[go: up one dir, main page]

JP2005317494A - Porous membrane, its manufacturing method, and secondary battery using this - Google Patents

Porous membrane, its manufacturing method, and secondary battery using this Download PDF

Info

Publication number
JP2005317494A
JP2005317494A JP2004279623A JP2004279623A JP2005317494A JP 2005317494 A JP2005317494 A JP 2005317494A JP 2004279623 A JP2004279623 A JP 2004279623A JP 2004279623 A JP2004279623 A JP 2004279623A JP 2005317494 A JP2005317494 A JP 2005317494A
Authority
JP
Japan
Prior art keywords
porous membrane
film
separator
secondary battery
polyethersulfone resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004279623A
Other languages
Japanese (ja)
Inventor
Tadashi Inukai
忠司 犬飼
Masanori Nakamura
匡徳 中村
Jun Yamada
潤 山田
Atsushi Nakajima
敦士 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2004279623A priority Critical patent/JP2005317494A/en
Publication of JP2005317494A publication Critical patent/JP2005317494A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a lithium-ion secondary battery superior in balance of a shut-down characteristic and a melt-down characteristic. <P>SOLUTION: This is related to a polyether sulfone porous film of film thickness of 5 to 100 μm and a composite film of the porous film and a polyolefin porous film. Furthermore, this is related to the lithium-ion secondary battery composed by interposing the porous film as the separator between a positive electrode and a negative electrode storing and releasing the lithium ions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、安全性の改善が要求されている二次電池、特にリチウムイオン二次電池のセパレーターとして、優れたシャットダウン温度特性及び高いメルトダウン温度特性を示すポリエーテルスルホン多孔質膜、その製造方法及びこれを用いた二次電池に関する。   The present invention relates to a polyethersulfone porous membrane exhibiting excellent shutdown temperature characteristics and high meltdown temperature characteristics as a separator for secondary batteries, particularly lithium ion secondary batteries, for which improvement in safety is required, and a method for producing the same And a secondary battery using the same.

近年、電子携帯機器の発達により、高エネルギー密度、高起電力の電池が開発されている。それらの中でも高起電力の点から非水電解液電池、特にリチウムイオン二次電池が精力的に開発されている。このような非水電解液電池の問題点の1つに可燃性有機溶媒を用いるがための危険性が指摘されている。電池の両極が短絡、電池内容物の分解反応を起こした場合、電池内部の急激な温度上昇により、内容物が噴出したりする。この様な問題に対して現在、安全弁の取り付け、溶融性成分含有のセパレーターによるシャットダウン機能付与などが挙げられる。   In recent years, with the development of electronic portable devices, batteries with high energy density and high electromotive force have been developed. Among them, nonaqueous electrolyte batteries, particularly lithium ion secondary batteries, have been vigorously developed from the viewpoint of high electromotive force. One of the problems with such non-aqueous electrolyte batteries is the danger of using flammable organic solvents. When both electrodes of the battery are short-circuited and a decomposition reaction of the battery contents occurs, the contents are ejected due to a rapid temperature rise inside the battery. In order to solve such problems, there are currently attachment of a safety valve and provision of a shutdown function by a separator containing a meltable component.

しかしながら安全弁は短絡に対する本質的な防護策ではなく、電池内部の急激な圧力上昇を緩和するだけのものである。   However, the safety valve is not an essential protective measure against a short circuit, but only relieves a sudden pressure increase inside the battery.

一方、セパレーターのシャットダウン機能は熱溶融性材料を用いた多孔質膜を用いることにより、短絡などにより電池内部の温度がある一定の温度に達したときに、材料の熱溶融により多孔質膜の穴が塞がることにより、イオン導電性が妨げられ発熱の原因となる電池反応を抑えるというものである。このようなセパレーターは、特許文献1〜3等に示されているオレフィン系高分子材料の多孔質膜が開示されている。しかしながら、このような熱溶融性材料を用いた場合、熱上昇でシャットダウン機能が働いても更なる温度上昇がある場合、膜自体が溶融して本来の機能である電極間の隔離が損なわれてしまう。これはメルトダウンと呼ばれる現象であり電池としては好ましくない。このような問題点の改善策としてシャットダウン温度の範囲を広げることが提案されている。例えば特許文献4〜7等に示されるように多孔質膜、不織布基材に熱溶融性材料を積層、コーテイングするなどの技術である。しかしながらこれらの作成手法は煩雑になる場合があることと必ずしもシャットダウン時の絶縁性が十分なものが得られてはいない。   On the other hand, the shutdown function of the separator uses a porous film made of a heat-meltable material. When the temperature inside the battery reaches a certain temperature due to a short circuit or the like, By blocking, the ionic conductivity is hindered and the battery reaction that causes heat generation is suppressed. As such a separator, a porous membrane of an olefin polymer material disclosed in Patent Documents 1 to 3 is disclosed. However, when such a heat-meltable material is used, even if the shutdown function works due to heat rise, if there is a further temperature rise, the film itself melts and the isolation between the electrodes, which is the original function, is impaired. End up. This is a phenomenon called meltdown, which is not preferable for a battery. It has been proposed to widen the range of the shutdown temperature as a remedy for such problems. For example, as disclosed in Patent Documents 4 to 7 and the like, it is a technique of laminating and coating a heat-meltable material on a porous film or a nonwoven fabric substrate. However, these preparation methods may be complicated and an insulation property at the time of shutdown is not necessarily obtained.

