known (Patent Document 1).
However, an Al electrode made of Al alone has a rough surface during heat treatment at 350 ° C. to 600 ° C. which is usually performed in order to increase the adhesion between the electrode material and the semiconductor and reduce the contact resistance (specifically, , The formation of protrusions called hillocks and holes called voids or pits). When the surface of the electrode is roughened, there is a problem that the bonding property when an Au (gold) wire for energization is bonded to the electrode is lowered. Similarly, when the device is flip-chip bonded, there is a problem in that the bonding property with a brazing material (solder or the like) or conductive adhesive used for bonding with the lead electrode is lowered.
In addition, Al is easy to form an oxide film on the surface, so that it is chemically stable. On the other hand, the wettability by the molten metal is lowered, so that it is too good in terms of bondability with the Au wire and brazing material. I can't say that.
Al電極の上記問題を解決するために、n型窒化物半導体層に接する領域をAl層とし、表面側は酸化し難いAu層としたり、更に、その中間にAl層とAu層の反応を防止する中間層を設けたりした、多層構造のn側電極が提案されている(特許文献2)。また、AlにTi(チタン)を添加してAl−Ti合金とすることによって、Al単体膜の持つ上記問題点が改善されることが知られている(特許文献3)。 In order to solve the above problem of the Al electrode, the region in contact with the n-type nitride semiconductor layer is an Al layer, the surface side is an Au layer that is difficult to oxidize, and further, the reaction between the Al layer and the Au layer is prevented in the middle An n-side electrode having a multilayer structure in which an intermediate layer is provided has been proposed (Patent Document 2). In addition, it is known that the above-described problems of the Al single film can be improved by adding Ti (titanium) to Al to form an Al—Ti alloy (Patent Document 3).
しかしながら、窒化物半導体上に形成されたAl電極において上記熱処理時に著しい表面荒れが生じる主原因は、Alの熱膨張係数(約23×10−6K−1)とGaN系半導体の熱膨張係数(約6×10−6K−1)との差が大きく、熱処理時の温度変化により強い応力が発生してAl層が降伏変形するためであることから、特許文献2に開示された電極の多層構造化のみによって、この問題を解決することは難しい。すなわち、特許文献2の方法は、表面荒れの原因をAlの融点が低いことにあると捉え、Al層が受ける熱的影響を軽減するために、Al層の上に設ける保護層の構成を工夫するものであるが、Al層自体の特性を変えるものではない。そのために、Al層で発生した変形の影響が上部の中間層やAu層に及んで、表面荒れに至ることになる。ひどい場合には中間層に貫通孔が形成されて、Al層とAu層の反応を抑制する効果も得られなくなる。
一方、Alの合金化は、Al自体の特性を改善する優れた方法であるが、n型GaN系半導体とのオーミック性を極端に悪化させることなく、熱処理時のAlの耐変形性を向上させ得る添加元素としては、Tiの他に適当なものが見出されていないのが実情である。
Al alloying, on the other hand, is an excellent method for improving the characteristics of Al itself, but improves the Al deformation resistance during heat treatment without extremely deteriorating ohmic properties with the n-type GaN-based semiconductor. As an additive element to be obtained, no appropriate element has been found in addition to Ti.
本発明の課題は、n型GaN系半導体層とのオーミック性を損なうことなく、接触抵抗を低下させるための熱処理時の表面荒れが抑制されたn側電極、その製造方法およびそれを有する発光素子を提供することであり、そのことにより、ワイヤボンディングやフリップチップボンディングを行う際の、Auワイヤやろう材とn側電極との接合性を向上させ、GaN系半導体素子の製造効率および信頼性を高めようとするものである。 An object of the present invention is to provide an n-side electrode in which surface roughness during heat treatment for reducing contact resistance is suppressed without impairing ohmic properties with an n-type GaN-based semiconductor layer, a manufacturing method thereof, and a light-emitting element having the same This improves the bonding efficiency between the Au wire or brazing material and the n-side electrode when performing wire bonding or flip chip bonding, and improves the manufacturing efficiency and reliability of GaN-based semiconductor elements. It is something that is going to be raised.
本発明は以下の特徴を有する。
(1)n型窒化物半導体層の表面に形成されたオーミック接触用の電極であって、当該電極のうちの、少なくともn型窒化物半導体層に接する領域は、実質的にアルミニウムとネオジムの2元素からなるAl−Nd合金で形成される、n型窒化物半導体層用の電極。
(2)上記Al−Nd合金中のネオジムの含有量が、0.7原子%〜10原子%である上記(1)記載の電極。
(3)上記Al−Nd合金が、アルミニウムとネオジムとからなる金属間化合物を含む、上記(2)記載の電極。
(4)上記Al−Nd合金で形成される領域の上に形成されたボンディング用金属層をさらに有する、上記(1)〜(3)のいずれかに記載の電極。
(5)上記Al−Nd合金で形成される領域と上記ボンディング用金属層との間に形成されたバリア層をさらに有する、上記(4)記載の電極。
(6)上記Al−Nd合金で形成される領域の上に形成された、金からなる層と白金からなる層とがそれぞれ2層以上交互に積層された交互積層体を、さらに有する、上記(1)〜(3)のいずれかに記載の電極。
(7)n型窒化物半導体層の表面に、実質的にアルミニウムとネオジムの2元素からなり、アルミニウムにネオジムが固溶されたアルミニウム合金からなる薄膜を形成する工程と、上記薄膜を熱処理して析出強化させる工程とを有するn型窒化物半導体層用の電極の製造方法。
(8)上記アルミニウム合金中のネオジムの含有量が、0.7原子%〜10原子%である、上記(7)記載の製造方法。
(9)上記アルミニウム合金からなる薄膜がスパッタリングにより形成される上記(7)(8)記載の製造方法。
(10)上記熱処理の温度が150℃〜600℃である上記(7)〜(9)のいずれかに記載の製造方法。
(11)上記熱処理の温度が350℃〜600℃である、上記(10)記載の製造方法。
(12)上記(1)〜(6)のいずれかに記載の電極を有する、窒化物半導体発光素子。
The present invention has the following features.
