[go: up one dir, main page]

JP2006028484A - Resin surface treatment agent and resin surface treatment method - Google Patents

Resin surface treatment agent and resin surface treatment method Download PDF

Info

Publication number
JP2006028484A
JP2006028484A JP2005162979A JP2005162979A JP2006028484A JP 2006028484 A JP2006028484 A JP 2006028484A JP 2005162979 A JP2005162979 A JP 2005162979A JP 2005162979 A JP2005162979 A JP 2005162979A JP 2006028484 A JP2006028484 A JP 2006028484A
Authority
JP
Japan
Prior art keywords
cerium
resin
iii
surface treatment
resin surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005162979A
Other languages
Japanese (ja)
Other versions
JP2006028484A5 (en
Inventor
Sachiko Nakamura
幸子 中村
Fukunari Miyata
福成 宮田
Terukazu Ishida
輝和 石田
Yoshio Misumi
美穂 三角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEC Co Ltd
Original Assignee
MEC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEC Co Ltd filed Critical MEC Co Ltd
Priority to JP2005162979A priority Critical patent/JP2006028484A/en
Publication of JP2006028484A publication Critical patent/JP2006028484A/en
Publication of JP2006028484A5 publication Critical patent/JP2006028484A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin surface treatment agent and a surface treatment method using the same, by which a resin surface is activated, adhesion strength between a polyimide resin film and a metal wire can be improved, adhesion strength between a polyimide resin film and another resin can be improved, resulting in excellent productivity and low treatment cost. <P>SOLUTION: The resin surface treatment agent contains as an active ingredient at least one cerium compound selected from tetravalent and trivalent cerium compounds. The surface treatment method comprises causing the surface treatment agent containing as an active ingredient at least one cerium compound selected from tetravalent and trivalent cerium compounds to come into contact with the surface of a resin and then treating the resultant with an acidic aqueous solution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂表面を活性化させる表面処理剤および樹脂表面処理法に関する。   The present invention relates to a surface treatment agent for activating a resin surface and a resin surface treatment method.

電子機器に使用される配線基板のうち、フレキシブルプリント配線板は、折り曲げ可能、薄い、軽いなどの優れた特性を有する。前記フレキシブルプリント配線板のなかでも、ベースフィルムのポリイミドと導電層の銅とを接着剤を用いないで接着させた2層構造のものが耐熱性に優れており、需要が高まっている。   Among wiring boards used in electronic devices, flexible printed wiring boards have excellent characteristics such as bendability, thinness, and lightness. Among the flexible printed wiring boards, a two-layer structure in which polyimide as a base film and copper as a conductive layer are bonded without using an adhesive is excellent in heat resistance, and demand is increasing.

前記2層構造のフレキシブルプリント配線板の基材の製法としては、めっき法、スパッタ法、キャスティング法、ラミネーション法がある。これらの製法のうち、めっき法やスパッタ法はポリイミドの選択自由度が大きく、製法が容易であるという特徴を有する。
前記めっき法は、ポリイミドフィルムに無電解めっきにより導電性の薄いシード層を形成した後、電解めっきにより銅の導体層を形成する方法である。前記スパッタ法は、ポリイミドフィルムにスパッタリングにより導電性の薄いシード層を形成した後、電解めっきにより銅の導体層を形成する方法である。
As a method for producing the base material of the flexible printed wiring board having the two-layer structure, there are a plating method, a sputtering method, a casting method, and a lamination method. Among these production methods, the plating method and the sputtering method have a feature that the degree of freedom of selection of polyimide is large and the production method is easy.
The plating method is a method in which a conductive thin seed layer is formed on a polyimide film by electroless plating, and then a copper conductor layer is formed by electrolytic plating. The sputtering method is a method in which a conductive thin seed layer is formed on a polyimide film by sputtering, and then a copper conductor layer is formed by electrolytic plating.

前記めっき法においては、セミアディティブ工法が提案されている。このセミアディティブ工法において、無電解銅めっき層と層間絶縁材料の密着を得るためには、従来、アルカリ過マンガン酸溶液などを含む薬品により絶縁材料表面に凹凸を形成し、凹凸面にめっき層を形成していた。   As the plating method, a semi-additive construction method has been proposed. In this semi-additive method, in order to obtain adhesion between the electroless copper plating layer and the interlayer insulation material, conventionally, the surface of the insulation material is formed with a chemical including an alkaline permanganate solution, and the plating layer is formed on the uneven surface. Was forming.

一方、近年の電子機器の小型化・高性能化に伴ない、パターン間は狭ピッチになっており、信号周波数も高周波化している。   On the other hand, with recent downsizing and higher performance of electronic devices, the pitch between patterns has become narrower, and the signal frequency has also increased.

前述のように無電解銅めっき層が凹凸面に形成されていると、エッチングによるパターン形成時に銅エッチング残りを生じさせやすくなるが、特にパターン間隔が狭い場合にはエッチング残りによってイオンマイグレーションなどの問題が誘発されやすいという問題があった。   If the electroless copper plating layer is formed on the uneven surface as described above, it is easy to generate copper etching residue when forming a pattern by etching. However, particularly when the pattern interval is narrow, the etching residue causes problems such as ion migration. There was a problem that was easily induced.

また、導体を流れる電流のクロック周波数は大きくなると表皮効果により電流が導体の表面付近のみに流れるが、このとき前述のように銅めっき層と絶縁材料との界面に凹凸が存在すると信号伝達がおそくなるという問題もある。   In addition, when the clock frequency of the current flowing through the conductor increases, the current flows only near the surface of the conductor due to the skin effect. At this time, if there is unevenness at the interface between the copper plating layer and the insulating material, signal transmission is slow. There is also a problem of becoming.

フレキシブル基板の絶縁材料としてはポリイミド樹脂が使用されており、ポリイミド基材をボンディングシートや、フォトソルダーレジストなどの樹脂と密着させることが要求されるが、ポリイミドの性質上、対樹脂の密着性は相手方の樹脂の種類によって大きく相違し、種類によっては全く密着しないため、材料が限定されるという問題があった。   Polyimide resin is used as an insulating material for flexible substrates, and it is required that the polyimide base material be in close contact with a resin such as a bonding sheet or a photo solder resist. There is a problem that the material is limited because it is greatly different depending on the type of resin of the other party and does not adhere at all depending on the type.

銅の表面を処理して樹脂との接着性を向上させる方法としては、黒化処理(強アルカリ水溶液による酸化銅形成)を行うこともあるが、この方法でも界面に凹凸が生じ、上記のような問題が予想される。   As a method for improving the adhesion with the resin by treating the copper surface, blackening treatment (formation of copper oxide with a strong alkaline aqueous solution) is sometimes performed. Problems are expected.

さらに一般にポリイミドは金属との接着性に劣るため、前記めっき法やスパッタ法によって製造された基材には、ポリイミドフィルムとシード層及び銅層との接着性が低いという問題がある。そこで、下記特許文献1ではポリイミド表面をプラズマ処理して、シード層及び銅層との接着性を向上させることが提案されている。
特開平3−56541号公報
Furthermore, since polyimide is generally inferior in adhesion to metal, the substrate produced by the plating method or sputtering method has a problem that adhesion between the polyimide film, the seed layer and the copper layer is low. Therefore, Patent Document 1 below proposes that the polyimide surface be plasma-treated to improve the adhesion between the seed layer and the copper layer.
JP-A-3-56541

しかし、プラズマ処理には高価な処理装置が必要であり、かつ真空雰囲気で処理する必要があるので生産性が低いという問題がある。   However, the plasma processing requires an expensive processing apparatus and has a problem that productivity is low because it is necessary to perform processing in a vacuum atmosphere.

