JP2005317494A - Porous membrane, its manufacturing method, and secondary battery using this - Google Patents
Porous membrane, its manufacturing method, and secondary battery using this Download PDFInfo
- Publication number
- JP2005317494A JP2005317494A JP2004279623A JP2004279623A JP2005317494A JP 2005317494 A JP2005317494 A JP 2005317494A JP 2004279623 A JP2004279623 A JP 2004279623A JP 2004279623 A JP2004279623 A JP 2004279623A JP 2005317494 A JP2005317494 A JP 2005317494A
- Authority
- JP
- Japan
- Prior art keywords
- porous membrane
- film
- separator
- secondary battery
- polyethersulfone resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012528 membrane Substances 0.000 title claims description 61
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000004695 Polyether sulfone Substances 0.000 claims abstract description 47
- 229920006393 polyether sulfone Polymers 0.000 claims abstract description 47
- 229920000098 polyolefin Polymers 0.000 claims abstract description 23
- 239000002131 composite material Substances 0.000 claims abstract description 17
- 239000011347 resin Substances 0.000 claims description 32
- 229920005989 resin Polymers 0.000 claims description 32
- 239000002904 solvent Substances 0.000 claims description 18
- 230000035699 permeability Effects 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 11
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 16
- 239000000243 solution Substances 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 238000005345 coagulation Methods 0.000 description 7
- 230000015271 coagulation Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000007774 positive electrode material Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- -1 pyridine Chemical compound 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- MWZMMMUHJHMRFG-UHFFFAOYSA-N 1,2-dichloro-3-(2,3-dichlorophenyl)sulfonylbenzene Chemical compound ClC1=CC=CC(S(=O)(=O)C=2C(=C(Cl)C=CC=2)Cl)=C1Cl MWZMMMUHJHMRFG-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- OSNIIMCBVLBNGS-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-2-(dimethylamino)propan-1-one Chemical compound CN(C)C(C)C(=O)C1=CC=C2OCOC2=C1 OSNIIMCBVLBNGS-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007033 dehydrochlorination reaction Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、安全性の改善が要求されている二次電池、特にリチウムイオン二次電池のセパレーターとして、優れたシャットダウン温度特性及び高いメルトダウン温度特性を示すポリエーテルスルホン多孔質膜、その製造方法及びこれを用いた二次電池に関する。 The present invention relates to a polyethersulfone porous membrane exhibiting excellent shutdown temperature characteristics and high meltdown temperature characteristics as a separator for secondary batteries, particularly lithium ion secondary batteries, for which improvement in safety is required, and a method for producing the same And a secondary battery using the same.
近年、電子携帯機器の発達により、高エネルギー密度、高起電力の電池が開発されている。それらの中でも高起電力の点から非水電解液電池、特にリチウムイオン二次電池が精力的に開発されている。このような非水電解液電池の問題点の1つに可燃性有機溶媒を用いるがための危険性が指摘されている。電池の両極が短絡、電池内容物の分解反応を起こした場合、電池内部の急激な温度上昇により、内容物が噴出したりする。この様な問題に対して現在、安全弁の取り付け、溶融性成分含有のセパレーターによるシャットダウン機能付与などが挙げられる。 In recent years, with the development of electronic portable devices, batteries with high energy density and high electromotive force have been developed. Among them, nonaqueous electrolyte batteries, particularly lithium ion secondary batteries, have been vigorously developed from the viewpoint of high electromotive force. One of the problems with such non-aqueous electrolyte batteries is the danger of using flammable organic solvents. When both electrodes of the battery are short-circuited and a decomposition reaction of the battery contents occurs, the contents are ejected due to a rapid temperature rise inside the battery. In order to solve such problems, there are currently attachment of a safety valve and provision of a shutdown function by a separator containing a meltable component.
しかしながら安全弁は短絡に対する本質的な防護策ではなく、電池内部の急激な圧力上昇を緩和するだけのものである。 However, the safety valve is not an essential protective measure against a short circuit, but only relieves a sudden pressure increase inside the battery.