(1) An electrode for ohmic contact formed on the surface of an n-type nitride semiconductor layer, wherein at least a region in contact with the n-type nitride semiconductor layer is substantially made of aluminum and neodymium. An electrode for an n-type nitride semiconductor layer formed of an Al—Nd alloy made of an element.
(2) The electrode according to (1), wherein the content of neodymium in the Al—Nd alloy is 0.7 atomic% to 10 atomic%.
(3) The electrode according to (2) above, wherein the Al—Nd alloy contains an intermetallic compound composed of aluminum and neodymium.
(4) The electrode according to any one of (1) to (3), further including a bonding metal layer formed on a region formed of the Al—Nd alloy.
(5) The electrode according to (4), further including a barrier layer formed between the region formed of the Al—Nd alloy and the bonding metal layer.
(6) The method further includes an alternate laminate formed by alternately laminating two or more layers made of gold and platinum, each of which is formed on the region formed of the Al—Nd alloy. The electrode according to any one of 1) to (3).
(7) forming on the surface of the n-type nitride semiconductor layer a thin film made of an aluminum alloy substantially composed of two elements of aluminum and neodymium and in which neodymium is dissolved in aluminum; and heat-treating the thin film. And a method for producing an electrode for an n-type nitride semiconductor layer, comprising a step of strengthening the precipitation.
(8) The production method according to (7), wherein the content of neodymium in the aluminum alloy is 0.7 atomic% to 10 atomic%.
(9) The manufacturing method according to the above (7) or (8), wherein the thin film made of the aluminum alloy is formed by sputtering.
(10) The manufacturing method according to any one of (7) to (9), wherein the temperature of the heat treatment is 150 ° C to 600 ° C.
(11) The manufacturing method according to (10), wherein the temperature of the heat treatment is 350 ° C. to 600 ° C.
(12) A nitride semiconductor light emitting device having the electrode according to any one of (1) to (6).
本発明のn型GaN系半導体層用の電極は、次の効果を奏する。
(1)n型GaN系半導体層との間で良好なオーミック接触が得られる。
(2)接触抵抗を低下させるための熱処理を行ったときの表面荒れが大幅に抑制され、その結果、Auワイヤ、ろう材、導電性接着剤との接合性が良好である。
上記(1)、(2)の効果が同時に得られることは、本発明者らの実験・研究により初めて確認されたものであり、従来技術からは全く予期されない結果である。このような効果が得られる詳しい理由は明らかではないが、(2)については、Ndの添加によるAlの固溶強化ならびに、過剰に添加されたNdが金属間化合物等として析出することによる析出強化が起こることにより、Al単体を用いた場合に比べて耐変形性が向上したことが考えられる。一方、(1)については、上記析出強化の過程で、Ndの固溶濃度が低い領域が生成し、Al−Nd合金層全体としての電気的性質が、かかる領域の性質を強く反映して、Al単体に近づくためではないかと、本発明者等は推定している。
なお、本発明のn型GaN系半導体層用の電極は、光学的にも、Al単体に似て、GaN系半導体発光素子が発生する青色〜紫外に至る短波長光に対する高い反射性を有していることから、GaN系半導体発光素子用の電極として、特に好適に用い得る。
The electrode for an n-type GaN-based semiconductor layer of the present invention has the following effects.
(1) Good ohmic contact can be obtained with the n-type GaN-based semiconductor layer.
(2) Roughness of the surface when heat treatment for reducing contact resistance is performed is greatly suppressed, and as a result, the bondability with Au wire, brazing material, and conductive adhesive is good.
The fact that the effects of (1) and (2) can be obtained at the same time has been confirmed for the first time by the experiments and researches of the present inventors, and is an unexpected result from the prior art. The detailed reason why such an effect is obtained is not clear, but for (2), solid solution strengthening of Al by addition of Nd and precipitation strengthening by precipitation of excessively added Nd as an intermetallic compound or the like. As a result of this, it is considered that the deformation resistance is improved as compared with the case of using Al alone. On the other hand, for (1), in the process of precipitation strengthening, a region with a low solid solution concentration of Nd is generated, and the electrical properties of the entire Al—Nd alloy layer strongly reflect the properties of the region, The present inventors presume that it is likely to approach Al alone.
The electrode for the n-type GaN-based semiconductor layer of the present invention is optically similar to Al alone and has high reflectivity for short-wavelength light from blue to ultraviolet generated by the GaN-based semiconductor light-emitting element. Therefore, it can be particularly suitably used as an electrode for a GaN-based semiconductor light emitting device.
以下、GaN系半導体素子であるGaN系LEDを例として用い、本発明を説明する。
上述したように、GaN系LEDの素子構造は、図2に一例を示すように、結晶基板B1、バッファ層B2上に、GaN系半導体層を順次成長させて積層体とした素子構造を有する。該積層体には、下層側から順にn型GaN系半導体層1、発光層2、p型GaN系半導体層3が含まれている。n型GaN系半導体層1には、n型コンタクト層と、n型クラッド層とが独立して含まれる場合があるが、同図の例では1層だけで両層を兼用している。発光層3は、キャリアの再結合による発光を生ぜしめるための層であって、単一層の態様だけではなく、積層構造であってもよい。
Hereinafter, the present invention will be described using a GaN-based LED, which is a GaN-based semiconductor element, as an example.
