[go: up one dir, main page]

JP2005311292A - 薄膜太陽電池用基板、及びその製造方法、並びにそれを用いた薄膜太陽電池 - Google Patents

薄膜太陽電池用基板、及びその製造方法、並びにそれを用いた薄膜太陽電池 Download PDF

Info

Publication number
JP2005311292A
JP2005311292A JP2004304970A JP2004304970A JP2005311292A JP 2005311292 A JP2005311292 A JP 2005311292A JP 2004304970 A JP2004304970 A JP 2004304970A JP 2004304970 A JP2004304970 A JP 2004304970A JP 2005311292 A JP2005311292 A JP 2005311292A
Authority
JP
Japan
Prior art keywords
thin film
substrate
film solar
solar cell
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004304970A
Other languages
English (en)
Inventor
Toshiaki Sasaki
敏明 佐々木
Yohei Koi
洋平 小井
Hiroko Tawada
裕子 多和田
Kenji Yamamoto
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004304970A priority Critical patent/JP2005311292A/ja
Publication of JP2005311292A publication Critical patent/JP2005311292A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】 薄膜太陽電池用基板の凹凸を効果的に増大させて光閉込め効果を大きくすることで、薄膜太陽電池の性能を改善可能とする安価な薄膜太陽電池用基板、及びその製造方法で提供し、さらにその基板を用いた性能が改善された薄膜太陽電池を提供することである。
【解決手段】 本発明の薄膜太陽電池用基板は、透光性絶縁基板とその上に堆積された少なくとも酸化亜鉛(ZnO)を含む透明電極層を有し、該透光性絶縁基板は該透明電極層側の界面に二乗平均平方根粗さ(RMS)が5〜50nmである微細な表面凹凸を有し、その凸部は曲面からなることを特徴とする。さらに、基板の凹凸の指標であるC光源を用いて測定した拡散透過率と全透過率の比であるヘイズ率が、20%以上にできるので、光閉じ込めを効果的に起こすことが出来、薄膜太陽電池の性能を向上することができる。
【選択図】 図1

Description

本発明は、薄膜太陽電池用基板およびその製造方法、並びにそれを用いた薄膜太陽電池に関する。
近年、太陽電池の低コスト化、高効率化を両立するために原材料が少なくてすむ薄膜太陽電池が注目され、開発が精力的に行われている。特に、ガラス等の安価な透光性基体上に低温プロセスを用いて良質の半導体層を形成する方法が低コストを実現可能な方法として期待されている。
このような薄膜太陽電池を、電力用として高電圧で高出力を生じ得る大面積の薄膜太陽電池として製造する場合、大きな基板上に形成された薄膜太陽電池を複数個直列接続して用いるのではなく、歩留りを良くするために大きな基板上に形成された薄膜太陽電池を複数のセルに分割し、それらのセルを直列接続して集積化するのが一般的である。特に、基板としてガラス板を用いて、ガラス基板側から光を入射させるタイプの薄膜太陽電池においては、ガラス基板上に順次半導体層を形成した後、ガラス基板上の透明電極層の抵抗による損失を低減するために、レーザスクライブ法でその透明電極を所定幅の短冊状に加工する分離溝を設け、その短冊状の長手方向に直行する方向に各セルを直列接続して集積化するのが一般的である。
図2は、このような集積型薄膜太陽電池の概念平面図である。図3は、図2中において楕円2Aで囲まれた領域の構造断面図である。そして、図4は、図3中において楕円3Aで囲まれた領域のより詳細な積層構造断面図である。
図2〜4に示されているような集積型薄膜太陽電池6の製造においては、透光性絶縁基板11として一般にガラス基板11が用いられる。ガラス基板11上には透明電極層12として、たとえば厚さ700nmのSnO2膜が熱CVD法にて形成される。透明電極層12はレーザスクライブで幅約100μmの透明電極層分離溝62を形成することによって、約10mmの幅Wを有する短冊状透明電極に分離される。スクライブ後の残滓は水または有機溶媒を用いた超音波洗浄で除去される。なお、洗浄方法としては、粘着剤や噴射ガスなどを用いて残滓を除去する方法も可能である。
さらに一つ以上の非晶質ユニット2または結晶質光電変換ユニット3を形成後、接続溝63によって、これらのユニットは面内で複数の短冊状の領域に分割される。なお、この接続溝63は互いに隣接するセル間で透明電極層12と裏面電極層4とを電気的に接続するために利用されるものなので、部分的にスクライブの残滓が残っていても問題とならず、超音波洗浄は省略されてもよい。引き続き、裏面電極層4が形成されると、接続溝63を介して、裏面電極層4は前述のように短冊状に形成されている透明電極層12へ電気的に接続される。
裏面電極層4は一つ以上の非晶質ユニット2または結晶質光電変換ユニット3と同様のレーザスクライブによってパターニングされ、一つ以上の非晶質ユニット2または結晶質光電変換ユニット3とともに裏面電極層4を局所的に吹き飛ばすことによって複数の裏面電極分離溝64が形成された後に超音波洗浄される。これによって複数の短冊状の太陽電池セル61が形成され、それらのセルは接続溝63を介して互いに電気的に直列接続されていることになる。最後に、薄膜太陽電池の裏面側は封止樹脂(図示せず)が添付されることにより保護される。
ところで、薄膜太陽電池は、従来のバルクの単結晶や多結晶シリコンを使用した太陽電池に比べて光電変換層を薄くすることが可能であるが、反面、薄膜全体の光吸収が膜厚によって制限されてしまうという問題がある。そこで、光電変換層を含む光電変換ユニットに入射した光をより有効に利用するために、光電変換ユニットに接する透明導電膜あるいは金属層の表面を凹凸化(テクスチャ化)し、その界面で光を散乱した後、光電変換ユニット内へ入射させることで光路長を延長せしめ、光電変換層内での光吸収量を増加させる工夫がなされている。この技術は「光閉じ込め」と呼ばれており、高い光電変換効率を有する薄膜太陽電池を実用化する上で、重要な要素技術となっている。
薄膜太陽電池の一例である非晶質シリコン太陽電池は、ガラス等の透明基体上に形成され、透明電極層として表面凹凸を有する酸化錫(SnO2)膜をよく用いている。この透明電極層の表面凹凸は、光電変換層内への光閉じ込めに有効に寄与している。しかし、光閉じ込めに有効な表面凹凸を有する透明電極層として熱化学気相堆積法(熱CVD法)によりSnO2膜を形成したガラス基体は、その透明電極層を形成するために約550〜650℃の高温プロセスを必要とするので製造コストが高いという問題がある。また、製膜温度が高いため、固体化後のガラスやプラスチックフィルムなどの安価な基体が使えない問題がある。強化ガラスを高温プロセスにさらすと強化が取れてしまうので、強化ガラスを基体に使えず、大面積太陽電池に適用する場合、ガラス基体の強度を確保するためには、ガラスを厚くすることが必要となり、結果として、重くなってしまう問題がある。
また、SnO2膜は耐プラズマ性が低く、水素を使用した大きなプラズマ密度での光電変換層の堆積環境下では、SnO2膜が還元されてしまう。SnO2膜が還元されると黒化し、黒化した透明電極層部分で入射光が吸収され、光電変換層への透過光量が減少し、変換効率の低下を招く原因となる。
さらに、非晶質シリコン太陽電池は、単結晶や多結晶太陽電池に比べ、初期光電変換効率が低く、さらに光劣化現象により変換効率が低下するという問題がある。そこで、薄膜多結晶シリコンや微結晶シリコンのような結晶質シリコンを光電変換層として用いた結晶質シリコン薄膜太陽電池が、低コスト化と高効率化とを両立可能なものとして期待され、検討されている。なぜなら、結晶質シリコン薄膜太陽電池は、非晶質シリコンの形成と同様にプラズマCVD法にて低温形成でき、さらに光劣化現象がほとんど生じないからである。また、非晶質シリコン光電変換層が長波長側において800nm程度の波長の光を光電変換し得るのに対し、結晶質シリコン光電変換層はそれより長い約1200nm程度の波長の光までを光電変換することができる。しかし、非晶質シリコンの形成時に用いられる堆積条件よりも大きなプラズマ密度が必要であり、SnO2膜を透明電極に用いた場合は、大幅な変換効率向上は困難であった。
なお、本願明細書における、「結晶質」、「微結晶」の用語は、部分的に非晶質を含んでいるものも含んでいるものとする。
一方、酸化亜鉛(ZnO)は、透明電極層の材料として広く用いられているSnO2あるいは酸化インジウム錫(ITO)よりも安価であり、また耐プラズマ性が高いという利点を有しており、薄膜太陽電池用の透明電極層材料として好適である。
(先行例1)