一方、セパレーターのシャットダウン機能は熱溶融性材料を用いた多孔質膜を用いることにより、短絡などにより電池内部の温度がある一定の温度に達したときに、材料の熱溶融により多孔質膜の穴が塞がることにより、イオン導電性が妨げられ発熱の原因となる電池反応を抑えるというものである。このようなセパレーターは、特許文献1〜3等に示されているオレフィン系高分子材料の多孔質膜が開示されている。しかしながら、このような熱溶融性材料を用いた場合、熱上昇でシャットダウン機能が働いても更なる温度上昇がある場合、膜自体が溶融して本来の機能である電極間の隔離が損なわれてしまう。これはメルトダウンと呼ばれる現象であり電池としては好ましくない。このような問題点の改善策としてシャットダウン温度の範囲を広げることが提案されている。例えば特許文献4〜7等に示されるように多孔質膜、不織布基材に熱溶融性材料を積層、コーテイングするなどの技術である。しかしながらこれらの作成手法は煩雑になる場合があることと必ずしもシャットダウン時の絶縁性が十分なものが得られてはいない。 On the other hand, the shutdown function of the separator uses a porous film made of a heat-meltable material. When the temperature inside the battery reaches a certain temperature due to a short circuit or the like, By blocking, the ionic conductivity is hindered and the battery reaction that causes heat generation is suppressed. As such a separator, a porous membrane of an olefin polymer material disclosed in Patent Documents 1 to 3 is disclosed. However, when such a heat-meltable material is used, even if the shutdown function works due to heat rise, if there is a further temperature rise, the film itself melts and the isolation between the electrodes, which is the original function, is impaired. End up. This is a phenomenon called meltdown, which is not preferable for a battery. It has been proposed to widen the range of the shutdown temperature as a remedy for such problems. For example, as disclosed in Patent Documents 4 to 7 and the like, it is a technique of laminating and coating a heat-meltable material on a porous film or a nonwoven fabric substrate. However, these preparation methods may be complicated and an insulation property at the time of shutdown is not necessarily obtained.
本発明はかかる事情に鑑みてなされたものであって、従来使用されている多孔膜セパレーターに代わるシャットダウン特性及びメルトダウン特性が良好で絶縁性に優れた安価なセパレーターを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an inexpensive separator that has excellent shutdown characteristics and melt-down characteristics, which are superior to conventional porous membrane separators, and is excellent in insulation. .
本発明は上記目的を達成するために、鋭意検討を重ねた結果、多孔質のポリエーテルスルホン樹脂製膜を単独又は他の材料と組み合わせてセパレーターとして使用することにより、安全性、サイクル耐久性に優れたリチウムイオン二次電池が得られることを見出した。即ち本発明は以下の多孔質膜とその製造法及びこれを用いた二次電池である。 In order to achieve the above-mentioned object, the present invention has been intensively studied. It has been found that an excellent lithium ion secondary battery can be obtained. That is, this invention is the following porous membrane, its manufacturing method, and a secondary battery using the same.
(1)膜厚が5〜100μmのポリエーテルスルホン樹脂多孔質膜をセパレーターとして用いた二次電池。 (1) A secondary battery using a polyethersulfone resin porous film having a film thickness of 5 to 100 μm as a separator.
(2)ポリエーテルスルホン樹脂多孔質膜とポリオレフィン系多孔質膜とを組み合わせた膜厚が5〜100μmの複合多孔質膜をセパレーターとして用いた二次電池。 (2) A secondary battery using as a separator a composite porous membrane having a thickness of 5 to 100 μm, which is a combination of a polyethersulfone resin porous membrane and a polyolefin-based porous membrane.
(3)多孔質膜の透気度が1〜2000sec/100ccAirである(1)または(2)に記載の二次電池。 (3) The secondary battery according to (1) or (2), wherein the air permeability of the porous membrane is 1 to 2000 sec / 100 cc Air.
(4)(1)〜(3)のいずれかに記載された多孔質膜。 (4) The porous membrane described in any one of (1) to (3).
(5)ポリエーテルスルホン樹脂溶液を基材に塗布又は浸漬した後、ポリエーテルスルホン樹脂を溶解した溶剤とは混和するが、ポリエーテルスルホン樹脂に対しては貧溶剤である溶液中に投入して凝固させる多孔質膜の製造方法。 (5) After applying or immersing the polyethersulfone resin solution on the substrate, it is mixed with the solvent in which the polyethersulfone resin is dissolved, but for the polyethersulfone resin, it is put into a poor solvent. A method for producing a porous film to be solidified.
