[go: up one dir, main page]

JP2005313230A - Joining material for high-temperature packaging - Google Patents

Joining material for high-temperature packaging Download PDF

Info

Publication number
JP2005313230A
JP2005313230A JP2005038173A JP2005038173A JP2005313230A JP 2005313230 A JP2005313230 A JP 2005313230A JP 2005038173 A JP2005038173 A JP 2005038173A JP 2005038173 A JP2005038173 A JP 2005038173A JP 2005313230 A JP2005313230 A JP 2005313230A
Authority
JP
Japan
Prior art keywords
based alloy
bonding material
powder
temperature
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005038173A
Other languages
Japanese (ja)
Inventor
Kiyohito Ishida
清仁 石田
Ryosuke Kainuma
亮介 貝沼
Ikuo Onuma
郁雄 大沼
Yoshikazu Takaku
佳和 高久
Yuji Sudo
祐司 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005038173A priority Critical patent/JP2005313230A/en
Publication of JP2005313230A publication Critical patent/JP2005313230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining material for high-temperature packaging capable of forming a joined part having excellent reliability and durability. <P>SOLUTION: Bi-based alloy as solder alloy is combined with Cu-based alloy containing Mn and Al as a stress mitigating phase. The combining method preferably includes (a) plating or vapor deposition of Bi-based alloy on the surface of a thin plate or powder of Cu-based alloy containing Mn and Al, (b) forming paste using flux by mixing powder of Ni- or Au-plated Cu-based alloy and Bi-based alloy, (c) spherical powder in which Bi-based alloy is arranged on the outer circumferential side of Cu-based alloy powder through plating, vapor deposition or liquid quenching, (d) forming powder or thin plate in which Cu-based alloy is diffused in B-based alloy by utilizing the liquid quenching method at the volumetric fraction of 5-60%, and (e) forming bulk material in which Ni- or Au-plated Cu-based alloy powder and Bi-based alloy are mixed at a temperature above the melting point of Bi-based alloy, and cooled and solidified so that Cu-based alloy is uniformly diffused in the matrix. Bi-based alloy is preferably an alloy having a solidus temperature of ≥250°C and <400°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子機器等の実装に供される基板と素子との接合用として好適な、はんだ接合材料に係り、とくに250℃以上の高温実装を行なっても、信頼性に優れた接合部を形成できる接着性のよい接合材料(以下、はんだともいう)に関する。   The present invention relates to a solder bonding material suitable for bonding between a substrate and an element used for mounting electronic devices and the like. Particularly, even when performing high-temperature mounting at 250 ° C. or higher, a highly reliable bonding portion is provided. The present invention relates to a bonding material having good adhesiveness (hereinafter also referred to as solder).

例えば、電子機器では、部品の組み立ての際の基板や電極と素子との接合工程や、部品の機器への実装工程などにおいて、はんだを用いて接合されることが多い。これらはんだ接合部には、当然ながら、機器への実装工程中や機器の使用中に、融解や剥離、性能劣化等の不具合を発生しない、高い信頼性を有することが要求される。
はんだに求められる接合信頼性を評価する項目として、機械的特性、熱疲労特性、耐食性、耐マイグレーション性がある。とくに、はんだ接合部の寿命を決定する項目として、熱疲労特性が挙げられる。これは、例えば電子機器の使用時には、部品等からの発熱により、半導体素子、接合部に不均一な熱膨張が発生し、はんだ接合部に大きな応力がかかる。一方、非使用時には、発熱は生じず、室温に下がるため、半導体素子、接合部は収縮し、はんだ接合部には逆方向の応力がかかる。この繰り返しによって発生する繰返し応力がはんだ接合部にかかり、熱疲労を発生する。特に、半導体素子実装といったマイクロソルダー材においては、熱疲労特性が優れていることが重要となるが、はんだが柔らかいことが寄与することが知られている。
For example, electronic devices are often joined using solder in a joining process of a substrate, an electrode, and an element when assembling parts, a mounting process of parts on equipment, or the like. Of course, these solder joints are required to have high reliability so as not to cause problems such as melting, peeling, and performance deterioration during the mounting process on the device or during the use of the device.
Items for evaluating the joint reliability required for solder include mechanical characteristics, thermal fatigue characteristics, corrosion resistance, and migration resistance. In particular, thermal fatigue characteristics can be cited as an item that determines the life of the solder joint. This is because, for example, when an electronic device is used, non-uniform thermal expansion occurs in the semiconductor element and the joint due to heat generated from the components, and a large stress is applied to the solder joint. On the other hand, when not in use, heat is not generated and the temperature is lowered to room temperature. Therefore, the semiconductor element and the joint are contracted, and a stress in the opposite direction is applied to the solder joint. Repeated stress generated by this repetition is applied to the solder joint, and thermal fatigue occurs. In particular, in micro solder materials such as semiconductor element mounting, it is important that the thermal fatigue characteristics are excellent, but it is known that soft solder contributes.

従来用いられてきたはんだの代表としては、Pb−Sn共晶合金(共晶温度:183℃)があるが、Pb、Snともに延性に優れ、実装において問題となることはなかった。しかし、最近では、鉛の環境汚染の問題から、はんだとして、鉛含有合金ではなく、鉛フリー合金を用いることが要望され、一部実用化されている。このような合金は、Pb−Sn共晶合金と比べると、共晶温度または固相線温度が高い。   Pb-Sn eutectic alloy (eutectic temperature: 183 ° C) is a representative solder that has been used in the past, but both Pb and Sn are excellent in ductility and have no problem in mounting. However, recently, due to the problem of environmental pollution of lead, it has been requested to use a lead-free alloy instead of a lead-containing alloy as a solder, and a part of it has been put into practical use. Such an alloy has a higher eutectic temperature or solidus temperature than a Pb—Sn eutectic alloy.

半導体素子等を用いた電子機器用部品を実装する際のはんだについても、鉛フリーはんだとする要請のあることから、共晶温度または固相線温度の高いものが選択される結果、実装温度も高くなる。なお、実装温度は、使用するはんだの共晶温度または固相線温度から20〜30℃高い範囲内で設定することが多い。
また最近では、電子機器の実装においては、同一素子内の違う部位を接合するために、リフロー炉を2度通す接合を行なうことがある。この際、一回目に使用されるはんだは、二回目に使用されるはんだよりも固相線温度が高いものが必要とされている。
Since there is a demand for lead-free solder for mounting electronic device parts using semiconductor elements, etc., a solder with a high eutectic temperature or solidus temperature is selected. Get higher. The mounting temperature is often set within a range of 20 to 30 ° C. higher than the eutectic temperature or solidus temperature of the solder used.
Recently, in the mounting of electronic equipment, in order to join different parts in the same element, joining through a reflow furnace may be performed twice. At this time, the solder used for the first time is required to have a higher solidus temperature than the solder used for the second time.

例えば、特許文献1にはモジュールの電子装置への搭載をPb−Sn共晶合金(共晶(固相線)温度:183℃)を220〜230℃程度に加熱して接合すること、および、モジュール内の接続に、これよりも融点の高い、Sn−Sb系はんだ(固相線温度235〜240℃)を使用することが従来技術として紹介されている。このPb−Sn共晶はんだの代替として有力な鉛フリーはんだ候補は、220℃付近に固相線温度を持ったSn-Ag系、200℃付近に固相線温度をもったSn-Zn系の鉛フリーはんだである。   For example, Patent Document 1 discloses that a module is mounted on an electronic device by heating a Pb—Sn eutectic alloy (eutectic (solidus) temperature: 183 ° C.) to about 220 to 230 ° C., and The use of Sn—Sb solder (solidus temperature 235 to 240 ° C.) having a higher melting point than that for the connection in the module has been introduced as a prior art. Lead-free solder candidates that are promising alternatives to this Pb-Sn eutectic solder include Sn-Ag series with a solidus temperature around 220 ° C and Sn-Zn series with a solidus temperature around 200 ° C. Lead-free solder.