特許第2642206号明細書Japanese Patent No. 2642206 特開平6−212006号公報JP-A-6-212006 特開平8−138643号公報Japanese Patent Laid-Open No. 8-138643 特公平4−1692号公報Japanese Patent Publication No. 4-1692 特開昭60−52号公報JP-A-60-52 特開昭61−232560号公報JP 61-232560 A 特開平10−6453号公報Japanese Patent Laid-Open No. 10-6453

本発明はかかる事情に鑑みてなされたものであって、従来使用されている多孔膜セパレーターに代わるシャットダウン特性及びメルトダウン特性が良好で絶縁性に優れた安価なセパレーターを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an inexpensive separator that has excellent shutdown characteristics and melt-down characteristics, which are superior to conventional porous membrane separators, and is excellent in insulation. .

本発明は上記目的を達成するために、鋭意検討を重ねた結果、多孔質のポリエーテルスルホン樹脂製膜を単独又は他の材料と組み合わせてセパレーターとして使用することにより、安全性、サイクル耐久性に優れたリチウムイオン二次電池が得られることを見出した。即ち本発明は以下の多孔質膜とその製造法及びこれを用いた二次電池である。   In order to achieve the above-mentioned object, the present invention has been intensively studied. It has been found that an excellent lithium ion secondary battery can be obtained. That is, this invention is the following porous membrane, its manufacturing method, and a secondary battery using the same.

(1)膜厚が5〜100μmのポリエーテルスルホン樹脂多孔質膜をセパレーターとして用いた二次電池。 (1) A secondary battery using a polyethersulfone resin porous film having a film thickness of 5 to 100 μm as a separator.

(2)ポリエーテルスルホン樹脂多孔質膜とポリオレフィン系多孔質膜とを組み合わせた膜厚が5〜100μmの複合多孔質膜をセパレーターとして用いた二次電池。 (2) A secondary battery using as a separator a composite porous membrane having a thickness of 5 to 100 μm, which is a combination of a polyethersulfone resin porous membrane and a polyolefin-based porous membrane.

(3)多孔質膜の透気度が1〜2000sec/100ccAirである(1)または(2)に記載の二次電池。 (3) The secondary battery according to (1) or (2), wherein the air permeability of the porous membrane is 1 to 2000 sec / 100 cc Air.

(4)(1)〜(3)のいずれかに記載された多孔質膜。 (4) The porous membrane described in any one of (1) to (3).

(5)ポリエーテルスルホン樹脂溶液を基材に塗布又は浸漬した後、ポリエーテルスルホン樹脂を溶解した溶剤とは混和するが、ポリエーテルスルホン樹脂に対しては貧溶剤である溶液中に投入して凝固させる多孔質膜の製造方法。 (5) After applying or immersing the polyethersulfone resin solution on the substrate, it is mixed with the solvent in which the polyethersulfone resin is dissolved, but for the polyethersulfone resin, it is put into a poor solvent. A method for producing a porous film to be solidified.

(6)ポリオレフィン系多孔質膜の片面又は両面にポリエーテルスルホン樹脂溶液を塗布又は浸漬した後、ポリエーテルスルホン樹脂を溶解した溶剤と混和するが、ポリエーテルスルホン樹脂に対しては貧溶剤である溶液中に投入して凝固させる複合多孔質膜の製造方法。 (6) After applying or immersing the polyethersulfone resin solution on one or both surfaces of the polyolefin-based porous membrane, it is mixed with a solvent in which the polyethersulfone resin is dissolved, but it is a poor solvent for the polyethersulfone resin. A method for producing a composite porous membrane that is charged into a solution and solidified.