(6)ポリオレフィン系多孔質膜の片面又は両面にポリエーテルスルホン樹脂溶液を塗布又は浸漬した後、ポリエーテルスルホン樹脂を溶解した溶剤と混和するが、ポリエーテルスルホン樹脂に対しては貧溶剤である溶液中に投入して凝固させる複合多孔質膜の製造方法。 (6) After applying or immersing the polyethersulfone resin solution on one or both surfaces of the polyolefin-based porous membrane, it is mixed with a solvent in which the polyethersulfone resin is dissolved, but it is a poor solvent for the polyethersulfone resin. A method for producing a composite porous membrane that is charged into a solution and solidified.
本発明は、ポリエーテルスルホン樹脂の多孔質膜又はポリエーテルスルホン樹脂の多孔質膜とポリオレフィン膜を積層した複合多孔質膜を用いることによりシャットダウン特性とメルトダウン特性のバランスに優れた二次電池用セパレーターを提供できる。 The present invention provides a secondary battery excellent in balance between shutdown characteristics and meltdown characteristics by using a porous film of polyethersulfone resin or a composite porous film in which a porous film of polyethersulfone resin and a polyolefin film are laminated. Separator can be provided.
以下本発明を詳細に説明する。本発明に用いられるポリエーテルスルホン樹脂は通常、
ジクロロフェニルスルホンの脱塩酸を伴う自己縮合反応で合成され、住友化学、BASFジャパン社等が製造しているものを用いることができる。ポリエーテルスルホン樹脂はN−メチル−2−ピロリドン、N,N’−ジメチルホルムアミド等のアミド系溶剤やピリジン等の極性溶剤に溶解するが、Liイオン二次電池用電解液には耐えるためセパレーターとして有用な素材である。
The present invention will be described in detail below. The polyethersulfone resin used in the present invention is usually
Those synthesized by a self-condensation reaction involving dehydrochlorination of dichlorophenyl sulfone and manufactured by Sumitomo Chemical, BASF Japan, etc. can be used. Polyethersulfone resin dissolves in amide solvents such as N-methyl-2-pyrrolidone and N, N'-dimethylformamide, and polar solvents such as pyridine, but as a separator to withstand the electrolyte for Li ion secondary batteries. It is a useful material.
次にポリエーテルスルホン樹脂多孔質膜の製造方法について説明する。本発明の多孔質膜の製造は特に制限はないが、上記のポリエーテルスルホン樹脂をジメチルアセテートやN,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン、ピリジンなどの極性溶剤に溶解し、この溶液をポリエステルフィルム等の基材に所定の厚みにコーテイングした後、あるいはこれらの溶液をスリットダイからフィルム状に押し出して、該ポリエーテルスルホン樹脂を溶解している溶剤と混和するが、該ポリエーテルスルホン樹脂に対しては貧溶剤である溶液中に投入して凝固させるのが好ましい。なお、ここで言う貧溶剤とは該ポリエーテルスルホン樹脂を25℃で5重量%濃度で溶解できないものとする。 Next, the manufacturing method of a polyether sulfone resin porous membrane is demonstrated. The production of the porous membrane of the present invention is not particularly limited, but the above polyethersulfone resin can be used as dimethyl acetate, N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, pyridine. After being dissolved in a polar solvent such as this and coating this solution on a substrate such as a polyester film to a predetermined thickness or by extruding these solutions from a slit die into a film, the polyethersulfone resin is dissolved. Although it is miscible with the solvent, it is preferable that the polyethersulfone resin is poured into a poor solvent and solidified. In addition, the poor solvent said here shall not be able to melt | dissolve this polyethersulfone resin at 25 weightC and a 5-weight% density | concentration.
ポリエーテルスルホン樹脂を溶解する溶剤は上記のようにN−メチル−2−ピロリドンやジメチルアセトアミド、N,N’−ジメチルホルムアミドなどのアミド系溶剤が主体になるが、多孔質膜形成時の凝固速度を調節して、孔径や孔径分布を調節するためにメタノール、エタノール、プロピルアルコール、エチレングリコール、ジエチレングリコールやポリエチレングリコール、ポリプロピレングリコールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類などを添加することが出きる。これらの添加剤はポリエーテルスルホン樹脂溶液100部に対して5〜300部、好ましくは10〜200部、更に好ましくは20〜100部である。 Solvents that dissolve the polyethersulfone resin are mainly amide solvents such as N-methyl-2-pyrrolidone, dimethylacetamide, and N, N′-dimethylformamide as described above. In order to adjust the pore size and pore size distribution, it is possible to add alcohols such as methanol, ethanol, propyl alcohol, ethylene glycol, diethylene glycol, polyethylene glycol and polypropylene glycol, and ketones such as acetone and methyl ethyl ketone. Yes. These additives are 5 to 300 parts, preferably 10 to 200 parts, and more preferably 20 to 100 parts with respect to 100 parts of the polyethersulfone resin solution.