例えば、特許文献1に開示されているZnO膜の形成方法は、200℃以下の低圧熱CVD法(あるいはMOCVD法とも呼ばれる)で、低温で凹凸を有する薄膜が形成できると開示している。高圧熱CVDに比べて、200℃以下の低温プロセスのため、低コスト化が図れる。また、固体化後のガラスやプラスチックフィルムなどの安価な基体を用いることができる。さらに、強化ガラスを使用できるので大面積太陽電池のガラス基体を約2/3程度に薄くでき、軽くできる。また、低圧熱CVD法は、スパッタ法に比べて1桁以上速い製膜速度にて製膜が可能であるとともに、原料の利用効率が高いことから、製造コストの面でも薄膜太陽電池にとって好ましい。
(先行例2)
一方で、薄膜太陽電池用の基板に凹凸をつけるために、透明電極層自体に凹凸を形成するのではなく、ガラス基体の表面に凹凸のある下地層を設け、その上に透明電極層を形成する手法が、特許文献2に開示されている。ガラス基体の上に、平均粒径が0.1〜1.0μmの絶縁性微粒子とバインダーからなる凹凸を有する下地層を形成し、その上に透明電極層を堆積することで、微粒子にて微細な凹凸がガラス基板上に形成されていることから、透明電極層自体には特に凹凸を形成する必要がない。
特開2000−252501号公報 特開2003−243676号公報
本発明の目的は、薄膜太陽電池用基板の凹凸を効果的に増大させて光閉込め効果を大きくすることで、薄膜太陽電池の性能を改善可能とする安価な薄膜太陽電池用基板、及びその製造方法で提供し、さらにその基板を用いた性能が改善された薄膜太陽電池を提供することを目的とする。
まず、図1に示すように、先行例1のように下地層無しの基体の上にZnOを形成した場合は、ヘイズ率を高く例えば20%以上に増大することが困難であり、「光閉込め」が有効にできなかった。特に、下地層がない場合、基体温度150℃以上で透明電極層を製膜するとヘイズ率が低下するので、先行例1の従来法では150℃以上に基体温度を上げると薄膜太陽電池の短絡電流密度が低下する課題が有る。シリコン系薄膜太陽電池において、非晶質シリコンまたは結晶質シリコンの薄膜シリコン系半導体層は、一般にプラズマCVDで基体温度180〜300℃で作製される。この場合、透明電極層の作製温度よりシリコン系半導体層の作製温度が高い。一般的に、透明電極層とシリコン系半導体層の作製温度の温度差が大きいほど、透明電極層への熱ダメージが大きくなる傾向があり、先行例1の技術では薄膜太陽電池の特性低下、長期信頼性低下の課題が発生する。
また、先行例1のような結晶質光電変換層を含む集積型薄膜太陽電池において、低温形成された透明電極102を用いた場合、裏面電極分離溝105をレーザスクライブで形成した後の超音波洗浄時に、分離溝近傍の多数の領域で膜の剥がれが生じやすくなっていることを本発明者は見出した。このような膜の剥がれにおいては、薄膜太陽電池の面積が大きくなるにしたがって剥がれる面積が増加する傾向にある。また、スクライブ後既に膜剥がれが発生する場合もある。そして、このような膜剥がれが発生すると、当然薄膜太陽電池の性能低下の原因となる。
さらに、先行例2の方法でヘイズ率を高く、例えば20%以上にしようとすると、下地層で凹凸を大きくする必要があり、その結果、絶縁性微粒子の粒径を大きくする必要が生じるが、大きな絶縁性微粒子を用いた場合には、基板上への絶縁性微粒子の分散が不均一になり、例えば微粒子が付いてない領域が発生し、基板全体としての平均の薄膜光電変換変換効率が低下したり、面内でのヘイズ率分布により色ムラが生じるという問題があった。さらに、大きな絶縁性微粒子を用いて大きな凹凸を形成しようとするとバインダーによる微粒子の基板への付着が不十分となり薄膜太陽電池そのものの信頼性が低下する可能性があるという問題が生じることが判った。
本発明はこのような課題に鑑みてなされたものであり、発電効率の高い薄膜太陽電池用の基板、及び、その製造方法、並びにそれを用いた薄膜太陽電池を提供することを主な目的としている。また、集積型薄膜太陽電池の大面積化において、集積型薄膜太陽電池の高い発電効率を維持しつつ、その集積化を容易にするとともに生産歩留りを改善し得る薄膜太陽電池用基板を提供することをも目的としている。
上記問題に鑑み、透明電極層自体で十分な凹凸を形成する方法につき鋭意検討の結果、意外にも、小さい粒径の下地層を形成することで下地層そのものの凹凸は小さいものの、、その上に堆積した透明電極層の凹凸を大きく形成できる場合があること本発明者らは見出し本発明を考案するに到った。
上記課題を解決するために、本発明の薄膜太陽電池用基板は、透光性絶縁基板とその上に堆積された少なくとも酸化亜鉛(ZnO)を含む透明電極層を有し、該透光性絶縁基板は該透明電極層側の界面に二乗平均平方根粗さ(RMS)が5〜50nmである微細な表面凹凸を有し、その凸部は曲面からなることを特徴としている。
特に、透明電極層が1μm以上の膜厚を有する場合、上記透光性絶縁基板を使用すれば、厚い透明電極層中の内部応力によって生じる透光性絶縁基板からの膜剥がれを抑制する効果が明確である。
前記の様な微細な表面凹凸を有する透光性絶縁基板上に透明電極層を形成することで、本発明の薄膜太陽電池用基板は、基板の凹凸の指標であるC光源を用いて測定した拡散透過率と全透過率の比であるヘイズ率が、20%以上となり、光閉じ込めを効果的に起こすことが出来るので、薄膜太陽電池の性能を向上することができる。
さらに上記透光性絶縁基板が主としてガラス等の平滑な表面を有する透光性基体からなる場合、透明電極層側の微細な凹凸は、粒径が10以上で100nm未満である少なくとも酸化珪素からなる微粒子を含む透光性下地層によって形成されることが好ましい。加えて、上記透光性下地層は微粒子を金属酸化物で覆う膜であることが、透光性絶縁基板との接着強度の点から好ましい。
また、本発明に係る集積型薄膜太陽電池は、上記薄膜太陽電池用基板上に少なくとも一つの結晶質光電変換ユニット層を備えた複数の光電変換セルを形成するように複数の分離溝によって分離されていて、かつそれらの複数のセルが接続用溝を介して互いに電気的に直列接続されており、結晶質光電変換ユニット層に含まれる結晶質光電変換層が1μm以上の厚さに堆積されていることを特徴としている。
この様な、本発明の薄膜太陽電池用基板は、透光性基体上に順に、表面凹凸を有する透光性下地層、少なくとも酸化亜鉛を含む透明電極層を低圧熱CVD法を用いて透光性絶縁基板の温度が150℃以上で堆積することで製造することができる。
本発明によれば、安価な製造方法で透明電極層付き基板の凹凸を効果的に増大させて、光閉込め効果の大きい薄膜太陽電池用基板を提供することができる。また、この薄膜太陽電池用基板を薄膜太陽電池に適用することによって、光閉じ込め効果によって発電電流を増大させて薄膜太陽電池の性能を向上することができる。さらに、凹凸の大きい透明電極層付きの薄膜太陽電池用基板を150℃以上の基体温度で作製することが可能となり、半導体層作製時の透明電極層への熱ダメージを抑制でき、光閉込め効果と低抵抗を両立できるので、薄膜太陽電池の性能と信頼性の向上に効果がある。
さらに、本発明によれば、集積型薄膜太陽電池の膜剥がれを抑制する効果を発揮でき、かつ高い光電変換効率を有する薄膜太陽電池用基板を安価に提供できる。
発明者らは、薄膜太陽電池用基板の作製を低圧熱CVD法による透明電極層を中心に鋭意検討した。その結果、低圧熱CVD法を用いた透明電極層では下地層の有無によって薄膜太陽電池用基板の凹凸が異なり、特に下地層の有無によって薄膜太陽電池用基板の凹凸の基体温度依存性が大きく異なることを発見した。
なお本発明では薄膜太陽電池用基板の凹凸の評価指標として、主にヘイズ率を用いている。ヘイズ率とは、(拡散透過率/全光線透過率)×100[%]で表されるものである(JIS K7136)。
図1は本発明の第一の実施形態である、透明電極層12として低圧熱CVDで酸化亜鉛(ZnO)を形成したときの基体温度に対する、図5に示す薄膜太陽電池用基板1のヘイズ率を示す。この薄膜太陽電池用基板1は透光性絶縁基板11としては透光性基体111であるガラス板111上に、凹凸の有る透光性下地層112として透光性微粒子1121であるシリカ微粒子1121を含むシリコン酸化物が形成されてなる。透明電極層12は、ジエチル亜鉛(DEZ)、水、ジボラン(B26)、水素、アルゴンの混合気体を原料ガスとして用い、低圧熱CVD法で製膜されうる。図1において形成した透明電極層12の膜厚は約1.5μmで一定である。また、ガラス板111上に透光性下地層112のみを形成した透光性絶縁基板11のヘイズ率は0.7%以下であり、光学的に散乱効果はほとんどなかった。
図1からわかるように、透光性下地層112がない場合、酸化亜鉛層12堆積時の透光性絶縁基板11の温度が140℃以上でヘイズ率が急激に増加し、150℃でヘイズ率が最大となって、それ以上の温度では逆にヘイズ率が低下する。これに対して、透光性下地層112がある場合は、酸化亜鉛層12堆積時の透光性絶縁基板11の温度が140℃以上でヘイズ率が急激に増加するのは透光性下地層112がない場合と同様であるが、150℃以上でもヘイズ率は増加しつづける。酸化亜鉛層12堆積時の透光性絶縁基板11の温度が低い場合は、透光性下地層112の有無によるヘイズ率の差は4〜6%でほぼ一定である。しかし、150℃以上では温度の増加とともに透光性下地層112の有無によるヘイズ率の差が著しく大きくなる。このことから、低圧熱CVD法による酸化亜鉛(ZnO)12の堆積では、透光性絶縁基板11の温度が150℃以上の場合に、凹凸の有る透光性下地層112の有無で膜成長様式が異なることが判る。酸化亜鉛層12堆積時の透光性絶縁基板11の温度が150℃以上の場合に、透光性下地層112の凸部において、よりZnOの成長が促進されて、ヘイズ率が大きくなると推定される。
この結果、透明電極層12の膜厚を一定としても、ヘイズ率を大幅に増加することができることがわかった。また、比較的ZnOの膜厚が薄い1.5μmにおいて、透光性下地層112がない場合は得られなかった20%以上の高いヘイズ率を得ることができる。