本発明は、ポリエーテルスルホン樹脂の多孔質膜又はポリエーテルスルホン樹脂の多孔質膜とポリオレフィン膜を積層した複合多孔質膜を用いることによりシャットダウン特性とメルトダウン特性のバランスに優れた二次電池用セパレーターを提供できる。   The present invention provides a secondary battery excellent in balance between shutdown characteristics and meltdown characteristics by using a porous film of polyethersulfone resin or a composite porous film in which a porous film of polyethersulfone resin and a polyolefin film are laminated. Separator can be provided.

以下本発明を詳細に説明する。本発明に用いられるポリエーテルスルホン樹脂は通常、
ジクロロフェニルスルホンの脱塩酸を伴う自己縮合反応で合成され、住友化学、BASFジャパン社等が製造しているものを用いることができる。ポリエーテルスルホン樹脂はN−メチル−2−ピロリドン、N,N’−ジメチルホルムアミド等のアミド系溶剤やピリジン等の極性溶剤に溶解するが、Liイオン二次電池用電解液には耐えるためセパレーターとして有用な素材である。
The present invention will be described in detail below. The polyethersulfone resin used in the present invention is usually
Those synthesized by a self-condensation reaction involving dehydrochlorination of dichlorophenyl sulfone and manufactured by Sumitomo Chemical, BASF Japan, etc. can be used. Polyethersulfone resin dissolves in amide solvents such as N-methyl-2-pyrrolidone and N, N'-dimethylformamide, and polar solvents such as pyridine, but as a separator to withstand the electrolyte for Li ion secondary batteries. It is a useful material.

次にポリエーテルスルホン樹脂多孔質膜の製造方法について説明する。本発明の多孔質膜の製造は特に制限はないが、上記のポリエーテルスルホン樹脂をジメチルアセテートやN,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン、ピリジンなどの極性溶剤に溶解し、この溶液をポリエステルフィルム等の基材に所定の厚みにコーテイングした後、あるいはこれらの溶液をスリットダイからフィルム状に押し出して、該ポリエーテルスルホン樹脂を溶解している溶剤と混和するが、該ポリエーテルスルホン樹脂に対しては貧溶剤である溶液中に投入して凝固させるのが好ましい。なお、ここで言う貧溶剤とは該ポリエーテルスルホン樹脂を25℃で5重量%濃度で溶解できないものとする。   Next, the manufacturing method of a polyether sulfone resin porous membrane is demonstrated. The production of the porous membrane of the present invention is not particularly limited, but the above polyethersulfone resin can be used as dimethyl acetate, N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, pyridine. After being dissolved in a polar solvent such as this and coating this solution on a substrate such as a polyester film to a predetermined thickness or by extruding these solutions from a slit die into a film, the polyethersulfone resin is dissolved. Although it is miscible with the solvent, it is preferable that the polyethersulfone resin is poured into a poor solvent and solidified. In addition, the poor solvent said here shall not be able to melt | dissolve this polyethersulfone resin at 25 weightC and a 5-weight% density | concentration.

ポリエーテルスルホン樹脂を溶解する溶剤は上記のようにN−メチル−2−ピロリドンやジメチルアセトアミド、N,N’−ジメチルホルムアミドなどのアミド系溶剤が主体になるが、多孔質膜形成時の凝固速度を調節して、孔径や孔径分布を調節するためにメタノール、エタノール、プロピルアルコール、エチレングリコール、ジエチレングリコールやポリエチレングリコール、ポリプロピレングリコールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類などを添加することが出きる。これらの添加剤はポリエーテルスルホン樹脂溶液100部に対して5〜300部、好ましくは10〜200部、更に好ましくは20〜100部である。   Solvents that dissolve the polyethersulfone resin are mainly amide solvents such as N-methyl-2-pyrrolidone, dimethylacetamide, and N, N′-dimethylformamide as described above. In order to adjust the pore size and pore size distribution, it is possible to add alcohols such as methanol, ethanol, propyl alcohol, ethylene glycol, diethylene glycol, polyethylene glycol and polypropylene glycol, and ketones such as acetone and methyl ethyl ketone. Yes. These additives are 5 to 300 parts, preferably 10 to 200 parts, and more preferably 20 to 100 parts with respect to 100 parts of the polyethersulfone resin solution.