本発明の多孔質を製造する際に用いる凝固浴は水を主体とした溶液が好ましい。この凝固浴には凝固速度や多孔質膜の孔径及びその分布を調節するために水と混和する他の溶剤を混合することができる。このような溶剤としてはメタノール、エタノール、プロピルアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、N,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド系溶剤等が挙げられこれらの中では孔径の多孔質膜中の均一さの点からエチレングリコール、ポリエチレングリコールなどのグリコール類やN−メチル−2−ピロリドン、N,N’−ジメチルアセトアミド、N,N’−ジメチルホルムアミドなどのアミド系溶剤が好ましい。これらの溶剤の添加量は水100部に対して5〜500部、好ましくは10〜400部、更に好ましくは20〜300部である。 The coagulation bath used when producing the porous material of the present invention is preferably a solution mainly composed of water. This coagulation bath can be mixed with other solvents miscible with water in order to adjust the coagulation rate, the pore size of the porous membrane and its distribution. Such solvents include alcohols such as methanol, ethanol, propyl alcohol, ethylene glycol, propylene glycol, diethylene glycol and polyethylene glycol, ketones such as acetone and methyl ethyl ketone, N, N′-dimethylformamide, N, N′-dimethyl. Examples include amide solvents such as acetamide and N-methyl-2-pyrrolidone. Among these, glycols such as ethylene glycol and polyethylene glycol and N-methyl-2- Amide solvents such as pyrrolidone, N, N′-dimethylacetamide, and N, N′-dimethylformamide are preferred. The amount of these solvents added is 5 to 500 parts, preferably 10 to 400 parts, and more preferably 20 to 300 parts with respect to 100 parts of water.
ポリエーテルスルホン多孔質膜の膜厚は5〜100μm、好ましくは10〜70μm、更に好ましくは15〜50μmである。膜厚が5μm以下では膜が弱くなり破断するおそれがある。逆に膜厚が100μmを越えるとサイクル特性が低下することがある。ポリエーテルスルホン多孔質膜の空孔率は30〜90%が好ましい。更に好ましくは40〜70%であり、空孔率が30%以下では膜の電気抵抗が高くなり、大電流を流しにくくなる。一方、90%以上では膜強度が弱くなる。また孔径の尺度である透気度はJIS−P8117に準拠した方法により測定した値が1〜2000sec/100ccAirであることが好ましい。より好ましくは50〜1500sec/100ccAir、さらに好ましくは100〜1000sec/100ccAirである。透気度が1sec/100ccAir未満では膜強度が弱くなり、2000sec/100ccAirを越えるとサイクル特性が悪くなることがある。 The thickness of the polyethersulfone porous membrane is 5 to 100 μm, preferably 10 to 70 μm, and more preferably 15 to 50 μm. If the film thickness is 5 μm or less, the film becomes weak and may be broken. Conversely, when the film thickness exceeds 100 μm, the cycle characteristics may deteriorate. The porosity of the polyethersulfone porous membrane is preferably 30 to 90%. More preferably, it is 40 to 70%. When the porosity is 30% or less, the electric resistance of the film becomes high and it becomes difficult to flow a large current. On the other hand, if it is 90% or more, the film strength becomes weak. The air permeability, which is a measure of the pore diameter, is preferably 1 to 2000 sec / 100 cc Air measured by a method based on JIS-P8117. More preferably, it is 50-1500 sec / 100 cc Air, More preferably, it is 100-1000 sec / 100 cc Air. If the air permeability is less than 1 sec / 100 cc Air, the film strength becomes weak, and if it exceeds 2000 sec / 100 cc Air, the cycle characteristics may be deteriorated.
このようにして製造されるポリエーテルスルホン樹脂多孔質膜はセパレーターとして単独で用いられた場合でも優れたシャットダウン特性とメルトダウン特性を示す。 The polyether sulfone resin porous membrane thus produced exhibits excellent shutdown characteristics and meltdown characteristics even when used alone as a separator.
