[go: up one dir, main page]

JP2005339886A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005339886A
JP2005339886A JP2004154787A JP2004154787A JP2005339886A JP 2005339886 A JP2005339886 A JP 2005339886A JP 2004154787 A JP2004154787 A JP 2004154787A JP 2004154787 A JP2004154787 A JP 2004154787A JP 2005339886 A JP2005339886 A JP 2005339886A
Authority
JP
Japan
Prior art keywords
composite oxide
active material
lithium
transition metal
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004154787A
Other languages
Japanese (ja)
Inventor
Toyoki Fujiwara
豊樹 藤原
Hideki Kitao
英樹 北尾
Kazuhisa Takeda
和久 武田
Takaaki Ikemachi
隆明 池町
Toshiyuki Noma
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004154787A priority Critical patent/JP2005339886A/en
Publication of JP2005339886A publication Critical patent/JP2005339886A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance high-temperature durability without decreasing capacity in a nonaqueous electrolyte secondary battery using a lithium transition metal composite oxide having layer structure as a positive active material. <P>SOLUTION: The nonaqueous electrolyte secondary battery is equipped with a positive electrode containing the positive active material capable of storing or releasing lithium, a negative electrode containing a negative active material capable of storing or releasing lithium, and a nonaqueous electrolyte having lithium ion conductivity, and as the positive active material, the lithium transition metal composite oxide having layer structure in which the surface is covered with Y<SB>2</SB>O<SB>3</SB>fine particles is used. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム二次電池などの非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium secondary battery.

コバルト酸リチウム及びニッケル酸リチウムなどの層状構造を有するリチウム遷移金属複合酸化物を正極活物質として用いた非水電解質二次電池は、電圧が4V程度と高く、また大きな容量が得られるため、高いエネルギー密度を有する電池とすることができる。しかしながら、これらの正極活物質を用いた場合、充電状態において高温環境下に放置すると電池容量が低下するという問題があった。   A non-aqueous electrolyte secondary battery using a lithium transition metal composite oxide having a layered structure such as lithium cobaltate and lithium nickelate as a positive electrode active material has a high voltage of about 4 V and a high capacity, and thus is high. A battery having an energy density can be obtained. However, when these positive electrode active materials are used, there is a problem in that the battery capacity decreases when left in a high temperature environment in a charged state.

この問題を解決するため、リチウム遷移金属複合酸化物中の遷移金属のサイトを異種の元素により置換したり、あるいは酸素のサイトをフッ素により置換するなどの技術が提案されている。例えば、LiCoO2の表面上における電解液の酸化分解を抑制し、結晶構造を安定化するために、LiCoO2にイットリウムを添加する技術が提案されている(特許文献1)。 In order to solve this problem, a technique has been proposed in which the transition metal site in the lithium transition metal composite oxide is replaced with a different element, or the oxygen site is replaced with fluorine. For example, a technique for adding yttrium to LiCoO 2 has been proposed in order to suppress oxidative decomposition of the electrolyte solution on the surface of LiCoO 2 and stabilize the crystal structure (Patent Document 1).

しかしながら、上記のように正極活物質にイットリウムなどの異種元素を添加し遷移金属サイトを置換する場合には、電池容量が低下するという問題があった。
特開平5−6780号公報
However, when the transition metal site is replaced by adding a different element such as yttrium to the positive electrode active material as described above, there is a problem that the battery capacity is reduced.
JP-A-5-6780

本発明の目的は、層状構造を有するリチウム遷移金属複合酸化物を正極活物質として用いた非水電解質二次電池において、電池容量を低下させることなく、高温耐久性を高めた非水電解質二次電池を提供することにある。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery using a lithium transition metal composite oxide having a layered structure as a positive electrode active material, the non-aqueous electrolyte secondary having improved high-temperature durability without reducing the battery capacity. To provide a battery.