本発明は、従来技術の課題を解決するため、生産性に優れ、処理コストも安価な樹脂の表面処理剤及びそれを用いた樹脂の表面処理法を提供する。   In order to solve the problems of the prior art, the present invention provides a resin surface treatment agent having excellent productivity and low processing cost, and a resin surface treatment method using the same.

本発明は、4価及び3価から選ばれる少なくとも一つのセリウム化合物を有効成分とする樹脂表面処理剤である。   The present invention is a resin surface treatment agent containing at least one cerium compound selected from tetravalent and trivalent as an active ingredient.

また本発明の樹脂表面処理法は、樹脂の表面に、4価及び3価から選ばれる少なくとも一つのセリウム化合物を有効成分とする表面処理剤を接触させることを特徴とする。   The resin surface treatment method of the present invention is characterized in that a surface treatment agent containing at least one cerium compound selected from tetravalent and trivalent as an active ingredient is brought into contact with the surface of the resin.

本発明は、樹脂表面を活性化し、各種樹脂例えばポリイミド系樹脂フィルムと金属配線との接着強度を向上でき、樹脂フィルムと他の樹脂との接着強度を向上できる。そのうえ、生産性に優れ、処理コストも安価な樹脂の表面処理剤及びそれを用いた樹脂の表面処理法を提供できる。   INDUSTRIAL APPLICABILITY The present invention can activate the resin surface, improve the adhesive strength between various resins such as polyimide resin film and metal wiring, and improve the adhesive strength between the resin film and other resins. In addition, it is possible to provide a resin surface treatment agent having excellent productivity and low processing cost, and a resin surface treatment method using the same.

本発明では、樹脂表面を粗化することなく化学的に処理することで、平滑な状態のまま樹脂表面の密着強度を向上できる。従って、特にファインパターンや高クロック周波数化に対応する電子材料に適した樹脂表面を得ることができる。また、従来密着性の低い樹脂間の密着性を向上させることできる。尚、本発明の処理剤を使用した樹脂表面は、SEM写真での表面観察(×3,500)では、樹脂表面の形状に変化は見られなかった。   In the present invention, the adhesion strength of the resin surface can be improved in a smooth state by chemically treating the resin surface without roughening. Therefore, it is possible to obtain a resin surface particularly suitable for electronic materials corresponding to fine patterns and higher clock frequencies. In addition, it is possible to improve the adhesion between resins with low adhesion. The resin surface using the treatment agent of the present invention showed no change in the shape of the resin surface in the surface observation (× 3,500) in the SEM photograph.

本発明者らは、樹脂表面を4価及び/又は3価のセリウム化合物を含有する水溶液などと接触させると、金属、特に銅との接着性に優れた表面になることを見出した。また、この表面は、他の樹脂との接着性にも優れていることを見出した。さらに、本発明の表面処理剤は、ポリイミド系樹脂をレーザやドリル加工により穿孔した場合に生じるスミアの溶解性に優れていることを見出した。   The present inventors have found that when a resin surface is brought into contact with an aqueous solution containing a tetravalent and / or trivalent cerium compound, the surface becomes excellent in adhesion to metals, particularly copper. Moreover, it discovered that this surface was excellent also in adhesiveness with other resin. Furthermore, it discovered that the surface treating agent of this invention was excellent in the solubility of the smear produced when a polyimide-type resin was pierced by a laser or a drill process.

即ち、本発明は下記の構成により達成される。
(1)4価及び/又は3価のセリウム化合物を有効成分とする樹脂の表面処理剤。
(2)樹脂の表面に、4価及び/又は3価のセリウム化合物を有効成分とする表面処理剤を接触させる表面処理法。
That is, the present invention is achieved by the following configuration.
(1) A resin surface treatment agent comprising a tetravalent and / or trivalent cerium compound as an active ingredient.
(2) A surface treatment method in which a surface treatment agent containing a tetravalent and / or trivalent cerium compound as an active ingredient is brought into contact with the surface of the resin.

ここで有効成分とは、0.01〜50%(質量%、以下同様)又はセリウム濃度にして0.00001〜2mol/kgの濃度範囲をいう。   Here, the active ingredient refers to a concentration range of 0.01 to 50% (mass%, the same applies hereinafter) or 0.00001 to 2 mol / kg in terms of cerium concentration.

以下に、本発明について詳細に記載する。   The present invention is described in detail below.

本発明に用いられる4価のセリウム化合物は、樹脂表面を金属や樹脂等の他の部材との接着性に優れた表面に改質しうる成分である。また、樹脂のスミアを溶解させる成分である。その具体例としては、例えば硝酸二アンモニウムセリウム(IV)、硝酸セリウムカリウム(IV)などのヘキサニトラトセリウム(IV)酸塩、硫酸四アンモニウムセリウム(IV)、硫酸セリウム(IV)などがあげられる。前記セリウム化合物は、硫酸四アンモニウムセリウム(IV)・2水和物、硫酸セリウム(IV)・4水和物等のような水和物であってもよい。前記4価のセリウム化合物は2種以上を併用してもよい。   The tetravalent cerium compound used in the present invention is a component capable of modifying the resin surface to a surface excellent in adhesion to other members such as metals and resins. It is also a component that dissolves resin smear. Specific examples thereof include hexanitratocerium (IV) salts such as diammonium cerium (IV) nitrate and potassium cerium nitrate (IV), tetraammonium cerium sulfate (IV), and cerium (IV) sulfate. . The cerium compound may be a hydrate such as tetraammonium cerium (IV) sulfate dihydrate, cerium sulfate (IV) tetrahydrate and the like. Two or more tetravalent cerium compounds may be used in combination.

本発明に用いられる3価のセリウム化合物は、酢酸セリウム(III)、硝酸アンモニウムセリウム(III)、炭酸セリウム(III)、塩化セリウム(III)、フッ化セリウム(III)、硝酸セリウム(III)、硫酸セリウム(III)、臭化セリウム(III)、ヨウ化セリウム(III)、シュウ酸セリウム(III)、過塩素酸セリウム(III)、硫化セリウム(III)およびこれらの水和物であってもよい。前記3価のセリウム化合物は2種以上を併用してもよい。   The trivalent cerium compound used in the present invention includes cerium acetate (III), ammonium cerium nitrate (III), cerium carbonate (III), cerium chloride (III), cerium fluoride (III), cerium nitrate (III), sulfuric acid It may be cerium (III), cerium (III) bromide, cerium (III) iodide, cerium (III) oxalate, cerium (III) perchlorate, cerium (III) sulfide and hydrates thereof. . Two or more of the trivalent cerium compounds may be used in combination.

もちろん4価のセリウム化合物と3価のセリウム化合物を併用してもよい。   Of course, a tetravalent cerium compound and a trivalent cerium compound may be used in combination.

本発明の表面処理剤は、4価及び/又は3価のセリウム化合物の溶液であるのが好ましい。溶媒としては水が好ましいが、アルコールなど4価及び/又は3価のセリウム化合物を溶解しうるものであれば特に制限なく使用できる。   The surface treatment agent of the present invention is preferably a solution of a tetravalent and / or trivalent cerium compound. The solvent is preferably water, but can be used without particular limitation as long as it can dissolve tetravalent and / or trivalent cerium compounds such as alcohol.