As described above, the element structure of the GaN-based LED has an element structure in which a GaN-based semiconductor layer is sequentially grown on the crystal substrate B1 and the buffer layer B2 to form a stacked body, as shown in FIG. The stacked body includes an n-type GaN-based
図1は、本発明のn型GaN系半導体層用の電極を拡大した図である。図1には3層構造を有する電極が記載されているが、本発明の電極は3層構造のものに限定されない。本発明のn型GaN系半導体層用の電極P1の特徴は、当該電極のうちの、少なくともn型GaN系半導体層1に接する領域P11が、実質的にAlとNdの2元素からなるAl−Nd合金で形成される点である。ここで、「実質的」とは、製造工程等に由来する不可避不純物を除いては、AlおよびNdの2元素のみ含有する合金であることを意味している。
FIG. 1 is an enlarged view of an electrode for an n-type GaN-based semiconductor layer according to the present invention. Although FIG. 1 shows an electrode having a three-layer structure, the electrode of the present invention is not limited to a three-layer structure. The electrode P1 for the n-type GaN-based semiconductor layer according to the present invention is characterized in that at least a region P11 in contact with the n-type GaN-based
n型GaN系半導体層用の電極P1における、n型GaN系半導体層に接する領域P11は、n型GaN系半導体層1との接面を含む領域である。
本発明のn型GaN系半導体層用の電極P1において、Al−Nd合金から形成される領域P11の厚さは、1nm〜2000nmとすることができる。厚さが10nm未満であると、Al−Nd合金がn型GaN系半導体層の表面に島状に付着した薄膜となるので、熱処理時にAl−Nd合金とGaN系半導体との熱膨張係数差により発生する応力が緩和され、ヒロックが形成され難くなる点で好ましいが、厚さが1nmよりも小さくなると、Al−Nd合金とGaN系半導体表面との接触面積が小さくなるために、オーミック性が低下したり、接触抵抗が増加する傾向がある。
In the electrode P1 for the n-type GaN-based semiconductor layer, a region P11 in contact with the n-type GaN-based semiconductor layer is a region including a contact surface with the n-type GaN-based
In the electrode P1 for the n-type GaN-based semiconductor layer of the present invention, the thickness of the region P11 formed from the Al—Nd alloy can be 1 nm to 2000 nm. If the thickness is less than 10 nm, the Al—Nd alloy becomes a thin film that adheres to the surface of the n-type GaN-based semiconductor layer in an island shape. Therefore, due to the difference in thermal expansion coefficient between the Al—Nd alloy and the GaN-based semiconductor during heat treatment. It is preferable in that the generated stress is relaxed and hillocks are hardly formed. However, when the thickness is smaller than 1 nm, the contact area between the Al—Nd alloy and the GaN-based semiconductor surface becomes small, so that the ohmic property is lowered. Or the contact resistance tends to increase.
n側電極P1を、図1に例示するような多層構造とする場合には、Al−Nd合金からなる領域P11の厚さは、n型GaN系半導体層とのオーミック性が達成される厚さであればよく、好ましくは、1nm〜500nmである。ただし、上層を構成する金属の種類によっては、熱処理の過程でAl−Nd合金層とn型GaN系半導体層との界面近傍にまで拡散して、Al−Nd合金とn型GaN系半導体層とのオーミック性に悪影響を与える場合があることから、領域P11の厚さは、より好ましくは10nm以上、更に好ましくは、30nm以上である。 In the case where the n-side electrode P1 has a multilayer structure as illustrated in FIG. 1, the thickness of the region P11 made of an Al—Nd alloy is such that an ohmic property with the n-type GaN-based semiconductor layer is achieved. And preferably 1 nm to 500 nm. However, depending on the type of metal constituting the upper layer, it diffuses to the vicinity of the interface between the Al—Nd alloy layer and the n-type GaN-based semiconductor layer during the heat treatment, and the Al—Nd alloy and the n-type GaN-based semiconductor layer Therefore, the thickness of the region P11 is more preferably 10 nm or more, and further preferably 30 nm or more.
本発明のn型GaN系半導体層用の電極P1は、Al−Nd合金の単層であってもよいが、その場合、電極P1の厚さは、ワイヤボンディングやろう材を用いたリード電極との接合の工程で受ける衝撃に耐え得るように、好ましくは50nm以上であり、より好ましくは100nm以上であり、更に好ましくは、200nm以上である。Al−Nd合金の単層からなるn側電極P1の厚さに、特に上限はないが、1000nmより厚くしても効果は変わらないため、材料消費を少なくするという観点から、1000nm以下とすることが好ましい。 The electrode P1 for the n-type GaN-based semiconductor layer of the present invention may be a single layer of an Al—Nd alloy. In this case, the thickness of the electrode P1 is the same as that of a lead electrode using wire bonding or brazing material. The thickness is preferably 50 nm or more, more preferably 100 nm or more, and still more preferably 200 nm or more so that it can withstand the impact received in the bonding step. There is no particular upper limit to the thickness of the n-side electrode P1 made of a single layer of Al—Nd alloy, but the effect does not change even if it is thicker than 1000 nm. From the viewpoint of reducing material consumption, it should be 1000 nm or less. Is preferred.
