JP2005324137A - Fluorine ion removal method in waste water - Google Patents
Fluorine ion removal method in waste water Download PDFInfo
- Publication number
- JP2005324137A JP2005324137A JP2004145059A JP2004145059A JP2005324137A JP 2005324137 A JP2005324137 A JP 2005324137A JP 2004145059 A JP2004145059 A JP 2004145059A JP 2004145059 A JP2004145059 A JP 2004145059A JP 2005324137 A JP2005324137 A JP 2005324137A
- Authority
- JP
- Japan
- Prior art keywords
- complex
- fluorine ions
- waste water
- exchange resin
- hexafluoroaluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000002351 wastewater Substances 0.000 title claims abstract description 24
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 title description 12
- -1 fluorine ions Chemical class 0.000 claims abstract description 27
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 24
- 239000011737 fluorine Substances 0.000 claims abstract description 24
- 239000003957 anion exchange resin Substances 0.000 claims abstract description 16
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims abstract description 8
- 239000003480 eluent Substances 0.000 claims abstract description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 4
- 238000003911 water pollution Methods 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 230000001112 coagulating effect Effects 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000003657 drainage water Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
- Removal Of Specific Substances (AREA)
Abstract
【課題】 広大な処理施設を必要とせず、かつ、低ランニングコストで、フッ素イオンを含む排水中から、フッ素イオンを、効率良く除去することが可能な処理方法を提供すること。
【解決手段】 フッ素イオンを含む排水中に、硫酸アルミニウム又はポリ塩化アルミニウムを添加し、ヘキサフルオロアルミニウム錯体を形成し、該錯体を弱塩基性陰イオン交換樹脂により吸着・捕捉し、次いで、吸着・捕捉された該錯体を溶離液にて濃縮回収することを特徴とする排水中のフッ素イオン除去方法。
【選択図】 なしPROBLEM TO BE SOLVED: To provide a treatment method capable of efficiently removing fluorine ions from waste water containing fluorine ions at a low running cost without requiring a vast treatment facility.
SOLUTION: Aluminum sulfate or polyaluminum chloride is added to wastewater containing fluorine ions to form a hexafluoroaluminum complex, and the complex is adsorbed and captured by a weakly basic anion exchange resin. A method for removing fluorine ions in waste water, wherein the trapped complex is concentrated and recovered with an eluent.
[Selection figure] None
Description
本発明は、半導体部品製造工程やステンレス酸洗い工程等から排出されるフッ素イオンを含有する排水中から、フッ素イオンを効率良く除去する方法に関する。 The present invention relates to a method for efficiently removing fluorine ions from wastewater containing fluorine ions discharged from a semiconductor component manufacturing process, a stainless steel pickling process, and the like.
近年、環境保全、公害防止の立場から公共水域へ放流される排水中のフッ素濃度が、例えば、水質汚濁防止法において、15mg/Lから8mg/Lへと改正され、厳しく規制されるようになってきている。 In recent years, the fluorine concentration in wastewater discharged into public water areas from the standpoint of environmental protection and pollution prevention has been revised from 15 mg / L to 8 mg / L, for example, in the Water Pollution Control Law, and is now strictly regulated. It is coming.
ところで、従来、フッ素イオンを排水から除去する方法として、排水中に、カルシウム化合物を添加して、フッ素イオンをフッ化カルシウムとして凝集沈殿させ、それを分離する方法が代表的な方法として採用されていた(例えば、特許文献1)。 By the way, conventionally, as a method for removing fluorine ions from wastewater, a method of adding a calcium compound to the wastewater, coagulating and precipitating fluorine ions as calcium fluoride, and separating them has been adopted as a representative method. (For example, Patent Document 1).
しかしながら、この方法は、フッ素濃度をせいぜい10mg/Lまでしか処理できず、改正された水質汚濁防止法の規制をクリヤーできない方法となった。 However, this method can treat only the fluorine concentration up to 10 mg / L and cannot clear the revised regulation of the Water Pollution Control Law.
そこで、前記規制をクリヤーするために、
(1)フッ素イオンをフッ化カルシウムとして凝集沈殿させ、それを除去した後、更に、硫酸アルミニウムを添加して、再度、凝集沈殿させ、それを除去する方法、
(2)活性アルミナにより吸着させる方法、
(3)フッ素イオンと錯体を形成する金属化合物と金属と錯体を形成する液体キレート性凝集剤を添加し、不溶性の錯化合物として分離する方法(例えば、特許文献2)、
等が知られている。
So to clear the regulation,
(1) A method of coagulating and precipitating fluorine ions as calcium fluoride, removing it, and further adding aluminum sulfate to coagulating and precipitating again and removing it,
(2) A method of adsorbing with activated alumina,
(3) A method in which a metal compound that forms a complex with a fluorine ion and a liquid chelating flocculant that forms a complex with a metal are added and separated as an insoluble complex compound (for example, Patent Document 2),
Etc. are known.