以下に本発明の表面処理剤が、その好ましい形態である溶液の場合を例にあげて説明する。   Hereinafter, the case where the surface treatment agent of the present invention is a preferred form of a solution will be described as an example.

表面処理剤中の4価及び/又は3価のセリウム化合物の濃度は、合計で0.01〜50質量%が好ましく、0.1〜30質量%がさらに好ましい。前記濃度が0.01質量%未満では樹脂との反応性が低下する傾向となり、50質量%を超えると溶解しにくくなる。本発明のセリウム化合物を水溶液にした場合の有効濃度mol/kgで表わした場合を説明する。この場合のセリウム濃度の範囲は、有効濃度:0.00001〜2mol/kgが好ましい。0.00001mol/kgより少ないと効果はなく、2mol/kgより多いと加熱しないと溶解せず、溶解したとしても安定性きわめて悪い。好ましい濃度は0.0001〜1.5mol/kgの範囲であり、0.0001mol/kgより少ないと効果がでるまでに時間がかかり、効果も接着性の向上もやや不十分であり、1.5より多いと加熱が必要である。さらに好ましい濃度は0.001〜1mol/kgの範囲である。0.001mol/kgより少ないと効果はあるが処理時間がかかり、1より多いと加熱しないと完全には溶解しない傾向となる。最適濃度:0.01〜0.9mol/kgである。   The total concentration of tetravalent and / or trivalent cerium compounds in the surface treatment agent is preferably 0.01 to 50% by mass, and more preferably 0.1 to 30% by mass. If the concentration is less than 0.01% by mass, the reactivity with the resin tends to decrease, and if it exceeds 50% by mass, it becomes difficult to dissolve. The case where the cerium compound of the present invention is expressed in terms of effective concentration mol / kg in an aqueous solution will be described. The range of the cerium concentration in this case is preferably an effective concentration: 0.00001 to 2 mol / kg. If it is less than 0.00001 mol / kg, it is not effective, and if it is more than 2 mol / kg, it will not dissolve unless it is heated, and even if dissolved, the stability is very poor. The preferred concentration is in the range of 0.0001 to 1.5 mol / kg, and if it is less than 0.0001 mol / kg, it takes time until the effect is obtained, and the effect and the improvement in adhesiveness are somewhat insufficient, and 1.5 If more, heating is required. A more preferred concentration is in the range of 0.001 to 1 mol / kg. If it is less than 0.001 mol / kg, there is an effect, but it takes a long time. If it is more than 1, it tends not to be completely dissolved unless heated. Optimal concentration: 0.01 to 0.9 mol / kg.

本発明の表面処理剤には、さらに種々の添加剤を配合してもよく、例えばセリウム化合物の安定性を向上させるための硝酸、硫酸、過塩素酸、ギ酸、酢酸などの酸や、ポリイミド系樹脂やその他の樹脂に対する濡れ性や反応性を向上させる界面活性剤などを配合してもよい。   Various additives may be further added to the surface treatment agent of the present invention, for example, acids such as nitric acid, sulfuric acid, perchloric acid, formic acid, acetic acid for improving the stability of cerium compounds, and polyimide-based compounds. You may mix | blend the surfactant etc. which improve the wettability and reactivity with respect to resin and other resin.

前記強酸の濃度範囲に特に限定はなく、その添加量に応じてセリウム化合物を安定させる効果が向上するが、通常は50%以下、好ましくは5〜30%である。前記濃度が高すぎると、被処理材が樹脂と金属とが共存する材料の場合、金属が侵食されやすくなる。   The concentration range of the strong acid is not particularly limited, and the effect of stabilizing the cerium compound is improved depending on the amount added, but is usually 50% or less, preferably 5 to 30%. If the concentration is too high, the metal is easily eroded when the material to be treated is a material in which a resin and a metal coexist.

本発明の表面処理剤は、前記の各成分を水などの溶媒に溶解させることにより容易に調整することができる。前記水としては、イオン交換水などのイオン性物質や不純物を除去した水が好ましい。   The surface treating agent of the present invention can be easily adjusted by dissolving each of the above components in a solvent such as water. The water is preferably water from which ionic substances such as ion exchange water and impurities have been removed.

本発明の表面処理剤によって処理される樹脂はどのような樹脂であってもよい。好ましい樹脂を挙げると、ポリイミド系、エポキシ系、シアネート系、アクリル系、アクリル−エポキシ系、アクリル−ブタジエン−スチレン(ABS)系、アラミド系、ポリビニルクロライド(PVC)系、ポリプロピレン(PP)系、ポリカーボネート(PC)系、ウレタン系、ポリエチレン(PE)系、ポリアミド系等である。この中でも特にポリイミド系樹脂を使用するのが好ましい。ポリイミド系樹脂にとくに限定はなく、例えばポリピロメリット酸イミド、ポリビフェニルイミド、ポリケトンイミド、ポリアミドイミド、ポリエステルイミド、ポリエーテルイミド、ポリアミドエステルイミド、ポリイミダゾピロロンイミド、ポリヒダントンイミド、ポリオキサゾールイミド、シアネート変性ビスマレイミド、シリコーン変性ポリイミドなどのイミド構造を有する樹脂であればよい。   The resin to be treated with the surface treating agent of the present invention may be any resin. Preferred resins include polyimide, epoxy, cyanate, acrylic, acrylic-epoxy, acrylic-butadiene-styrene (ABS), aramid, polyvinyl chloride (PVC), polypropylene (PP), and polycarbonate. (PC), urethane, polyethylene (PE), polyamide, and the like. Among these, it is particularly preferable to use a polyimide resin. There is no particular limitation on the polyimide resin, for example, polypyromellitic imide, polybiphenylimide, polyketone imide, polyamide imide, polyester imide, polyether imide, polyamide ester imide, polyimidopyrolone imide, polyhydanton imide, polyoxazole imide Any resin having an imide structure such as cyanate-modified bismaleimide or silicone-modified polyimide may be used.

本発明の表面処理剤によりポリイミド系樹脂表面を処理する際には、予めポリイミド系樹脂表面を水酸化ナトリウム、水酸化カリウム、モノエタノールアミンなどを溶解させたアルカリ性水溶液で処理して濡れ性を高めることが好ましい。   When the polyimide resin surface is treated with the surface treatment agent of the present invention, the wettability is improved by treating the polyimide resin surface with an alkaline aqueous solution in which sodium hydroxide, potassium hydroxide, monoethanolamine or the like is dissolved in advance. It is preferable.

本発明の表面処理剤を樹脂表面に接触させる方法としては、例えばスプレー法、シャワー法、浸漬法などが用いられる。   As a method of bringing the surface treatment agent of the present invention into contact with the resin surface, for example, a spray method, a shower method, an immersion method, or the like is used.

表面処理剤と樹脂表面とを接触させる際の条件にとくに限定はないが、通常表面処理剤の温度は20〜50℃が好ましく、接触時間は1〜30分間が好ましい。   Although there is no limitation in particular in the conditions at the time of making a surface treating agent and the resin surface contact, the temperature of a surface treating agent is preferable 20-50 degreeC, and 1-30 minutes are preferable for contact time.

本発明の表面処理剤により樹脂表面を処理したのちの樹脂表面にはセリウム化合物の残渣が付着しやすいので、酸性水溶液でそれらを溶解除去させたのち、水洗、乾燥させるのが好ましい。   Since the residue of the cerium compound tends to adhere to the resin surface after the resin surface is treated with the surface treating agent of the present invention, it is preferable to dissolve and remove them with an acidic aqueous solution, followed by washing with water and drying.