本発明は、リチウムの吸蔵・放出が可能な正極活物質を含む正極と、リチウムの吸蔵・放出が可能な負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解液とを備えた非水電解質二次電池であり、正極活物質として、Y23の微粒子で表面が被覆された、層状構造を有するリチウム遷移金属複合酸化物を用いることを特徴としている。 The present invention includes a positive electrode including a positive electrode active material capable of occluding and releasing lithium, a negative electrode including a negative electrode active material capable of occluding and releasing lithium, and a non-aqueous electrolyte having lithium ion conductivity. A non-aqueous electrolyte secondary battery is characterized in that a lithium transition metal composite oxide having a layered structure, the surface of which is coated with fine particles of Y 2 O 3 , is used as a positive electrode active material.

本発明においては、正極活物質として、Y23の微粒子で表面が被覆された、層状構造を有するリチウム遷移金属複合酸化物を用いている。本発明において、「被覆」とは、層状構造を有するリチウム遷移金属複合酸化物の表面にY23の微粒子が付着した状態を意味している。従って、Y23の微粒子は、リチウム遷移金属複合酸化物の表面を完全に被覆している必要はなく、少なくとも一部の表面が被覆されていればよい。 In the present invention, a lithium transition metal composite oxide having a layered structure whose surface is coated with fine particles of Y 2 O 3 is used as the positive electrode active material. In the present invention, “coating” means a state in which fine particles of Y 2 O 3 are adhered to the surface of a lithium transition metal composite oxide having a layered structure. Therefore, it is not necessary for the Y 2 O 3 fine particles to completely cover the surface of the lithium transition metal composite oxide, as long as at least a part of the surface is covered.

本発明に従い、Y23の微粒子で表面が被覆された層状構造を有するリチウム遷移金属複合酸化物を用いることにより、電池容量を低下させることなく、高温耐久性、すなわち高温保存特性を高めることができる。高温耐久性を高めることができる理由の詳細については明らかではないが、正極活物質がY23の微粒子で被覆されていることにより、正極活物質と非水電解液とが直接接触することにより生じる活物質表面の劣化が抑制されるためであると思われる。 According to the present invention, by using a lithium transition metal composite oxide having a layered structure whose surface is coated with fine particles of Y 2 O 3 , high temperature durability, that is, high temperature storage characteristics, is improved without reducing battery capacity. Can do. Although the details of the reason why the high temperature durability can be improved are not clear, the positive electrode active material and the nonaqueous electrolyte solution are in direct contact with each other because the positive electrode active material is coated with the fine particles of Y 2 O 3. This is thought to be due to the suppression of the deterioration of the active material surface caused by.

本発明において、Y23の微粒子でリチウム遷移金属複合酸化物の表面を被覆する方法としては、例えば、リチウム遷移金属複合酸化物とY23の微粒子とを大きな剪断力がかかる混合装置等を用いて混合し、リチウム遷移金属複合酸化物の表面にY23の微粒子を物理的に付着させる方法が挙げられる。 In the present invention, Y 2 as a method for coating the surface of particles of lithium transition metal composite oxide of O 3, for example, a large shearing force is applied mixing apparatus and a particle of the lithium-transition metal composite oxide and Y 2 O 3 And the like, and the fine particles of Y 2 O 3 are physically attached to the surface of the lithium transition metal composite oxide.

本発明において、層状構造を有するリチウム遷移金属複合酸化物に対するY23の微粒子の被覆量は、該複合酸化物に対して0.1〜3.0モル%の範囲であることが好ましく、0.3〜1.0モル%の範囲であることがさらに好ましい。Y23の微粒子の被覆量が0.1モル%未満であると、高温耐久性(高温保存特性)が十分に得られない場合があり、3.0モル%を超えると、高温耐久性(高温保存特性)は向上するものの、レート特性等が低下する場合がある。 In the present invention, the coating amount of the fine particles of Y 2 O 3 on the lithium transition metal composite oxide having a layered structure is preferably in the range of 0.1 to 3.0 mol% with respect to the composite oxide, More preferably, it is in the range of 0.3 to 1.0 mol%. When the coating amount of the fine particles of Y 2 O 3 is less than 0.1 mol%, high temperature durability (high temperature storage characteristics) may not be sufficiently obtained. Although (high temperature storage characteristics) are improved, rate characteristics and the like may be deteriorated.