部品の機器への実装時に、このような共晶温度もしくは固相線温度の高い鉛フリーはんだを使用すると、実装温度が比較的高くなりそのため、先の工程で接合された別の部位では、このはんだより高い共晶温度もしくは固相線温度を有するはんだを使用せざるを得ない。このような共晶温度もしくは固相線温度の高い鉛フリーはんだとしては、Sn−5Sb合金(固相線温度:250℃)、Au-20Sn合金(固相線温度:280℃)(非特許文献1参照)がある。
特開2003−110154号公報 溶接学会編:第2版 溶接・接合便覧、平成15年2月25日発行、丸善株式会社、第416頁〜第423頁
When using lead-free solder with such a high eutectic or solidus temperature when mounting parts on equipment, the mounting temperature will be relatively high, so in other parts joined in the previous process, A solder having a higher eutectic temperature or solidus temperature than that of the solder must be used. Such lead-free solders with high eutectic temperature or solidus temperature include Sn-5Sb alloy (solidus temperature: 250 ° C), Au-20Sn alloy (solidus temperature: 280 ° C) (non-patent literature) 1).
JP 2003-110154 A WELDING SOCIETY: Second Edition, Handbook of Welding and Joining, published on February 25, 2003, Maruzen Co., pp. 416-423

しかしながら、Sn−5Sb合金、Au−20Sn合金はいずれも延性が低いという問題がある。実装後の使用環境が温度差の大きい環境の場合には、接合部に大きな熱応力が負荷されるため、このようなはんだを用いたはんだ接合部では延性が不足して、部品や機器の信頼性、耐久性が低下するという問題があった。
本発明は、上記したような従来技術の問題を解決し、250℃以上の高温で実装する部品の接合用として好適な、信頼性、耐久性に優れた接合部を形成できる、高温実装用はんだ接合材料を提供することを目的とする。
However, both Sn-5Sb alloy and Au-20Sn alloy have a problem of low ductility. When the usage environment after mounting is an environment where the temperature difference is large, a large thermal stress is applied to the joint, so the solder joint using such solder has insufficient ductility, and the reliability of components and equipment There was a problem that the durability and durability deteriorated.
The present invention solves the problems of the prior art as described above, and can be used for joining parts mounted at a high temperature of 250 ° C. or higher, and can form a joint with excellent reliability and durability. An object is to provide a bonding material.

本発明者らは、はんだ接合部の信頼性、耐久性を向上させるため、はんだの高温強度、耐クリープ性、耐熱サイクル性に及ぼす各種要因の影響について検討した。その結果、はんだ合金として融点の高いBi基合金に着目し、Bi基合金に、応力緩和相として、熱弾性型マルテンサイト変態を生じる合金を組合わせて接合材料とすることに想到した。このようなはんだを用いた接合部は、高温強度、耐クリープ性が向上し、耐熱サイクル性にも優れ、接合部の信頼性が顕著に向上することを見出した。なお、熱弾性型マルテンサイト変態を生じる合金は、ヤング率が低く非常に軟らかい性質を有する合金であるが、その中でもBiと固溶しないCu、Alを含み、Mnを加えたCu基合金が好ましいことを知見した。   In order to improve the reliability and durability of the solder joint, the present inventors examined the influence of various factors on the high temperature strength, creep resistance, and heat cycle characteristics of the solder. As a result, attention was focused on a Bi-based alloy having a high melting point as a solder alloy, and it was conceived that a Bi-based alloy was combined with an alloy that causes thermoelastic martensitic transformation as a stress relaxation phase to form a bonding material. It has been found that such a joint using solder has improved high-temperature strength and creep resistance, is excellent in heat cycle resistance, and remarkably improves the reliability of the joint. The alloy that causes the thermoelastic martensitic transformation is an alloy having a low Young's modulus and a very soft property. Among them, a Cu-based alloy containing Cu and Al that do not dissolve in Bi and adding Mn is preferable. I found out.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、つぎのとおりである。
(1)Mn、Alを含むCu基合金と、はんだ合金であるBi基合金とを組合わせてなる高温実装用接合材料。
(2)(1)において、前記Mn、Alを含むCu基合金の薄板または粉末の表面に、前記Bi基合金をめっきまたは蒸着してなることを特徴とする高温実装用接合材料。
(3)(1)において、前記Mn、Alを含むCu基合金を内部側に、前記Bi基合金を外周側にめっき、蒸着もしくは液体急冷により配し、球状としたことを特徴とする高温実装用接合材料。
(4)(1)において、NiまたはAuめっきを施した前記Mn、Alを含むCu基合金の粉末と、前記Bi基合金の粉末とを混合し、フラックスを用いてペースト状にしてなることを特徴とする高温実装用接合材料。
(5)(1)において、前記Bi基合金をマトリックス相とし、該マトリックス相中に前記Mn、Alを含むCu基合金が分散相として微細分散してなることを特徴とする高温実装用接合材料。
(6)(5)において、前記分散相を、体積分率で、5〜60%含有することを特徴とする高温実装用接合材料。
(7)(5)または(6)において、前記接合材料が、液体急冷して得られた粉末状あるいは薄板状であることを特徴とする高温実装用接合材料。
(8)(5)または(6)において、前記接合材料が、前記Bi基合金と、NiまたはAuめっきを施した前記Mn、Alを含むCu基合金の薄板または粉末とを、該Bi基合金の融点以上の溶融状態で混合し、冷却凝固して得られたものであることを特徴とする高温実装用接合材料。
(9)(1)ないし(8)のいずれかにおいて、前記Mn、Alを含むCu基合金が、mass%で、Mn:0.01~20%、Al:3~13%を含有し、残部Cu及び不可避不純物からなる組成のCu基合金であることを特徴とする高温実装用接合材料。
(10)(1)ないし(8)のいずれかにおいて、前記Mn、Alを含むCu基合金が、mass%で、Mn:3~10%、Al:5~10%を含有し、残部Cu及び不可避不純物からなる組成の熱弾性型マルテンサイト変態を生じる合金であることを特徴とする高温実装用接合材料。
(11)(9)または(10)において、前記組成に加えてさらに、mass%で、Ag、Ni、Au、Ga、Co、Fe、Ti、V、Cr、Si、Nb、Mo、Ge、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B及びミッシュメタルからなる群のうちから選ばれた1種または2種以上を合計で、0.001〜10%含有することを特徴とする高温実装用接合材料。
(12)(1)ないし(11)のいずれかにおいて、前記Bi基合金が、250℃以上400℃未満の固相線温度を有することを特徴とする高温実装用接合材料。
(13)(12)において、前記Bi基合金が、Biおよび不可避不純物からなる組成を有することを特徴とする高温実装用接合材料。
(14)(13)において、前記組成に加えてさらに、mass%で、Cu、Al、Mn、Ag、Ni、Au、Ga、Co、Fe、Ti、V、Cr、Si、Nb、Mo、Ge、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B及びミッシュメタルからなる群から選ばれた1種または2種以上を合計で、0.001〜10%含有する組成を有することを特徴とする高温実装用接合材料。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) A bonding material for high-temperature mounting formed by combining a Cu-based alloy containing Mn and Al and a Bi-based alloy that is a solder alloy.
(2) A bonding material for high-temperature mounting according to (1), wherein the Bi-based alloy is plated or vapor-deposited on the surface of a thin plate or powder of a Cu-based alloy containing Mn and Al.
(3) In (1), the Cu-based alloy containing Mn and Al is disposed on the inner side, and the Bi-based alloy is disposed on the outer peripheral side by plating, vapor deposition, or liquid quenching to form a spherical shape. Bonding material.
(4) In (1), the Cu-based alloy powder containing Mn and Al plated with Ni or Au and the Bi-based alloy powder are mixed and made into a paste using a flux. A bonding material for high temperature mounting.
(5) The bonding material for high-temperature mounting according to (1), wherein the Bi-based alloy is a matrix phase, and the Cu-based alloy containing Mn and Al is finely dispersed in the matrix phase as a dispersed phase. .
(6) The bonding material for high-temperature mounting according to (5), wherein the disperse phase is contained in a volume fraction of 5 to 60%.
(7) The bonding material for high temperature mounting according to (5) or (6), wherein the bonding material is in the form of powder or thin plate obtained by liquid quenching.
(8) In (5) or (6), the bonding material comprises the Bi-based alloy and a thin plate or powder of the Cu-based alloy containing Mn and Al plated with Ni or Au. A bonding material for high-temperature mounting, which is obtained by mixing in a molten state equal to or higher than the melting point and cooling and solidifying.
(9) In any one of (1) to (8), the Cu-based alloy containing Mn and Al contains mass%, Mn: 0.01 to 20%, Al: 3 to 13%, and the remaining Cu and A bonding material for high-temperature mounting, characterized in that it is a Cu-based alloy having a composition comprising inevitable impurities.
(10) In any one of (1) to (8), the Cu-based alloy containing Mn and Al contains mass%, Mn: 3 to 10%, Al: 5 to 10%, and the remaining Cu and A bonding material for high-temperature mounting, which is an alloy that produces a thermoelastic martensitic transformation having a composition composed of inevitable impurities.
(11) In (9) or (10), in addition to the above composition, in mass%, Ag, Ni, Au, Ga, Co, Fe, Ti, V, Cr, Si, Nb, Mo, Ge, Sn , Mg, P, Be, Sb, Cd, As, Zr, Zn, B and one or more selected from the group consisting of misch metal, 0.001 to 10% in total Bonding material for high temperature mounting.
(12) The bonding material for high temperature mounting according to any one of (1) to (11), wherein the Bi-based alloy has a solidus temperature of 250 ° C. or higher and lower than 400 ° C.
(13) The bonding material for high temperature mounting according to (12), wherein the Bi-based alloy has a composition comprising Bi and inevitable impurities.
(14) In (13), in addition to the above-mentioned composition, in mass%, Cu, Al, Mn, Ag, Ni, Au, Ga, Co, Fe, Ti, V, Cr, Si, Nb, Mo, Ge Sn, Mg, P, Be, Sb, Cd, As, Zr, Zn, B, and a composition containing 0.001 to 10% in total of one or more selected from the group consisting of misch metal A bonding material for high temperature mounting.