基本的に3価のセリウム化合物も4価と同様の効果があるが、3価のセリウムは表面処理後に樹脂表面に残渣を残しにくいという利点がある。従って、3価のセリウムを使用した場合には酸による後処理をしなくてもよい。   Basically, trivalent cerium compounds have the same effect as tetravalent, but trivalent cerium has the advantage that it is difficult to leave a residue on the resin surface after surface treatment. Therefore, when trivalent cerium is used, it is not necessary to perform post-treatment with an acid.

前記酸性水溶液としては、硫酸、塩酸、硝酸などの水溶液があげられる。酸性水溶液の濃度は0.01〜50%程度が好ましい。   Examples of the acidic aqueous solution include aqueous solutions of sulfuric acid, hydrochloric acid, nitric acid and the like. The concentration of the acidic aqueous solution is preferably about 0.01 to 50%.

前記酸性水溶液で処理する際の条件にも特に限定はないが、通常20〜50℃で2〜30分間浸漬するなどすればよい。   The conditions for the treatment with the acidic aqueous solution are not particularly limited, but it may be usually immersed at 20 to 50 ° C. for 2 to 30 minutes.

本発明の表面処理剤で処理された樹脂は、金属、樹脂、セラミック、ガラスなどの他の部材との接着性が向上する。前記金属としては、例えば銅、ニッケル/クロム合金、アルミニウムなどの無電解めっき膜、スパッタリング膜、蒸着膜などが上げられる。前記樹脂としては、例えばフェノール樹脂、エポキシ樹脂、耐熱エポキシ樹脂、シアネート変性ビスマレイミド樹脂、シリコンカーバイド樹脂、ポリフェニレンエーテル、ポリイミド系樹脂、液晶ポリマーなどがあげられる。   The resin treated with the surface treating agent of the present invention has improved adhesion to other members such as metals, resins, ceramics and glass. Examples of the metal include an electroless plating film such as copper, nickel / chromium alloy, and aluminum, a sputtering film, and a vapor deposition film. Examples of the resin include phenol resin, epoxy resin, heat-resistant epoxy resin, cyanate-modified bismaleimide resin, silicon carbide resin, polyphenylene ether, polyimide resin, and liquid crystal polymer.

好ましい組み合わせを挙げると次のとおりである。
樹脂と金属:ポリイミド樹脂−銅、エポキシ樹脂−銅、シアネート樹脂−銅、アラミド樹脂−銅、ABS樹脂−ニッケル
樹脂‐樹脂:ポリイミド樹脂−エポキシ樹脂、ポリイミド樹脂−(アクリル・エポキシ)樹脂
好ましい樹脂を挙げると、ポリイミド、エポキシ、シアネート、アクリル(アクリル−エポキシ)、ABS、アラミド系樹脂である。
Preferred combinations are as follows.
Resin and metal: Polyimide resin-copper, epoxy resin-copper, cyanate resin-copper, aramid resin-copper, ABS resin-nickel resin-resin: polyimide resin-epoxy resin, polyimide resin- (acrylic / epoxy) resin Preferred resin For example, polyimide, epoxy, cyanate, acrylic (acryl-epoxy), ABS, and aramid resin.

各組み合わせの具体的な用途の例としては以下のようなものが挙げられる。
(1)エポキシ樹脂又はシアネート樹脂−銅
多層プリント配線板の絶縁層(エポキシ樹脂やシアネート樹脂)と導電層(銅)などの界面。ここで多層プリント配線板は、例えばガラス繊維織物にエポキシ樹脂を含浸させた基板、アラミド繊維不織布にエポキシ樹脂を含浸させた基板がある。
(2)ポリイミド樹脂−エポキシ樹脂又はポリイミド樹脂又はシアネート樹脂
ソルダーレジスト(エポキシ)とポリイミド基材の界面、多層プリント配線板を積層する場合にポリイミド基材と上層のポリイミド基材を接合するためのボンディングシート(エポキシ、ポリイミド、シアネート)との界面
(3)エポキシ樹脂−アクリル樹脂又はアクリル−エポキシ樹脂
ソルダーレジスト(エポキシ)の表面にマーキング印刷をする際のソルダーレジストとマーキングインキ(アクリル、アクリル−エポキシ)の界面
(4)エポキシ樹脂−エポキシ樹脂
(5)ソルダーレジスト(エポキシ)表面とモールド樹脂(エポキシ)との界面
Examples of specific uses of each combination include the following.
(1) Epoxy resin or cyanate resin-copper An interface between an insulating layer (epoxy resin or cyanate resin) of a multilayer printed wiring board and a conductive layer (copper). Examples of the multilayer printed wiring board include a substrate in which a glass fiber fabric is impregnated with an epoxy resin and a substrate in which an aramid fiber nonwoven fabric is impregnated with an epoxy resin.
(2) Polyimide resin-epoxy resin or polyimide resin or cyanate resin Bonding for bonding the polyimide substrate and the upper polyimide substrate when laminating the interface between the solder resist (epoxy) and the polyimide substrate and the multilayer printed wiring board Interface with sheet (epoxy, polyimide, cyanate) (3) Epoxy resin-acrylic resin or acrylic-epoxy resin Solder resist and marking ink (acrylic, acrylic-epoxy) for marking printing on the surface of solder resist (epoxy) (4) Epoxy resin-epoxy resin (5) Interface between solder resist (epoxy) surface and mold resin (epoxy)

本発明の表面処理剤は、例えばポリイミド系樹脂フィルム上に導電層を形成する2層構造のフレキシブル配線板の導電層との接着性向上に有用である。また、ポリイミド系樹脂フィルム上に接着剤を介して導電層を形成する3層構造のフレキシブル配線板の接着剤との接着性向上に有用である。また、ポリイミド系樹脂層と導電層とが交互に複数積層した多層フレキシブル配線板のポリイミド系樹脂層間及び導電層との接着性向上に有用である。また、ポリイミド系樹脂製の保護膜が形成された半導体素子をプリント配線板に直接搭載する際のアンダーフィル剤との接着性向上に有用である。また、ポリイミド系樹脂製基材にバイアホールを形成するためのエッチングレジストを被覆する際のエッチングレジストとの接着性向上に有用である。また、フレキシブルプリント配線板やフレックス/リジッドプリント配線板などのポリイミド系樹脂製基材のカバーレイとの接着性向上に有用である。また、配線板表面を保護するソルダーレジストや、多層フレキシブル配線板の層間絶縁樹脂であるボンディングフィルムとの接着性向上に有用である。その他、液晶表示装置の基板、エレクトロルミネッセンスの基板など画像表示装置における配線基板にも適用できる。   The surface treating agent of the present invention is useful, for example, for improving adhesiveness with a conductive layer of a flexible wiring board having a two-layer structure in which a conductive layer is formed on a polyimide resin film. Moreover, it is useful for improving adhesiveness with an adhesive of a flexible wiring board having a three-layer structure in which a conductive layer is formed on a polyimide resin film via an adhesive. Moreover, it is useful for improving the adhesiveness between the polyimide resin layer and the conductive layer of the multilayer flexible wiring board in which a plurality of polyimide resin layers and conductive layers are alternately laminated. Further, it is useful for improving the adhesion with an underfill agent when a semiconductor element on which a protective film made of polyimide resin is formed is directly mounted on a printed wiring board. Further, it is useful for improving the adhesion with an etching resist when coating an etching resist for forming a via hole on a polyimide resin substrate. Moreover, it is useful for improving the adhesiveness with a cover lay of a polyimide resin substrate such as a flexible printed wiring board or a flex / rigid printed wiring board. Further, it is useful for improving the adhesion with a solder resist that protects the surface of the wiring board and a bonding film that is an interlayer insulating resin of a multilayer flexible wiring board. In addition, the present invention can also be applied to a wiring substrate in an image display device such as a substrate of a liquid crystal display device or an electroluminescence substrate.