また、本発明のもう一つの特徴はポリエーテルスルホン樹脂多孔質膜をポリオレフィン系の多孔質膜と積層、組み合わせて用いることができることにある。ポリオレフィン系多孔質膜とはポリエチレンやポリプロピレンフィルムを例えば第7回ポリマー材料フォーラム(1998)要旨集1BIL09等に記載される延伸開孔法や相分離法等によって製造されるものである。ポリエーテルスルホン多孔質膜とポリオレフィン多孔質膜を積層する場合の構成はポリエーテルスルホン多孔質膜をA、ポリオレフィン系多孔質膜をBとすると、A/B、A/B/A又はB/A/Bの構成となる。 Another feature of the present invention is that a polyethersulfone resin porous membrane can be used in combination with a porous polyolefin membrane. The polyolefin-based porous membrane is a polyethylene or polypropylene film produced by, for example, the stretch opening method or the phase separation method described in 7th Polymer Material Forum (1998) Abstract 1 BIL09. When the polyethersulfone porous membrane and the polyolefin porous membrane are laminated, when the polyethersulfone porous membrane is A and the polyolefin-based porous membrane is B, A / B, A / B / A or B / A / B.
これらの複合多孔質膜の製造も特に制限はないが、以下の方法が好ましい。
(1)ポリエーテルスルホン多孔質膜とポリオレフィン多孔質膜を単純に重ねる。
(2)ポリオレフィン多孔質膜を支持体にしてその片面又は両面にポリエーテルスルホン樹脂溶液を含浸又は塗布し、前記と同様な方法で凝固浴に投入して凝固させる。
(3)上記(1)と(2)を組み合わせる。
The production of these composite porous membranes is not particularly limited, but the following method is preferred.
(1) A polyethersulfone porous membrane and a polyolefin porous membrane are simply stacked.
(2) Using a polyolefin porous membrane as a support, impregnating or coating one or both sides with a polyethersulfone resin solution, and putting it in a coagulation bath in the same manner as described above to coagulate it.
(3) Combine (1) and (2) above.
これら複合多孔質膜の場合、膜厚は5〜100μm、好ましくは10〜70μmである。空孔率は30〜80%、透気度は1〜2000sec/100ccAirが好ましい。 In the case of these composite porous membranes, the thickness is 5 to 100 μm, preferably 10 to 70 μm. The porosity is preferably 30 to 80% and the air permeability is preferably 1 to 2000 sec / 100 cc Air.
このように構成された本発明のポリエーテルスルホン樹脂多孔質膜をセパレーターとして使用したリチウムイオン二次電池は従来と同様の電池性能を発揮し、シャットダウン特性、メルトダウン特性に優れた安全な電池を得ることができる。本発明に関わるリチウムイオン二次電池は本発明の多孔質膜をセパレーターとして用いること以外は、常法に従って製造することができる。 The lithium ion secondary battery using the thus configured polyethersulfone resin porous membrane of the present invention as a separator exhibits the same battery performance as the conventional one, and is a safe battery excellent in shutdown characteristics and meltdown characteristics. Can be obtained. The lithium ion secondary battery according to the present invention can be produced according to a conventional method except that the porous membrane of the present invention is used as a separator.
即ち、正極活物質としてはリチウムを含んだ材料、負極としてはリチウムをイオンとして吸蔵、放出可能な材料、電解液としてはリチウムとフッ素を含む化合物からなる電解質の有機溶剤溶液を用いることができる。 That is, a material containing lithium can be used as the positive electrode active material, a material that can store and release lithium as ions can be used as the negative electrode, and an organic solvent solution of an electrolyte composed of a compound containing lithium and fluorine can be used as the electrolytic solution.
具体的には、正極活物質としてはリチウムイオンを挿入、離脱できるコバルト酸リチウムやマンガン酸リチウム等のリチウム金属酸化物を使用することができる。正極活物質には導電剤として公知の活性炭、各種コークス、カーボンブラック、結着剤及び溶剤等を配合し、この分散液をアルミニウム等の集電体に塗布、乾燥したものを正極材とすることができる。 Specifically, lithium metal oxides such as lithium cobaltate and lithium manganate capable of inserting and removing lithium ions can be used as the positive electrode active material. A known active carbon, various cokes, carbon black, a binder, a solvent, and the like are blended into the positive electrode active material as a conductive agent, and this dispersion is applied to a current collector such as aluminum and dried to form a positive electrode material. Can do.
負極活物質としてはコークス、グラファイト、非晶質カーボン等が用いられ、これらを結着剤と有機溶剤からなる分散液を銅箔等の集電体に塗布、乾燥して負極材とすることができる。 Coke, graphite, amorphous carbon, etc. are used as the negative electrode active material, and these are applied to a current collector such as a copper foil with a dispersion composed of a binder and an organic solvent, and dried to form a negative electrode material. it can.