透光性下地層112がある場合は150℃以上の酸化亜鉛層12堆積時の透光性絶縁基板11の温度でもヘイズ率の低下の問題がないので、透光性下地層112がない場合に比べて透明電極層12の製膜時の温度をより高くすることができる。したがって、透明電極層12の上にプラズマCVD法などで堆積する一つ以上の非晶質ユニット2または結晶質光電変換ユニット3製膜時の熱ダメージの影響を低減することができ、薄膜太陽電池5の性能向上、長期信頼性の向上を図ることができる。
図5は、本発明の薄膜太陽電池用基板1の模式的な断面図である。本発明の薄膜太陽電池用基板1は、透光性基体111の上に透光性下地層112を形成してなる透光性絶縁基板11の上に、透明電極層12を堆積してなる。
透光性絶縁基板11は、透光性基体111の上に透光性下地層112を形成してなる。
なお、透光性絶縁基板11は薄膜太陽電池5を構成した際に光入射側に位置することから、より多くの太陽光を透過させて非晶質または結晶質の光電変換ユニットに吸収させるために、できるだけ透明であることが好ましく、その材料としてはガラス板、透光性プラスチックフィルム等が用いられる。同様の意図から、太陽光の光入射面における光反射ロスを低減させるように、透光性基体111の光入射面に無反射コーティングを行うことが望ましい。
透光性下地層112は、ZnO層12の凹凸の成長を促すために、微細な表面凹凸を付与するのが好ましい。ZnOが成長する場合、下地層2の凸部において、よりZnOの成長が促進されてZnOの凹凸が大きくなってヘイズ率が向上すると考えられる。透光性下地層112によって形成される微細な表面凹凸の二乗平均平方根粗さ(RMS)は5nm以上であることが好ましい。なぜなら、RMSが小さすぎれば、平滑な表面に近い形状であるため、表面の微細な凹凸によるZnOの成長性の差が得にくいからである。
また、透光性下地層112に形成される微細な凹凸の凸部は曲面からなるのが好ましい。凸部が曲面であることによって、その上に順次堆積される薄膜の結晶成長の際、透光性下地層112の形状を起点とする結晶粒界の増加を防止でき、薄膜太陽電池5の電気特性の低下を抑えられるからである。
図6において、本発明の実施形態による薄膜太陽電池5が模式的な断面図で示されている。この薄膜太陽電池5は、透光性基体111上に順じ堆積された透光性下地層112、透明電極層12、結晶質光電変換ユニット層3、裏面電極層4を含んでいる。そして、結晶質光電変換ユニット層3は、順に堆積された一導電型層31、実質的に真性半導体の結晶質光電変換層32、および逆導電型層33を含んでいる。この薄膜太陽電池5に対しては、光電変換されるべき太陽光(hν)は透光性絶縁基体111側から入射される。
図6の薄膜太陽電池5においては、透光性基体111および透光性下地層112によって透光性絶縁基板11が構成されているが、単体で構成されていてもよく、透光性絶縁基板11の透明電極層12側に凸部が曲面である微細な凹凸を有していればよい。さらに、この透光性絶縁基板11上に透明電極層12を形成したものが薄膜太陽電池用基板1である。しかし通常、透光性絶縁基板11として用いられる汎用のガラス板やフィルムは平滑な表面を有しているため、研磨する方法では微細な凹凸を均一に有する表面を得ることが難しく、大面積化はより困難である。従って、本発明の剥離防止効果のある微細な表面凹凸を備えた透光性絶縁基板11としては、平滑な表面を有している透光性基体111上に透光性下地層112を形成し、その透光性下地層112によって微細な表面凹凸を付与するのが好ましい。透光性下地層112によって形成される微細な表面凹凸のRMSは5〜50nmであることが好ましく、10〜40nmであることがより好ましい。なぜなら、RMSが小さすぎれば、平滑な表面に近い形状であるため、表面の微細な凹凸による密着性の十分な改善効果が得られず、大きすぎればその上に形成される薄膜太陽電池5に電気的および機械的な欠陥を生じさせる原因となり、太陽電池の光電変換効率が低下するからである。
また、透光性絶縁基板11に形成される微細な凹凸の凸部は曲面からなるのが好ましい。凸部が曲面であることによって、その上に順次堆積される薄膜の結晶成長の際、透光性下地層112の形状を起点とする結晶粒界の増加を防止でき、薄膜の電気特性の低下を抑えられるからである。
本発明において形成される透光性下地層112は、透光性微粒子1121を含むことが好ましい。透光性微粒子1121によって透光性下地層112に凹凸が形成され、その上に堆積する透明電極層12の膜成長を透光性下地層112がない場合に比べて変化させることができる。
本発明において形成される透光性下地層112の一例として、少なくとも酸化珪素(SiO2)からなる微粒子を透光性微粒子1121として含むものが挙げられる。SiO2は屈折率が透明導電層12よりも低く、ガラス板等の透光性基体111に近い値を有するからである。また、SiO2は透明度が高いため、光入射側に使用する材料として好適である。さらに、透光性下地層112の屈折率を調整する目的で、SiO2に加え、透光性微粒子1121の材料としては、屈折率がガラスに近い材料である、例えば、シリカ(SiO2)、酸化チタン(TiO2)、酸化アルミニウム(Al2O3)、酸化ジルコニウム(ZrO2)、酸化インジウム錫(ITO)またはフッ化マグネシウム(MgF2)等が用いられ得る。屈折率の値としては、1.4〜2.5のものが好ましい。材料の透明度やガラス板との相性という点では、シリカ微粒子が特に好ましい。なお、透光性下地層112における表面凹凸の二乗平均平方根粗さを5〜50nmとするためには、用いられる微粒子の粒径を10以上、100nm未満とすることが好ましい。また、できるだけ微細な凹凸を均一に形成するために、微粒子の形状は球状であることが好ましい。
透光性微粒子1121を含む透光性下地層112を透光性基体111の表面に形成させる方法は特に限定されないが、溶媒を含んだバインダー形成材料と共に塗布することで透光性バインダー1122を透光性微粒子1121の間に形成する方法が望ましい。透光性微粒子1121同士、および透光性微粒子1121と透光性基体111の間の付着強度を向上させる役割を果たす透光性バインダー1122は接着層として機能するのでは、長期信頼性や光電変換層形成条件(特に温度)に対する耐久性を考慮すると無機材料が好ましい。具体的には、シリコン酸化物、アルミニウム酸化物、チタン酸化物、ジルコニウム酸化物およびタンタル酸化物などの金属酸化物が挙げられる。特に、ガラス板111にSiO2微粒子1121を付着させる場合、同じシリコンを主成分とするシリコン酸化物を接着層である透光性バインダー1122として使用すると、シリサイド結合の形成により付着力が強固であり、透明性も良く、屈折率も基板や微粒子に近いため、好ましい。
上記に挙げたように透光性下地層112は、後述する透明電極層12と同じ物質である必要はない。また、透光性下地層112は結晶相である必要はなく、一部または全部が非晶質相であっても同様に適用可能である。例えば、透光性微粒子1121としてSiO2微粒子、および透光性バインダーバインダー1122としてシリコン酸化物を用いて透光性下地層112を形成した場合、通常、透光性下地層112は非晶質である。
透光性基体111の表面に上記塗布液を塗布する方法としては、ディッピング法、スピンコート法、バーコート法、スプレー法、ダイコート法、ロールコート法、フローコート法等が挙げられるが、透光性微粒子1121を緻密かつ均一に形成するにはロールコート法が好適に用いられる。塗布操作が完了したら、直ちに塗布薄膜を加熱乾燥する。このようにして形成した透光性下地層112膜は、微粒子を含んでいるため、凸部の形状は曲面からなり、凹凸の高さも比較的揃っている。従って、後に形成される透明電極層12、さらに薄膜光電変換ユニットに欠陥を生じさせることが少ない。
また、透光性基体111としてソーダライムガラス板を用いた場合は、ガラスからのアルカリ成分が透明電極層12や光電変換ユニットへ侵入することを防ぐために、アルカリバリア膜として透光性下地層112を利用することができる。
加えて、透明電極層12を形成した薄膜太陽電池用基板1は、透明薄膜の積層体であるため、光の干渉による色むらが発生しやすくなる。その色むらを防止するために、透光性下地層2と透明電極層102の間には屈折率の異なる薄膜を複数層組合せたものを介在させてもよい。
透明電極層12の材料としては、低圧熱CVD法で形成した少なくともZnOを含む透明導電性酸化膜を用いることが好ましい。なぜなら、ZnOは200℃以下の低温でも光閉じ込め効果を有するテクスチャが形成でき、かつ耐プラズマ性の高い材料であるため、結晶質光電変換ユニット3を有する薄膜太陽電池5に好適だからである。例えば、本発明の薄膜太陽電池用基板のZnO透明電極層12は、下地である透光性絶縁基板11の温度である基体温度が150℃以上、圧力5〜1000Pa、原料ガスとしてジエチル亜鉛(DEZ)、水、ドーピングガス、および希釈ガスで形成される。亜鉛の原料ガスとしてはこの他ジメチル亜鉛を用いることもできる。酸素の原料ガスとしては、酸素、二酸化炭素、一酸化炭素、酸化二窒素、二酸化窒素、二酸化硫黄、五酸化二窒素、アルコール類(R(OH))、ケトン類(R(CO)R’)、エーテル類(ROR’)、アルデヒド類(R(COH))、アミド類((RCO)x(NH3-x)、x=1,2,3)、スルホキシド類(R(SO)R’)(ただし、RおよびR’はアルキル基)を用いることもできる。希釈ガスとしては希ガス(He、Ar、Xe、Kr、Rn)、窒素、水素などを用いることができる。ドーピングガスとしてはジボラン(B26)、アルキルアルミ、アルキルガリウムなどを用いることができる。DEZと水の比は1:1から1:5、DEZに対するB26の比は0.05%以上が好ましい。DEZ、水は常温常圧で液体なので、加熱蒸発、バブリング、噴霧などの方法で気化させてから、供給する。ZnOの膜厚を0.5〜3μmにすると、粒径が概ね50〜500nmで、かつ凹凸の高さが概ね20〜200nmの表面凹凸を有する薄膜が得られ、薄膜太陽電池の光閉じ込め効果を得る点で好ましい。なお、ここでいう基体温度とは、透光性絶縁基板11が製膜装置の加熱部と接している面の温度のことをいう。