本発明のn型GaN系半導体層用の電極における、Al−Nd合金からなる領域P11は、平衡状態での固溶限を超える量のNdがAlに固溶したAl合金からなる薄膜を製膜後、熱処理して得られるものである。この熱処理の過程で、一部のNdがAl4Nd金属間化合物等として析出することにより、合金中のNdの存在態様や濃度が微視的に不均一となり得るが、巨視的にみたNdの含有量は、製膜時の含有量と同じである。
該Al−Nd合金の好ましいNd含有量は、0.05原子%より高いことが必要であり、好ましくは0.7原子%〜10原子%、特に好ましくは約2原子%(1.8〜2.2原子%)である。Ndの含有量が0.05原子%以下では、熱処理による析出強化が十分に生じない。Ndの含有量が10原子%を超えると、n型GaN系半導体とのオーミック性が低下する傾向がある。
In the electrode for an n-type GaN-based semiconductor layer of the present invention, the region P11 made of an Al—Nd alloy forms a thin film made of an Al alloy in which an amount of Nd exceeding the solid solubility limit in an equilibrium state is dissolved in Al. Thereafter, it is obtained by heat treatment. In the course of this heat treatment, some Nd precipitates as Al 4 Nd intermetallic compounds, etc., so that the presence mode and concentration of Nd in the alloy may become microscopically uneven. The content is the same as the content at the time of film formation.
The preferred Nd content of the Al—Nd alloy needs to be higher than 0.05 atomic%, preferably 0.7 atomic% to 10 atomic%, particularly preferably about 2 atomic% (1.8 to 2). .2 atomic%). When the Nd content is 0.05 atomic% or less, precipitation strengthening due to heat treatment does not occur sufficiently. If the Nd content exceeds 10 atomic%, the ohmic property with the n-type GaN-based semiconductor tends to decrease.
上記Al−Nd合金の熱処理の温度は、150℃よりも高温とすれば、Al4Nd金属間化合物の析出が生じて、析出強化が生じるが、析出強化を十分にするには300℃以上とすることが好ましく、より好ましくは400℃以上である。また、熱処理温度はAlの融点を超えない温度とする必要があり、600℃以下とすることが好ましい。
好ましい熱処理時間は、熱処理温度にもよるが、例えば、300℃以上に1分以上保持すればよく、その間の温度の変動は問わない。
熱処理法自体は公知の方法を用いてよく、例えば、抵抗加熱型の熱処理炉やランプ加熱炉(ラピッドサーマルアニール装置:RTA装置とも呼ばれる)を用いればよい。
なお、該熱処理の工程は、Al−Nd合金の析出強化のための熱処理として専用に行ってもよいが、加熱を伴う他のプロセス(例えばn側電極とn型窒化物半導体との接触抵抗を低下させるための熱処理工程や、絶縁保護膜の形成工程)での加熱を利用してもよい。
熱処理時の雰囲気は、特に、n側電極をAl−Nd合金からなる単層とする場合には、表面の酸化を抑制するために、窒素、希ガス等の不活性ガス雰囲気を用いることが好ましい。後述するボンディング金属層を表面に形成する場合には、表面が酸化を受け難いために、雰囲気は特に限定されない。
If the temperature of the heat treatment of the Al—Nd alloy is higher than 150 ° C., precipitation of the Al 4 Nd intermetallic compound occurs and precipitation strengthening occurs. Preferably, it is 400 ° C. or higher. The heat treatment temperature must be a temperature that does not exceed the melting point of Al, and is preferably 600 ° C. or lower.
Although the preferable heat treatment time depends on the heat treatment temperature, for example, the heat treatment time may be maintained at 300 ° C. or higher for 1 minute or longer, and the temperature does not change during that time.
As the heat treatment method itself, a known method may be used. For example, a resistance heating type heat treatment furnace or a lamp heating furnace (also called a rapid thermal annealing apparatus: also called an RTA apparatus) may be used.
The heat treatment step may be performed exclusively as a heat treatment for precipitation strengthening of the Al—Nd alloy, but other processes involving heating (for example, the contact resistance between the n-side electrode and the n-type nitride semiconductor) You may utilize the heating in the heat processing process for reducing, and the formation process of an insulating protective film.
The atmosphere during the heat treatment is preferably an inert gas atmosphere such as nitrogen or a rare gas in order to suppress surface oxidation, particularly when the n-side electrode is a single layer made of an Al—Nd alloy. . When a bonding metal layer to be described later is formed on the surface, the atmosphere is not particularly limited because the surface is difficult to be oxidized.
平衡状態での固溶限を超える量のNdがAlに固溶したAl合金からなる薄膜をn型GaN系半導体層1の表面に形成させる方法は、非平衡組成の薄膜を形成し得る方法であれば特に制限はないが、好ましくは、スパッタリングが挙げられ、ターゲットとして、溶解鋳造法、スプレーフォーミング法、粉末焼結法等の方法により作製される、あらかじめAl中にNdが固溶または金属間化合物の形で分散された合金スパッタリングターゲットを用いる方法や、あるいは、AlのチップとNdのチップとを組み合わせた分割型スパッタリングターゲットを用いる方法が例示される。 The method of forming on the surface of the n-type GaN-based semiconductor layer 1 a thin film made of an Al alloy in which an amount of Nd exceeding the solid solubility limit in the equilibrium state is dissolved in Al is a method capable of forming a thin film having a non-equilibrium composition. There is no particular limitation as long as it is, but preferably sputtering is used, and the target is prepared by a method such as a melt casting method, a spray forming method, a powder sintering method, or the like. Examples include a method using an alloy sputtering target dispersed in the form of a compound, or a method using a split sputtering target in which an Al chip and an Nd chip are combined.