本発明の多孔質を製造する際に用いる凝固浴は水を主体とした溶液が好ましい。この凝固浴には凝固速度や多孔質膜の孔径及びその分布を調節するために水と混和する他の溶剤を混合することができる。このような溶剤としてはメタノール、エタノール、プロピルアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、N,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド系溶剤等が挙げられこれらの中では孔径の多孔質膜中の均一さの点からエチレングリコール、ポリエチレングリコールなどのグリコール類やN−メチル−2−ピロリドン、N,N’−ジメチルアセトアミド、N,N’−ジメチルホルムアミドなどのアミド系溶剤が好ましい。これらの溶剤の添加量は水100部に対して5〜500部、好ましくは10〜400部、更に好ましくは20〜300部である。   The coagulation bath used when producing the porous material of the present invention is preferably a solution mainly composed of water. This coagulation bath can be mixed with other solvents miscible with water in order to adjust the coagulation rate, the pore size of the porous membrane and its distribution. Such solvents include alcohols such as methanol, ethanol, propyl alcohol, ethylene glycol, propylene glycol, diethylene glycol and polyethylene glycol, ketones such as acetone and methyl ethyl ketone, N, N′-dimethylformamide, N, N′-dimethyl. Examples include amide solvents such as acetamide and N-methyl-2-pyrrolidone. Among these, glycols such as ethylene glycol and polyethylene glycol and N-methyl-2- Amide solvents such as pyrrolidone, N, N′-dimethylacetamide, and N, N′-dimethylformamide are preferred. The amount of these solvents added is 5 to 500 parts, preferably 10 to 400 parts, and more preferably 20 to 300 parts with respect to 100 parts of water.

ポリエーテルスルホン多孔質膜の膜厚は5〜100μm、好ましくは10〜70μm、更に好ましくは15〜50μmである。膜厚が5μm以下では膜が弱くなり破断するおそれがある。逆に膜厚が100μmを越えるとサイクル特性が低下することがある。ポリエーテルスルホン多孔質膜の空孔率は30〜90%が好ましい。更に好ましくは40〜70%であり、空孔率が30%以下では膜の電気抵抗が高くなり、大電流を流しにくくなる。一方、90%以上では膜強度が弱くなる。また孔径の尺度である透気度はJIS−P8117に準拠した方法により測定した値が1〜2000sec/100ccAirであることが好ましい。より好ましくは50〜1500sec/100ccAir、さらに好ましくは100〜1000sec/100ccAirである。透気度が1sec/100ccAir未満では膜強度が弱くなり、2000sec/100ccAirを越えるとサイクル特性が悪くなることがある。   The thickness of the polyethersulfone porous membrane is 5 to 100 μm, preferably 10 to 70 μm, and more preferably 15 to 50 μm. If the film thickness is 5 μm or less, the film becomes weak and may be broken. Conversely, when the film thickness exceeds 100 μm, the cycle characteristics may deteriorate. The porosity of the polyethersulfone porous membrane is preferably 30 to 90%. More preferably, it is 40 to 70%. When the porosity is 30% or less, the electric resistance of the film becomes high and it becomes difficult to flow a large current. On the other hand, if it is 90% or more, the film strength becomes weak. The air permeability, which is a measure of the pore diameter, is preferably 1 to 2000 sec / 100 cc Air measured by a method based on JIS-P8117. More preferably, it is 50-1500 sec / 100 cc Air, More preferably, it is 100-1000 sec / 100 cc Air. If the air permeability is less than 1 sec / 100 cc Air, the film strength becomes weak, and if it exceeds 2000 sec / 100 cc Air, the cycle characteristics may be deteriorated.

このようにして製造されるポリエーテルスルホン樹脂多孔質膜はセパレーターとして単独で用いられた場合でも優れたシャットダウン特性とメルトダウン特性を示す。   The polyether sulfone resin porous membrane thus produced exhibits excellent shutdown characteristics and meltdown characteristics even when used alone as a separator.

また、本発明のもう一つの特徴はポリエーテルスルホン樹脂多孔質膜をポリオレフィン系の多孔質膜と積層、組み合わせて用いることができることにある。ポリオレフィン系多孔質膜とはポリエチレンやポリプロピレンフィルムを例えば第7回ポリマー材料フォーラム(1998)要旨集1BIL09等に記載される延伸開孔法や相分離法等によって製造されるものである。ポリエーテルスルホン多孔質膜とポリオレフィン多孔質膜を積層する場合の構成はポリエーテルスルホン多孔質膜をA、ポリオレフィン系多孔質膜をBとすると、A/B、A/B/A又はB/A/Bの構成となる。   Another feature of the present invention is that a polyethersulfone resin porous membrane can be used in combination with a porous polyolefin membrane. The polyolefin-based porous membrane is a polyethylene or polypropylene film produced by, for example, the stretch opening method or the phase separation method described in 7th Polymer Material Forum (1998) Abstract 1 BIL09. When the polyethersulfone porous membrane and the polyolefin porous membrane are laminated, when the polyethersulfone porous membrane is A and the polyolefin-based porous membrane is B, A / B, A / B / A or B / A / B.