透明電極層12がZnOを主とする薄膜で構成されている場合、ZnO膜の平均厚さは0.5〜3μmであることが好ましい。なぜなら、ZnO膜が薄すぎれば、光閉じ込め効果に有効に寄与する凹凸を十分に付与すること自体が困難となり、また透明電極として必要な導電性が得にくく、厚すぎればZnO膜自体による光吸収により、ZnOを透過し光電変換ユニットへ到達する光量が減るため、効率が低下するからである。さらに、厚すぎる場合は、製膜時間の増大によりその製膜コストが増大する。
この透明電極層12は、集積型薄膜太陽電池においては集積化される複数の太陽電池セル16に対応する複数の領域に分離するために、レーザスクライブによって透明電極層分離溝62が形成されてなる。これらの透明電極層分離溝62は、図3の紙面に直交する方向に直線状に延びている。
透明電極層分離溝62が形成された透明電極層12の上には、結晶質光電変換ユニット3が形成される。
図7は、本発明の1つの実施形態による薄膜太陽電池5の模式的な断面図である。図5に示した薄膜太陽電池用基板1の上に、結晶質光電変換ユニット3、裏面電極層4を順次形成してなる。
結晶質光電変換ユニット3には一導電型層31、結晶質真性光電変換層32および逆導電型層33が含まれる。図7では結晶質光電変換ユニット3が1ユニットのみ存在する薄膜太陽電池5を示したが、複数の異なる性質の光電変換ユニットを積層してもよい。結晶質光電変換ユニット3としては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましく、例えば結晶質シリコン系薄膜を結晶質真性光電変換層32とした結晶質シリコン系光電変換ユニット3としてもよい。また、「シリコン系」の材料には、シリコンに加え、シリコンカーバイドやシリコンゲルマニウムなど、シリコンを含むシリコン合金半導体材料も含む。
結晶質シリコン系光電変換ユニット3は、例えばpin型の順にプラズマCVD法により各半導体層を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型微結晶シリコン系層を一導電型層31とし、光電変換層となる真性結晶質シリコン層32、および導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型微結晶シリコン系層を逆導電型層33としてこの順に堆積すればよい。しかし、これら各層は上記に限定されず、例えばp型層として非晶質シリコン系膜を用いてもよい。またp型層として、非晶質または微結晶のシリコンカーバイド、シリコンゲルマニウムなどの合金材料を用いてもよい。なお、導電型(p型、n型)微結晶シリコン系層の膜厚は3nm以上100nm以下が好ましく、5nm以上50nm以下がさらに好ましい。
結晶質真性光電変換層32である真性結晶質シリコン層42は、プラズマCVD法によって基体温度300℃以下で形成することが好ましい。低温で形成することにより、結晶粒界や粒内における欠陥を終端させて不活性化させる水素原子を多く含ませることが好ましい。具体的には、この層の水素含有量は1〜30原子%の範囲内にあるのが好ましい。この層は、導電型決定不純物原子の密度が1×1018cm-3以下である実質的に真性半導体である薄膜として形成されることが好ましい。さらに、真性結晶質シリコン層に含まれる結晶粒の多くは、透明電極層12側から柱状に延びて成長しており、その膜面に対して(110)の優先配向面を有することが好ましい。この真性結晶質シリコン層の膜厚は光吸収の観点から1μm以上が好ましく、結晶質薄膜の内部応力による剥離を抑える観点から10μm以下が好ましい。ただし、結晶質光電変換ユニット3としては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましいため、真性結晶質シリコン層に代えて、合金材料である結晶質シリコンカーバイド層(例えば10原子%以下の炭素を含有する結晶質シリコンからなる結晶質シリコンカーバイド層)や結晶質シリコンゲルマニウム層(例えば30原子%以下のゲルマニウムを含有する結晶質シリコンからなる結晶質シリコンゲルマニウム層)を形成してもよい。
こうして積層された結晶質光電変換ユニット層3は、透明電極層12の場合と同様にレーザスクライブによって形成された半導体層分割溝である接続溝63によって複数の短冊状の半導体領域に分割される。これらの接続溝63も図3の紙面に垂直な方向に直線状に延びている。
レーザパターニングされた1以上の光電変換ユニットの上には、裏面電極層4が形成される。
裏面電極層4としては、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料を、少なくとも一層の金属薄膜としてスパッタ法または蒸着法により形成することが好ましい。また、1以上の光電変換ユニットとの間に、ITO、SnO2、ZnO等の導電性酸化物層を裏面電極層4の一部として形成するほうが好ましい。この導電性酸化物層は、1以上の光電変換ユニットと裏面電極層4との間の密着性を高めるとともに、裏面電極層4の光反射率を高め、さらに、光電変換ユニットの化学変化を防止する機能を有する。
裏面電極層4は1以上の光電変換ユニットと同様のレーザスクライブによってパターニングされ、1以上の光電変換ユニットとともに裏面電極層4を局所的に吹き飛ばすことによって複数の裏面電極層分離溝64が形成される。これによって複数の短冊状の太陽電池セル61が形成され、それらのセル61は接続用溝63を介して互いに電気的に直列接続されていることになる。
図8は、本発明の1つのの実施形態による薄膜太陽電池5の模式的な断面図である。薄膜太陽電池用基板1の上に非晶質光電変換ユニット2と結晶質光電変換ユニット3を順に積層したタンデム型薄膜太陽電池である。非晶質光電変換ユニット2は、前方一導電型層、真性非晶質光電変換層および前方逆導電型層が含まれる。非晶質光電変換ユニット2として非晶質シリコン系材料を選べば、約360〜800nmの光に対して感度を有し、結晶質光電変換ユニット3に結晶質シリコン系材料を選べばそれより長い約1200nmまでの光に対して感度を有する。したがって、光入射側から非晶質シリコン系光電変換ユニット2、結晶質シリコン系光電変換ユニット3の順で配置される薄膜太陽電池5は、入射光をより広い範囲で有効利用可能な薄膜太陽電池5となる。結晶質光電変換ユニット3は、上述のの実施形態と同様に形成する。この場合、透明電極層12上に形成される1以上の光電変換ユニット部分の全体膜厚が厚くなるため、内部応力が増大する。従って、このような結晶質光電変換ユニット3を含むタンデム薄膜太陽電池にも、本発明の薄膜太陽電池用基板1は好ましい。
非晶質光電変換ユニット2は、例えばpin型の順にプラズマCVD法により各半導体層を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型非晶質シリコン系層、光電変換層となる真性非晶質シリコン系層、および導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型非晶質シリコン系層をこの順に堆積すればよい。しかし、これら各層は上記に限定されず、例えばp型層として微結晶シリコン系膜を用いてもよい。またp型層として、非晶質または微結晶のシリコンカーバイド、シリコンナイトライド、シリコンオキサイド、シリコンゲルマニウムなどの合金材料を用いてもよい。真性非晶質光電変換層としては、シリコンカーバイド、シリコンゲルマニウムなどの合金材料を用いてもよい。真性非晶質シリコン系層としては、膜中の欠陥密度を低減して薄膜太陽電池の再結合電流損失を低減するために、膜中に水素を2〜15%含むことが望ましい。また、真性非晶質シリコン系層は、光照射による劣化を低減するために、膜厚50nm以上500nm以下が望ましい。n型層としては、微結晶シリコン系膜を用いてもよい。なお、導電型(p型、n型)微結晶シリコン系層または非晶質シリコン系層の膜厚は3nm以上100nm以下が好ましく、5nm以上50nm以下がさらに好ましい。
以下、本発明を実施例に基づいて詳細に説明するが、本発明はその趣旨を超えない限り以下の記載例に限定されるものではない。
(実施例1)
実施例1として図6に示されるような薄膜太陽電池5を作製した。
透光性基体111として厚み0.7mm、125mm角のガラス基板を用いその上にSiO2微粒子1121を含む透光性下地層112を形成した。透光性下地層112を形成する際に用いた塗布液は、粒径が50nmの球状シリカ分散液、水、エチルセロソルブの混合液にテトラエトキシシランを加え、更に塩酸を添加してテトラエトキシシランを加水分解させたものを用いた。塗布液を印刷機にてガラス基板111上に塗布した後、90℃で30分乾燥し、その後350℃で5分加熱することにより、表面に微細な凹凸が形成された透光性絶縁基板11を得た。この透光性絶縁基板11の表面を原子間力顕微鏡(AFM)で観察したところ、微粒子の形状を反映し、凸部が曲面からなる凹凸が確認された。
この条件で製膜された透光性下地層112のRMSは7.2nmであった。なお、本発明におけるRMSは、一辺が5μmの正方形領域を観察した原子間力顕微鏡(AFM)像から求めている(ISO 4287/1)。このAFM測定にはNano−Rシステム(Pacific Nanotechnology社製)のノンコンタクトモードが用いられた。