本発明のn型GaN系半導体層用の電極P1は、図1に例示するように、上記Al−Nd合金で形成される領域P11の上に順次形成されたバリア層P12とボンディング用金属層P13とをさらに有する多層構造としてもよい。
バリア層P12は、n側電極とn型GaN系半導体との接触抵抗を低下させるための熱処理時に、Al−Nd合金で形成される領域P11とボンディング用金属層P13との合金化反応を防止するための層であり、ボンディング用金属層P13は、ワイヤボンディング時やフリップチップボンディング時に、溶融したAuやAu−Sn合金系ハンダなどのろう材と、n側電極表面との濡れ性を良くするための層である。
As illustrated in FIG. 1, an electrode P1 for an n-type GaN-based semiconductor layer according to the present invention includes a barrier layer P12 and a bonding metal layer P13 sequentially formed on a region P11 formed of the Al—Nd alloy. It is good also as a multilayer structure which has further.
The barrier layer P12 prevents an alloying reaction between the region P11 formed of the Al—Nd alloy and the bonding metal layer P13 during the heat treatment for reducing the contact resistance between the n-side electrode and the n-type GaN-based semiconductor. The bonding metal layer P13 is for improving the wettability between the molten brazing material such as Au or Au—Sn alloy solder and the n-side electrode surface during wire bonding or flip chip bonding. Layer.
バリア層P12の材料は、その目的から、Al−Nd合金およびボンディング用金属層P13を構成する材料よりも融点の高い金属材料とする。例えば、ボンディング用金属層P13にAuまたはAu合金を用いる場合であれば、それより融点の高い金属材料として、Co(コバルト)、Ti(チタン)、W(タングステン)、Mo(モリブデン)、Pt(白金)、Ir(イリジウム)、Pd(パラジウム)、Rh(ロジウム)、Ni(ニッケル)、これらの合金等が例示される。
バリア層P12の厚さは、好ましくは10nm以上であり、より好ましくは30nm以上である。バリア層P12の厚さの上限は特に定められるものではないが、100nmより厚くしても効果は変わらないことから、一般的には100nmが挙げられる。
For the purpose, the material of the barrier layer P12 is a metal material having a melting point higher than that of the material constituting the Al—Nd alloy and the bonding metal layer P13. For example, if Au or an Au alloy is used for the bonding metal layer P13, Co (cobalt), Ti (titanium), W (tungsten), Mo (molybdenum), Pt (as a metal material having a higher melting point). Examples include platinum), Ir (iridium), Pd (palladium), Rh (rhodium), Ni (nickel), and alloys thereof.
The thickness of the barrier layer P12 is preferably 10 nm or more, more preferably 30 nm or more. The upper limit of the thickness of the barrier layer P12 is not particularly defined, but since the effect does not change even when the thickness is greater than 100 nm, 100 nm is generally mentioned.
ボンディング用金属層P13の材料は、その目的から、少なくとも、その下に設けられているAl−Nd合金層およびバリア層を構成する材料よりも酸化し難い材料とする。最も好ましいのは、Au(Auを主成分とする合金を含む)である。
ボンディング用金属層P13の厚さは、50nm〜2000nmとすることが好ましい。
For the purpose, the material of the bonding metal layer P13 is at least a material that is less likely to be oxidized than the material constituting the Al—Nd alloy layer and the barrier layer provided thereunder. Most preferable is Au (including an alloy containing Au as a main component).
The thickness of the bonding metal layer P13 is preferably 50 nm to 2000 nm.
n型GaN系半導体層用の電極P1を多層構造とする態様においては、Al−Nd合金で形成される領域P11、バリア層P12、ボンディング用金属層P13の間に、更に、種々の機能層を設けてもよいし、バリア層P12やボンディング用金属層P13それぞれの内部に、組成の変化した層を含ませ、各層を多層構造や組成傾斜した層としてもよい。
好ましい態様として、例えば、Al−Nd合金で形成される領域の上に、Pt層とAu層を各2層以上、最下層がPt層、最上層がAu層となるように交互に積層した交互積層体を形成することが挙げられる。ここで、Pt層は白金(白金を主成分とする合金でもよい)からなる層であり、Au層は金(金を主成分とする合金でもよい)からなる層である。また、この交互積層体の最下層をPt層に代えて、Co、Ti、W、Mo、Ir、Pd、Rh、Niから選ばれるいずれか一種以上の金属からなる層としてもよい。
In the aspect in which the electrode P1 for the n-type GaN-based semiconductor layer has a multilayer structure, various functional layers are further provided between the region P11 formed of the Al—Nd alloy, the barrier layer P12, and the bonding metal layer P13. Alternatively, the barrier layer P12 and the bonding metal layer P13 may each include a layer with a changed composition, and each layer may have a multilayer structure or a composition-graded layer.
As a preferred embodiment, for example, an alternating layer in which two or more Pt layers and Au layers are formed on a region formed of an Al—Nd alloy, the lowermost layer is a Pt layer, and the uppermost layer is an Au layer. Forming a laminated body is mentioned. Here, the Pt layer is a layer made of platinum (or an alloy containing platinum as a main component), and the Au layer is a layer made of gold (or an alloy containing gold as a main component). Further, the lowermost layer of the alternate laminate may be a layer made of one or more metals selected from Co, Ti, W, Mo, Ir, Pd, Rh, and Ni, instead of the Pt layer.
n型GaN系半導体層用の電極P1を多層構造とする態様においては、また、Al−Nd合金からなる領域P11のみを形成したところで、電極とn型GaN系半導体との接触抵抗を低下させるための熱処理を行ってもよい。この場合、その後に電極層が高温に曝される工程がなければ、バリア層P12を省略して、領域P11の上に直接、ボンディング用金属層P13を設けることもできる。 In the embodiment in which the electrode P1 for the n-type GaN-based semiconductor layer has a multilayer structure, when only the region P11 made of an Al—Nd alloy is formed, the contact resistance between the electrode and the n-type GaN-based semiconductor is reduced. The heat treatment may be performed. In this case, if there is no subsequent step of exposing the electrode layer to high temperature, the barrier metal layer P12 can be omitted and the bonding metal layer P13 can be provided directly on the region P11.