被覆するY23粒子の平均粒子径は、0.3μm以下であることが好ましく、さらに好ましくは0.2μm以下である。Y23粒子の平均粒子径を0.3μm以下にすることにより、より均一にリチウム遷移金属複合酸化物の表面を被覆することができる。リチウム遷移金属複合酸化物の平均一次粒子径は、一般に1〜3μm程度である。 The average particle diameter of the Y 2 O 3 particles to be coated is preferably 0.3 μm or less, more preferably 0.2 μm or less. By making the average particle diameter of Y 2 O 3 particles 0.3 μm or less, the surface of the lithium transition metal composite oxide can be coated more uniformly. The average primary particle diameter of the lithium transition metal composite oxide is generally about 1 to 3 μm.

本発明に用いる層状構造を有するリチウム遷移金属複合酸化物は、電池容量を大きくするためにNiを含んでいることが好ましい。さらに構造安定性を高めるためにMnを含んでいることが好ましく、さらにはCoを含んでいることがより好ましい。   The lithium transition metal composite oxide having a layered structure used in the present invention preferably contains Ni in order to increase the battery capacity. Further, in order to enhance the structural stability, it is preferable that Mn is contained, and further that Co is more preferably contained.

本発明に用いる層状構造を有するリチウム遷移金属複合酸化物としては、一般式LiaMnxNiyCoz2(a,x,y及びzは、0≦a≦1.2、x+y+z=1、0≦x≦0.5、0≦y≦0.5、z≧0を満足する。)で表わされるものが好ましい。また、上記リチウム遷移金属複合酸化物には、B,F,Mg,Al,Ti,Cr,V,Fe,Cu,Zn,Nb,Zr,及びSnから選択される少なくとも1種類の元素がさらに含まれていてもよい。 As the lithium transition metal composite oxide having a layered structure used in the present invention, the general formula Li a Mn x Ni y Co z O 2 (a, x, y and z are 0 ≦ a ≦ 1.2, x + y + z = 1). And 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.5, and z ≧ 0) are preferable. The lithium transition metal composite oxide further includes at least one element selected from B, F, Mg, Al, Ti, Cr, V, Fe, Cu, Zn, Nb, Zr, and Sn. It may be.

また、本発明においては、上記のY23の微粒子で被覆された層状構造を有するリチウム遷移金属複合酸化物に、スピネル構造を有するリチウムマンガン複合酸化物を混合して正極活物質として用いてもよい。スピネル構造を有するリチウムマンガン複合酸化物には、B,F,Mg,Al,Ti,Cr,V,Fe,Co,Ni,Cu,Zn,Nb,及びZrから選択される少なくとも1種類の元素がさらに含まれていてもよい。 In the present invention, the lithium transition metal composite oxide having a layered structure coated with the Y 2 O 3 fine particles is mixed with a lithium manganese composite oxide having a spinel structure and used as a positive electrode active material. Also good. The lithium manganese composite oxide having a spinel structure includes at least one element selected from B, F, Mg, Al, Ti, Cr, V, Fe, Co, Ni, Cu, Zn, Nb, and Zr. Further, it may be included.

23の微粒子で被覆された、層状構造を有するリチウム遷移金属複合酸化物と、スピネル構造を有するリチウムマンガン複合酸化物とを混合して正極活物質として用いる場合、その混合割合(リチウム遷移金属複合酸化物:リチウムマンガン複合酸化物)は、重量比率で1:9〜9:1の範囲であることが好ましく、さらに好ましくは6:4〜9:1の範囲である。これらの範囲でリチウムマンガン複合酸化物をリチウム遷移金属複合酸化物に混合することにより、高温耐久性をさらに向上させることができる。 When a lithium transition metal composite oxide having a layered structure covered with fine particles of Y 2 O 3 and a lithium manganese composite oxide having a spinel structure are mixed and used as a positive electrode active material, the mixing ratio (lithium transition The metal composite oxide: lithium manganese composite oxide) is preferably in the range of 1: 9 to 9: 1 by weight ratio, more preferably in the range of 6: 4 to 9: 1. By mixing the lithium manganese composite oxide with the lithium transition metal composite oxide within these ranges, the high temperature durability can be further improved.