得られた透光性下地層112の上にZnOからなる透明電極層12を形成した。この透明電極層12は、透光性絶縁基板11の基体温度を180℃に設定し、原料ガスとしてジエチルジンク(DEZ)と水、ドーパントガスとしてジボランガスを供給し、減圧条件下CVD法にて形成している。得られたZnO膜からなる透明電極層12の厚さは1.6μmであり、シート抵抗は8Ω/□程度、ヘイズ率は20%であった。ヘイズ率とは、(拡散透過率/全光線透過率)×100で表されるものである(JIS K7136)。また、こうして得られた薄膜太陽電池用基板1の全光線透過率を、ガラス側から光を入射し、分光光度計にて測定した。波長400nm〜1200nmの範囲で80%以上の透過率を示した。
得られた透明電極層12はレーザスクライブで幅約100μmの透明電極層分離溝62を形成することによって、約10mmの幅Wおよび10cmの長さLを有する短冊状透明電極に分離される。スクライブ後の残滓は水を用いた超音波洗浄で除去された。
この透明電極層12の上に、厚さ15nmのp型微結晶シリコン層31、厚さ1.5μmの真性結晶質シリコン光電変換層32、及び厚さ15nmのn型微結晶シリコン層33からなる結晶質シリコン光電変換層ユニット3を順次プラズマCVD法で形成した。
レーザスクライブにて接続溝63を形成後、裏面電極層4として厚さ90nmのAlドープされたZnO121と厚さ200nmのAg122をスパッタ法にて順次形成した。裏面電極層分離溝64をレーザスクライブした後に超音波洗浄したところ、基板上の膜剥がれ領域は確認されなかった。なお、集積化された後の直列接続されたセルの段数は10段であった。
以上のようにして得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりの開放電圧(Voc)が0.547V、短絡電流密度(Jsc)が23.1mA/cm2、曲線因子(F.F.)が72.8%、そして変換効率が9.2%であった。
(実施例2)
実施例2においても、実施例1と同様に集積型結晶質シリコン系薄膜太陽電池6を作製した。ただし、実施例1と異なるのは、ガラス基板111として910mm×455mmの面積を有し、かつ厚みが4mmのものを用いた点である。この条件で製膜された透光性下地層112のRMSは9.8nmであった。
裏面電極層分離溝64をレーザスクライブした後に超音波洗浄したところ、基板上の膜剥がれ領域は確認されなかった。なお、集積化された後の直列接続されたセルの段数は48段であった。
こうして作製された実施例2の集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.541V、Jscが23.6mA/cm2、F.F.が71.7%、そして変換効率が9.2%であった。
実施例2で作製された集積型薄膜太陽電池6は、実施例1よりも大きな面積にも関わらず、変換効率を維持できていた。
(実施例3)
実施例3においては、実施例2とほぼ同様に集積型シリコン系薄膜太陽電池6を作製した。ただし、透光性下地層112を形成する際、用いたSiO2微粒子1121の粒径を80nmとし、意図的にRMSを大きくした点が異なる。この条件で製膜された透光性下地層112のRMSは19.3nmであった。また、裏面電極層分離溝64をレーザスクライブした後に超音波洗浄したところ、基板上の膜剥がれ領域は確認されなかった。
得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.532V、Jscが24.3mA/cm2、F.F.が70.5%、そして変換効率が9.1%であった。
(実施例4)
実施例4においては、実施例2とほぼ同様に集積型シリコン系薄膜太陽電池6を作製した。ただし、透光性下地層112を形成する際、用いたSiO2微粒子1121の粒径を90nmとし、意図的にRMSを大きくした点が異なる。加えて、結晶質真性シリコン光電変換層32の膜厚を3.0μmとした。この条件で製膜された透光性下地層112のRMSは23.0nmであった。また、裏面電極層分離溝64をレーザスクライブした後に超音波洗浄したところ、結晶質真性シリコン光電変換層32を厚くしたにも関わらず、基板上の膜剥がれ領域は確認されなかった。
得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.529V、Jscが27.6mA/cm2、F.F.が70.0%、そして変換効率が10.2%であった。
(実施例5)
実施例5においては、実施例3と同様の薄膜太陽電池用基板1を用いて集積型タンデム薄膜太陽電池6を作製した。レーザスクライブされた薄膜太陽電池用基板1の透明電極層12上に、プラズマCVD法により、厚さ15nmのp型非晶質シリコン層、厚さ350nmの真性非晶質シリコン光電変換層、及び厚さ15nmのn型微結晶シリコン層からなる非晶質シリコン光電変換ユニット2を形成し、続いて実施例1と同様に結晶質シリコン光電変換ユニット3を形成した。この時の真性結晶質シリコン光電変換層32は2.0μmの膜厚とした。その後、レーザスクライブにより接続溝63を形成し、裏面電極層4として厚さ90nmのAlドープされたZnO121と厚さ200nmのAg122をスパッタ法にて順次形成し、裏面電極層分離溝64を形成して集積型タンデムシリコン系薄膜太陽電池6を得た。
得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが1.38V、Jscが13.1mA/cm2、F.F.が71.2%、そして変換効率が12.9%であった。
(比較例1)
比較例1は、実施例1とほぼ同様に厚み0.7mm、125mm角のガラス基板111上に直接ZnOからなる透明電極層12を形成した。実施例1と比較すると、透光性下地層112が存在しない点が異なる。ガラス基板111の表面のRMSは、0.5nm以下であった。
実施例1と同様にレーザスクライブによって透明電極層分離溝62を形成した透明電極層12の上に、実施例1と同様の厚さ15nmのp型微結晶シリコン層31、厚さ1.5μmの真性結晶質シリコン光電変換層32、及び厚さ15nmのn型微結晶シリコン層33からなる結晶質シリコン光電変換層ユニット3を順次プラズマCVD法で形成した。その後、接続溝63を形成し、裏面電極層4として厚さ90nmのAlドープされたZnO121と厚さ200nmのAg122をスパッタ法にて順次形成した。裏面電極層4形成後、レーザスクライブにより裏面電極層分離溝64を形成し、超音波洗浄を実施したところ、透明電極層分離溝62近傍にところどころ膜剥がれが発生した。剥がれた面積の合計は、集積型薄膜太陽電池6の全面積に対して約6%に相当していた。また、膜が剥がれている部分は導電性が確認されなかったことから、膜剥がれはガラス基板111と透明電極層12の界面で生じていることが判明した。
一般に基板上にプラズマCVD法でシリコン薄膜を堆積した場合、その薄膜中には残留歪みによる内部応力が存在する。特に、結晶質シリコン層内では原子が規則的に配列されているので、残留歪みが緩和しにくい傾向にある。したがって、超音波洗浄時の振動のように外的な機械的力が付加された場合に、その外的な力と内部応力とが重畳して結晶質光電変換ユニット3と透明電極層12との界面近傍で剥離しようとする力が作用すると考えられる。しかし、透明電極層12の表面には比較的大きなテクスチャがあるため、アンカー効果による密着力は比較的強い。そこで、低温形成のために平滑な表面を有するガラス基板111との密着力が弱い透明電極層12との間で剥離が生じやすいものと考えられる。
得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.499V、Jscが22.7mA/cm2、F.F.が67.1%、そして変換効率が7.6%であった。
(比較例2)
比較例2においては、実施例2とほぼ同様に集積型結晶質シリコン系薄膜太陽電池6を作製した。ただし、比較例1と同様にガラス基板111上に透明電極層12を直接形成した点が異なる。従って、透光性絶縁基板11としての表面のRMSは、0.5nm以下である。
比較例2においては、接続溝63を形成した時から数ヶ所の膜剥がれが発生しており、裏面電極層4に分離溝64を形成した後では、集積型薄膜太陽電池6の全面積に対して約15%に相当する面積が剥がれていた。
得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.473V、Jscが20.9mA/cm2、F.F.が65.7%、そして変換効率が6.5%であった。
この比較例2では、比較例1と比較してガラス基板111のサイズが大きくなったことに加え、その厚みが厚くなったことにより、それ自身の柔軟性が小さくなったため、ガラス基板111と透明電極層12との間に生じる歪みが増加した結果を反映したものと考えられる。多数の膜剥がれによって、太陽電池特性の全てのパラメータが低下した。
(比較例3)
比較例3においては、実施例2とほぼ同様に集積型結晶質シリコン系薄膜太陽電池6を作製した。ただし、透光性下地層112を形成する際、微粒子成分を添加せずに透光性バインダー1122の材料である金属酸化物のみによる層を形成した点が異なる。この条件で製膜された透光性基体111表面のRMSは、2.8nmであった。さらに集積型薄膜太陽電池6形成後の膜剥がれの割合は、約10%であった。
得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.491V、Jscが21.8mA/cm2、F.F.が68.6%、そして変換効率が7.3%であった。
(比較例4)