しかしながら、上記(1)の方法は、広大な処理施設を必要とし、また、多量のスラッジが発生する問題点があった。 However, the method (1) requires a large processing facility and has a problem that a large amount of sludge is generated.
また、上記(2)の方法は、アルミナの再生が困難なため、ランニングコストが大となる問題点があった。 In addition, the method (2) has a problem that the running cost is high because it is difficult to regenerate alumina.
また、上記(3)の方法は、キレート性凝集剤が高価なため、多量の排水処理にはランニングコストが大となる問題点があった。 Further, the method (3) has a problem that the running cost becomes large for a large amount of wastewater treatment because the chelating flocculant is expensive.
そのため、広大な処理施設を必要とせず、かつ、低ランニングコストで、水質汚濁防止法の規制をクリヤーする、フッ素濃度を8mg/L以下にする排水処理方法が望まれていた。
本発明の目的は、広大な処理施設を必要とせず、かつ、低ランニングコストで、フッ素イオンを含む排水中から、フッ素イオンを、効率良く除去することが可能な処理方法を提供することである。 An object of the present invention is to provide a treatment method capable of efficiently removing fluorine ions from wastewater containing fluorine ions at a low running cost without requiring a large treatment facility. .
本発明者等は、上記課題を解決するため、鋭意検討した結果、以下の方法により課題を解決できることを見出し、本発明に到達したものである。 As a result of intensive studies in order to solve the above problems, the present inventors have found that the problems can be solved by the following method, and have reached the present invention.
本発明に従って、フッ素イオンを含む排水中に、硫酸アルミニウム又はポリ塩化アルミニウムを添加し、ヘキサフルオロアルミニウム錯体を形成し、該錯体を弱塩基性陰イオン交換樹脂により吸着・捕捉し、次いで、吸着・捕捉された該錯体を溶離液にて濃縮回収することを特徴とする排水中のフッ素イオン除去方法が提供される。 In accordance with the present invention, aluminum sulfate or polyaluminum chloride is added to wastewater containing fluorine ions to form a hexafluoroaluminum complex, and the complex is adsorbed and captured by a weakly basic anion exchange resin. There is provided a method for removing fluorine ions in waste water, wherein the trapped complex is concentrated and recovered with an eluent.
本発明によれば、広大な処理施設を必要とせず、かつ、低ランニングコストで、フッ素イオンを含む排水から、フッ素イオンを、効率良く除去することが可能となる。 According to the present invention, fluorine ions can be efficiently removed from wastewater containing fluorine ions at a low running cost without requiring a large treatment facility.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明においては、第1工程として、排水中にアルミニウムイオンを発生する硫酸アルミニウム、又は、ポリ塩化アルミニウムを添加し、撹拌、混合する。それにより、排水中のフッ素イオンは、アルミニウムイオンと反応し、以下の反応式のように水可溶性の錯イオンであるヘキサフルオロアルミニウム錯体[AlF6]−3を形成する;
6F− + Al+3 → [AlF6]−3
In this invention, as a 1st process, the aluminum sulfate which generate | occur | produces an aluminum ion in waste_water | drain, or polyaluminum chloride is added, and it stirs and mixes. Thereby, fluorine ions in the wastewater react with aluminum ions to form a hexafluoroaluminum complex [AlF 6 ] -3 that is a water-soluble complex ion as shown in the following reaction formula;
6F - + Al +3 → [AlF 6] -3
硫酸アルミニウム、ポリ塩化アルミニウムの添加量は、排水中のフッ素イオン処理濃度によって左右されるが、アルミニウムイオンとして、排水中のフッ素イオンに対して等モル以上が好ましく、特には5倍等量以上の添加が適当である。なお、排水のpHは、ヘキサフルオロアルミニニウム錯体を形成し易いpH6〜8が好ましく、特にはpH6〜7に調整することが好ましい。 The amount of aluminum sulfate and polyaluminum chloride added depends on the fluorine ion treatment concentration in the wastewater, but the aluminum ion is preferably equimolar or more with respect to the fluorine ion in the wastewater, particularly 5 times the equivalent or more. Addition is appropriate. The pH of the waste water is preferably pH 6 to 8 where a hexafluoroaluminium complex is easily formed, and particularly preferably adjusted to pH 6 to 7.