本発明において負極に用いる負極活物質は特に限定されるものではなく、非水電解質二次電池に用いることができるものであればよいが、好ましくは炭素材料が用いられる。炭素材料の中でも、特に黒鉛材料が好ましく用いられる。   The negative electrode active material used for the negative electrode in the present invention is not particularly limited as long as it can be used for a non-aqueous electrolyte secondary battery, but a carbon material is preferably used. Among carbon materials, graphite material is particularly preferably used.

非水電解質としては、非水電解質二次電池に用いられる電解質を制限なく用いることができる。電解質の溶媒としては、特に限定されるものではないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートなどを用いることができる。特に、環状カーボネートと鎖状カーボネートの混合溶媒が好ましく用いられる。また、上記環状カーボネートと、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどのエーテル系溶媒との混合溶媒も例示される。   As the non-aqueous electrolyte, an electrolyte used for a non-aqueous electrolyte secondary battery can be used without limitation. The electrolyte solvent is not particularly limited, but cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate may be used. it can. In particular, a mixed solvent of a cyclic carbonate and a chain carbonate is preferably used. Moreover, the mixed solvent of the said cyclic carbonate and ether solvents, such as 1, 2- dimethoxyethane and 1, 2- diethoxyethane, is also illustrated.

また、電解質の溶質としては、特に限定されるものではないが、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2、LiN(C25SO2)2、LiN(CF3SO2)(C49SO2)、LiC(CF3SO2)3、LiC(C25SO2)3、LiAsF6、LiClO4、Li210Cl10、Li212Cl12など及びそれらの混合物が挙げられる。 Moreover, the electrolyte solute is not particularly limited, but LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN ( CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B And 12 Cl 12 and mixtures thereof.

本発明に従い、正極活物質として、Y23の微粒子で表面が被覆された層状構造を有するリチウム遷移金属複合酸化物を用いることにより、電池容量を低下させることなく、高温耐久性を高めることができる。 According to the present invention, by using a lithium transition metal composite oxide having a layered structure whose surface is coated with fine particles of Y 2 O 3 as the positive electrode active material, the high temperature durability is improved without reducing the battery capacity. Can do.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof. Is.

(実施例1)
〔Y23の微粒子で被覆したリチウム遷移金属複合酸化物の作製〕
平均二次粒子径10μmのLiNi0.4Co0.3Mn0.32:150gと、平均粒子径0.1μmのY23:1.77g(遷移金属Ni0.4Co0.3Mn0.3に対して0.5モル%)とをホソカワミクロン(株)製メカノフュージョンAM−20FSに充填し、1500rpmで5分間混合した。混合後の粉末状態を走査型電子顕微鏡(SEM)で観察した結果、一次粒子径約1μmのリチウム遷移金属複合酸化物の表面に、Y23の微粒子が均一に付着していることを確認した。
(Example 1)
[Preparation of lithium transition metal composite oxide coated with fine particles of Y 2 O 3 ]
LiNi 0.4 Co 0.3 Mn 0.3 O 2 with an average secondary particle diameter of 10 μm: 150 g and Y 2 O 3 with an average particle diameter of 0.1 μm: 1.77 g (0.5 mol with respect to the transition metal Ni 0.4 Co 0.3 Mn 0.3 %) Was loaded into Mechanofusion AM-20FS manufactured by Hosokawa Micron Corporation and mixed at 1500 rpm for 5 minutes. As a result of observing the powder state after mixing with a scanning electron microscope (SEM), it was confirmed that fine particles of Y 2 O 3 were uniformly attached to the surface of the lithium transition metal composite oxide having a primary particle diameter of about 1 μm. did.