本発明によれば、はんだ接合部の高温強度、耐クリープ性が向上し、部品の実装温度が高い場合や、使用環境が厳しい場合でも、はんだ接合部の信頼性、耐久性を高く維持し、機器の信頼性や耐久性を顕著に向上でき、産業上格段の効果を奏する。   According to the present invention, the high-temperature strength and creep resistance of the solder joint are improved, and the reliability and durability of the solder joint are maintained high even when the mounting temperature of the component is high or the usage environment is severe, The reliability and durability of the equipment can be remarkably improved, and there are significant industrial effects.

本発明の接合材料は、Bi基合金に、熱弾性型マルテンサイト変態を生じる合金を組合わせた高温実装用接合材料である。熱弾性型マルテンサイト変態を生じる合金として、Mn、Alを含むCu基合金を用いる。組合わせ方は、機械的あるいは化学的とすることが好ましい。
Biは、融点が270℃付近にあり、高温実装用はんだとして、有効であるが、延性が低く脆いという欠点を有している。特にせん断に弱く、衝撃や熱応力による歪が蓄積すると、そこを起点とした破壊が生じやすい。本発明では、熱弾性型マルテンサイト変態を生じる合金を応力緩和相としてBi基合金中に分散させるなど、Bi基合金と組合わせることにより、その欠点を解消し、はんだ接合部の耐熱サイクル性を向上させることができる。
The bonding material of the present invention is a bonding material for high-temperature mounting in which a Bi-based alloy is combined with an alloy that causes thermoelastic martensitic transformation. A Cu-based alloy containing Mn and Al is used as an alloy that causes thermoelastic martensitic transformation. The combination is preferably mechanical or chemical.
Bi has a melting point in the vicinity of 270 ° C. and is effective as a solder for high-temperature mounting, but has a drawback of low ductility and brittleness. It is particularly vulnerable to shearing, and if strain due to impact or thermal stress accumulates, it tends to break starting from that point. In the present invention, the alloy that causes the thermoelastic martensitic transformation is dispersed in the Bi-based alloy as a stress relaxation phase. Can be improved.

使用するBi基合金としては、250℃以上400℃未満の固相線温度を有するBi基合金とする。このような合金としては、Biおよび不可避不純物からなる組成を有する純Bi、あるいは、Cu、Al、Mn、Ag、Ni、Au、Ga、Co、Fe、Ti、V、Cr、Si、Nb、Mo、Ge、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B及びミッシュメタルからなる群から選ばれた1種または2種以上を合計で、0.001〜10mass%含有し、残部Biおよび不可避不純物からなる組成を有するBi基合金とすることが好ましい。   The Bi-base alloy used is a Bi-base alloy having a solidus temperature of 250 ° C. or higher and lower than 400 ° C. Such alloys include pure Bi having a composition consisting of Bi and inevitable impurities, or Cu, Al, Mn, Ag, Ni, Au, Ga, Co, Fe, Ti, V, Cr, Si, Nb, Mo , Ge, Sn, Mg, P, Be, Sb, Cd, As, Zr, Zn, B and one or more selected from the group consisting of misch metal, 0.001 to 10 mass% in total, the balance A Bi-based alloy having a composition composed of Bi and inevitable impurities is preferable.

Cu、Al、Mn、Ag、Ni、Au、Ga、Co、Fe、Ti、V、Cr、Si、Nb、Mo、Ge、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B及びミッシュメタルは、いずれもBi基合金の固相線温度を所望の温度に調整することができる元素であるとともに、一部はBi基合金と基板、電極あるいは素子との濡れ性を向上させる効果があり、必要に応じ選択して含有できる。Bi基合金の固相線温度としては、250℃以上400℃未満とすることが好ましい。Bi基合金の固相線温度が250℃未満では、高温実装用はんだ接合材料の固相線温度として不十分であり、一方、400℃以上では素子の耐熱性が低下し、接合後の挙動信頼性が低下する。   Cu, Al, Mn, Ag, Ni, Au, Ga, Co, Fe, Ti, V, Cr, Si, Nb, Mo, Ge, Sn, Mg, P, Be, Sb, Cd, As, Zr, Zn, Both B and misch metal are elements that can adjust the solidus temperature of the Bi-based alloy to a desired temperature, and some improve the wettability between the Bi-based alloy and the substrate, electrode, or element. It is effective and can be selected and contained as required. The solidus temperature of the Bi-based alloy is preferably 250 ° C. or higher and lower than 400 ° C. If the solidus temperature of the Bi-base alloy is less than 250 ° C, the solidus temperature of the solder joint material for high-temperature mounting is insufficient. On the other hand, if it exceeds 400 ° C, the heat resistance of the device will be reduced, and the behavior reliability after joining Sex is reduced.

また、これら合金の含有量が合計で0.001mass%未満では、上記した有利な効果が期待できない。一方、合計で10mass%を超えて含有すると、接合性が低下する。このため、これら選択元素の合計含有量は0.001〜10mass%とすることが好ましい。より好ましくは0.001〜3mass%である。また、Mn、Alを含有するCu基合金に選択元素として添加する元素と同じ元素をBi基合金に含有することが各合金の混合時の整合性の観点からより好ましい。   Moreover, if the total content of these alloys is less than 0.001 mass%, the above-described advantageous effects cannot be expected. On the other hand, when it contains exceeding 10 mass% in total, bondability will fall. For this reason, it is preferable that the total content of these selective elements is 0.001 to 10 mass%. More preferably, it is 0.001-3 mass%. Moreover, it is more preferable from the viewpoint of consistency at the time of mixing each alloy that the same element as the element added as a selective element to the Cu-based alloy containing Mn and Al is contained in the Bi-based alloy.

本発明で、応力緩和相として組合わせるMn、Alを含むCu基合金は、ヤング率が低く、非常にやわらかい性質を有する合金であり、熱弾性型マルテンサイト変態を生じ、はんだ接合部の応力緩和相として有効に作用する。応力緩和の機構としては、合金のマルテンサイト変態開始温度(Ms点)に応じて、超弾性特性、あるいはマルテンサイト相内の双晶界面の移動を利用することができる。   In the present invention, a Cu-based alloy containing Mn and Al combined as a stress relaxation phase is an alloy having a low Young's modulus and a very soft property, resulting in a thermoelastic martensitic transformation and stress relaxation at the solder joint. Acts effectively as a phase. As a mechanism of stress relaxation, superelastic characteristics or movement of a twin interface in the martensite phase can be used according to the martensitic transformation start temperature (Ms point) of the alloy.

応力緩和相として使用するMn、Alを含むCu基合金としては、mass%で、Mn:0.01〜20%、Al:3〜13%を含有し、残部Cu及び不可避不純物からなる組成のCu基合金が、さらにはmass%で、Mn:3〜10%、Al:5〜10%を含有し、残部Cu及び不可避不純物からなる組成の熱弾性型マルテンサイト変態を生じるCu基合金とすることが好ましい。Mn、Alが上記した範囲を外れると、β−Mn等の硬くて脆い相の析出のため、はんだ接合部の応力緩和相としての作用が小さくなる。   The Cu-based alloy containing Mn and Al used as the stress relaxation phase is mass%, contains Mn: 0.01-20%, Al: 3-13%, and is composed of the remainder Cu and inevitable impurities. However, it is preferable to use a Cu-based alloy that is mass%, contains Mn: 3 to 10%, Al: 5 to 10%, and causes thermoelastic martensitic transformation having a composition composed of the balance Cu and inevitable impurities. . When Mn and Al are out of the above ranges, the action of the solder joint portion as a stress relaxation phase becomes small due to precipitation of a hard and brittle phase such as β-Mn.