第2工程として、ヘキサフルオロアルミニウム錯体を形成させた排水を、弱塩基性陰イオン交換樹脂の充填層に通水して、イオン交換により、ヘキサフルオロアルミニウム錯体を吸着、捕捉し、排水中から除去する。 As the second step, drain the hexafluoroaluminum complex formed water through a packed bed of weakly basic anion exchange resin, and adsorb and capture the hexafluoroaluminum complex by ion exchange and remove it from the wastewater. To do.
なお、多量に含まれるCl−等が同時に吸着され、イオン交換樹脂が多量の共存するイオンによりたちまち飽和してしまい、また、吸着力の強い多価の陰イオンを吸着すると再生し難い場合があるが、弱塩基陰イオン交換樹脂は、吸着力の強い−3価等の多価のイオンを選択的に吸着し、再生も容易であり、CaSO4、CaCl2等の中和塩は吸着しないという特徴がある。 In addition, a large amount of Cl − or the like is adsorbed at the same time, and the ion exchange resin may be saturated quickly with a large amount of coexisting ions, and it may be difficult to regenerate when adsorbing a multivalent anion having a strong adsorption force. However, the weak base anion exchange resin selectively adsorbs multivalent ions such as trivalent ions having a strong adsorbing power, is easy to regenerate, and does not adsorb neutral salts such as CaSO 4 and CaCl 2. There are features.
弱塩基性陰イオン交換樹脂には、(R−OH)型と(R−Cl)型があるが、イオン交換は、以下のようになり、ヘキサフルオロアルミニウム錯体が吸着・捕捉される;
(R−OH)型: 3R−OH+[AlF6]−3→3R−[AlF6]+3[OH]
(R−Cl)型: 3R−Cl+[AlF6]−3→3R−[AlF6]+3Cl
Weakly basic anion exchange resins include (R—OH) type and (R—Cl) type. Ion exchange is as follows, and hexafluoroaluminum complex is adsorbed and trapped;
(R—OH) type: 3R—OH + [AlF 6 ] −3 → 3R— [AlF 6 ] +3 [OH]
(R—Cl) type: 3R—Cl + [AlF 6 ] −3 → 3R— [AlF 6 ] + 3Cl
OH型では処理水中に含まれるCa塩による樹脂の目つまりが起こり、又、処理水がアルカリ性になることにより除去率が低下すること、等を考慮すると、塩酸にて再生するCl型の弱塩基性陰イオン交換樹脂を使用するのが、好ましい。 In the case of the OH type, taking into account the clogging of the resin due to the Ca salt contained in the treated water, and the removal rate being lowered due to the treated water becoming alkaline, the Cl type weak base regenerated with hydrochloric acid is considered. It is preferable to use a functional anion exchange resin.
また、弱塩基性陰イオン交換樹脂の充填層は、1段でもよいが、回収効率を高くするために2段直列にして使用するのが、好ましい。即ち、2段直列にすることにより、1段目が、ヘキサフルオロアルミニウム錯体により飽和吸着され、ヘキサフルオロアルミニウム錯体の一部が漏出するようなことがあっても、2段目で捕捉することができ、かつ、1段目が飽和吸着したときは、排水の通水を2段目に切り替えて、2段目で吸着を行いながら、1段目に後述する溶離液を通液し、吸着・捕捉したヘキサフルオロアルミニウム錯体を回収することができるので、回収効率が向上するとともに、連続処理が可能となる。 The packed bed of weakly basic anion exchange resin may be a single layer, but it is preferable to use two layers in series in order to increase the recovery efficiency. That is, by arranging two stages in series, even if the first stage is saturated and adsorbed by the hexafluoroaluminum complex and a part of the hexafluoroaluminum complex leaks, it can be captured at the second stage. When the first stage is saturated and adsorbed, the drainage water is switched to the second stage. Since the captured hexafluoroaluminum complex can be recovered, the recovery efficiency is improved and continuous processing is possible.
このようにして、ヘキサフルオロアルミニウム錯体を形成させた排水を、弱塩基性陰イオン交換樹脂の充填層に通水処理することにより、当該排水は、フッ素イオン濃度の非常に低い処理水となる。 In this way, the waste water in which the hexafluoroaluminum complex is formed is passed through the packed bed of the weakly basic anion exchange resin, so that the waste water becomes treated water having a very low fluorine ion concentration.