比較例4においては、実施例2とほぼ同様に集積型結晶質シリコン系薄膜太陽電池6を作製した。ただし、透光性下地層112を形成する際、用いたSiO2微粒子1121の粒径を200nmとし、意図的にRMSを大きくした点が異なる。この条件で製膜された基板表面のRMSは、66.9nmであった。また、集積型薄膜太陽電池6形成後には、膜剥がれが確認されなかった。
得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.452V、Jscが22.0mA/cm2、曲線因子F.F.が60.1%、そして変換効率が6.0%であった。
比較例4では、膜剥がれが確認されなかったにも関わらず、比較例1〜3よりもEff.が低下していた。この原因は、用いたSiO2微粒子1121の粒径が大きすぎために、透光性下地層112の凹凸が大きくなり、その上に形成されるZnO透明電極層12に欠陥となる結晶粒界を多数生じさせ、結晶質シリコン光電変換ユニット3に機械的、電気的な欠陥を生じさせたためと考えられる。従って、粒径の大きな微粒子を使用して剥離防止機能を有する薄膜太陽電池用基板1を作製しようとすると、その上に形成する透明電極層12の凹凸形状の粒径や高低差も大きくなる傾向にあり、それによって結晶質太陽電池の機械的、電気的な欠陥を引き起こされ易くなることが判明した。
表1は上述の実施例1〜5および比較例1〜4による薄膜太陽電池用基板1の主要な特性とそれらを用いた集積型薄膜太陽電池6における出力特性の測定結果を示している。また、後述する実施例6〜10、比較例5〜8による薄膜太陽電池用基板1の主要な特性とそれらを用いた小面積の薄膜太陽電池5における出力特性を合わせて示す。
Figure 2005311292
表1の結果から分かるように、実施例1〜5のいずれにおいても、膜剥がれは確認されなかった。比較例1〜3では、透光性絶縁基板11と低温形成した透明電極層12間の界面凹凸が小さいために、密着力が不足し、膜剥がれが確認された。透光性絶縁基板11と透明電極層12の間で膜剥がれが生じると、全ての特性パラメータが低下していることがわかる。特に比較例のVocやF.F.の低下が大きいことから、透光性絶縁基板11と透明電極層12間の膜剥がれは、複数のセル61が直列接続する集積型太陽電池構造5において、直列抵抗を増加させる原因となることが示されている。また、膜剥がれが生じると、発電層の受光面積が減少することから、Jscの値も低下させる原因となる。
以上詳細に説明したように本発明によれば、安価に製造可能な薄膜太陽電池用基板1を用いて、性能の改善された集積型薄膜太陽電池6を提供することができる。
(実施例6)
実施例6として図5の薄膜太陽電池用基板1を作製した。ガラス基板111上にSiO2微粒子1121を含む凹凸の有る透光性下地層112を形成した。透光性下地層112を形成する際に用いた塗布液は、平均粒径が70nmの球状シリカ分散液、水、エチルセロソルブの混合液にテトラエトキシシランを加え、更に塩酸を添加してテトラエトキシシランを加水分解させたものを用いた。塗布液を印刷機にてガラス基板111上に塗布した後、90℃で30分乾燥し、その後350℃で5分加熱することにより、表面に微細な凹凸が形成された透光性下地層112を得た。この透光性下地層112の表面を原子間力顕微鏡(AFM)で観察したところ、微粒子の形状を反映し、凸部が曲面からなる凹凸が確認された。
この条件で製膜された透光性下地層112の二乗平均平方根粗さ(RMS)は17.2nmであった。なお、本発明におけるRMSは、一辺が5μmの正方形領域を観察した原子間力顕微鏡(AFM)像から求めている(ISO 4287/1)。このAFM測定にはNano−Rシステム(Pacific Nanotechnology社製)のノンコンタクトモードが用いられた。
ガラス基板111上に透光性下地層112のみを形成した透光性絶縁基板11について、C光源を用いて測定したヘイズ率は0.31%であった。
得られた透光性下地層112の上にZnOからなる透明電極層12を低圧熱CVD法で形成した。この透明電極層12は、基体温度を160℃に設定し、圧力100Pa、ジエチル亜鉛(DEZ)の流量500sccm、水の流量1000sccm、ジボラン(B26)流量5sccm、アルゴン流量1000sccm、水素流量1000sccmで形成した。得られたZnO膜からなる透明電極層12の厚さは1.5μmであり、シート抵抗は8.7Ω/□であった。ガラス基板111、透光性下地層112、透明電極層123から構成される薄膜太陽電池用基板1の、C光源を用いて測定したヘイズ率は27.2%であった。すなわち、透光性下地層112のヘイズ率を大きく上回るヘイズ率が透明電極層12を低圧熱CVD法で作製することによって得られている。また、基体温度150℃以上で20%以上のヘイズ率の薄膜太陽電池基板1が得られているので、半導体層製膜時の透明電極層12への熱ダメージを従来法に比べて低減することができる。なお、この基板1の全光線透過率を、ガラス側から光を入射し、分光光度計にて測定したところ、波長400nm〜1200nmの範囲で80%以上の透過率を示した。
(実施例7)
実施例7として図5の薄膜太陽電池用基板1を作製した。平均粒径95nmの球状シリカ分散液を用いた以外は、実施例6と同様に透光性下地層112を形成した。この透光性下地層112のRMSは32.5nmであった。また、ガラス基板111上に透光性下地層112のみを形成した透光性絶縁基板11について、C光源を用いて測定したヘイズ率は0.72%であった。
得られた透光性下地層112の上にZnOからなる透明電極層12を実施例6と同様の条件で低圧熱CVD法により形成した。得られたZnO膜からなる透明電極層12の厚さは1.5μmであり、シート抵抗は9.3Ω/□であった。AFMで測定したRMSは67.8nmであった。ガラス基板111、透光性下地層112、透明電極層123から構成される薄膜太陽電池用基板1の、C光源を用いて測定したヘイズ率は35.7%であった。また、この基板1の全光線透過率を、ガラス側から光を入射し、分光光度計にて測定した。波長400nm〜1200nmの範囲で80%以上の透過率を示した。実施例7は、実施例6に比べて下地層2の凹凸がさらに大きく、ヘイズ率が増加した。
(比較例5)
比較例5の薄膜太陽電池用基板1として、ガラス基板111の上に、透光性下地層112をつけずに、直接ZnO層12を低圧熱CVD法で形成した。ZnO層の製膜条件は実施例6と同様である。ガラス基板111のRMSは0.5nm以下で、AFMの測定限界以下で平坦であった。また、ガラス基板111について、C光源を用いて測定したヘイズ率は0.01%以下で測定限界以下であった。得られたZnO膜からなる透明電極層12の厚さは1.5μmであり、シート抵抗は8.3Ω/□であった。比較例5の薄膜太陽電池用基板1の、C光源を用いて測定したヘイズ率は15.1%であった。また、この基板1の全光線透過率を、ガラス側から光を入射し、分光光度計にて測定した。波長400nm〜1200nmの範囲で80%以上の透過率を示した。実施例6に比べて、同じZnO層12の膜厚でヘイズ率が小さく約半分になっている。
(比較例6)
比較例6として薄膜太陽電池用基板1を作製した。平均粒径8nmの球状シリカ分散液を用いた以外は、実施例6と同様に透光性下地層112を形成した。この下地層112のRMSは3.1nmであった。また、下地層112のみを形成したガラス基板111について、C光源を用いて測定したヘイズ率は0.01%以下で測定限界以下であった。得られた下地層2の上にZnOからなる透明電極層12を実施例6と同様の条件で低圧熱CVD法により形成した。得られたZnO膜からなる透明電極層12の厚さは1.5μmであり、シート抵抗は8.5Ω/□であった。ガラス基板111、下地層112、透明電極層12から構成される薄膜太陽電池用基板1の、C光源を用いて測定したヘイズ率は15.5%であった。また、この基板1の全光線透過率を、ガラス側から光を入射し、分光光度計にて測定した。波長400nm〜1200nmの範囲で80%以上の透過率を示した。比較例6のヘイズ率は比較例5とほぼ同等であり、下地層112の凹凸が小さくRMSが小さい場合は、ヘイズ率を下地層2によって向上する効果はほとんどないと言える。
(実施例8)
実施例6の薄膜太陽電池用基板1を用いて図7の構造で10mm角の薄膜太陽電池5を作製した。薄膜太陽電池用基板1の透明電極層12の上に、厚さ15nmのp型微結晶シリコンの一導電型層31、厚さ1.5μmの真性結晶質シリコンの真性結晶質光電変換層32、及び厚さ15nmのn型微結晶シリコンの逆導電型層33からなる結晶質光電変換層ユニット3を順次プラズマCVD法で形成した。その後、裏面電極層4として厚さ90nmのAlドープされたZnOの導電性酸化物層と、厚さ300nmのAgの金属層をスパッタ法にて順次形成した。
以上のようにして得られたシリコン系薄膜太陽電池5にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、開放電圧(Voc)が0.515V、短絡電流密度(Jsc)が27.8mA/cm2、曲線因子(F.F.)が0.711、そして変換効率が10.2%であった。
(比較例7)
比較例7として、比較例5の薄膜太陽電池用基板1を用いて薄膜太陽電池5を作製した。下地層112がないことが異なるほか、薄膜太陽電池の構造、作製方法は実施例8と同様である。得られたシリコン系薄膜太陽電池5にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが0.517V、Jscが26.5mA/cm2、F.F.が0.702、そして変換効率が9.6%であった。基板1のヘイズ率が実施例8の薄膜太陽電池に比べて低いのため、光閉じ込め効果が十分でなく、短絡電流密度が低下して変換効率が低くなっている。