また、本発明では、上記したMn、Alを含むCu基合金の組成に加えてさらに、Ag、Ni、Au、Ga、Co、Fe、Ti、V、Cr、Si、Nb、Mo、Ge、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B及びミッシュメタルからなる群のうちから選ばれた1種または2種以上を合計mass%で、0.001〜10%含有してもよい。
Ag、Ni、Au、Ga、Co、Fe、Ti、V、Cr、Si、Nb、Mo、Ge、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B及びミッシュメタルは、いずれも上記したMn、Alを含むCu基合金のMs点に影響し、Cu基合金のMs点を所望の温度に調整することができるとともに、はんだマトリックス中におけるマルテンサイトの組織安定性に寄与する元素であり、必要に応じ選択して含有できる。これら元素の含有量が合計で0.001mass%未満では、上記した有利な効果が期待できない。一方、合計で10mass%を超えて含有すると、マルテンサイト変態温度が急激に低下するため、応力緩和し得ない。このため、本発明ではこれら元素の含有量を0.001〜10mass%の範囲に限定することが好ましい。なお、より好ましくは、0.1〜3mass%である。また、これら元素は、Cu基合金のMs点が300℃程度となるように含有することが応力緩和相の観点からさらに好ましい。
In the present invention, in addition to the composition of the Cu-based alloy containing Mn and Al, Ag, Ni, Au, Ga, Co, Fe, Ti, V, Cr, Si, Nb, Mo, Ge, Sn , Mg, P, Be, Sb, Cd, As, Zr, Zn, B and one or more selected from the group consisting of misch metal in a total mass% of 0.001 to 10% Good.
Ag, Ni, Au, Ga, Co, Fe, Ti, V, Cr, Si, Nb, Mo, Ge, Sn, Mg, P, Be, Sb, Cd, As, Zr, Zn, B and Misch Metal are Both affect the Ms point of the Cu-based alloy containing Mn and Al described above, and can adjust the Ms point of the Cu-based alloy to a desired temperature and contribute to the structural stability of martensite in the solder matrix. It is an element and can be selected and contained as necessary. If the total content of these elements is less than 0.001 mass%, the above-described advantageous effects cannot be expected. On the other hand, if the total content exceeds 10 mass%, the martensite transformation temperature is drastically lowered, so that the stress cannot be relaxed. For this reason, in this invention, it is preferable to limit content of these elements to the range of 0.001-10 mass%. In addition, More preferably, it is 0.1-3 mass%. Further, it is more preferable from the viewpoint of the stress relaxation phase that these elements are contained so that the Ms point of the Cu-based alloy is about 300 ° C.

これらCu基合金とBi基合金との組合わせ方は、機械的あるいは化学的とすることが好ましい。なお、本発明では、応力緩和相として作用するCu基合金の粒径はとくに規定されない。
本発明はんだ(接合材料)における、Mn、Alを含むCu基合金とBi基合金の組合わせは、CuとAlはBiとの間には化合物を作らない反応であり、またMnもBiとの間に不安定な化合物を作るのみの反応であるため、高温下におけるCu−Al−Mn合金とBi基合金の相安定性に影響はない。さらに、はんだ接合部においても化合物の生成がなく、長期的な接合信頼性を保つことができる。
The combination of these Cu-based alloy and Bi-based alloy is preferably mechanical or chemical. In the present invention, the particle size of the Cu-based alloy acting as a stress relaxation phase is not particularly specified.
The combination of the Cu-based alloy containing Mn and Al and the Bi-based alloy in the solder (joining material) of the present invention is a reaction in which Cu and Al do not form a compound with Bi, and Mn is also in contact with Bi. Since it is a reaction that only creates an unstable compound in between, there is no effect on the phase stability of the Cu-Al-Mn alloy and Bi-based alloy at high temperatures. Further, no compound is generated in the solder joint, and long-term joint reliability can be maintained.

本発明はんだ(接合材料)におけるBi基合金と、応力緩和相であるCu基合金との組合わせ量(配合量)は、特に限定する必要はないが、Cu基合金を体積分率で、5〜90%とすることが好ましい。Cu基合金が5%未満でははんだ接合部の耐熱サイクル性が低下する。一方、90%を超えると、はんだとしての接着性が不足する。
つぎに、上記した組成のCu基合金と上記した組成のBi基合金との組合わせ方法について、具体的に説明する。
The combined amount (mixing amount) of the Bi-based alloy and the Cu-based alloy that is the stress relaxation phase in the solder (joining material) of the present invention is not particularly limited, but the Cu-based alloy is 5% in volume fraction. It is preferable to set it to -90%. If the Cu-based alloy is less than 5%, the heat cycle resistance of the solder joint is lowered. On the other hand, if it exceeds 90%, the adhesiveness as solder is insufficient.
Next, a method of combining the Cu-based alloy having the above composition with the Bi-based alloy having the above composition will be specifically described.

Mn、Alを含むCu基合金の薄板または粉末の表面に、Bi基合金をめっきまたは蒸着して、組合わせることができる。なお、本発明でいう「薄板」には、薄板および薄帯を含むものとする。
めっきまたは蒸着により形成されるBi基合金の被覆厚さとしては、はんだとして所望の接合強度が得られる厚さであればよく、とくにその厚さは限定されないが、接合部の厚さ許容量の観点から3〜900μmとすることがより好ましい。
A Bi-based alloy can be plated or vapor-deposited on the surface of a thin plate or powder of a Cu-based alloy containing Mn and Al and combined. The “thin plate” in the present invention includes a thin plate and a thin strip.
The coating thickness of the Bi-based alloy formed by plating or vapor deposition is not particularly limited as long as it is a thickness that can provide a desired joint strength as solder, but the thickness of the joint is not limited. From a viewpoint, it is more preferable to set it as 3-900 micrometers.

なお、Cu基合金の薄板または粉末表面へのBi基合金のめっき又は蒸着法としては、通常のめっきおよび蒸着法がいずれも適用可能であるが、例えば無電解めっき法、化学蒸着法がコスト、簡易性の観点から好ましい。
また、めっき、蒸着、液体急冷法を利用して、Mn、Alを含むCu基合金を内部側に、Bi基合金を外周側に配した球状とし、Cu基合金と、Bi基合金とを組合わせることもできる。このように、Mn、Alを含むCu基合金を内部側に、Bi基合金を外周側に配したボール(球)は、BGA(Ball Grid Array)パッケージ用はんだボールとして利用可能であり、接合信頼性を有する高温実装が可能となる。
In addition, as plating or vapor deposition method of Bi-based alloy on the thin plate or powder surface of Cu-based alloy, both normal plating and vapor deposition methods can be applied, but for example, electroless plating method, chemical vapor deposition method cost, It is preferable from the viewpoint of simplicity.
Also, using a plating, vapor deposition, or liquid quenching method, a Cu-based alloy containing Mn and Al is formed into a spherical shape with a Bi-based alloy disposed on the inner side and a Cu-based alloy and a Bi-based alloy are assembled. It can also be combined. In this way, a ball (sphere) with a Cu-based alloy containing Mn and Al on the inner side and a Bi-based alloy on the outer peripheral side can be used as a solder ball for a BGA (Ball Grid Array) package. High-temperature mounting with high performance.

また、NiまたはAuめっきを施したMn、Alを含むCu基合金の粉末と、Bi基合金の粉末とを、好ましくは上記したような配合比となるように配合、混合して、フラックスを用いてペースト状にして、組合わせることもできる。これに熱をかければ、Bi基合金のみが溶解し、Cu基合金は溶解しないため、Bi基合金中にCu基合金が分散した複合組織を有するはんだが得られる。なお、粉末の粒径はとくに限定されない。また、粉末の作製方法、混合方法についてもとくに限定する必要はない。ガスアトマイズ法等の通常の方法がいずれも適用可能である。   In addition, a Cu-based alloy powder containing Mn and Al plated with Ni or Au and a Bi-based alloy powder are preferably blended and mixed so that the blending ratio is as described above, and a flux is used. Can be combined in paste form. If this is heated, only the Bi-based alloy is dissolved, and the Cu-based alloy is not dissolved. Therefore, a solder having a composite structure in which the Cu-based alloy is dispersed in the Bi-based alloy is obtained. The particle size of the powder is not particularly limited. Moreover, it is not necessary to limit in particular also about the preparation method and mixing method of powder. Any ordinary method such as a gas atomizing method can be applied.

なお、Cu基合金の粉末へのめっきは、粉末への一般的なめっき方法である滴下法を適用することにより、任意の粒径のCu基合金の粉末に無電解めっきを施すことができる。ここで、滴下法はめっき液の構成成分を、金属塩、還元剤、錯化材の3つの溶液に分割し調整する手法である。加温した錯化材中に粉末を投入し、均一に攪拌後、反応成分である金属塩と還元剤を、その消費速度にあわせて連続供給することにより、めっき反応を進行させる。   In addition, the plating to the powder of Cu base alloy can apply electroless plating to the powder of Cu base alloy of arbitrary particle diameters by applying the dropping method which is a general plating method to powder. Here, the dropping method is a method of dividing and adjusting the components of the plating solution into three solutions of a metal salt, a reducing agent, and a complexing material. After the powder is put into the heated complexing material and uniformly stirred, the metal salt and the reducing agent, which are the reaction components, are continuously supplied in accordance with the consumption rate to advance the plating reaction.

また、Mn、Alを含むCu基合金と、Bi基合金を一度に溶解したのち、液体急冷法により、薄板状、あるいは粉末状として、Cu基合金と、Bi基合金とを組合わせることもできる。この方法によれば、Bi基合金を母相とし、母相中にCu基合金が微細な分散相として分散した複合組織を有するはんだが得られる。Cu基合金からなる分散相は、体積分率で5〜60%含有することが好ましい。分散相の体積分率が5%未満では、応力緩和相としての効果が少なく、一方、体積分率が60%を超えて多くなると、分散相が粗大となり好ましくない。   It is also possible to combine a Cu-based alloy and a Bi-based alloy in the form of a thin plate or powder by liquid quenching after dissolving the Cu-based alloy containing Mn and Al and the Bi-based alloy at once. . According to this method, a solder having a composite structure in which a Bi-based alloy is used as a parent phase and a Cu-based alloy is dispersed as a fine dispersed phase in the parent phase can be obtained. The dispersed phase made of a Cu-based alloy is preferably contained in a volume fraction of 5 to 60%. If the volume fraction of the dispersed phase is less than 5%, the effect as a stress relaxation phase is small. On the other hand, if the volume fraction exceeds 60%, the dispersed phase becomes coarse, which is not preferable.