〔正極の作製〕
上記のように作製した、Y23の微粒子で表面を被覆したリチウム遷移金属複合酸化物と、スピネル構造を有するリチウムマンガン複合酸化物(Li1.1Mn1.94)とを重量比(リチウム遷移金属複合酸化物:リチウムマンガン複合酸化物)で7:3となるように混合して、この混合物を正極活物質として用いた。この混合物(正極活物質)と、導電剤としての炭素材料と、結着剤としてのポリフッ化ビニリデンを溶解したN−メチル−2−ピロリドン溶液を、活物質と導電剤と結着剤の重量比が90:5:5となるように混合して正極スラリーを作製した。作製したスラリーを集電体としてのアルミニウム箔上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延し、集電体タブを取り付けることにより正極を作製した。
[Production of positive electrode]
The weight ratio (lithium transition) of the lithium transition metal composite oxide whose surface was coated with the fine particles of Y 2 O 3 and the lithium manganese composite oxide (Li 1.1 Mn 1.9 O 4 ) having a spinel structure prepared as described above. Metal composite oxide: lithium manganese composite oxide) was mixed so as to be 7: 3, and this mixture was used as a positive electrode active material. This mixture (positive electrode active material), a carbon material as a conductive agent, and an N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder is dissolved are mixed in a weight ratio of the active material, the conductive agent, and the binder. Was mixed to be 90: 5: 5 to prepare a positive electrode slurry. The prepared slurry was applied onto an aluminum foil as a current collector, dried, then rolled using a rolling roller, and a current collector tab was attached to produce a positive electrode.

〔負極の作製〕
負極活物質としての黒鉛と、結着剤としてのSBRと、増粘剤としてのカルボキシメチルセルロースを溶かした水溶液を、活物質と結着剤と増粘剤の重量比が98:1:1になるように混練して負極スラリーを作製した。作製したスラリーを集電体としての銅箔上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延し、集電タブを取り付けて負極を作製した。
(Production of negative electrode)
An aqueous solution in which graphite as a negative electrode active material, SBR as a binder, and carboxymethyl cellulose as a thickener are dissolved has a weight ratio of 98: 1: 1 between the active material, the binder, and the thickener. The negative electrode slurry was prepared by kneading as described above. After apply | coating the produced slurry on the copper foil as a collector, it dried and then rolled using the rolling roller, the collector tab was attached, and the negative electrode was produced.

〔電解液の作製〕
エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)とを体積比3:7で混合した溶媒に、溶質としてのLiPF6を1モル/リットルとなるように溶解し、電解液を作製した。
(Preparation of electrolyte)
LiPF 6 as a solute was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 so as to be 1 mol / liter to prepare an electrolytic solution.

〔三電極式ビーカーセルの作製〕
上記で作製した正極を作用極として用い、対極及び参照極としてリチウム金属を用い、図1に示す三電極式ビーカーセルA1を作製した。図1に示すように、ビーカーセルの容器中には電解液4が入れられており、この電解液4に、作用極1、対極2、及び参照極3が浸漬されている。また、電解液4としては、上記で作製した電解液を用いている。
[Production of three-electrode beaker cell]
A three-electrode beaker cell A1 shown in FIG. 1 was prepared using the positive electrode prepared above as a working electrode and lithium metal as a counter electrode and a reference electrode. As shown in FIG. 1, an electrolyte solution 4 is placed in a beaker cell container, and a working electrode 1, a counter electrode 2, and a reference electrode 3 are immersed in the electrolyte solution 4. Further, as the electrolytic solution 4, the electrolytic solution prepared above is used.

〔非水電解質二次電池の作製〕
上記で作製した正極及び負極を、ポリエチレン製のセパレータを介して対向するように巻取って巻取り体を作製し、アルゴン雰囲気下のグローボックス中にて、この巻取り体を電解液とともに電池缶に封入することにより、定格容量1.4Ahの円筒型18650サイズの非水電解質二次電池A2を作製した。
[Preparation of non-aqueous electrolyte secondary battery]
The positive electrode and the negative electrode prepared above are wound so as to face each other with a polyethylene separator therebetween, and a wound body is produced. In a glow box under an argon atmosphere, the wound body is combined with an electrolytic solution into a battery can. Was sealed to produce a cylindrical 18650 size non-aqueous electrolyte secondary battery A2 having a rated capacity of 1.4 Ah.