本発明による窒化物半導体発光素子は、以上説明した本発明による電極をn型層に具備する素子である。素子の積層構造自体については従来技術を参照してもよい。 The nitride semiconductor light emitting device according to the present invention is a device having the electrode according to the present invention described above in an n-type layer. The prior art may be referred to for the laminated structure of the element itself.
実施例1〜3
直径2インチのサファイア基板を3枚用意し、有機金属化合物気相成長法を用いて、それぞれの表面上に、400℃で成長したGaNからなる低温バッファ層を介して、Siをドープしたn型GaN系半導体層を、成長温度1000℃で3μmの厚さに成長させた。
そのn型GaN系半導体層の表面に、所定の電極パターン(後述)を開口部として有するフォトレジスト膜を、通常のフォトリソグラフィ技術を用いて形成した後、スパッタリングにより、厚さ400nmのAl−Nd合金薄膜を形成した。スパッタリングに用いた装置は、DCマグネトロンスパッタリング装置で、ターゲットとしては、純Alターゲット(純度99.99%以上)の上に、5mm角のNd(いずれも純度99.99%)のチップを所定量設置した複合ターゲットを用い、Ndチップの設置量を変えることにより、各試料のAl−Nd合金薄膜のNd含有量がそれぞれ1原子%(実施例1)、2原子%(実施例2)、4原子%(実施例3)となるようにした。このNd含有量は、誘導結合プラズマ(ICP)型発光分光分析により確認した。
Al−Nd合金薄膜の形成後、フォトレジスト膜をリフトオフすることにより、ウエハ面を見たときの個々の電極形状が直径100μmの円形で、該円形の電極が中心間ピッチ350μmで50×50の正方行列状に配列された、電極パターンを得た。
その後、試料をラピッド・サーマル・アニール装置(RTA装置)内に配置し、窒素雰囲気中にて、400℃で3分間の熱処理(アニーリング)を行った。
次に、上記パターンに配列された電極の、全ての隣接する対の間でI−V(電流−電圧)特性を測定した。測定時の電流値の範囲は0〜20mAとした。その結果、Al−Nd合金からなる電極のNd含有量を1原子%(実施例1)、2原子%(実施例2)、4原子%(実施例3)とした試料のいずれにおいても、各電極間のI−V特性が直線的となったことから、電極はオーミック性となっていることが判った。
また、実施例1ないし実施例3のいずれの試料においても、熱処理後の電極表面は金属光沢を有しており、微分干渉顕微鏡で観察したところ、ヒロックやボイドは全く観察されず、平滑であった。
Examples 1-3
Three n-type sapphire substrates with a diameter of 2 inches were prepared, and Si-doped n-type via a low-temperature buffer layer made of GaN grown at 400 ° C. on each surface by using an organic metal compound vapor phase growth method. The GaN-based semiconductor layer was grown at a growth temperature of 1000 ° C. to a thickness of 3 μm.
A photoresist film having a predetermined electrode pattern (described later) as an opening is formed on the surface of the n-type GaN-based semiconductor layer using an ordinary photolithography technique, and then Al—Nd having a thickness of 400 nm is formed by sputtering. An alloy thin film was formed. The apparatus used for sputtering is a DC magnetron sputtering apparatus. As a target, a predetermined amount of a 5 mm square Nd chip (purity of 99.99%) is placed on a pure Al target (purity of 99.99% or more). By using the installed composite target and changing the installation amount of the Nd chip, the Nd content of the Al—Nd alloy thin film of each sample is 1 atomic% (Example 1), 2 atomic% (Example 2), 4 Atomic% (Example 3). The Nd content was confirmed by inductively coupled plasma (ICP) emission spectroscopic analysis.
After the formation of the Al—Nd alloy thin film, the photoresist film is lifted off so that the shape of each electrode when viewed from the wafer surface is a circle having a diameter of 100 μm, and the circular electrodes are 50 × 50 with a center-to-center pitch of 350 μm. An electrode pattern arranged in a square matrix was obtained.
Thereafter, the sample was placed in a rapid thermal annealing apparatus (RTA apparatus), and was subjected to heat treatment (annealing) at 400 ° C. for 3 minutes in a nitrogen atmosphere.
Next, IV (current-voltage) characteristics were measured between all adjacent pairs of electrodes arranged in the above pattern. The range of the current value during measurement was 0 to 20 mA. As a result, in any of the samples in which the Nd content of the electrode made of the Al—Nd alloy was 1 atomic% (Example 1), 2 atomic% (Example 2), and 4 atomic% (Example 3), Since the IV characteristics between the electrodes became linear, it was found that the electrodes were ohmic.
In any of the samples of Examples 1 to 3, the electrode surface after the heat treatment had a metallic luster, and when observed with a differential interference microscope, hillocks and voids were not observed at all and were smooth. It was.
実施例4〜6
直径2インチのサファイア基板を3枚用意し、有機金属化合物気相成長法を用いて、それぞれの表面上に、400℃で成長したGaNからなる低温バッファ層を介して、Siをドープしたn型Ga0.9Al0.1N層を、成長温度1100℃で3μmの厚さに成長させた。
そのn型Ga0.9Al0.1N層の表面に、実施例1と同様の方法で、実施例1と同様のパターンに、厚さ300nmのAl−Nd合金からなる電極を形成した。各試料のAl−Nd合金電極のNd含有量は、それぞれ1原子%(実施例4)、2原子%(実施例5)、4原子%(実施例6)とした。
実施例1の場合と同様に、熱処理を行った後、I−V特性を測定したところ、実施例4、実施例5、実施例6の試料のいずれにおいても、各電極間のI−V特性は直線的となり、電極はオーミック性となっていることが判った。
また、実施例4ないし実施例6のいずれの試料においても、熱処理後の電極表面は金属光沢を有しており、微分干渉顕微鏡で観察したところ、ヒロックやボイドは全く観察されず、平滑であった。
Examples 4-6
Three n-type sapphire substrates with a diameter of 2 inches were prepared, and Si-doped n-type via a low-temperature buffer layer made of GaN grown at 400 ° C. on each surface by using an organic metal compound vapor phase growth method. A Ga 0.9 Al 0.1 N layer was grown at a growth temperature of 1100 ° C. to a thickness of 3 μm.