液体急冷法としては、アトマイズ法があり、溶湯を高圧の流体で噴霧・急冷して微細粉末とする。アトマイズ法では、水アトマイズ法、ガスアトマイズ法、真空アトマイズ法等があるが、いずれも本発明のはんだ粉末の製造には好適である。アトマイズ法以外の液体急冷法としては、単ロール液体急冷法、双ロール液体急冷法、回転ディスク法等があり、いずれも本発明のはんだ薄板(薄帯)の製造に適用できる。   As the liquid quenching method, there is an atomizing method. The molten metal is sprayed and quenched with a high-pressure fluid to obtain a fine powder. As the atomizing method, there are a water atomizing method, a gas atomizing method, a vacuum atomizing method, and the like, all of which are suitable for producing the solder powder of the present invention. Liquid quenching methods other than the atomizing method include a single roll liquid quenching method, a twin roll liquid quenching method, a rotating disk method, and the like, all of which can be applied to the production of the solder thin plate (thin ribbon) of the present invention.

また、Mn、Alを含むCu基合金の薄板または粉末の表面にNiまたはAuめっき、好ましくは無電解めっきを施したのち、該Cu基合金の薄板または粉末とBi基合金の粉末とを、該Bi基合金の融点以上の溶融状態で混合したのち、冷却し凝固させて、Bi基合金(マトリックス)中にCu基合金の薄板または粉末が均一分散したバルク材としてもよい。
NiまたはAuめっきしたCu基合金粉末とBi基合金粉末とを、Bi基合金の融点以上に保持し溶融状態とすることにより、Cu基合金粉末表面のめっき層と溶融したBi基合金とが反応して、Cu基合金の粉末とBi基合金の融体とが混合する。これを冷却し凝固させると、Bi基合金(マトリックス)中にCu基合金粉末が均一分散したバルク材となる。バルク材であれば、種々の用途への対応が可能となる。このバルク材を本発明では「Cu基合金粉末分散Bi基合金はんだ」と称する。なお、「Cu基合金粉末分散Bi基合金はんだ」は、Cu基合金粉末、BiNiあるいはAu2Bi、純Biの3相領域を有する。
Further, after applying Ni or Au plating, preferably electroless plating, to the surface of the Cu-based alloy thin plate or powder containing Mn and Al, the Cu-based alloy thin plate or powder and the Bi-based alloy powder, After mixing in a molten state equal to or higher than the melting point of the Bi-base alloy, it may be cooled and solidified to obtain a bulk material in which a Cu-base alloy thin plate or powder is uniformly dispersed in the Bi-base alloy (matrix).
By maintaining the Ni- or Au-plated Cu-based alloy powder and Bi-based alloy powder above the melting point of the Bi-based alloy and bringing them into a molten state, the plating layer on the surface of the Cu-based alloy powder reacts with the molten Bi-based alloy. Then, the Cu-based alloy powder and the Bi-based alloy melt are mixed. When this is cooled and solidified, it becomes a bulk material in which the Cu-based alloy powder is uniformly dispersed in the Bi-based alloy (matrix). If it is a bulk material, it can respond to various uses. In the present invention, this bulk material is referred to as “Cu-based alloy powder-dispersed Bi-based alloy solder”. “Cu-based alloy powder-dispersed Bi-based alloy solder” has a three-phase region of Cu-based alloy powder, Bi 3 Ni or Au 2 Bi, and pure Bi.

最近の高温はんだ実装は、粉末をフラックスを介してペースト化し、基板に塗布して、加熱して接合する場合と、薄片としたはんだを基板と半導体素子の間に挟みこみ、リフロー炉にて加熱、はんだのみを溶解させて接合させる場合が、一般的であるが、本発明はんだは、ペースト化、薄片化、バルク化することもできるため、どの接合方法にも適している。   In recent high-temperature solder mounting, powder is made into a paste via flux, applied to the substrate, heated and joined, and a thin piece of solder is sandwiched between the substrate and the semiconductor element and heated in a reflow oven In general, only the solder is melted and bonded, but the solder of the present invention can be made into a paste, thinned, or bulked, and thus is suitable for any bonding method.

(実施例1)
表1に示す組成のCu基合金を高周波溶解にて溶製し、圧延により薄板(板厚:50〜700μm)とした。これら薄板の表面に、無電解めっき法、化学蒸着法により表1に示す組成のBi基合金を、表1に示す体積分率となるように被覆し、応力緩和相となるCu基合金とはんだ母相となるBi基合金とを組合わせたはんだとした。この組織の例を図1に示す。接合界面の上部がBi基合金、下部がCu基マルテンサイト相合金である。なお、純Bi単相の薄板を比較例のはんだとした。
Example 1
A Cu-based alloy having the composition shown in Table 1 was melted by high frequency melting, and rolled into a thin plate (plate thickness: 50 to 700 μm). The surface of these thin plates is coated with a Bi-based alloy having the composition shown in Table 1 by the electroless plating method or chemical vapor deposition method so as to have the volume fraction shown in Table 1, and a Cu-based alloy and a solder serving as a stress relaxation phase. The solder was combined with a Bi-based alloy as a parent phase. An example of this organization is shown in FIG. The upper part of the bonding interface is a Bi-based alloy, and the lower part is a Cu-based martensitic phase alloy. A pure Bi single-phase thin plate was used as the solder for the comparative example.

得られたはんだについて、母相の固相線温度と、応力緩和相のMs点を示差熱分析法で測定し、結果を表1に併記した。
得られたはんだを用いて、基板と素子とをはんだ接合し、熱サイクル試験を実施し、接合部の耐熱サイクル性を評価した。
片面に銅めっき(厚さ:100 μm )したのち、不要な部分をエッチングにより削除して所定の電極パターンを形成した基板(アルミナ)を一対、用意した。さらに、半導体素子を用意した。なお、素子の接合端にはAuめっきを施した。ついで、基板の電極パターンにディスペンサを用いて、フラックスを塗布したのち、電極パターンサイズに切断したはんだ薄片を電極上に載せ、ついで、はんだ薄片が載せられた電極パターンの所定の位置に、半導体素子を実装したのち、半導体素子の他方の接合端と電極パターンの所定の箇所が接するように、一対の基板のうちの他方を配置した。
For the obtained solder, the solidus temperature of the parent phase and the Ms point of the stress relaxation phase were measured by differential thermal analysis, and the results are also shown in Table 1.
Using the obtained solder, the substrate and the element were soldered together, a thermal cycle test was performed, and the heat cycle resistance of the joint was evaluated.
After copper plating (thickness: 100 μm) on one surface, a pair of substrates (alumina) on which a predetermined electrode pattern was formed by removing unnecessary portions by etching was prepared. Furthermore, a semiconductor element was prepared. Note that Au plating was applied to the joint ends of the elements. Next, after applying flux to the electrode pattern of the substrate using a dispenser, the solder flakes cut into the electrode pattern size are placed on the electrodes, and then the semiconductor element is placed at a predetermined position of the electrode pattern on which the solder flakes are placed. After mounting, the other of the pair of substrates was arranged so that the other junction end of the semiconductor element and a predetermined portion of the electrode pattern were in contact with each other.

ついで、リフロー炉に装入し、接合部の実装を行い、組立品とした。なお、リフロー温度は、表1に示すはんだ母相の固相線温度+30℃に設定した。
これら組立品に、最高温度を150℃とし、最低温度を−50℃とするサイクルを1000回負荷し、接合部のクラック発生の有無を観察した。なお、作動する応力緩和機構について、参考として表1に併記した。
Then, it was charged in a reflow furnace and the joints were mounted to make an assembly. The reflow temperature was set to the solidus temperature of the solder mother phase shown in Table 1 + 30 ° C.
These assemblies were loaded 1000 times with a maximum temperature of 150 ° C. and a minimum temperature of −50 ° C., and the presence or absence of cracks in the joints was observed. The stress relaxation mechanism that operates is also shown in Table 1 as a reference.

得られた結果を表1に併記した。   The obtained results are also shown in Table 1.