(比較例1)
実施例1において、Y23の微粒子で表面が被覆されたリチウム遷移金属複合酸化物に代えて、Y23の微粒子で表面を被覆していない、すなわちY23の微粒子と混合処理していないリチウム遷移金属複合酸化物(LiNi0.4Co0.3Mn0.32)を用いる以外は、実施例1と同様にして、三電極式ビーカーセルB1と、定格容量1.4Ahの円筒型18650サイズの非水電解質二次電池B2を作製した。
(Comparative Example 1)
Mixed in Example 1, in place of the lithium-transition metal composite oxide whose surface is coated with fine particles of Y 2 O 3, no surface coating of fine particles of Y 2 O 3, namely the fine particles of Y 2 O 3 A three-electrode beaker cell B1 and a cylindrical 18650 with a rated capacity of 1.4 Ah are used in the same manner as in Example 1 except that an untreated lithium transition metal composite oxide (LiNi 0.4 Co 0.3 Mn 0.3 O 2 ) is used. A non-aqueous electrolyte secondary battery B2 having a size was produced.

〔三電極式ビーカーセルの放電容量の測定〕
三電極式ビーカーセルA1及びB1について、放電容量を測定した。放電容量の測定は、9.3mAと3.1mAの2段階充電で4.3Vまで充電した後、放電終止電圧を3.1Vに設定し、9.3mAで3.1Vまで放電したときの容量を測定し、これを放電容量とした。測定結果を表1に示す。
[Measurement of discharge capacity of three-electrode beaker cell]
The discharge capacity was measured for the three-electrode beaker cells A1 and B1. The discharge capacity is measured after charging to 4.3V by two-step charging at 9.3 mA and 3.1 mA, then setting the discharge end voltage to 3.1 V, and discharging to 3.1 V at 9.3 mA. Was measured and used as the discharge capacity. The measurement results are shown in Table 1.

Figure 2005339886
〔電池の定格容量の測定〕
電池A2及びB2について、定格容量を測定した。電池の定格容量は、1400mAの定電流−定電圧(70mAカット)で4.2Vまで充電した後、放電終止電圧を3.0Vに設定し、470mAで3.0Vまで放電したときの電池容量を定格容量とした。
Figure 2005339886
[Measurement of rated battery capacity]
The rated capacities of the batteries A2 and B2 were measured. The battery has a rated capacity of 1400 mA constant current-constant voltage (70 mA cut) after charging to 4.2 V, then set the discharge end voltage to 3.0 V, and the battery capacity when discharged to 3.0 V at 470 mA. Rated capacity.

〔電池のIV抵抗の測定〕
電池A2及びB2について、IV抵抗を測定した。1400mAでSOC50%まで充電した後、SOC50%を中心として280mA、700mA、2100mA、及び4200mAで10秒間充電と放電をそれぞれ行い、それぞれの場合における10秒後の電池電圧を電流値に対してプロットし、その傾きをIV抵抗とした。
[Measurement of battery IV resistance]
IV resistance was measured about battery A2 and B2. After charging to SOC 50% at 1400 mA, charging and discharging are performed for 10 seconds at 280 mA, 700 mA, 2100 mA and 4200 mA centering on SOC 50%, respectively, and the battery voltage after 10 seconds in each case is plotted against the current value. The slope was defined as IV resistance.