これらの複合多孔質膜の製造も特に制限はないが、以下の方法が好ましい。
(1)ポリエーテルスルホン多孔質膜とポリオレフィン多孔質膜を単純に重ねる。
(2)ポリオレフィン多孔質膜を支持体にしてその片面又は両面にポリエーテルスルホン樹脂溶液を含浸又は塗布し、前記と同様な方法で凝固浴に投入して凝固させる。
(3)上記(1)と(2)を組み合わせる。
The production of these composite porous membranes is not particularly limited, but the following method is preferred.
(1) A polyethersulfone porous membrane and a polyolefin porous membrane are simply stacked.
(2) Using a polyolefin porous membrane as a support, impregnating or coating one or both sides with a polyethersulfone resin solution, and putting it in a coagulation bath in the same manner as described above to coagulate it.
(3) Combine (1) and (2) above.

これら複合多孔質膜の場合、膜厚は5〜100μm、好ましくは10〜70μmである。空孔率は30〜80%、透気度は1〜2000sec/100ccAirが好ましい。   In the case of these composite porous membranes, the thickness is 5 to 100 μm, preferably 10 to 70 μm. The porosity is preferably 30 to 80% and the air permeability is preferably 1 to 2000 sec / 100 cc Air.

このように構成された本発明のポリエーテルスルホン樹脂多孔質膜をセパレーターとして使用したリチウムイオン二次電池は従来と同様の電池性能を発揮し、シャットダウン特性、メルトダウン特性に優れた安全な電池を得ることができる。本発明に関わるリチウムイオン二次電池は本発明の多孔質膜をセパレーターとして用いること以外は、常法に従って製造することができる。   The lithium ion secondary battery using the thus configured polyethersulfone resin porous membrane of the present invention as a separator exhibits the same battery performance as the conventional one, and is a safe battery excellent in shutdown characteristics and meltdown characteristics. Can be obtained. The lithium ion secondary battery according to the present invention can be produced according to a conventional method except that the porous membrane of the present invention is used as a separator.

即ち、正極活物質としてはリチウムを含んだ材料、負極としてはリチウムをイオンとして吸蔵、放出可能な材料、電解液としてはリチウムとフッ素を含む化合物からなる電解質の有機溶剤溶液を用いることができる。   That is, a material containing lithium can be used as the positive electrode active material, a material that can store and release lithium as ions can be used as the negative electrode, and an organic solvent solution of an electrolyte composed of a compound containing lithium and fluorine can be used as the electrolytic solution.

具体的には、正極活物質としてはリチウムイオンを挿入、離脱できるコバルト酸リチウムやマンガン酸リチウム等のリチウム金属酸化物を使用することができる。正極活物質には導電剤として公知の活性炭、各種コークス、カーボンブラック、結着剤及び溶剤等を配合し、この分散液をアルミニウム等の集電体に塗布、乾燥したものを正極材とすることができる。   Specifically, lithium metal oxides such as lithium cobaltate and lithium manganate capable of inserting and removing lithium ions can be used as the positive electrode active material. A known active carbon, various cokes, carbon black, a binder, a solvent, and the like are blended into the positive electrode active material as a conductive agent, and this dispersion is applied to a current collector such as aluminum and dried to form a positive electrode material. Can do.

負極活物質としてはコークス、グラファイト、非晶質カーボン等が用いられ、これらを結着剤と有機溶剤からなる分散液を銅箔等の集電体に塗布、乾燥して負極材とすることができる。   Coke, graphite, amorphous carbon, etc. are used as the negative electrode active material, and these are applied to a current collector such as a copper foil with a dispersion composed of a binder and an organic solvent, and dried to form a negative electrode material. it can.

電解液に使用される電解質としては、LiClO4,LiAsF6,LiPF4,LiBF4,LiBr,LiCF3SO3,等が挙げられ、有機溶剤としてはプロピレンカービネート、エチレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン等の1種又は2種以上が用いられる。 Examples of the electrolyte used in the electrolytic solution include LiClO 4 , LiAsF 6 , LiPF 4 , LiBF 4 , LiBr, LiCF 3 SO 3 , and the like, and examples of the organic solvent include propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl One or more of carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran and the like are used.

以下、実施例で本発明を更に詳細に説明するが、本発明はこれらの実施例で制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited by these Examples.