本発明例はいずれも、母相となるBi基合金の固相線温度が高く、高温実装が可能な接合材料となっている。また、本発明例のはんだ(接合材料)を用いたはんだ接合部ではいずれも、クラックの発生は認められず、耐熱サイクル性に優れたはんだ接合部が形成されている。一方、Bi単相のはんだ(比較例)では、固相線温度が高く、高温実装が可能であるが、はんだ接合部では、クラックの発生が認められ、耐熱サイクル性が劣化している。
(実施例2)
表2に示す組成のCu基合金、およびBi基合金を、それぞれ溶解し、液体急冷法であるガスアトマイズ法(Arガス:噴霧圧5MPa)で急冷し粉末とした。得られたCu基合金粉末(粒径:5〜50μm)に滴下法により無電解NiめっきまたはAuめっきを施したのち、該Cu基合金粉末とBi基合金粉末(粒径:5〜100μm)とを、各粉末の比率が表2に示す体積比率になるように配合し、フラックスとともに混合して、ペースト状とした。なお、滴下法の反応時間を調整して表2に示すめっき膜厚とした。
In all of the examples of the present invention, the Bi-base alloy serving as a parent phase has a high solidus temperature and is a bonding material that can be mounted at high temperature. Moreover, in any of the solder joints using the solder (joining material) of the present invention example, no cracks are observed, and a solder joint excellent in heat cycle resistance is formed. On the other hand, Bi single-phase solder (comparative example) has a high solidus temperature and can be mounted at a high temperature, but cracks are observed at the solder joints, and the heat cycle resistance is deteriorated.
(Example 2)
A Cu-based alloy and a Bi-based alloy having the compositions shown in Table 2 were respectively dissolved and quenched by a gas atomization method (Ar gas: spraying pressure 5 MPa) which is a liquid quenching method to obtain a powder. After applying electroless Ni plating or Au plating to the obtained Cu-based alloy powder (particle size: 5 to 50 μm) by a dropping method, the Cu-based alloy powder and Bi-based alloy powder (particle size: 5 to 100 μm) Were mixed so that the ratio of each powder was the volume ratio shown in Table 2, and mixed with the flux to obtain a paste. The reaction time of the dropping method was adjusted to obtain the plating film thickness shown in Table 2.

これらペースト状はんだについて、実施例1と同様に、母相となるBi基合金の固相線温度と、応力緩和相となるCu基合金のMs点を示差熱分析法で測定した。
また、これらペースト状はんだを用いて、基板と素子とをはんだ接合し、熱サイクル試験を実施し、接合部の耐熱サイクル性を評価した。
片面に銅めっき(厚さ:100 μm )したのち、不要な部分をエッチングにより削除して所定の電極パターンを形成した基板(アルミナ)を一対、用意した。さらに、半導体素子を用意した。なお、素子の接合端にはAuめっきを施した。ついで、基板の電極パターンにディスペンサを用いて、ペースト状はんだを塗布し、ついで、はんだが塗布された電極パターンの所定の位置に、半導体素子を実装したのち、半導体素子の他方の接合端と電極パターンの所定の箇所が接するように、一対の基板のうちの他方を配置した。
For these paste-like solders, the solidus temperature of the Bi-based alloy serving as the parent phase and the Ms point of the Cu-based alloy serving as the stress relaxation phase were measured by differential thermal analysis as in Example 1.
Moreover, the board | substrate and the element were soldered using these paste solders, the thermal cycle test was implemented, and the heat cycle property of the junction part was evaluated.
After copper plating (thickness: 100 μm) on one surface, a pair of substrates (alumina) on which a predetermined electrode pattern was formed by removing unnecessary portions by etching was prepared. Furthermore, a semiconductor element was prepared. Note that Au plating was applied to the joint ends of the elements. Next, a paste solder is applied to the electrode pattern of the substrate using a dispenser, and then the semiconductor element is mounted at a predetermined position of the electrode pattern to which the solder is applied, and then the other junction end of the semiconductor element and the electrode The other of the pair of substrates was placed so that a predetermined portion of the pattern was in contact.

ついで、リフロー炉に装入し、接合部の実装を行い、組立品とした。なお、リフロー温度は、表2に示すはんだ母相の固相線温度+30℃に設定した。
得られた組立品について、実施例1と同様に、熱サイクル試験を実施した。
得られた結果を表2に示す。
Then, it was charged in a reflow furnace and the joints were mounted to make an assembly. The reflow temperature was set to the solidus temperature of the solder matrix phase shown in Table 2 + 30 ° C.
The obtained assembly was subjected to a thermal cycle test in the same manner as in Example 1.
The obtained results are shown in Table 2.

本発明例はいずれも、母相となるBi基合金の固相線温度が高く、高温実装が可能な接合材料となっている。また、本発明例を用いたはんだ接合部ではいずれも、クラックの発生は認められず、耐熱サイクル性に優れたはんだ接合部が形成されている。
(実施例3)
表3に示す組成のCu基合金を高周波溶解し、液体急冷法であるガスアトマイズ法(Arガス:噴霧圧5MPa)で急冷し粉末とした。得られたCu基合金粉末(粒径:10〜50μm)に滴下法により無電解NiまたはAuめっきを施した。なお、滴下法の反応時間を調整して表3に示すめっき膜厚とした。該Cu基合金粉末と表3に示す組成のBi基合金を表3に示す凝固後の母相と緩和相の体積分率となるように配合し、透明石英管に真空封入した。ついで、Bi基合金の融点以上である、400℃で5分間保持し、溶融状態でBi基合金融体とCu基合金粉末とを混合および均一分散を図ったのち、冷却凝固させ、Cu基合金粉末分散Bi基合金はんだを得た。なお、Cu基合金粉末の粒径は表3に示す緩和相粒径のものを使用した。
In all of the examples of the present invention, the Bi-base alloy serving as a parent phase has a high solidus temperature and is a bonding material that can be mounted at high temperature. Moreover, in any of the solder joint portions using the present invention example, no cracks are observed, and a solder joint portion excellent in heat cycle resistance is formed.
(Example 3)
A Cu-based alloy having the composition shown in Table 3 was melted at high frequency and rapidly cooled by a gas atomization method (Ar gas: spraying pressure 5 MPa), which is a liquid quenching method, to obtain a powder. The obtained Cu-based alloy powder (particle size: 10 to 50 μm) was subjected to electroless Ni or Au plating by a dropping method. The reaction time of the dropping method was adjusted to obtain the plating film thickness shown in Table 3. The Cu-based alloy powder and a Bi-based alloy having the composition shown in Table 3 were blended so as to have the volume fraction of the solid phase and the relaxed phase shown in Table 3 and sealed in a transparent quartz tube. Next, hold at 400 ° C, which is higher than the melting point of the Bi-based alloy, for 5 minutes, mix and uniformly disperse the Bi-based financial body and Cu-based alloy powder in the molten state, and then cool and solidify the Cu-based alloy. A powder-dispersed Bi-based alloy solder was obtained. The Cu-based alloy powder having a relaxed phase particle size shown in Table 3 was used.

得られたCu基合金粉末分散Bi基合金はんだについて、実施例2と同様に、母相となるBi基合金の固相線温度と、応力緩和相となるCu基合金のMs点を示差熱分析法により測定した。さらに、実施例2と同様に耐熱サイクル性を評価した。得られた結果を表3に示す。   For the obtained Cu-based alloy powder-dispersed Bi-based alloy solder, as in Example 2, the solidus temperature of the Bi-based alloy that is the parent phase and the Ms point of the Cu-based alloy that is the stress relaxation phase are differential thermal analysis. Measured by the method. Furthermore, the heat cycle performance was evaluated in the same manner as in Example 2. The obtained results are shown in Table 3.

本発明例はいずれも、母相となるBi基合金の固相線温度が高く、高温実装が可能な接合材料となっている。また、本発明例を用いたはんだ接合部ではいずれもクラックの発生は認められず、耐熱サイクル性に優れたはんだ接合部が形成されている。
(実施例4)
表4に示す組成のCu基合金を高周波溶解し、その後、液体急冷法であるガスアトマイズ法(Arガス:噴霧圧5MPa)で急冷し粉末とした。得られたCu基合金粉末(粒径:40〜250μm)の表面に、無電解めっき法、化学蒸着法により表4に示す組成のBi基合金を、表4に示す体積分率となるように被覆し、応力緩和相となるCu基合金とはんだ母相となるBi基合金とを組合わせたはんだとした。また、目的組成のCu基合金、Bi基合金を、粉末作製時にCu基合金が中心部、Bi基合金が外周部となり、かつ表4に示す体積分率を有する母合金を作製した。この母合金をガスアトマイズ法により粉末とし、はんだとした。なお、ガスアトマイズ法で作製した純Bi粉末を比較例とした。
In all of the examples of the present invention, the Bi-base alloy serving as a parent phase has a high solidus temperature and is a bonding material that can be mounted at high temperature. In addition, in any of the solder joint portions using the example of the present invention, no cracks are observed, and a solder joint portion excellent in heat cycle resistance is formed.
Example 4
A Cu-based alloy having the composition shown in Table 4 was melted at high frequency, and then rapidly cooled by a gas atomizing method (Ar gas: spraying pressure 5 MPa) which is a liquid quenching method to obtain a powder. On the surface of the obtained Cu-based alloy powder (particle size: 40 to 250 μm), the Bi-based alloy having the composition shown in Table 4 is formed by electroless plating and chemical vapor deposition so that the volume fraction shown in Table 4 is obtained. The solder was coated and combined with a Cu-based alloy serving as a stress relaxation phase and a Bi-based alloy serving as a solder parent phase. In addition, a Cu-based alloy and a Bi-based alloy having a target composition were prepared, with a Cu-based alloy being the central part and a Bi-based alloy being the outer peripheral part at the time of powder preparation, and having a volume fraction shown in Table 4. This mother alloy was powdered by a gas atomizing method to obtain a solder. In addition, the pure Bi powder produced by the gas atomization method was made into the comparative example.