なお、ヘキサフルオロアルミニウム錯体を吸着・捕捉した弱塩基性陰イオン交換樹脂は、その充填層に、水酸化ナトリウムや塩酸等を含む溶離液を通液し、吸着・捕捉したヘキサフルオロアルミニウム錯体を濃縮回収し、弱塩基性陰イオン交換樹脂を再生させる。なお、水酸化ナトリウムにて再生すると、弱塩基性陰イオン交換樹脂は、(R−OH)型弱塩基性陰イオン交換樹脂となり、塩酸にて再生すると(R−Cl)型弱塩基性陰イオン交換樹脂となる。 The weakly basic anion exchange resin that has adsorbed and captured the hexafluoroaluminum complex is passed through an eluent containing sodium hydroxide, hydrochloric acid, etc. through the packed bed, and the adsorbed and captured hexafluoroaluminum complex is concentrated. Collect and regenerate weakly basic anion exchange resin. When regenerated with sodium hydroxide, the weakly basic anion exchange resin becomes (R—OH) type weakly basic anion exchange resin, and when regenerated with hydrochloric acid, (R—Cl) type weakly basic anion is obtained. It becomes an exchange resin.
再生液中に含まれるヘキサフルオロアルミミウム錯体は再度消石灰を加えることにより以下のように錯体は分解し、F2Caとして除去可能であるので再度凝集沈殿、イオン交換処理する;
H3[AlF6]+3Ca(OH)2→3F2Ca+Al(OH)3+3H2O
The hexafluoroaluminum complex contained in the regenerated solution is decomposed again by adding slaked lime as follows and can be removed as F 2 Ca.
H 3 [AlF 6 ] + 3Ca (OH) 2 → 3F 2 Ca + Al (OH) 3 + 3H 2 O
本発明の方法によれば、イオン交換処理の効率が著しく向上し、しかも、排水中からのフッ素イオン除去率が高く、水質汚濁防止法の規制をクリヤーする、フッ素イオン濃度を8mg/L以下にすることが可能となる。 According to the method of the present invention, the efficiency of the ion exchange treatment is remarkably improved, the fluorine ion removal rate from the waste water is high, and the fluorine ion concentration is reduced to 8 mg / L or less, which clears the regulations of the Water Pollution Control Law. It becomes possible to do.
以下、本発明を実施例により、更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
<実施例1>
水道水に、フッ素イオンを15mg/L含有させた原水5Lの試料水を入れた容器中に、硫酸アルミニウム水溶液(8%Al2O3)を2,400mg添加(フッ素イオンに対するアルミニウムイオンが5.7倍当量)し、20分間撹拌混合した後、水酸化ナトリウムにてpHをそれぞれ、6.0、7.0、8.0に調整した後、5Cのろ紙にてろ過し、Al(OH)3の沈殿物を除去した。
<Example 1>
2,400 mg of aluminum sulfate aqueous solution (8% Al 2 O 3 ) was added to a container in which 5 L of sample water containing 15 mg / L of fluorine ions in tap water was added (5% of aluminum ions to fluorine ions were 5. 7 times equivalent), and after stirring and mixing for 20 minutes, the pH was adjusted to 6.0, 7.0, and 8.0 with sodium hydroxide, respectively, filtered through 5C filter paper, and Al (OH) 3 precipitates were removed.
次に、直径26mmのカラムに(R−OH)型弱塩基性陰イオン交換樹脂[ダイヤイオンWA−20(三菱化学社製商品名)]を100mL充填し、塩酸にて(R−Cl)型に変換し、充分水洗後、空塔速度(SV)15h−1の条件で前述のAl(OH)3を除去した3種類の試料水を通水した。 Next, 100 mL of (R—OH) type weakly basic anion exchange resin [Diaion WA-20 (trade name, manufactured by Mitsubishi Chemical Corporation)] is packed in a column with a diameter of 26 mm, and (R—Cl) type is added with hydrochloric acid. Then, after sufficiently washing with water, three kinds of sample water from which the above-mentioned Al (OH) 3 was removed were passed under the condition of a superficial velocity (SV) of 15 h- 1 .
カラムを通過した処理水を採取し、処理水中のフッ素イオン濃度をJIS−K−0102の方法に準じて分析したところ、フッ素イオン濃度は以下の表1に示すような処理水になった。 The treated water that passed through the column was collected, and the fluorine ion concentration in the treated water was analyzed according to the method of JIS-K-0102. As a result, the fluorine ion concentration was treated water as shown in Table 1 below.