(比較例8)
比較例8として、比較例6の薄膜太陽電池用基板1を用いて薄膜太陽電池5を作製した。下地層112を形成するとき平均粒径8nmの球状シリカ分散液を用いたほか、薄膜太陽電池の構造、作製方法は実施例8と同様である。得られたシリコン系薄膜太陽電池5にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが0.515V、Jscが26.5mA/cm2、F.F.が0.705、そして変換効率が9.6%であった。基板のヘイズ率が比較例7の場合とほぼ同じため、Jscが比較例7とかわらず、変換効率も比較例7と同じだった。
(実施例9)
実施例9として、実施例7の薄膜太陽電池用基板1を用いて図7の薄膜太陽電池5を作製した。下地層112を形成するとき平均粒径100nmの球状シリカ分散液を用いたほか、薄膜太陽電池の構造、作製方法は実施例8と同様である。得られたシリコン系薄膜太陽電池5にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが0.522V、Jscが28.4mA/cm2、F.F.が0.705、そして変換効率が10.5%であった。基板のヘイズ率が実施例8の薄膜太陽電池に比べて増加しているため、Jscが増加して変換効率が向上している。
(実施例10)
実施例10においては、実施例7の薄膜太陽電池用基板1を用いて、図8のタンデム型薄膜太陽電池5を作製した。薄膜太陽電池用基板1の透明電極層12上に、プラズマCVD法により、厚さ15nmのp型非晶質シリコンカーバイドの前方一導電型層、厚さ350nmの真性非晶質シリコンの非晶質光電変換層、及び厚さ15nmのn型微結晶シリコンの前方逆導電型層からなる非晶質光電変換ユニット2を形成し、続いて実施例8、9と同様に結晶質光電変換ユニット3を形成した。ただし、結晶質光電変換ユニット3の、真性結晶質光電変換層32は2.0μmの膜厚とした。その後、裏面電極層4として厚さ90nmのAlドープされたZnOの導電性酸化物層と、厚さ300nmのAgの金属層をスパッタ法にて順次形成し、タンデム型薄膜太陽電池5を得た。
得られたタンデム型薄膜太陽電池5にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが1.35V、Jscが13.7mA/cm2、F.F.が0.733、そして変換効率が13.6%であった。
表1に実施例6〜10、比較例5〜8による薄膜太陽電池用基板の主要な特性とそれらを用いた小面積の薄膜太陽電池における出力特性を示す。比較例7,8の太陽電池特性に比べて、実施例8,9の太陽電池は特にJscが増加して特性が向上している。小面積のセルでは、比較例も実施例も外観の不良や膜剥がれはなかった。
以上詳細に説明したように本発明によれば、凹凸のある下地層112の上に、低圧熱CVDを用いて150℃以上の基体温度で透明電極層12を製膜することによって、薄膜太陽電池用基板1の凹凸を効果的に増大させることが可能となり、光閉込め効果の大きい薄膜太陽電池用基板1を提供することができる。また、この薄膜太陽電池用基板1を薄膜太陽電池5に適用することによって、光閉じ込め効果によって発電電流を増大させて薄膜太陽電池5の性能を向上することができる。さらに、基体温度150℃以上でヘイズ率の低下がなくむしろ増大するので、従来法より高い基体温度で透明電極層12を製膜することが可能となり、半導体層作製時の透明電極層12への熱ダメージを抑制でき、薄膜太陽電池5の性能と信頼性の向上に効果がある。
低圧熱CVDで製膜したの基板温度に対するZnOのヘイズ率。 集積型薄膜太陽電池の典型的な一例の素子面を示す模式的な平面図。 図2内の楕円2Aで囲まれた領域における積層構造を拡大して示す模式的な断面図。 図3中の楕円3Aで囲まれた領域のより詳細な積層構造をさらに拡大して示す模式的な断面図。 本発明の第二の実施形態である薄膜太陽電池用基板の断面図。 本発明に係る第三の実施形態である薄膜太陽電池の一例を、図2中の楕円3Aで囲まれた領域で拡大して示す模式的な断面図。 本発明の第四の実施形態である薄膜太陽電池の断面図。 本発明の第五の実施形態であるタンデム型薄膜太陽電池の断面図。
符号の説明
1 薄膜太陽電池用基板
11 透光性絶縁基板
111 透光性基体
112 透光性下地層
1121 透光性微粒子
1122 透光性バインダー
12 透明電極層
2 非晶質光電変換ユニット
22 非晶質真性半導体層
3 結晶質光電変換ユニット
31 一導電型層
32 結晶質真性半導体層
33 逆導電型層
4 裏面電極層
5 薄膜太陽電池
6 集積型薄膜太陽電池
61 太陽電池セル
62 透明電極層分離溝
63 接続溝
64 裏面電極層分離溝

Claims (7)

  1. 透光性絶縁基板、及び該透光性絶縁基板上に堆積された少なくとも酸化亜鉛を含む透明電極層からなる薄膜太陽電池用基板であって、該透光性絶縁基板は該透明電極層側の界面に二乗平均平方根粗さが5〜50nmである微細な表面凹凸を有し、その凸部は曲面からなることを特徴とする薄膜太陽電池用基板。
  2. 請求項1に記載の薄膜太陽電池用基板であって、前記透明電極層は1μm以上の膜厚を有することを特徴とする薄膜太陽電池用基板。
  3. 請求項1または2いずれかに記載の薄膜太陽電池用基板であって、C光源を用いて測定した拡散透過率と全透過率の比であるヘイズ率が20%以上であることを特徴とする薄膜太陽電池用基板。
  4. 請求項1〜3のいずれかに記載の薄膜太陽電池用基板であって、前記透光性絶縁基板は平滑な表面を有する透光性基体と透光性下地層との積層体からなり、該透光性下地層は、平均粒径が10nm以上で100nm未満の透光性微粒子と、透光性バインダーとを含むことを特徴とする薄膜太陽電池用基板。
  5. 請求項1〜4のいずれかに記載の薄膜太陽電池用基板を備えた薄膜太陽電池。
  6. 請求項1〜4のいずれかに記載の薄膜太陽電池用基板を備え、また、前記透明電極層の上に堆積された少なくとも一つの結晶質光電変換ユニット層、及び裏面電極層を含み、さらに、これらの層が複数の光電変換セルを形成するように複数の分離溝によって分離されており、かつ、それらの複数の光電変換セルが複数の接続溝を介して互いに電気的に直列接続されていることを特徴とする集積型薄膜太陽電池。
  7. 請求項1〜4のいずれかに記載の薄膜太陽電池用基板の製造方法であって、前記透光性絶縁基板の温度が150℃以上で、前記少なくとも酸化亜鉛を含む透明電極層を堆積することを特徴とする薄膜太陽電池用基板の製造方法。
JP2004304970A 2004-03-25 2004-10-19 薄膜太陽電池用基板、及びその製造方法、並びにそれを用いた薄膜太陽電池 Pending JP2005311292A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304970A JP2005311292A (ja) 2004-03-25 2004-10-19 薄膜太陽電池用基板、及びその製造方法、並びにそれを用いた薄膜太陽電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004089817 2004-03-25
JP2004304970A JP2005311292A (ja) 2004-03-25 2004-10-19 薄膜太陽電池用基板、及びその製造方法、並びにそれを用いた薄膜太陽電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011247626A Division JP5600660B2 (ja) 2004-03-25 2011-11-11 薄膜太陽電池用基板および薄膜太陽電池の製造方法

Publications (1)

Publication Number Publication Date
JP2005311292A true JP2005311292A (ja) 2005-11-04

Family

ID=35439656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304970A Pending JP2005311292A (ja) 2004-03-25 2004-10-19 薄膜太陽電池用基板、及びその製造方法、並びにそれを用いた薄膜太陽電池

Country Status (1)

Country Link
JP (1) JP2005311292A (ja)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062685A1 (en) 2006-11-20 2008-05-29 Kaneka Corporation Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
JP2008235687A (ja) * 2007-03-22 2008-10-02 Kaneka Corp 薄膜光電変換装置用基板とそれを含む薄膜光電変換装置
JP2008277387A (ja) * 2007-04-26 2008-11-13 Kaneka Corp 光電変換装置の製造方法
JP2008300732A (ja) * 2007-06-01 2008-12-11 Kaneka Corp 薄膜太陽電池の製造方法
WO2009041659A1 (ja) 2007-09-28 2009-04-02 Fujifilm Corporation 太陽電池
JP2009267222A (ja) * 2008-04-28 2009-11-12 Kaneka Corp 薄膜光電変換装置用透明導電膜付き基板の製造方法