得られた球状粉末に、溶媒、フラックス、増粘剤を加えてペースト状はんだとした。これらペースト状はんだを用いて、実施例2と同様に、母相となるBi基合金の固相線温度と、応力緩和相となるCu基合金のMs点を測定し、さらに耐熱サイクル性を評価した。得られた結果を表4に示す。   A solvent, a flux, and a thickener were added to the obtained spherical powder to obtain a paste solder. Using these paste solders, as in Example 2, the solidus temperature of the Bi-based alloy as the parent phase and the Ms point of the Cu-based alloy as the stress relaxation phase were measured, and the heat cycle resistance was evaluated. did. Table 4 shows the obtained results.

本発明例はいずれも、母相となるBi基合金の固相線温度が高く、高温実装が可能な接合材料となっている。また、本発明例を用いたはんだ接合部ではいずれも、クラックの発生は認められず、耐熱サイクル性に優れたはんだ接合部が形成されている。
(実施例5)
表5に示す組成のCu基合金、Bi基合金を、Cu基合金、Bi基合金とが表5に示す体積分率となるように配合し溶解して、溶湯をガスアトマイズ法(Arガス:噴霧圧5MPa)、あるいは単ロール液体急冷法(単ロールメルトスパン法)で急冷し粉末(粒径:100μm)、あるいは薄板(薄帯)(板厚:300μm)とした。得られた粉末あるいは薄板(薄帯)は、母相であるBi基合金中に、応力緩和相であるCu基合金が分散相として微細分散した粉末あるいは薄板(薄帯)である。図2に、得られた粉末あるいは薄板(薄帯)の断面組織の例を示すが、1μm以下の応力緩和相が均一に分散している。得られた粉末あるいは薄板(薄帯)について、実施例1〜4と同様に、母相となるBi基合金の固相線温度と、応力緩和相となるCu基合金のMs点を測定し、さらに耐熱サイクル性を評価した。得られた結果を表5に示す。
In all of the examples of the present invention, the Bi-base alloy serving as a parent phase has a high solidus temperature and is a bonding material that can be mounted at high temperature. Moreover, in any of the solder joint portions using the present invention example, no cracks are observed, and a solder joint portion excellent in heat cycle resistance is formed.
(Example 5)
A Cu-based alloy and a Bi-based alloy having the composition shown in Table 5 are blended and melted so that the Cu-based alloy and Bi-based alloy have the volume fraction shown in Table 5, and the molten metal is gas atomized (Ar gas: spray) 5MPa), or a single roll liquid quenching method (single roll melt span method) to quench the powder (particle size: 100 μm) or thin plate (thin strip) (plate thickness: 300 μm). The obtained powder or thin plate (thin strip) is a powder or thin plate (thin strip) in which a Cu base alloy as a stress relaxation phase is finely dispersed as a dispersed phase in a Bi base alloy as a parent phase. FIG. 2 shows an example of the cross-sectional structure of the obtained powder or thin plate (strip), and the stress relaxation phase of 1 μm or less is uniformly dispersed. About the obtained powder or thin plate (strip), as in Examples 1 to 4, the solidus temperature of the Bi-based alloy serving as the parent phase and the Ms point of the Cu-based alloy serving as the stress relaxation phase were measured, Furthermore, the heat cycle performance was evaluated. The results obtained are shown in Table 5.

本発明例はいずれも、母相となるBi基合金の固相線温度が高く、高温実装が可能な接合材料となっている。また、本発明例を用いたはんだ接合部ではいずれも、クラックの発生は認められず、耐熱サイクル性に優れたはんだ接合部が形成されている。   In all of the examples of the present invention, the Bi-base alloy serving as a parent phase has a high solidus temperature and is a bonding material that can be mounted at high temperature. Moreover, in any of the solder joint portions using the present invention example, no cracks are observed, and a solder joint portion excellent in heat cycle resistance is formed.

本発明例の接合材料の断面組織を示す光学顕微鏡組織写真である。It is an optical microscope structure | tissue photograph which shows the cross-sectional structure | tissue of the joining material of the example of this invention. 本発明例の接合材料((a)薄板、(b)粉末)の断面組織を示す走査型電子顕微鏡組織写真である。It is a scanning electron microscope structure | tissue photograph which shows the cross-sectional structure | tissue of the joining material ((a) thin plate, (b) powder) of the example of this invention.

Claims (14)

Mn、Alを含むCu基合金と、はんだ合金であるBi基合金とを組合わせてなる高温実装用接合材料。   A bonding material for high-temperature mounting that combines a Cu-based alloy containing Mn and Al and a Bi-based alloy that is a solder alloy. 前記Mn、Alを含むCu基合金の薄板または粉末の表面に、前記Bi基合金をめっきまたは蒸着してなることを特徴とする請求項1に記載の高温実装用接合材料。   2. The bonding material for high-temperature mounting according to claim 1, wherein the Bi-based alloy is plated or vapor-deposited on a thin plate or powder of a Cu-based alloy containing Mn and Al. 前記Mn、Alを含むCu基合金を内部側に、前記Bi基合金を外周側にめっき、蒸着もしくは液体急冷により配し、球状としたことを特徴とする請求項1に記載の高温実装用接合材料。   2. The high-temperature mounting joint according to claim 1, wherein the Cu-based alloy containing Mn and Al is disposed on the inner side and the Bi-based alloy is disposed on the outer peripheral side by plating, vapor deposition, or liquid quenching to form a spherical shape. material. NiまたはAuめっきを施した前記Mn、Alを含むCu基合金の粉末と、前記Bi基合金の粉末とを混合し、フラックスを用いてペースト状にしてなることを特徴とする請求項1に記載の高温実装用接合材料。   2. The Cu-based alloy powder containing Mn and Al plated with Ni or Au and the Bi-based alloy powder are mixed to form a paste using a flux. Bonding material for high temperature mounting. 前記Bi基合金をマトリックス相とし、該マトリックス相中に前記Mn、Alを含むCu基合金が分散相として微細分散してなることを特徴とする請求項1に記載の高温実装用接合材料。   The bonding material for high-temperature mounting according to claim 1, wherein the Bi-based alloy is used as a matrix phase, and the Cu-based alloy containing Mn and Al is finely dispersed in the matrix phase as a dispersed phase. 前記分散相を、体積分率で、5〜60%含有することを特徴とする請求項5に記載の高温実装用接合材料。   The bonding material for high-temperature mounting according to claim 5, wherein the dispersed phase is contained in a volume fraction of 5 to 60%. 前記接合材料が、液体急冷して得られた粉末状あるいは薄板状であることを特徴とする請求項5または6に記載の高温実装用接合材料。   The bonding material for high-temperature mounting according to claim 5 or 6, wherein the bonding material is in the form of powder or thin plate obtained by liquid quenching. 前記接合材料が、前記Bi基合金と、NiまたはAuめっきを施した前記Mn、Alを含むCu基合金の薄板または粉末とを、該Bi基合金の融点以上の溶融状態で混合し、冷却凝固して得られたものであることを特徴とする請求項5または6に記載の高温実装用接合材料。   The bonding material is mixed with the Bi-based alloy and the Ni- or Au-plated Cu-based alloy thin plate or powder containing Mn and Al in a molten state equal to or higher than the melting point of the Bi-based alloy, and then cooled and solidified. The bonding material for high-temperature mounting according to claim 5 or 6, wherein the bonding material is obtained by the following process. 前記Mn、Alを含むCu基合金が、mass%で、Mn:0.01~20%、Al:3~13%を含有し、残部Cu及び不可避不純物からなる組成のCu基合金であることを特徴とする請求項1ないし8のいずれかに記載の高温実装用接合材料。   The Cu-based alloy containing Mn and Al is a Cu-based alloy having a composition of mass%, containing Mn: 0.01 to 20%, Al: 3 to 13%, and comprising the balance Cu and inevitable impurities. The bonding material for high temperature mounting according to any one of claims 1 to 8. 前記Mn、Alを含むCu基合金が、mass%で、Mn:3~10%、Al:5~10%を含有し、残部Cu及び不可避不純物からなる組成の熱弾性型マルテンサイト変態を生じる合金であることを特徴とする請求項1ないし8のいずれかに記載の高温実装用接合材料。   The Cu-based alloy containing Mn and Al contains mass%, Mn: 3 to 10%, Al: 5 to 10%, and produces a thermoelastic martensitic transformation having a composition comprising the remainder Cu and inevitable impurities. The bonding material for high-temperature mounting according to claim 1, wherein the bonding material is high-temperature mounting. 前記組成に加えてさらに、mass%で、Ag、Ni、Au、Ga、Co、Fe、Ti、V、Cr、Si、Nb、Mo、Ge、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B及びミッシュメタルからなる群のうちから選ばれた1種または2種以上を合計で、0.001~10%含有することを特徴とする請求項9または10に記載の高温実装用接合材料。   In addition to the above composition, mass%, Ag, Ni, Au, Ga, Co, Fe, Ti, V, Cr, Si, Nb, Mo, Ge, Sn, Mg, P, Be, Sb, Cd, As The high-temperature mounting according to claim 9 or 10, characterized by containing 0.001 to 10% in total of one or more selected from the group consisting of Zr, Zn, B, and Misch metal Bonding material. 前記Bi基合金が、250℃以上400℃未満の固相線温度を有することを特徴とする請求項1ないし11のいずれかに記載の高温実装用接合材料。   12. The bonding material for high temperature mounting according to claim 1, wherein the Bi-based alloy has a solidus temperature of 250 ° C. or higher and lower than 400 ° C. 前記Bi基合金が、Biおよび不可避不純物からなる組成を有することを特徴とする請求項12に記載の高温実装用接合材料。   13. The bonding material for high-temperature mounting according to claim 12, wherein the Bi-based alloy has a composition comprising Bi and inevitable impurities. 前記組成に加えてさらに、mass%で、Cu、Al、Mn、Ag、Ni、Au、Ga、Co、Fe、Ti、V、Cr、Si、Nb、Mo、Ge、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B及びミッシュメタルからなる群から選ばれた1種または2種以上を合計で、0.001〜10%含有する組成を有することを特徴とする請求項13に記載の高温実装用接合材料。   In addition to the above composition, in mass%, Cu, Al, Mn, Ag, Ni, Au, Ga, Co, Fe, Ti, V, Cr, Si, Nb, Mo, Ge, Sn, Mg, P, Be 14. A composition containing 0.001 to 10% in total of one or more selected from the group consisting of Sb, Cd, As, Zr, Zn, B and Misch metal The bonding material for high temperature mounting described.
JP2005038173A 2004-03-29 2005-02-15 Joining material for high-temperature packaging Pending JP2005313230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038173A JP2005313230A (en) 2004-03-29 2005-02-15 Joining material for high-temperature packaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004095453 2004-03-29
JP2005038173A JP2005313230A (en) 2004-03-29 2005-02-15 Joining material for high-temperature packaging