また、本発明の表面処理剤は、ポリイミド等の各種樹脂をレーザやドリル加工により穿孔した場合に生じるスミアの除去にも有用である。   The surface treating agent of the present invention is also useful for removing smears produced when various resins such as polyimide are drilled by laser or drilling.

図1は本発明の一実施例における樹脂1表面2を活性化させ、この活性化された面に無電解銅めっき3をし、その表面に電解銅めっき4をした模式的断面図である。   FIG. 1 is a schematic cross-sectional view in which a surface 1 of a resin 1 in one embodiment of the present invention is activated, electroless copper plating 3 is applied to the activated surface, and electrolytic copper plating 4 is applied to the surface.

(実施例1〜7及び比較例1〜2)
この実施例は各種セリウム化合物を用いて樹脂との接着性を試験した。
(Examples 1-7 and Comparative Examples 1-2)
In this example, various cerium compounds were used to test adhesion to a resin.

厚さ25μmのポリイミドフィルム(東レ・デュポン社製、商品名“カプトン100EN”)を5%水酸化ナトリウム水溶液に5分間浸漬した後水洗した。得られたフィルムを表1に示される組成の処理液に50℃で5分間浸漬した後水洗した。ついで、30%硫酸水溶液に5分間浸漬した後水洗し、乾燥させた。   A polyimide film having a thickness of 25 μm (trade name “Kapton 100EN” manufactured by Toray DuPont) was immersed in a 5% aqueous sodium hydroxide solution for 5 minutes and then washed with water. The obtained film was immersed in a treatment solution having the composition shown in Table 1 at 50 ° C. for 5 minutes and then washed with water. Subsequently, it was immersed in 30% sulfuric acid aqueous solution for 5 minutes, washed with water and dried.

処理されたポリイミドフィルムの片方の面に無電解銅めっきをし、厚さ0.15μmの銅膜を形成した。ついで、電解銅めっきをし、合計厚さ35μmの銅膜を形成した後、150℃で30分間加熱した。なお、前記めっき後の加熱は、銅膜の結晶構造を安定化させるための処理である。   Electroless copper plating was performed on one side of the treated polyimide film to form a copper film having a thickness of 0.15 μm. Next, electrolytic copper plating was performed to form a copper film having a total thickness of 35 μm, and then heated at 150 ° C. for 30 minutes. In addition, the heating after the plating is a treatment for stabilizing the crystal structure of the copper film.

比較例1はセリウム化合物濃度が低い場合であり、比較例2はセリウム化合物を使用しない例である。   Comparative Example 1 is a case where the cerium compound concentration is low, and Comparative Example 2 is an example where no cerium compound is used.

ついで、ポリイミドフィルムから銅めっき膜を引き剥がすときの強度を、JIS C 6481に準拠して測定した。結果を表1に示す。   Subsequently, the strength when peeling the copper plating film from the polyimide film was measured in accordance with JIS C 6481. The results are shown in Table 1.

Figure 2006028484
Figure 2006028484

以上のとおり、本実施例のサンプルは、ポリイミドフィルムから銅めっき膜を引き剥がすときの強度が高く、接着性が向上していることが確認できた。   As described above, it was confirmed that the sample of this example had high strength when the copper plating film was peeled off from the polyimide film, and the adhesiveness was improved.

(実施例8〜11及び比較例3)
この実施例、比較例は、アクリル・エポキシ樹脂とアクリル樹脂の接着性試験をした。
(Examples 8 to 11 and Comparative Example 3)
In this example and comparative example, an adhesion test between an acrylic / epoxy resin and an acrylic resin was performed.

両面に厚さ18μmの銅箔をガラス布エポキシ樹脂含浸銅張積層板の片面側表面にアクリル・エポキシ樹脂(太陽インキ製造社製ソルダーレジスト:PSR-4000Z26)を塗布したものを実施例8から11として用意した。   Examples 8 to 11 in which a copper foil having a thickness of 18 μm is coated on both sides with an acrylic / epoxy resin (solder resist manufactured by Taiyo Ink Manufacturing Co., Ltd .: PSR-4000Z26) on one surface of a glass cloth epoxy resin impregnated copper clad laminate Prepared as.

これらの実施例を表2中の各処理液に40℃で1分間浸漬した後、水洗、乾燥させ、UV硬化マーキングインキ(太陽インキ社製 UVR-110WN121)をアクリル エポキシ樹脂上面に塗布し、露光機(ナノテック社製 ES-20m)で露光(露光量1200〜1300mj)し、UV硬化させた。UV硬化後さらに、150℃で10分熱処理した。   These examples were immersed in each treatment solution in Table 2 for 1 minute at 40 ° C., then washed with water and dried, and UV curable marking ink (UVR-110WN121 manufactured by Taiyo Ink Co., Ltd.) was applied to the top surface of the acrylic epoxy resin and exposed. It was exposed (exposure amount 1200 to 1300 mj) with a machine (Nanotech ES-20m) and UV cured. After UV curing, heat treatment was further performed at 150 ° C. for 10 minutes.

比較例3として、アクリルエポキシ樹脂塗布後に浸漬する液の配合を表2の比較例3の処理液に代えたものを用意した。   As comparative example 3, what changed the composition of the liquid immersed after application of acrylic epoxy resin to the processing liquid of comparative example 3 of Table 2 was prepared.

その後クロスカット(2mm角)テープ剥離試験(JIS C5012に準拠する方法)を行った。結果を表2に示す。   Thereafter, a cross-cut (2 mm square) tape peeling test (method based on JIS C5012) was performed. The results are shown in Table 2.

Figure 2006028484
Figure 2006028484

表2における評価基準:剥離があったものno-good、なかったものgood。   Evaluation criteria in Table 2: No-good with peeling and good with no peeling.

表2から明らかにとおり、実施例8〜11はアクリルエポキシ樹脂とアクリル樹脂との剥離はなかった。   As is clear from Table 2, Examples 8 to 11 were not peeled off from the acrylic epoxy resin and the acrylic resin.

(実施例12〜16及び比較例4〜8)
この実験は、エポキシ樹脂、シアネート樹脂、アラミド樹脂と銅との接着性を試験した。
(Examples 12 to 16 and Comparative Examples 4 to 8)
This experiment tested the adhesion between epoxy resin, cyanate resin, aramid resin and copper.

上記実施例8から11と同様の銅張積層板(樹脂シートの支持体)の片側表面に厚さ40μmの3種類のエポキシ樹脂シート1〜3、シアネート樹脂シート、アラミド樹脂シートを熱圧着し、これらの銅―樹脂積層体を5%水酸化ナトリウム水溶液に5分間浸漬した後水洗した。   Thermo-compression bonding of three types of epoxy resin sheets 1 to 3 having a thickness of 40 μm, a cyanate resin sheet, and an aramid resin sheet on one surface of the same copper-clad laminate (resin sheet support) as in Examples 8 to 11 above, These copper-resin laminates were immersed in a 5% aqueous sodium hydroxide solution for 5 minutes and then washed with water.