膜厚:ポリエーテルスルホン多孔質膜及びポリオレフィンとの積層膜をSONY μメーターで測定した。 Film thickness: A laminated film of a polyethersulfone porous film and a polyolefin was measured with a SONY μmeter.

シャットダウン温度特性:プロピレンカーボネートに4フッ化ホウ酸リチウムを1モル/l溶解した溶液を充填した多孔質膜を用い、交流周波数1kHz、交流振幅100mV、昇温速度2℃/分で測定した。温度上昇に伴うインピーダンス値の上昇が一旦100Ωcm2になったときの温度をシャットダウン開始温度とし、インピーダンスの値が1kΩcm2を越え、更に上昇した後低下し再び1kΩcm2になった温度をメルトダウン温度とした。 Shutdown temperature characteristics: A porous membrane filled with 1 mol / l of lithium tetrafluoroborate dissolved in propylene carbonate was used and measured at an AC frequency of 1 kHz, an AC amplitude of 100 mV, and a temperature increase rate of 2 ° C./min. The temperature at which the rise of the impedance value due to the temperature rise once becomes 100 Ωcm 2 is the shutdown start temperature, the temperature at which the impedance value exceeds 1 kΩcm 2 , further increases and then decreases to 1 kΩcm 2 again is the meltdown temperature It was.

[実施例1]
ウルトラゾーンE1010(BASFジャパン社製ポリエーテルスルホン)10部を90部のN−メチル−2−ピロリドンに溶解した溶液100部にポリエチレングリコール#400を10部配合した溶液を市販セパレーター(東燃化学製ポリオレフィン多孔質膜:25μm)に膜厚が1μmとなるように塗布し、水/N−メチル−2−ピロリドンが70/30の凝固浴に浸漬、水洗、乾燥した。得られた複合多孔質膜の厚みは26μm、透気度は580sec/100ccAirであった。この膜のシャットダウン温度は120℃、メルトダウン温度は200℃以上であった。この多孔質膜をセパレーターに用い、正極活物質としてコバルト酸リチウム、導電剤としてアセチレンブラック、バインダーとしてポリフッ化ビニリデンを用いた正極及び黒鉛と非晶質炭素を混合した負極活物質とポリフッ化ビニリデンをバインダーにした負極、電解液としてソルライト(三菱化学製)を用いてコイン型電池を作成して電池特性を評価した。上記の市販セパレーターを用いた電池に比べて放電容量、サイクル特性ともほぼ同等の性能を示した。
[Example 1]
A commercially available separator (polyolefin manufactured by Tonen Chemical Co., Ltd.) was prepared by mixing 10 parts of Ultrazone E1010 (polyethersulfone manufactured by BASF Japan) in 90 parts of N-methyl-2-pyrrolidone with 10 parts of polyethylene glycol # 400. The film was applied to a porous film (25 μm) so as to have a film thickness of 1 μm, immersed in a 70/30 coagulation bath of water / N-methyl-2-pyrrolidone, washed with water, and dried. The obtained composite porous membrane had a thickness of 26 μm and an air permeability of 580 sec / 100 cc Air. The shutdown temperature of this film was 120 ° C., and the meltdown temperature was 200 ° C. or higher. Using this porous membrane as a separator, a positive electrode using lithium cobaltate as a positive electrode active material, acetylene black as a conductive agent, polyvinylidene fluoride as a binder, a negative electrode active material mixed with graphite and amorphous carbon, and polyvinylidene fluoride A coin-type battery was prepared using a negative electrode as a binder and Sollite (manufactured by Mitsubishi Chemical) as an electrolytic solution, and the battery characteristics were evaluated. Compared to the battery using the above commercially available separator, the discharge capacity and cycle characteristics were almost the same.

[実施例2]
スミカエクセル4100G(住友化学工業社製ポリエーテルスルホン)10部を90部のN−メチル−2−ピロリドンに溶解した溶液を用いて、実施例1と同じ方法で厚み27μmの複合多孔質膜を作成した。この複合多孔質膜の透気度670sec/100ccAirでシャットダウン温度は120℃、メルトダウン温度は200℃以上であった。
[Example 2]
Using a solution obtained by dissolving 10 parts of Sumika Excel 4100G (polyethersulfone manufactured by Sumitomo Chemical Co., Ltd.) in 90 parts of N-methyl-2-pyrrolidone, a composite porous film having a thickness of 27 μm was prepared in the same manner as in Example 1. did. The composite porous membrane had an air permeability of 670 sec / 100 cc Air, a shutdown temperature of 120 ° C., and a meltdown temperature of 200 ° C. or higher.