〔保存特性試験〕
電池A2及びB2について、1400mAでSOC50%まで充電した後、温度を65℃に保持した恒温槽内で30日間保存試験を行った。保存後、上記と同様にして定格容量を測定し、容量復帰率を求めた。容量復帰率は、保存試験後の電池定格容量を保存試験前の電池定格容量で割って算出した。また、定格容量を測定した後、上記と同様にしてIV抵抗測定を行った。この結果から、保存試験前後のIV抵抗の増加を算出した。電池A2及びB2についての容量復帰率及び保存前後のIV抵抗の増加を表2に示す。
[Storage characteristics test]
Regarding batteries A2 and B2, after being charged to SOC 50% at 1400 mA, a storage test was performed for 30 days in a thermostatic bath maintained at 65 ° C. After storage, the rated capacity was measured in the same manner as described above to determine the capacity recovery rate. The capacity recovery rate was calculated by dividing the battery rated capacity after the storage test by the battery rated capacity before the storage test. Further, after measuring the rated capacity, the IV resistance was measured in the same manner as described above. From this result, the increase in IV resistance before and after the storage test was calculated. Table 2 shows the capacity recovery rate and the increase in IV resistance before and after storage for batteries A2 and B2.

Figure 2005339886
表1に示す結果から明らかなように、Y23の微粒子で被覆したリチウム遷移金属複合酸化物を正極活物質として用いた実施例1の電池A1は、Y23の微粒子で被覆していないリチウム遷移金属複合酸化物を正極活物質として用いた比較例1の電池B1とほぼ同程度の放電容量を有している。また、表2に示す結果から明らかなように、実施例1の電池A2は、比較例1の電池B2に比べ、容量復帰率が高くなっており、また保存前後のIV抵抗の増加も小さくなっている。これらのことから、本発明に従いY23の微粒子で被覆したリチウム遷移金属複合酸化物を正極活物質として用いることにより、電池容量を低下させることなく、高温耐久性を高めることができることがわかる。
Figure 2005339886
As is apparent from the results shown in Table 1, the battery A1 of Example 1 using a lithium transition metal composite oxide coated with fine particles of Y 2 O 3 as the positive electrode active material was coated with fine particles of Y 2 O 3. The battery has almost the same discharge capacity as that of the battery B1 of Comparative Example 1 using a non-lithium transition metal composite oxide as a positive electrode active material. Further, as apparent from the results shown in Table 2, the battery A2 of Example 1 has a higher capacity recovery rate than the battery B2 of Comparative Example 1, and the increase in IV resistance before and after storage is also reduced. ing. From these facts, it can be seen that by using the lithium transition metal composite oxide coated with fine particles of Y 2 O 3 according to the present invention as the positive electrode active material, the high temperature durability can be enhanced without reducing the battery capacity. .

本発明に従う実施例において作製した三電極式ビーカーセルを示す概略図。Schematic which shows the three-electrode-type beaker cell produced in the Example according to this invention.

符号の説明Explanation of symbols

1…正極
2…対極(リチウム金属)
3…参照極(リチウム金属)
4…電解液
DESCRIPTION OF SYMBOLS 1 ... Positive electrode 2 ... Counter electrode (lithium metal)
3. Reference electrode (lithium metal)
4 ... Electrolyte

Claims (3)

リチウムの吸蔵・放出が可能な正極活物質を含む正極と、リチウムの吸蔵・放出が可能な負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解液とを備えた非水電解質二次電池において、
前記正極活物質として、Y23の微粒子で表面が被覆された、層状構造を有するリチウム遷移金属複合酸化物を用いることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte comprising a positive electrode including a positive electrode active material capable of inserting and extracting lithium, a negative electrode including a negative electrode active material capable of inserting and extracting lithium, and a non-aqueous electrolyte having lithium ion conductivity In the next battery,
A non-aqueous electrolyte secondary battery using a lithium transition metal composite oxide having a layered structure, the surface of which is coated with fine particles of Y 2 O 3 as the positive electrode active material.
前記リチウム遷移金属複合酸化物が、遷移金属として少なくともNiとMnを含むことを特徴とする請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium transition metal composite oxide includes at least Ni and Mn as transition metals. 前記正極活物質として、Y23の微粒子で表面が被覆された前記リチウム遷移金属複合酸化物と、スピネル構造を有するリチウムマンガン複合酸化物とを混合して用いることを特徴とする請求項1または2に記載の非水電解質二次電池。
2. The positive electrode active material, wherein the lithium transition metal composite oxide whose surface is coated with fine particles of Y 2 O 3 and a lithium manganese composite oxide having a spinel structure are mixed and used. Or the nonaqueous electrolyte secondary battery of 2.
JP2004154787A 2004-05-25 2004-05-25 Nonaqueous electrolyte secondary battery Pending JP2005339886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154787A JP2005339886A (en) 2004-05-25 2004-05-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154787A JP2005339886A (en) 2004-05-25 2004-05-25 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005339886A true JP2005339886A (en) 2005-12-08