Publications (1)

Publication Number Publication Date
JP2005313230A true JP2005313230A (en) 2005-11-10

Family

ID=35441199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038173A Pending JP2005313230A (en) 2004-03-29 2005-02-15 Joining material for high-temperature packaging

Country Status (1)

Country Link
JP (1) JP2005313230A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072006A (en) * 2006-09-15 2008-03-27 Toyota Central R&D Labs Inc Zygote
JP2008302396A (en) * 2007-06-08 2008-12-18 Murata Mfg Co Ltd Solder paste and bonded article
CN102319966A (en) * 2011-08-29 2012-01-18 郑州机械研究所 Brazing filler metal for braze welding of titanium and titanium alloy, preparation method and braze welding method
JP2012076130A (en) * 2010-10-04 2012-04-19 Sumitomo Metal Mining Co Ltd Lead-free solder alloy containing germanium
CN103071942A (en) * 2013-01-05 2013-05-01 张家港市东大工业技术研究院 Low-temperature solder matrix composite solder for synthesizing magnetic-phase particles in situ and preparation method thereof
CN104911396A (en) * 2015-05-12 2015-09-16 无锡源创机械科技有限公司 Copper-based shape memory alloy, and preparation method and applications thereof
JP2015202507A (en) * 2014-04-14 2015-11-16 富士電機株式会社 High temperature solder alloy
CN105057914A (en) * 2015-07-28 2015-11-18 合肥科启环保科技有限公司 Environment-friendly silver-free welding rod
CN105171267A (en) * 2015-07-21 2015-12-23 安徽江威精密制造有限公司 Lead-free solder and manufacturing method and application thereof
CN106944771A (en) * 2017-04-21 2017-07-14 常州市奥普泰科光电有限公司 A kind of preparation method of surfacing welding
US10760156B2 (en) 2017-10-13 2020-09-01 Honeywell International Inc. Copper manganese sputtering target
US11035036B2 (en) 2018-02-01 2021-06-15 Honeywell International Inc. Method of forming copper alloy sputtering targets with refined shape and microstructure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072006A (en) * 2006-09-15 2008-03-27 Toyota Central R&D Labs Inc Zygote
JP2008302396A (en) * 2007-06-08 2008-12-18 Murata Mfg Co Ltd Solder paste and bonded article
JP2012076130A (en) * 2010-10-04 2012-04-19 Sumitomo Metal Mining Co Ltd Lead-free solder alloy containing germanium
CN102319966A (en) * 2011-08-29 2012-01-18 郑州机械研究所 Brazing filler metal for braze welding of titanium and titanium alloy, preparation method and braze welding method
CN103071942A (en) * 2013-01-05 2013-05-01 张家港市东大工业技术研究院 Low-temperature solder matrix composite solder for synthesizing magnetic-phase particles in situ and preparation method thereof
JP2015202507A (en) * 2014-04-14 2015-11-16 富士電機株式会社 High temperature solder alloy
CN104911396A (en) * 2015-05-12 2015-09-16 无锡源创机械科技有限公司 Copper-based shape memory alloy, and preparation method and applications thereof
CN105171267A (en) * 2015-07-21 2015-12-23 安徽江威精密制造有限公司 Lead-free solder and manufacturing method and application thereof
CN105171267B (en) * 2015-07-21 2017-12-01 重庆永林机械设备有限公司 Lead-free solder and its preparation method and application
CN105057914A (en) * 2015-07-28 2015-11-18 合肥科启环保科技有限公司 Environment-friendly silver-free welding rod
CN106944771A (en) * 2017-04-21 2017-07-14 常州市奥普泰科光电有限公司 A kind of preparation method of surfacing welding
CN106944771B (en) * 2017-04-21 2019-05-17 浙江申轮水泥机械制造有限公司 A kind of preparation method of surfacing welding
US10760156B2 (en) 2017-10-13 2020-09-01 Honeywell International Inc. Copper manganese sputtering target
US11035036B2 (en) 2018-02-01 2021-06-15 Honeywell International Inc. Method of forming copper alloy sputtering targets with refined shape and microstructure

Similar Documents

Publication Publication Date Title
JP7135171B2 (en) solder composition
CN103561903B (en) Lead-free solder alloy
Lin et al. Characterization of lead-free solders and under bump metallurgies for flip-chip package
TWI494441B (en) Bi-Sn high temperature solder alloy
EP3707285B1 (en) Low-silver tin based alternative solder alloy to standard sac alloys for high reliability applications
JP2005319470A (en) Lead-free solder material, electronic circuit board, and manufacturing method thereof
JP2005313230A (en) Joining material for high-temperature packaging
Xu et al. Novel Au‐Based Solder Alloys: A Potential Answer for Electrical Packaging Problem
Nguyen et al. Enhancement of bonding strength in BiTe-based thermoelectric modules by electroless nickel, electroless palladium, and immersion gold surface modification
WO2008033828A1 (en) Modified solder alloys for electrical interconnects, methods of production and uses thereof
Du et al. Impact of Ni-coated carbon fiber on the interfacial (Cu, Ni) 6Sn5 growth of Sn-3.5 Ag composite solder on Cu substrate during reflow and isothermal aging
Sun et al. Intermetallic compound formation in Sn-Co-Cu, Sn-Ag-Cu and eutectic Sn-Cu solder joints on electroless Ni (P) immersion Au surface finish after reflow soldering
JP2008080393A (en) Joining body using peritectic system alloy, joining method, and semiconductor device
JP2008080392A (en) Joining body and joining method
JP2011251330A (en) High-temperature lead-free solder paste
Fallahi et al. Modifying the mechanical properties of lead-free solder by adding iron and indium and using a lap joint test
JP2016026884A (en) Bi-Sn-Al BASED SOLDER ALLOY FOR MEDIUM TO LOW TEMPERATURES AND SOLDER PASTE
EP3706949B1 (en) Cost-effective lead-free solder alloy for electronic applications
Kong et al. Microstructure and mechanical property of Sn–Ag–Cu solder material
EP3707286B1 (en) High reliability lead-free solder alloy for electronic applications in extreme environments
JP4811661B2 (en) Au-Sn alloy solder paste with less void generation
JP6887183B1 (en) Solder alloys and molded solders
JP7386826B2 (en) Molded solder and method for manufacturing molded solder
Qi et al. The effect of Bi on the IMC growth in Sn-3Ag-0.5 Cu solder interface during aging process
JP2017177122A (en) HIGH-TEMPERATURE Pb-FREE SOLDER PASTE AND MANUFACTURING METHOD THEREOF