その後各積層体を以下の組成からなる処理液に50℃で5分間浸漬した後、水洗し、次いで30%硫酸水溶液に5分間浸漬後水洗、乾燥させて実施例12〜16とした。
処理液:硝酸セリウム(III) 5.64質量%(セリウム濃度として0.1mol/kg)
硝酸 6.7質量%
イオン交換水 残り
Thereafter, each laminate was immersed in a treatment solution having the following composition at 50 ° C. for 5 minutes, washed with water, then immersed in a 30% aqueous sulfuric acid solution for 5 minutes, then washed with water and dried to give Examples 12 to 16.
Treatment liquid: 5.64% by mass of cerium (III) nitrate (0.1 mol / kg as cerium concentration)
Nitric acid 6.7% by mass
Ion exchange water remaining

尚、3種類のエポキシ樹脂シートとは、それぞれ添加剤の種類、配合量を異なる樹脂をシート状に形成したものである。   The three types of epoxy resin sheets are obtained by forming resins having different types and blending amounts in the form of sheets.

一方、上記3種類のエポキシ樹脂シート、シアネート樹脂、アラミド樹脂シートを同様に銅張積層体に熱圧着した銅―樹脂積層体を比較例4〜8として用意した。   On the other hand, the copper-resin laminated body which heat-pressed the said 3 types of epoxy resin sheet, cyanate resin, and the aramid resin sheet to the copper clad laminated body similarly was prepared as Comparative Examples 4-8.

各実施例および比較例の積層体の片面に無電解銅めっきを行い、厚み0.15μmの銅膜を形成後、電解銅めっきで合計厚さ35μmの銅膜を形成し、150℃で30分間加熱した。めっき形成後のこれらの各積層体の樹脂側表面の状態を目視にて観察し、評価した結果を表3に示す。   Electroless copper plating is performed on one side of the laminates of the examples and comparative examples to form a copper film with a thickness of 0.15 μm, and then a copper film with a total thickness of 35 μm is formed by electrolytic copper plating, at 150 ° C. for 30 minutes. Heated. Table 3 shows the results of visual observation and evaluation of the state of the resin side surface of each of these laminates after plating formation.

Figure 2006028484
Figure 2006028484

表3における評価基準:剥離があったものno-good、なかったものgood。   Evaluation criteria in Table 3: No-good with peeling and good with no peeling.

表3から明らかにとおり、実施例12〜16は各種樹脂と銅との間の剥離はなかった。   As is clear from Table 3, Examples 12 to 16 were not peeled between various resins and copper.

(実施例17〜18及び比較例9〜10)
この実験は、ポリイミド樹脂とエポキシ樹脂との接着性試験である。
(Examples 17-18 and Comparative Examples 9-10)
This experiment is an adhesion test between a polyimide resin and an epoxy resin.

実施例1から7と同様のポリイミドフィルムを5%水酸化ナトリウム水溶液に5分間浸漬した後水洗した。得られたフィルムを以下の組成からなる処理液に50℃で5分間浸漬した後、水洗し、次いで30%硫酸水溶液に5分間浸漬後水洗、乾燥させた。
処理液:硝酸セリウム(III) 5.64質量%(セリウム濃度として0.1mol/kg)
硝酸 6.7質量%
イオン交換水 残り
The same polyimide film as in Examples 1 to 7 was immersed in a 5% aqueous sodium hydroxide solution for 5 minutes and then washed with water. The obtained film was immersed in a treatment solution having the following composition at 50 ° C. for 5 minutes, washed with water, then immersed in a 30% aqueous sulfuric acid solution for 5 minutes, washed with water and dried.
Treatment liquid: cerium (III) nitrate 5.64% by mass (cerium concentration 0.1 mol / kg)
Nitric acid 6.7% by mass
Ion exchange water remaining

得られたフィルム、および比較例として未処理のポリイミドフィルムの片面にエポキシ樹脂シートを熱圧着させて、ポリイミド−エポキシ樹脂積層シートを形成した。   An epoxy resin sheet was thermocompression bonded to one side of the obtained film and an untreated polyimide film as a comparative example to form a polyimide-epoxy resin laminated sheet.

この積層シートのうち、処理したフィルムの積層体を実施例17,18、未処理フィルムの積層シートを比較例9,10として、実施例8と同様の方法でクロスカット(2mm角)テープ剥離試験(JIS C5012に準拠する方法)を行い、評価した結果を表4に示す。   Of these laminated sheets, the treated film laminates were Examples 17 and 18, the untreated film laminated sheets were Comparative Examples 9 and 10, and a cross-cut (2 mm square) tape peel test was performed in the same manner as in Example 8. Table 4 shows the results of performing (method conforming to JIS C5012) and evaluating the results.

Figure 2006028484
Figure 2006028484

表4における評価基準:剥離があったものno-good、なかったものgood。   Evaluation criteria in Table 4: No-good with peeling and good with no peeling.

表4から明らかにとおり、実施例17〜18はポリイミド樹脂とエポキシ樹脂との剥離はなかった。   As apparent from Table 4, Examples 17 to 18 were not peeled off from the polyimide resin and the epoxy resin.

(実施例19及び比較例11)
この実験はABS−ニッケル接着度を試験したものである。
(Example 19 and Comparative Example 11)
This experiment tested ABS-nickel adhesion.

ABS成形品(10×10cm厚さ2cmの板)を5%水酸化ナトリウム水溶液に5分間浸漬した後水洗した。   An ABS molded product (10 × 10 cm 2 cm thick plate) was immersed in a 5% aqueous sodium hydroxide solution for 5 minutes and then washed with water.

その後以下の組成からなる処理液に50℃で5分間浸漬した後、水洗し、次いで30%硫酸水溶液に5分間浸漬後水洗、乾燥させて実施例19とした。
処理液:硝酸セリウム(III) 5.64質量%(セリウム濃度として0.1mol/kg)
硝酸 6.7質量%
イオン交換水 残り
Thereafter, it was immersed in a treatment solution having the following composition at 50 ° C. for 5 minutes, washed with water, then immersed in a 30% sulfuric acid aqueous solution for 5 minutes, then washed with water and dried to give Example 19.
Treatment liquid: 5.64% by mass of cerium (III) nitrate (0.1 mol / kg as cerium concentration)
Nitric acid 6.7% by mass
Ion exchange water remaining

このABS成形品に、塩化パラジウム、塩化第一錫、塩酸からなる溶液に2分間浸漬後、硫酸によって30℃、3分間処理し、その後、無電解ニッケルめっきによって厚さ1μmのニッケルめっき層を形成した。   This ABS molded product is immersed in a solution consisting of palladium chloride, stannous chloride and hydrochloric acid for 2 minutes, then treated with sulfuric acid at 30 ° C. for 3 minutes, and then a nickel plating layer having a thickness of 1 μm is formed by electroless nickel plating. did.

一方、上記実施例19と同じABS成形品で上記処理をしないものを比較例20として用意し、上記処理液に浸漬する以外は実施例19と同様に処理し、無電解ニッケルめっき層を形成した。   On the other hand, the same ABS molded product as in Example 19 that was not subjected to the above treatment was prepared as Comparative Example 20 and treated in the same manner as in Example 19 except that it was immersed in the above treatment solution to form an electroless nickel plating layer. .