Family

ID=35493220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154787A Pending JP2005339886A (en) 2004-05-25 2004-05-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005339886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038021A (en) * 2007-07-11 2009-02-19 Toda Kogyo Corp Manufacturing method of composite cathode active substance for nonaqueous electrolyte secondary batteries
JPWO2012086277A1 (en) * 2010-12-20 2014-05-22 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the positive electrode
WO2024048564A1 (en) * 2022-08-30 2024-03-07 三井金属鉱業株式会社 Active material, method for producing recycled active material, method for tracking valuable element recovered from battery, and compound for tracking

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019449A1 (en) * 2000-08-29 2002-03-07 Santoku Corporation Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell
JP2002075361A (en) * 2000-08-30 2002-03-15 Denso Corp Lithium ion secondary battery
JP2003500318A (en) * 1999-05-15 2003-01-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Lithium mixed oxide particles coated with metal oxide
JP2004006094A (en) * 2002-05-31 2004-01-08 Nec Corp Nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500318A (en) * 1999-05-15 2003-01-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Lithium mixed oxide particles coated with metal oxide
WO2002019449A1 (en) * 2000-08-29 2002-03-07 Santoku Corporation Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell
JP2002075361A (en) * 2000-08-30 2002-03-15 Denso Corp Lithium ion secondary battery
JP2004006094A (en) * 2002-05-31 2004-01-08 Nec Corp Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038021A (en) * 2007-07-11 2009-02-19 Toda Kogyo Corp Manufacturing method of composite cathode active substance for nonaqueous electrolyte secondary batteries
JPWO2012086277A1 (en) * 2010-12-20 2014-05-22 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the positive electrode
US9437869B2 (en) 2010-12-20 2016-09-06 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the positive electrode
WO2024048564A1 (en) * 2022-08-30 2024-03-07 三井金属鉱業株式会社 Active material, method for producing recycled active material, method for tracking valuable element recovered from battery, and compound for tracking

Similar Documents

Publication Publication Date Title
JP4841116B2 (en) Nonaqueous electrolyte secondary battery
JP4798964B2 (en) Nonaqueous electrolyte secondary battery
JP4660164B2 (en) Nonaqueous electrolyte secondary battery
KR101772754B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
JP4841133B2 (en) Nonaqueous electrolyte secondary battery
JP5874430B2 (en) Non-aqueous electrolyte secondary battery and method for producing the same, and method for producing lithium transition metal composite oxide for non-aqueous electrolyte secondary battery
JP2007234565A (en) Nonaqueous electrolyte secondary battery
JP2008300180A (en) Nonaqueous electrolyte secondary battery
JP5036121B2 (en) Nonaqueous electrolyte secondary battery
JP2007123251A (en) Nonaqueous electrolyte secondary battery
JP2011138621A (en) Manufacturing method of positive electrode of nonaqueous electrolyte secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
CN105580171A (en) Negative electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using same
JP2005050779A (en) Nonaqueous electrolytic solution secondary battery
JP2008091041A (en) Nonaqueous secondary battery
JP2011181427A (en) Lithium secondary battery
JP4297709B2 (en) Nonaqueous electrolyte secondary battery
JP4297704B2 (en) Nonaqueous electrolyte secondary battery
JP2009277395A (en) Nonaqueous secondary battery, and nonaqueous secondary battery system
US10177370B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2009266791A (en) Nonaqueous electrolyte secondary battery
WO2016103592A1 (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2004296181A (en) Lithium secondary battery
JP5089097B2 (en) Non-aqueous electrolyte secondary battery and charging / discharging method thereof
JP2005339887A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109