電解液に使用される電解質としては、LiClO4,LiAsF6,LiPF4,LiBF4,LiBr,LiCF3SO3,等が挙げられ、有機溶剤としてはプロピレンカービネート、エチレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン等の1種又は2種以上が用いられる。 Examples of the electrolyte used in the electrolytic solution include LiClO 4 , LiAsF 6 , LiPF 4 , LiBF 4 , LiBr, LiCF 3 SO 3 , and the like, and examples of the organic solvent include propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl One or more of carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran and the like are used.
以下、実施例で本発明を更に詳細に説明するが、本発明はこれらの実施例で制限されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited by these Examples.
膜厚:ポリエーテルスルホン多孔質膜及びポリオレフィンとの積層膜をSONY μメーターで測定した。 Film thickness: A laminated film of a polyethersulfone porous film and a polyolefin was measured with a SONY μmeter.
シャットダウン温度特性:プロピレンカーボネートに4フッ化ホウ酸リチウムを1モル/l溶解した溶液を充填した多孔質膜を用い、交流周波数1kHz、交流振幅100mV、昇温速度2℃/分で測定した。温度上昇に伴うインピーダンス値の上昇が一旦100Ωcm2になったときの温度をシャットダウン開始温度とし、インピーダンスの値が1kΩcm2を越え、更に上昇した後低下し再び1kΩcm2になった温度をメルトダウン温度とした。 Shutdown temperature characteristics: A porous membrane filled with 1 mol / l of lithium tetrafluoroborate dissolved in propylene carbonate was used and measured at an AC frequency of 1 kHz, an AC amplitude of 100 mV, and a temperature increase rate of 2 ° C./min. The temperature at which the rise of the impedance value due to the temperature rise once becomes 100 Ωcm 2 is the shutdown start temperature, the temperature at which the impedance value exceeds 1 kΩcm 2 , further increases and then decreases to 1 kΩcm 2 again is the meltdown temperature It was.
[実施例1]
ウルトラゾーンE1010(BASFジャパン社製ポリエーテルスルホン)10部を90部のN−メチル−2−ピロリドンに溶解した溶液100部にポリエチレングリコール#400を10部配合した溶液を市販セパレーター(東燃化学製ポリオレフィン多孔質膜:25μm)に膜厚が1μmとなるように塗布し、水/N−メチル−2−ピロリドンが70/30の凝固浴に浸漬、水洗、乾燥した。得られた複合多孔質膜の厚みは26μm、透気度は580sec/100ccAirであった。この膜のシャットダウン温度は120℃、メルトダウン温度は200℃以上であった。この多孔質膜をセパレーターに用い、正極活物質としてコバルト酸リチウム、導電剤としてアセチレンブラック、バインダーとしてポリフッ化ビニリデンを用いた正極及び黒鉛と非晶質炭素を混合した負極活物質とポリフッ化ビニリデンをバインダーにした負極、電解液としてソルライト(三菱化学製)を用いてコイン型電池を作成して電池特性を評価した。上記の市販セパレーターを用いた電池に比べて放電容量、サイクル特性ともほぼ同等の性能を示した。
[Example 1]
A commercially available separator (polyolefin manufactured by Tonen Chemical Co., Ltd.) was prepared by mixing 10 parts of Ultrazone E1010 (polyethersulfone manufactured by BASF Japan) in 90 parts of N-methyl-2-pyrrolidone with 10 parts of polyethylene glycol # 400. The film was applied to a porous film (25 μm) so as to have a film thickness of 1 μm, immersed in a 70/30 coagulation bath of water / N-methyl-2-pyrrolidone, washed with water, and dried. The obtained composite porous membrane had a thickness of 26 μm and an air permeability of 580 sec / 100 cc Air. The shutdown temperature of this film was 120 ° C., and the meltdown temperature was 200 ° C. or higher. Using this porous membrane as a separator, a positive electrode using lithium cobaltate as a positive electrode active material, acetylene black as a conductive agent, polyvinylidene fluoride as a binder, a negative electrode active material mixed with graphite and amorphous carbon, and polyvinylidene fluoride A coin-type battery was prepared using a negative electrode as a binder and Sollite (manufactured by Mitsubishi Chemical) as an electrolytic solution, and the battery characteristics were evaluated. Compared to the battery using the above commercially available separator, the discharge capacity and cycle characteristics were almost the same.