[実施例3]
実施例1に用いたポリエーテルスルホン溶液を100μmのポリエステルフィルムに塗布、水/N−メチル−2−ピロリドンが70/30の凝固浴に浸漬、水洗、乾燥して膜厚が25μmのポリエーテルスルホン多孔質膜を作成した。この多孔質膜の空孔率は71%、透気度は9.3sec/100ccAirでシャットダウン温度は185℃、メルトダウン温度は200℃以上であった。この多孔質膜をセパレーターとして用い、実施例1と同じ方法でコイン型電池を作成して電池特性を評価した結果、市販セパレーターであるポリオレフィン多孔質膜とほぼ同等の放電容量、サイクル耐久性を示した。
[Example 3]
The polyethersulfone solution used in Example 1 was coated on a 100 μm polyester film, immersed in a water / N-methyl-2-pyrrolidone 70/30 coagulation bath, washed with water and dried to obtain a polyethersulfone having a film thickness of 25 μm. A porous membrane was created. This porous membrane had a porosity of 71%, an air permeability of 9.3 sec / 100 cc Air, a shutdown temperature of 185 ° C., and a meltdown temperature of 200 ° C. or higher. Using this porous membrane as a separator, a coin-type battery was prepared by the same method as in Example 1 and the battery characteristics were evaluated. As a result, the discharge capacity and cycle durability were almost the same as the polyolefin porous membrane that is a commercially available separator. It was.

[実施例4]
実施例1のポリエーテルスルホン樹脂溶液に東燃化学製ポリオレフィン多孔質膜(25μm)を浸漬させた後、ポリオレフィン多孔質膜の両面に乾燥膜厚が各々1μmになるように絞りロールで掻き取り、水/ポリエチレングリコール(分子量400)比が70/30の凝固浴に投入して凝固させ、洗滌、乾燥して厚み27μmの3層の複合多孔質膜を得た。この複合多孔質膜のシャットダウン温度は120℃、メルトダウン温度は200℃以上であった。この複合多孔質膜をセパレーターにして実施例1と同じ構成で作成したコイン電池の放電容量、サイクル耐久性などの電池性能はポリオレフィン多孔質膜単独セパレーターと同様な特性を示した。
[Example 4]
After immersing a polyolefin porous membrane (25 μm) manufactured by Tonen Chemical in the polyethersulfone resin solution of Example 1, scraping with a squeeze roll so that the dry film thickness becomes 1 μm on each side of the polyolefin porous membrane. / Polyethylene glycol (molecular weight 400) ratio was put into a coagulation bath of 70/30 to coagulate, washed and dried to obtain a composite porous membrane of 3 layers having a thickness of 27 μm. The composite porous membrane had a shutdown temperature of 120 ° C. and a meltdown temperature of 200 ° C. or higher. The battery performance such as discharge capacity and cycle durability of the coin battery prepared by using the composite porous membrane as a separator and having the same configuration as in Example 1 showed the same characteristics as the polyolefin porous membrane single separator.

[実施例5]
実施例1で作成したポリエーテルスルホン複合多孔質膜のポリエーテルスルホン多孔質膜側にポリオレフィン多孔質膜を重ねた複合膜を用いて、実施例1と同じ条件で作成したコイン型電池の放電容量、サイクル耐久性等の電池性能はポリオレフィン多孔質膜単独セパレーターとほぼ同等の特性を示した。
[Example 5]
Discharge capacity of coin-type battery prepared under the same conditions as in Example 1 using a composite membrane in which a polyolefin porous membrane was superimposed on the polyethersulfone porous membrane side of the polyethersulfone composite porous membrane prepared in Example 1 The battery performance, such as cycle durability, was almost the same as that of the polyolefin porous membrane single separator.

[比較例1]
実施例1でポリエーテルスルホンを塗布していないポリオレフィン多孔質膜のシャットダウン温度は120℃で、150℃で収縮、溶融によりメルトダウン状態になった。
[Comparative Example 1]
The shutdown temperature of the polyolefin porous membrane to which polyethersulfone was not applied in Example 1 was 120 ° C., and the melted down state was caused by shrinkage and melting at 150 ° C.

本発明は、ポリエーテルスルホン樹脂の多孔質膜又はポリエーテルスルホン樹脂の多孔質膜とポリオレフィン膜を積層した複合多孔質膜を用いることによりシャットダウン特性とメルトダウン特性のバランスに優れたリチウムイオン二次電池用セパレーターを提供できる。   The present invention provides a lithium ion secondary that has a good balance between shutdown characteristics and meltdown characteristics by using a porous film of polyethersulfone resin or a composite porous film in which a porous film of polyethersulfone resin and a polyolefin film are laminated. A battery separator can be provided.