以上のように除去率の高い、良好な結果が得られた。 As described above, good results with a high removal rate were obtained.
なお、イオン交換樹脂は、カラムに塩酸からなる溶離液を通液することにより、吸着・捕捉したヘキサフルオロアルミニウム錯体を回収、再生した。 The ion exchange resin recovered and regenerated the adsorbed and captured hexafluoroaluminum complex by passing an eluent made of hydrochloric acid through the column.
<実施例2>
水道水に、フッ素イオンを11mg/L含有させた原水5Lの試料水を入れた容器中に、硫酸アルミニウム水溶液(8%Al2O3)を8,400mg添加(フッ素イオンに対するアルミニウムイオンが27倍当量)し、20分間撹拌混合した後、水酸化ナトリウムにてpHをそれぞれ5.0、6.0、7.0、8.0に調整した後、5Cのろ紙にてろ過し、Al(OH)3の沈殿物を除去した。
<Example 2>
Add 8,400 mg of aluminum sulfate aqueous solution (8% Al 2 O 3 ) to a container containing 5 L of raw water containing 11 mg / L of fluoride ion in tap water (27 times more aluminum ions than fluorine ions) And the mixture was stirred and mixed for 20 minutes, adjusted to pH 5.0, 6.0, 7.0 and 8.0 with sodium hydroxide, filtered through 5C filter paper, and Al (OH 3 ) The precipitate of 3 was removed.
次に、直径26mmのカラムに(R−OH)型弱塩基性陰イオン交換樹脂[ダイヤイオンWA−20(三菱化学社製商品名)]を100mL充填し、塩酸にて(R−Cl)型に変換し、充分水洗後、空塔速度(SV)15h−1の条件で、前述のAl(OH)3を除去した4種類の試料水を通水した。 Next, 100 mL of (R—OH) type weakly basic anion exchange resin [Diaion WA-20 (trade name, manufactured by Mitsubishi Chemical Corporation)] is packed in a column with a diameter of 26 mm, and (R—Cl) type is added with hydrochloric acid. After being sufficiently washed with water, four types of sample water from which the above-described Al (OH) 3 was removed were passed under conditions of a superficial velocity (SV) of 15 h- 1 .
カラムを通過した処理水を採取し、処理水中のフッ素イオン濃度をJIS−K−0102の方法に準じて分析したところ、フッ素イオン濃度は以下の表2に示すような処理水になった。 The treated water that passed through the column was collected, and the fluorine ion concentration in the treated water was analyzed according to the method of JIS-K-0102. As a result, the fluorine ion concentration was treated water as shown in Table 2 below.
以上の様に除去率の高い、良好な結果が得られた。 As described above, good results with a high removal rate were obtained.
なお、イオン交換樹脂は、カラムに塩酸からなる溶離液を通液することにより、吸着・捕捉したヘキサフルオロアルミニウム錯体を回収し、再生した。 The ion exchange resin was recovered by recycling the adsorbed and captured hexafluoroaluminum complex by passing an eluent made of hydrochloric acid through the column.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004145059A JP2005324137A (en) | 2004-05-14 | 2004-05-14 | Fluorine ion removal method in waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004145059A JP2005324137A (en) | 2004-05-14 | 2004-05-14 | Fluorine ion removal method in waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005324137A true JP2005324137A (en) | 2005-11-24 |
Family
ID=35470905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004145059A Pending JP2005324137A (en) | 2004-05-14 | 2004-05-14 | Fluorine ion removal method in waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005324137A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8911631B2 (en) | 2011-05-10 | 2014-12-16 | Kabushiki Kaisha Toshiba | Fluorine recovering apparatus and method for recovering fluorine |
US9701553B2 (en) | 2011-06-08 | 2017-07-11 | Kabushiki Kaisha Toshiba | Copper recovery apparatus |
CN109354256A (en) * | 2018-12-05 | 2019-02-19 | 齐鲁工业大学 | A method for removing low-concentration fluoride ions in wastewater |
CN109928594A (en) * | 2018-09-03 | 2019-06-25 | 深圳市汉境环境科技有限责任公司 | A kind of sludge dehydration device for sewage treatment |
CN112079478A (en) * | 2020-08-27 | 2020-12-15 | 中伟新材料股份有限公司 | Method for removing fluorine and heavy metal from sulfate treatment liquid |
CN113526639A (en) * | 2021-08-24 | 2021-10-22 | 北京盖雅环境科技有限公司 | Compound fluorine removal agent and fluorine removal method for fluorine-containing wastewater |
CN115636493A (en) * | 2022-11-16 | 2023-01-24 | 中科润蓝环保技术(北京)股份有限公司 | Sewage fluorine removal agent and preparation and application methods thereof |