[実施例2]
スミカエクセル4100G(住友化学工業社製ポリエーテルスルホン)10部を90部のN−メチル−2−ピロリドンに溶解した溶液を用いて、実施例1と同じ方法で厚み27μmの複合多孔質膜を作成した。この複合多孔質膜の透気度670sec/100ccAirでシャットダウン温度は120℃、メルトダウン温度は200℃以上であった。
[Example 2]
Using a solution obtained by dissolving 10 parts of Sumika Excel 4100G (polyethersulfone manufactured by Sumitomo Chemical Co., Ltd.) in 90 parts of N-methyl-2-pyrrolidone, a composite porous film having a thickness of 27 μm was prepared in the same manner as in Example 1. did. The composite porous membrane had an air permeability of 670 sec / 100 cc Air, a shutdown temperature of 120 ° C., and a meltdown temperature of 200 ° C. or higher.
[実施例3]
実施例1に用いたポリエーテルスルホン溶液を100μmのポリエステルフィルムに塗布、水/N−メチル−2−ピロリドンが70/30の凝固浴に浸漬、水洗、乾燥して膜厚が25μmのポリエーテルスルホン多孔質膜を作成した。この多孔質膜の空孔率は71%、透気度は9.3sec/100ccAirでシャットダウン温度は185℃、メルトダウン温度は200℃以上であった。この多孔質膜をセパレーターとして用い、実施例1と同じ方法でコイン型電池を作成して電池特性を評価した結果、市販セパレーターであるポリオレフィン多孔質膜とほぼ同等の放電容量、サイクル耐久性を示した。
[Example 3]
The polyethersulfone solution used in Example 1 was coated on a 100 μm polyester film, immersed in a water / N-methyl-2-pyrrolidone 70/30 coagulation bath, washed with water and dried to obtain a polyethersulfone having a film thickness of 25 μm. A porous membrane was created. This porous membrane had a porosity of 71%, an air permeability of 9.3 sec / 100 cc Air, a shutdown temperature of 185 ° C., and a meltdown temperature of 200 ° C. or higher. Using this porous membrane as a separator, a coin-type battery was prepared by the same method as in Example 1 and the battery characteristics were evaluated. As a result, the discharge capacity and cycle durability were almost the same as the polyolefin porous membrane that is a commercially available separator. It was.
[実施例4]
実施例1のポリエーテルスルホン樹脂溶液に東燃化学製ポリオレフィン多孔質膜(25μm)を浸漬させた後、ポリオレフィン多孔質膜の両面に乾燥膜厚が各々1μmになるように絞りロールで掻き取り、水/ポリエチレングリコール(分子量400)比が70/30の凝固浴に投入して凝固させ、洗滌、乾燥して厚み27μmの3層の複合多孔質膜を得た。この複合多孔質膜のシャットダウン温度は120℃、メルトダウン温度は200℃以上であった。この複合多孔質膜をセパレーターにして実施例1と同じ構成で作成したコイン電池の放電容量、サイクル耐久性などの電池性能はポリオレフィン多孔質膜単独セパレーターと同様な特性を示した。
[Example 4]
After immersing a polyolefin porous membrane (25 μm) manufactured by Tonen Chemical in the polyethersulfone resin solution of Example 1, scraping with a squeeze roll so that the dry film thickness becomes 1 μm on each side of the polyolefin porous membrane. / Polyethylene glycol (molecular weight 400) ratio was put into a coagulation bath of 70/30 to coagulate, washed and dried to obtain a composite porous membrane of 3 layers having a thickness of 27 μm. The composite porous membrane had a shutdown temperature of 120 ° C. and a meltdown temperature of 200 ° C. or higher. The battery performance such as discharge capacity and cycle durability of the coin battery prepared by using the composite porous membrane as a separator and having the same configuration as in Example 1 showed the same characteristics as the polyolefin porous membrane single separator.
[実施例5]
実施例1で作成したポリエーテルスルホン複合多孔質膜のポリエーテルスルホン多孔質膜側にポリオレフィン多孔質膜を重ねた複合膜を用いて、実施例1と同じ条件で作成したコイン型電池の放電容量、サイクル耐久性等の電池性能はポリオレフィン多孔質膜単独セパレーターとほぼ同等の特性を示した。
[Example 5]
Discharge capacity of coin-type battery prepared under the same conditions as in Example 1 using a composite membrane in which a polyolefin porous membrane was superimposed on the polyethersulfone porous membrane side of the polyethersulfone composite porous membrane prepared in Example 1 The battery performance, such as cycle durability, was almost the same as that of the polyolefin porous membrane single separator.