Claims (6)

膜厚が5〜100μmのポリエーテルスルホン樹脂多孔質膜をセパレーターとして用いた二次電池。   A secondary battery using a polyethersulfone resin porous membrane having a thickness of 5 to 100 μm as a separator. ポリエーテルスルホン樹脂多孔質膜とポリオレフィン系多孔質膜とを組み合わせた膜厚が5〜100μmの複合多孔質膜をセパレーターとして用いた二次電池。   A secondary battery using as a separator a composite porous membrane having a thickness of 5 to 100 μm, which is a combination of a polyethersulfone resin porous membrane and a polyolefin-based porous membrane. 多孔質膜の透気度が1〜2000sec/100ccAirである請求項1または2に記載の二次電池。   The secondary battery according to claim 1, wherein the air permeability of the porous membrane is 1 to 2000 sec / 100 cc Air. 請求項1〜3のいずれかに記載された多孔質膜。   The porous membrane as described in any one of Claims 1-3. ポリエーテルスルホン樹脂溶液を基材に塗布又は浸漬した後、ポリエーテルスルホン樹脂を溶解した溶剤とは混和するが、ポリエーテルスルホン樹脂に対しては貧溶剤である溶液中に投入して凝固させる多孔質膜の製造方法。   After applying or immersing the polyethersulfone resin solution on the base material, it is mixed with the solvent in which the polyethersulfone resin is dissolved. A method for producing a membrane. ポリオレフィン系多孔質膜の片面又は両面にポリエーテルスルホン樹脂溶液を塗布又は浸漬した後、ポリエーテルスルホン樹脂を溶解した溶剤と混和するが、ポリエーテルスルホン樹脂に対しては貧溶剤である溶液中に投入して凝固させる複合多孔質膜の製造方法。   After applying or immersing the polyethersulfone resin solution on one or both surfaces of the polyolefin-based porous membrane, it is mixed with the solvent in which the polyethersulfone resin is dissolved. A method for producing a composite porous membrane that is charged and solidified.
JP2004279623A 2004-03-31 2004-09-27 Porous membrane, its manufacturing method, and secondary battery using this Withdrawn JP2005317494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279623A JP2005317494A (en) 2004-03-31 2004-09-27 Porous membrane, its manufacturing method, and secondary battery using this

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004103513 2004-03-31
JP2004279623A JP2005317494A (en) 2004-03-31 2004-09-27 Porous membrane, its manufacturing method, and secondary battery using this

Publications (1)

Publication Number Publication Date
JP2005317494A true JP2005317494A (en) 2005-11-10

Family

ID=35444667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279623A Withdrawn JP2005317494A (en) 2004-03-31 2004-09-27 Porous membrane, its manufacturing method, and secondary battery using this

Country Status (1)

Country Link
JP (1) JP2005317494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120052339A1 (en) * 2010-08-24 2012-03-01 Basf Se Electrolyte materials for use in electrochemical cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120052339A1 (en) * 2010-08-24 2012-03-01 Basf Se Electrolyte materials for use in electrochemical cells
CN103283064A (en) * 2010-08-24 2013-09-04 巴斯夫欧洲公司 Electrolyte materials for use in electrochemical cells
US9853287B2 (en) 2010-08-24 2017-12-26 Sion Power Corporation Electrolyte materials for use in electrochemical cells

Similar Documents

Publication Publication Date Title
KR101297771B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
TWI501451B (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP6171117B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP4127989B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
JP5129895B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
KR102771571B1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP5171150B2 (en) Separator for lithium ion secondary battery
JP5670811B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP4414165B2 (en) Electronic component separator and electronic component
KR102086416B1 (en) Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
KR101602867B1 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2006032246A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2009181756A (en) Lithium ion secondary battery and electronic device using the same
JP2005019156A (en) Electronic component separator and electronic component
JP2014026946A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP4490055B2 (en) Separator for lithium ion secondary battery or polymer lithium battery
JP2001332307A (en) Electrolyte-supporting polymer membrane, battery separator, secondary battery using them, and method of manufacturing the same
JP5368030B2 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP2006338917A (en) Electronic component separator and electronic component
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
JP2005317495A (en) Porous film, its manufacturing method, and secondary battery using this
JP2005317494A (en) Porous membrane, its manufacturing method, and secondary battery using this
JP4967195B2 (en) Nonaqueous electrolyte secondary battery
JP5070658B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100526