On the surface of the n-type Ga 0.9 Al 0.1 N layer, an electrode made of an Al—Nd alloy having a thickness of 300 nm was formed in the same pattern as in Example 1 by the same method as in Example 1. The Nd content of the Al—Nd alloy electrode of each sample was 1 atomic% (Example 4), 2 atomic% (Example 5), and 4 atomic% (Example 6), respectively.
In the same manner as in Example 1, the IV characteristics were measured after the heat treatment, and the IV characteristics between the electrodes in any of the samples of Example 4, Example 5, and Example 6. Was linear and the electrode was found to be ohmic.
In any of the samples of Examples 4 to 6, the electrode surface after the heat treatment had a metallic luster, and when observed with a differential interference microscope, hillocks and voids were not observed at all and were smooth. It was.
実施例7
実施例1において、電極をAl−Nd合金薄膜とする代わりに、厚さ100nmのAl−Nd合金(Nd含有量:2原子%)薄膜、厚さ50nmのPd薄膜、厚さ400nmのAu薄膜をこの順に積層してなる多層膜で構成した試料を作成した。Al−Nd合金薄膜は、実施例2と同様にスパッタリングにより形成し、その上に積層するPd薄膜およびAu薄膜は、電子ビーム加熱式の真空蒸着装置を用いて形成した。最上層のAu薄膜を形成した後は、実施例1と同様に、フォトレジスト膜をリフトオフしてパターニングされた電極を得た後、450℃で1分間の熱処理を行った。
得られた試料について、実施例1の場合と同様にI−V特性を測定したところ、各電極間のI−V特性は直線的となり、電極はオーミック性となっていた。
また、熱処理後の電極表面は金属光沢を有しており、微分干渉顕微鏡で観察したところ、ヒロックやボイドは全く観察されず、平滑であった。
Example 7
In Example 1, instead of using an Al—Nd alloy thin film as the electrode, a 100 nm thick Al—Nd alloy (Nd content: 2 atom%) thin film, a 50 nm thick Pd thin film, and a 400 nm thick Au thin film were used. A sample composed of multilayer films laminated in this order was prepared. The Al—Nd alloy thin film was formed by sputtering in the same manner as in Example 2, and the Pd thin film and Au thin film to be laminated thereon were formed by using an electron beam heating vacuum deposition apparatus. After the uppermost Au thin film was formed, the photoresist film was lifted off to obtain a patterned electrode in the same manner as in Example 1, followed by heat treatment at 450 ° C. for 1 minute.
About the obtained sample, when the IV characteristic was measured like the case of Example 1, the IV characteristic between each electrode became linear and the electrode became ohmic property.
Further, the electrode surface after the heat treatment had a metallic luster, and when observed with a differential interference microscope, hillocks and voids were not observed at all and were smooth.
比較例1
実施例1において、Al−Nd合金のNd含有量を0.05%とする以外は、実施例1と同様の方法で電極を作製したところ、熱処理後の電極表面は金属光沢が失われており、微分干渉顕微鏡で観察すると、多数のヒロックやボイドが観察された。
Comparative Example 1
In Example 1, except that the Nd content of the Al—Nd alloy was set to 0.05%, an electrode was produced by the same method as in Example 1. As a result, the surface of the electrode after the heat treatment lost metallic luster. When observed with a differential interference microscope, many hillocks and voids were observed.
比較例2
実施例7において、Al−Nd合金薄膜のNd含有量を0.05%とする以外は、実施例1と同様の方法で電極を作製したところ、熱処理後の電極表面は金属光沢が失われており、微分干渉顕微鏡で観察すると、多数のヒロックやボイドが観察された。
Comparative Example 2
In Example 7, except that the Nd content of the Al—Nd alloy thin film was set to 0.05%, an electrode was produced by the same method as in Example 1. As a result, the electrode surface after the heat treatment lost metallic luster. When observed with a differential interference microscope, many hillocks and voids were observed.