[比較例1]
実施例1でポリエーテルスルホンを塗布していないポリオレフィン多孔質膜のシャットダウン温度は120℃で、150℃で収縮、溶融によりメルトダウン状態になった。
[Comparative Example 1]
The shutdown temperature of the polyolefin porous membrane to which polyethersulfone was not applied in Example 1 was 120 ° C., and the melted down state was caused by shrinkage and melting at 150 ° C.
本発明は、ポリエーテルスルホン樹脂の多孔質膜又はポリエーテルスルホン樹脂の多孔質膜とポリオレフィン膜を積層した複合多孔質膜を用いることによりシャットダウン特性とメルトダウン特性のバランスに優れたリチウムイオン二次電池用セパレーターを提供できる。 The present invention provides a lithium ion secondary that has a good balance between shutdown characteristics and meltdown characteristics by using a porous film of polyethersulfone resin or a composite porous film in which a porous film of polyethersulfone resin and a polyolefin film are laminated. A battery separator can be provided.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004279623A JP2005317494A (en) | 2004-03-31 | 2004-09-27 | Porous membrane, its manufacturing method, and secondary battery using this |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004103513 | 2004-03-31 | ||
JP2004279623A JP2005317494A (en) | 2004-03-31 | 2004-09-27 | Porous membrane, its manufacturing method, and secondary battery using this |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005317494A true JP2005317494A (en) | 2005-11-10 |
Family
ID=35444667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004279623A Withdrawn JP2005317494A (en) | 2004-03-31 | 2004-09-27 | Porous membrane, its manufacturing method, and secondary battery using this |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005317494A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120052339A1 (en) * | 2010-08-24 | 2012-03-01 | Basf Se | Electrolyte materials for use in electrochemical cells |
-
2004
- 2004-09-27 JP JP2004279623A patent/JP2005317494A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120052339A1 (en) * | 2010-08-24 | 2012-03-01 | Basf Se | Electrolyte materials for use in electrochemical cells |
CN103283064A (en) * | 2010-08-24 | 2013-09-04 | 巴斯夫欧洲公司 | Electrolyte materials for use in electrochemical cells |
US9853287B2 (en) | 2010-08-24 | 2017-12-26 | Sion Power Corporation | Electrolyte materials for use in electrochemical cells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101297771B1 (en) | Nonaqueous secondary battery separator and nonaqueous secondary battery | |
TWI501451B (en) | Non-aqueous secondary battery separator and non-aqueous secondary battery | |
JP6171117B1 (en) | Non-aqueous secondary battery separator and non-aqueous secondary battery | |
JP4127989B2 (en) | Non-aqueous secondary battery separator and non-aqueous secondary battery | |
JP4431304B2 (en) | Lithium ion secondary battery separator and lithium ion secondary battery provided with the same | |
JP5129895B2 (en) | Nonaqueous secondary battery separator and nonaqueous secondary battery | |
KR102771571B1 (en) | Separator for non-aqueous secondary battery and non-aqueous secondary battery | |
JP5171150B2 (en) | Separator for lithium ion secondary battery | |
JP5670811B2 (en) | Nonaqueous secondary battery separator and nonaqueous secondary battery | |
JP4414165B2 (en) | Electronic component separator and electronic component | |
KR102086416B1 (en) | Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery | |
KR101602867B1 (en) | Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery | |
JP2006032246A (en) | Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery | |
JP2009181756A (en) | Lithium ion secondary battery and electronic device using the same | |
JP2005019156A (en) | Electronic component separator and electronic component | |
JP2014026946A (en) | Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery | |
JP4490055B2 (en) | Separator for lithium ion secondary battery or polymer lithium battery | |
JP2001332307A (en) | Electrolyte-supporting polymer membrane, battery separator, secondary battery using them, and method of manufacturing the same | |
JP5368030B2 (en) | Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery | |
JP2006338917A (en) | Electronic component separator and electronic component | |
JP5213003B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2005317495A (en) | Porous film, its manufacturing method, and secondary battery using this | |
JP2005317494A (en) | Porous membrane, its manufacturing method, and secondary battery using this | |
JP4967195B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5070658B2 (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070918 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20100526 |