めっき形成後、ニッケルめっき表面を実施例8と同様の方法でクロスカット(2mm角)テープ剥離試験(JIS C5012に準拠する方法)を行った結果を表5に示す。   Table 5 shows the results of a cross-cut (2 mm square) tape peeling test (method conforming to JIS C5012) performed on the nickel plating surface in the same manner as in Example 8 after plating formation.

Figure 2006028484
Figure 2006028484

表5における評価基準:剥離があったものno-good、なかったものgood。   Evaluation criteria in Table 5: No-good with peeling and good with no peeling.

表5から明らかにとおり、実施例19はABSとニッケルとの剥離はなかった。   As is clear from Table 5, in Example 19, there was no peeling between ABS and nickel.

本発明は、フレキシブルプリント配線板、繊維強化樹脂含浸基板と金属配線、樹脂同士、樹脂フィルムと金属配線との接着強度の向上を要求される分野等に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful in fields such as flexible printed wiring boards, fiber-reinforced resin-impregnated substrates and metal wiring, resins, and resin films and metal wiring that require improved adhesive strength.

図1は本発明の一実施例における樹脂表面を活性化させ、この活性化された面に無電解銅めっきをし、その表面に電解銅めっきをした模式的断面図である。FIG. 1 is a schematic cross-sectional view in which a resin surface in one embodiment of the present invention is activated, electroless copper plating is applied to the activated surface, and electrolytic copper plating is applied to the surface.

符号の説明Explanation of symbols

1 樹脂
2 樹脂の表面処理面
3 無電解銅めっき
4 電解銅めっき
DESCRIPTION OF SYMBOLS 1 Resin 2 Surface treatment surface of resin 3 Electroless copper plating 4 Electrolytic copper plating

Claims (18)

4価及び3価から選ばれる少なくとも一つのセリウム化合物を有効成分とする樹脂表面処理剤。   A resin surface treating agent comprising at least one cerium compound selected from tetravalent and trivalent as an active ingredient. 4価及び3価から選ばれる少なくとも一つのセリウム化合物を含有する溶液である請求項1の樹脂表面処理剤。   The resin surface treating agent according to claim 1, which is a solution containing at least one cerium compound selected from tetravalent and trivalent. 前記溶液が水溶液である請求項2に記載の樹脂表面処理剤。   The resin surface treatment agent according to claim 2, wherein the solution is an aqueous solution. 前記溶液中の4価及び3価から選ばれる少なくとも一つのセリウム化合物の濃度は0.01〜50質量%の範囲である請求項2又は3に記載の樹脂表面処理剤。   The resin surface treating agent according to claim 2 or 3, wherein the concentration of at least one cerium compound selected from tetravalent and trivalent in the solution is in the range of 0.01 to 50 mass%. 前記溶液中の4価及び3価から選ばれる少なくとも一つのセリウム化合物の濃度は、セリウム濃度にして0.00001〜2mol/kgの範囲である請求項2又は3に記載の樹脂表面処理剤。   The resin surface treating agent according to claim 2 or 3, wherein the concentration of at least one cerium compound selected from tetravalent and trivalent in the solution is in the range of 0.00001 to 2 mol / kg in terms of cerium concentration. 4価のセリウム化合物が、ヘキサニトラトセリウム(IV)塩、硫酸四アンモニウムセリウムおよび硫酸セリウムの少なくとも1種である請求項1〜5のいずれかに記載の樹脂表面処理剤。   The resin surface treatment agent according to any one of claims 1 to 5, wherein the tetravalent cerium compound is at least one of hexanitratocerium (IV) salt, tetraammonium cerium sulfate, and cerium sulfate. 3価のセリウム化合物が、酢酸セリウム(III)、硝酸アンモニウムセリウム(III)、炭酸セリウム(III)、塩化セリウム(III)、フッ化セリウム(III)、硝酸セリウム(III)、硫酸セリウム(III)、臭化セリウム(III)、ヨウ化セリウム(III)、シュウ酸セリウム(III)、過塩素酸セリウム(III)、硫化セリウム(III)及びこれらの水和物の少なくとも1種である請求項1〜5のいずれかに記載の樹脂表面処理剤。   Trivalent cerium compounds include cerium acetate (III), ammonium cerium nitrate (III), cerium carbonate (III), cerium chloride (III), cerium fluoride (III), cerium nitrate (III), cerium sulfate (III), A cerium (III) bromide, a cerium (III) iodide, a cerium (III) oxalate, a cerium (III) perchlorate, a cerium (III) sulfide, and at least one of these hydrates. The resin surface treating agent according to any one of 5. 樹脂が、ポリイミド系、エポキシ系、シアネート系、アクリル系、ABS系、アラミド系及びこれらの混合物の少なくとも1種である請求項1〜7のいずれかに記載の樹脂表面処理剤。   The resin surface treating agent according to any one of claims 1 to 7, wherein the resin is at least one of polyimide, epoxy, cyanate, acrylic, ABS, aramid, and a mixture thereof. 樹脂の表面に、4価及び3価から選ばれる少なくとも一つのセリウム化合物を有効成分とする表面処理剤を接触させることを特徴とする樹脂表面処理法。   A resin surface treatment method comprising contacting a surface treatment agent containing at least one cerium compound selected from tetravalent and trivalent as an active ingredient on the surface of a resin. 前記表面処理剤が溶液である請求項9に記載の樹脂表面処理法。   The resin surface treatment method according to claim 9, wherein the surface treatment agent is a solution. 樹脂の表面に、4価のセリウム化合物を含有する溶液を接触させたのち、酸性水溶液で処理する請求項10に記載の樹脂表面処理法。   The resin surface treatment method according to claim 10, wherein a solution containing a tetravalent cerium compound is brought into contact with the surface of the resin and then treated with an acidic aqueous solution. 樹脂の表面に、4価及び3価から選ばれる少なくとも一つのセリウム化合物を含有する溶液を接触させる前に、アルカリ性水溶液で処理する請求項10又は11に記載の樹脂表面処理法。   The resin surface treatment method according to claim 10 or 11, wherein the surface of the resin is treated with an alkaline aqueous solution before contacting with a solution containing at least one cerium compound selected from tetravalent and trivalent. 4価及び3価から選ばれる少なくとも一つのセリウム化合物を含有する溶液が水溶液である請求項10〜12のいずれかに記載の樹脂表面処理法。   The resin surface treatment method according to any one of claims 10 to 12, wherein the solution containing at least one cerium compound selected from tetravalent and trivalent is an aqueous solution. 前記溶液中の4価及び3価から選ばれる少なくとも一つのセリウム化合物の濃度は0.01〜50質量%の範囲である請求項10〜13のいずれかに記載の樹脂表面処理法。   The resin surface treatment method according to claim 10, wherein the concentration of at least one cerium compound selected from tetravalent and trivalent in the solution is in the range of 0.01 to 50 mass%. 前記溶液中の4価及び3価から選ばれる少なくとも一つのセリウム化合物の濃度は、セリウム濃度にして0.00001〜2mol/kgの範囲である請求項10〜13のいずれかに記載の樹脂表面処理法。   The resin surface treatment according to any one of claims 10 to 13, wherein the concentration of at least one cerium compound selected from tetravalent and trivalent in the solution is in the range of 0.00001 to 2 mol / kg in terms of cerium concentration. Law. 4価のセリウム化合物が、ヘキサニトラトセリウム(IV)塩、硫酸四アンモニウムセリウムおよび硫酸セリウムの少なくとも1種である請求項9〜15のいずれかに記載の樹脂表面処理法。   The resin surface treatment method according to claim 9, wherein the tetravalent cerium compound is at least one of hexanitratocerium (IV) salt, tetraammonium cerium sulfate, and cerium sulfate. 3価のセリウム化合物が、酢酸セリウム(III)、硝酸アンモニウムセリウム(III)、炭酸セリウム(III)、塩化セリウム(III)、フッ化セリウム(III)、硝酸セリウム(III)、硫酸セリウム(III)、臭化セリウム(III)、ヨウ化セリウム(III)、シュウ酸セリウム(III)、過塩素酸セリウム(III)、硫化セリウム(III)およびこれらの水和物の少なくとも1種である請求項9〜15のいずれかに記載の樹脂表面処理法。   Trivalent cerium compounds include cerium acetate (III), ammonium cerium nitrate (III), cerium carbonate (III), cerium chloride (III), cerium fluoride (III), cerium nitrate (III), cerium sulfate (III), 9. Cerium (III) bromide, cerium (III) iodide, cerium (III) oxalate, cerium (III) perchlorate, cerium (III) sulfide and at least one of these hydrates The resin surface treatment method according to any one of 15. 樹脂が、ポリイミド系、エポキシ系、シアネート系、アクリル系、ABS系、アラミド系ならびにこれらの混合物の少なくとも1種である請求項9〜17のいずれかに記載の樹脂表面処理法。   The resin surface treatment method according to any one of claims 9 to 17, wherein the resin is at least one of polyimide, epoxy, cyanate, acrylic, ABS, aramid, and a mixture thereof.
JP2005162979A 2004-06-18 2005-06-02 Resin surface treatment agent and resin surface treatment method Pending JP2006028484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162979A JP2006028484A (en) 2004-06-18 2005-06-02 Resin surface treatment agent and resin surface treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004181407 2004-06-18
JP2005162979A JP2006028484A (en) 2004-06-18 2005-06-02 Resin surface treatment agent and resin surface treatment method