CN118561470A (en) * | 2024-06-27 | 2024-08-30 | 广东芳源新材料集团股份有限公司 | Method for simultaneously removing F, P, COD in fluorine-containing wastewater |
-
2004
- 2004-05-14 JP JP2004145059A patent/JP2005324137A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8911631B2 (en) | 2011-05-10 | 2014-12-16 | Kabushiki Kaisha Toshiba | Fluorine recovering apparatus and method for recovering fluorine |
US9701553B2 (en) | 2011-06-08 | 2017-07-11 | Kabushiki Kaisha Toshiba | Copper recovery apparatus |
CN109928594A (en) * | 2018-09-03 | 2019-06-25 | 深圳市汉境环境科技有限责任公司 | A kind of sludge dehydration device for sewage treatment |
CN109354256A (en) * | 2018-12-05 | 2019-02-19 | 齐鲁工业大学 | A method for removing low-concentration fluoride ions in wastewater |
CN109354256B (en) * | 2018-12-05 | 2021-11-19 | 齐鲁工业大学 | Method for removing low-concentration fluorine ions in wastewater |
CN112079478A (en) * | 2020-08-27 | 2020-12-15 | 中伟新材料股份有限公司 | Method for removing fluorine and heavy metal from sulfate treatment liquid |
CN113526639A (en) * | 2021-08-24 | 2021-10-22 | 北京盖雅环境科技有限公司 | Compound fluorine removal agent and fluorine removal method for fluorine-containing wastewater |
CN113526639B (en) * | 2021-08-24 | 2023-01-10 | 北京盖雅环境科技有限公司 | Compound fluorine removal agent and fluorine removal method for fluorine-containing wastewater |
CN115636493A (en) * | 2022-11-16 | 2023-01-24 | 中科润蓝环保技术(北京)股份有限公司 | Sewage fluorine removal agent and preparation and application methods thereof |
CN115636493B (en) * | 2022-11-16 | 2023-03-10 | 中科润蓝环保技术(北京)股份有限公司 | Sewage fluorine removal agent and preparation and application methods thereof |
CN118561470A (en) * | 2024-06-27 | 2024-08-30 | 广东芳源新材料集团股份有限公司 | Method for simultaneously removing F, P, COD in fluorine-containing wastewater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3600458B2 (en) | Treatment of flue gas desulfurization wastewater | |
JP2005193167A (en) | Drainage purification method and purification method | |
JP3572223B2 (en) | Absorbent slurry treatment method and flue gas desulfurization system | |
JP2005324137A (en) | Fluorine ion removal method in waste water | |
JP4543481B2 (en) | Method for treating water containing boron and fluorine | |
JP4543478B2 (en) | Method for treating boron-containing water | |
TWI263623B (en) | Effluent water treatment method | |
JP3942235B2 (en) | Method for treating boron-containing water | |
JP2004050096A (en) | Method for treating wastewater containing harmful substances without producing sludge and chemicals used therefor | |
WO2012143394A1 (en) | Method for recovery of thallium from an aqueous solution | |
JPH11235595A (en) | Treatment of boron-containing waste water | |
CN116444099A (en) | A method for ultra-low emission of fluorine content in external wastewater produced from titanium dioxide | |
JP3709156B2 (en) | Treatment method for fluorine-containing wastewater | |
JPH0975925A (en) | Treatment of flue gas desulfurization wastewater | |
JP2737610B2 (en) | Treatment of flue gas desulfurization wastewater | |
TWI531543B (en) | Method for treatment of boron-containing waste water | |
JP3632226B2 (en) | Method for treating metal-containing wastewater | |
JPH0716564A (en) | Flue gas desulfurization wastewater treatment method | |
JP2003047972A (en) | Treatment method for wastewater containing fluorine | |
JP2737614B2 (en) | Treatment of flue gas desulfurization wastewater | |
JPH10314797A (en) | Method for treating water containing fluoride ions and COD components | |
JP4393616B2 (en) | Boron fixing agent and treatment method of boron-containing waste water | |
KR100262689B1 (en) | Treatment of stack gas desulfurization waste water | |
JP2005298949A (en) | Method for recovering zinc | |
JP2751875B2 (en) | Treatment method for wastewater containing fluorine |