実施例8
直径2インチのサファイア基板上に、有機金属化合物気相成長法を用いて、GaN低温成長バッファ層、n型GaNクラッド層、InGaN発光層、p型AlGaNクラッド層、p型GaNコンタクト層を順に成長し、発光波長400nmのLEDウェハを作製した。その後、電極形成、素子分離を行い、図2に示す断面構造(ただし、p型クラッド層とp型コンタクト層は異なる層からなる)を有し、上面形状が略正方形状で、サイズが300μm×300μmのLED素子を得た。n側電極については、ドライエッチング法によってLEDウェハのGaN系半導体層積層側からInGaN発光層、p型AlGaNクラッド層、p型GaNコンタクト層の一部を除去し、露出されたn型GaNクラッド層の表面上に実施例7と同様の手順にて形成した。すなわち、厚さ100nmのAl−Nd合金(Nd含有量:2原子%)薄膜、厚さ50nmのPd薄膜、厚さ400nmのAu薄膜をこの順に積層してなる多層膜を所定の電極形状に形成後、450℃で1分間熱処理することにより、形成した。p側電極としては、NiとAuを積層してなる通常の透明オーミック電極の上に、Auからなるパッド電極を形成した。得られたLED素子のワイヤボンディング性は良好であり、通電電流20mAにおけるベアチップ状態での出力は5mWであった。
Example 8
A GaN low-temperature growth buffer layer, an n-type GaN cladding layer, an InGaN light-emitting layer, a p-type AlGaN cladding layer, and a p-type GaN contact layer are sequentially grown on a sapphire substrate having a diameter of 2 inches by using an organic metal compound vapor deposition method. Thus, an LED wafer having an emission wavelength of 400 nm was produced. Thereafter, electrode formation and element isolation were performed, and the cross-sectional structure shown in FIG. 2 (where the p-type cladding layer and the p-type contact layer are formed of different layers), the top surface shape was substantially square, and the size was 300 μm × A 300 μm LED element was obtained. For the n-side electrode, the InGaN light-emitting layer, the p-type AlGaN cladding layer, and the p-type GaN contact layer are partially removed from the GaN-based semiconductor layer lamination side of the LED wafer by dry etching, and the exposed n-type GaN cladding layer The same procedure as in Example 7 was performed on the surface. That is, a multilayer film formed by laminating a 100 nm thick Al—Nd alloy (Nd content: 2 atom%) thin film, a 50 nm thick Pd thin film, and a 400 nm thick Au thin film in this order is formed in a predetermined electrode shape. Then, it formed by heat-processing at 450 degreeC for 1 minute. As the p-side electrode, a pad electrode made of Au was formed on a normal transparent ohmic electrode formed by laminating Ni and Au. The obtained LED element had good wire bonding properties, and the output in a bare chip state at an energization current of 20 mA was 5 mW.
P1 n側電極
P2 p側電極
1 n型GaN系半導体層
2 発光層
3 p型GaN系半導体層
P1 n-side electrode P2 p-side electrode 1 n-type GaN-based
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004213562A JP2006032863A (en) | 2004-07-21 | 2004-07-21 | Electrode for n-type nitride semiconductor layer and its manufacturing method and light emitting element containing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004213562A JP2006032863A (en) | 2004-07-21 | 2004-07-21 | Electrode for n-type nitride semiconductor layer and its manufacturing method and light emitting element containing same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006032863A true JP2006032863A (en) | 2006-02-02 |
Family
ID=35898809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004213562A Pending JP2006032863A (en) | 2004-07-21 | 2004-07-21 | Electrode for n-type nitride semiconductor layer and its manufacturing method and light emitting element containing same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006032863A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007322297A (en) * | 2006-06-02 | 2007-12-13 | Dainippon Printing Co Ltd | Acceleration sensor and its manufacturing method |
CN111128710A (en) * | 2020-01-15 | 2020-05-08 | 桂林理工大学 | Preparation method of gold-free low-roughness ohmic contact electrode for GaN HEMT |
-
2004
- 2004-07-21 JP JP2004213562A patent/JP2006032863A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007322297A (en) * | 2006-06-02 | 2007-12-13 | Dainippon Printing Co Ltd | Acceleration sensor and its manufacturing method |
CN111128710A (en) * | 2020-01-15 | 2020-05-08 | 桂林理工大学 | Preparation method of gold-free low-roughness ohmic contact electrode for GaN HEMT |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5502170B2 (en) | Nitride-based light emitting device and manufacturing method thereof | |
KR100580634B1 (en) | Nitride-based light emitting device and its manufacturing method | |
JP4592388B2 (en) | III-V compound semiconductor light emitting device and method for manufacturing the same | |
JP4733371B2 (en) | Ohmic electrode for n-type nitride semiconductor and method of manufacturing the same | |
KR100923034B1 (en) | Semiconductor element and method for manufacturing same | |
KR100624416B1 (en) | Flip chip type nitride light emitting device and its manufacturing method | |
JP5084101B2 (en) | Flip-chip nitride-based light emitting device and method for manufacturing the same | |
KR100910964B1 (en) | Ohmic electrode and formation method thereof | |
CN101276872B (en) | Method for forming electrode for group iii nitride compound semiconductor light-emitting device | |
WO2003023838A1 (en) | n ELECTRODE FOR III GROUP NITRIDE BASED COMPOUND SEMICONDUCTOR ELEMENT | |
JPH11177134A (en) | Manufacture of semiconductor element, semiconductor, manufacture of light emitting element, and light emitting element | |
JP2005086210A (en) | Nitride-based light emitting device and manufacturing method thereof | |
WO2014045882A1 (en) | Led element, and production method therefor | |
JP5287837B2 (en) | Gallium nitride compound semiconductor light emitting device and negative electrode thereof | |
US7101780B2 (en) | Method for manufacturing Group-III nitride compound semiconductor device | |
US6653215B1 (en) | Contact to n-GaN with Au termination | |
CN101156253A (en) | Semiconductor element and its manufacturing method | |
JP3239350B2 (en) | Electrode of n-type nitride semiconductor layer | |
JP2006032863A (en) | Electrode for n-type nitride semiconductor layer and its manufacturing method and light emitting element containing same | |
JP2007201046A (en) | Compound semiconductor and light emitting device | |
KR100561841B1 (en) | Transparent thin film electrode for forming ohmic contact of P-type semiconductor including gallium nitride for high quality light emitting diode and laser diode | |
JP2005203765A (en) | Semiconductor light emitting element of gallium nitride compound and its negative electrode | |
JP4283502B2 (en) | Group 3-5 compound semiconductor electrode, method for producing the same, and semiconductor light emitting device using the same | |
JP4999278B2 (en) | Gallium nitride compound semiconductor light emitting device | |
KR100574104B1 (en) | Flip chip type nitride light emitting device and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070330 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080404 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080404 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090825 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100223 |