Publications (2)

Publication Number Publication Date
JP2006028484A true JP2006028484A (en) 2006-02-02
JP2006028484A5 JP2006028484A5 (en) 2008-05-15

Family

ID=35895216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162979A Pending JP2006028484A (en) 2004-06-18 2005-06-02 Resin surface treatment agent and resin surface treatment method

Country Status (1)

Country Link
JP (1) JP2006028484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169074A1 (en) * 2011-06-10 2012-12-13 株式会社Jcu Method for forming metallic film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105543A (en) * 1984-10-29 1986-05-23 Fuji Photo Film Co Ltd Photosensitive material
JPH02173129A (en) * 1988-11-25 1990-07-04 Internatl Business Mach Corp <Ibm> Method for surface treatment of polyimide to improve receptivity to metallic layer
JPH0598056A (en) * 1991-10-14 1993-04-20 Terumo Corp Method of surface graft polymerization
JPH0625862A (en) * 1992-04-27 1994-02-01 General Electric Co <Ge> Method of forming modified polyimide layer improved in adherence to metal layer
JPH06340759A (en) * 1993-04-09 1994-12-13 Tokai Univ Method for surface treatment of plastic material containing c-h bond
JPH0741956A (en) * 1993-05-17 1995-02-10 General Electric Co <Ge> Improvement of adhesion of metal coating to article made of resin
JPH08157629A (en) * 1994-12-02 1996-06-18 Toray Eng Co Ltd Readily bondable polyimide molded article and multi-layer polyimide substrate
JP2002241950A (en) * 2001-02-14 2002-08-28 Learonal Japan Inc Direct patterning method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105543A (en) * 1984-10-29 1986-05-23 Fuji Photo Film Co Ltd Photosensitive material
JPH02173129A (en) * 1988-11-25 1990-07-04 Internatl Business Mach Corp <Ibm> Method for surface treatment of polyimide to improve receptivity to metallic layer
JPH0598056A (en) * 1991-10-14 1993-04-20 Terumo Corp Method of surface graft polymerization
JPH0625862A (en) * 1992-04-27 1994-02-01 General Electric Co <Ge> Method of forming modified polyimide layer improved in adherence to metal layer
JPH06340759A (en) * 1993-04-09 1994-12-13 Tokai Univ Method for surface treatment of plastic material containing c-h bond
JPH0741956A (en) * 1993-05-17 1995-02-10 General Electric Co <Ge> Improvement of adhesion of metal coating to article made of resin
JPH08157629A (en) * 1994-12-02 1996-06-18 Toray Eng Co Ltd Readily bondable polyimide molded article and multi-layer polyimide substrate
JP2002241950A (en) * 2001-02-14 2002-08-28 Learonal Japan Inc Direct patterning method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169074A1 (en) * 2011-06-10 2012-12-13 株式会社Jcu Method for forming metallic film

Similar Documents

Publication Publication Date Title
JP5392732B2 (en) Copper surface-to-resin adhesive layer, wiring board, and adhesive layer forming method
WO2007111268A1 (en) Process for producing copper wiring polyimide film, and copper wiring polyimide film
TWI671863B (en) Methods for producing laminate, substrate for mountingsemiconductor element
US9758889B2 (en) Method for producing substrate formed with copper thin layer, method for manufacturing printed circuit board and printed circuit board manufactured thereby
WO2014091662A1 (en) Production method for printed wiring board and printed wiring board produced by said method
JP5256747B2 (en) Manufacturing method of copper wiring insulating film by semi-additive method, and copper wiring insulating film manufactured therefrom
CN107135608B (en) Method for etching laminate and method for manufacturing printed wiring board using same
JP5794740B2 (en) Printed wiring board manufacturing method and printed wiring board obtained by using the printed wiring board manufacturing method
JP2004356238A (en) Insulating sheet with metal foil, multilayer wiring board, and method for manufacturing the same
TW200428920A (en) Bonding layer forming solution, method of producing copper-to-resin bonding layer using the solution, and layered product obtained thereby
JP2007049116A (en) Multilayer wiring board manufacturing method and multilayer wiring board
JP2013093359A (en) Semiconductor chip mounting substrate and manufacturing method therefor
JP2010045155A (en) Multilayer laminated circuit board
JP4572363B2 (en) Adhesive layer forming liquid between copper and resin for wiring board and method for producing adhesive layer between copper and resin for wiring board using the liquid
US7297757B2 (en) Resin surface treating agent and resin surface treatment
JP2006028484A (en) Resin surface treatment agent and resin surface treatment method
TWI481499B (en) Double-layered single surface metal foil clad laminated sheet and method of fabricating thereof,and single surface print wiring board and method of fabricating thereof
JP4370490B2 (en) Build-up multilayer printed wiring board and manufacturing method thereof
TWI796378B (en) Method of manufacturing patterned metal foil-clad laminate, and patterned metal foil-clad laminate
JP2004349693A (en) Resin adhesive layer on surface of copper
JP5542715B2 (en) Copper foil for printed wiring board, laminate and printed wiring board
JP2006019654A (en) Multi-layer wiring board and its manufacturing method
JP5851552B2 (en) Substrate having copper foil layer and manufacturing method thereof
JP5808114B2 (en) Copper foil for printed wiring board, laminate and printed wiring board
JP2016187893A (en) Method for producing metal foil laminated film and circuit board having metal foil laminated film produced by the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308