WO2009157447A1 (ja) * 2008-06-27 2009-12-30 株式会社カネカ 透明導電膜付き基板、薄膜光電変換装置および該基板の製造方法
WO2010090142A1 (ja) * 2009-02-03 2010-08-12 株式会社カネカ 透明導電膜付き基板および薄膜光電変換装置
US7919400B2 (en) 2007-07-10 2011-04-05 Stion Corporation Methods for doping nanostructured materials and nanostructured thin films
US7939454B1 (en) 2008-05-31 2011-05-10 Stion Corporation Module and lamination process for multijunction cells
US8017860B2 (en) 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
EP2381482A1 (en) * 2010-04-22 2011-10-26 Excico Group NV Improved method for manufacturing a photovoltaic cell comprising a TCO layer
US8058092B2 (en) 2007-09-28 2011-11-15 Stion Corporation Method and material for processing iron disilicide for photovoltaic application
US8067263B2 (en) 2008-09-30 2011-11-29 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
WO2012014572A1 (ja) 2010-07-28 2012-02-02 株式会社カネカ 薄膜太陽電池用透明電極、それを用いた薄膜太陽電池用透明電極付き基板および薄膜太陽電池、ならびに薄膜太陽電池用透明電極の製造方法
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
JP2012089712A (ja) * 2010-10-20 2012-05-10 Mitsubishi Electric Corp 薄膜太陽電池およびその製造方法
US8193028B2 (en) 2008-10-06 2012-06-05 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8198122B2 (en) 2008-09-29 2012-06-12 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8258000B2 (en) 2008-09-29 2012-09-04 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
JP2012174735A (ja) * 2011-02-17 2012-09-10 Kaneka Corp 薄膜太陽電池
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
JP2012522265A (ja) * 2009-03-27 2012-09-20 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド 保護コーティングを有する太陽反射鏡及びその製造方法
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
WO2013002394A1 (ja) 2011-06-30 2013-01-03 株式会社カネカ 薄膜太陽電池およびその製造方法
US8377736B2 (en) 2008-10-02 2013-02-19 Stion Corporation System and method for transferring substrates in large scale processing of CIGS and/or CIS devices
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
JP2013515373A (ja) * 2009-12-21 2013-05-02 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド 改善されたヘイズを有するシリコン薄膜太陽電池及びその製造方法
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices
US8435822B2 (en) 2008-09-30 2013-05-07 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8501507B2 (en) 2007-11-14 2013-08-06 Stion Corporation Method for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
US8614396B2 (en) 2007-09-28 2013-12-24 Stion Corporation Method and material for purifying iron disilicide for photovoltaic application
US8617917B2 (en) 2008-06-25 2013-12-31 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8673675B2 (en) 2008-09-30 2014-03-18 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8691618B2 (en) 2008-09-29 2014-04-08 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US8759671B2 (en) 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8941132B2 (en) 2008-09-10 2015-01-27 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
TWI493728B (zh) * 2009-03-13 2015-07-21 Sumitomo Metal Mining Co 透明導電膜積層體以及其製造方法、及矽系薄膜太陽電池
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
US9105776B2 (en) 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697475A (ja) * 1992-09-11 1994-04-08 Sanyo Electric Co Ltd 光起電力装置及びその製造方法
JPH11135817A (ja) * 1997-10-27 1999-05-21 Sharp Corp 光電変換素子およびその製造方法
JP2000183376A (ja) * 1998-12-17 2000-06-30 Nisshin Steel Co Ltd 太陽電池用絶縁基板及びその製造方法
JP2001015787A (ja) * 1999-04-27 2001-01-19 Asahi Glass Co Ltd 透明導電膜付き基体、その製造方法および太陽電池
JP2001257369A (ja) * 2000-03-10 2001-09-21 Sharp Corp 光電変換素子及びその製造方法
JP2002141525A (ja) * 2000-10-31 2002-05-17 National Institute Of Advanced Industrial & Technology 太陽電池用基板および薄膜太陽電池
JP2002529937A (ja) * 1998-11-06 2002-09-10 パシフィック ソーラー ピー ティ ワイ リミテッド SiO2膜によるガラスのテクスチュアリング
JP2003243676A (ja) * 2002-02-19 2003-08-29 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697475A (ja) * 1992-09-11 1994-04-08 Sanyo Electric Co Ltd 光起電力装置及びその製造方法
JPH11135817A (ja) * 1997-10-27 1999-05-21 Sharp Corp 光電変換素子およびその製造方法
JP2002529937A (ja) * 1998-11-06 2002-09-10 パシフィック ソーラー ピー ティ ワイ リミテッド SiO2膜によるガラスのテクスチュアリング
JP2000183376A (ja) * 1998-12-17 2000-06-30 Nisshin Steel Co Ltd 太陽電池用絶縁基板及びその製造方法
JP2001015787A (ja) * 1999-04-27 2001-01-19 Asahi Glass Co Ltd 透明導電膜付き基体、その製造方法および太陽電池
JP2001257369A (ja) * 2000-03-10 2001-09-21 Sharp Corp 光電変換素子及びその製造方法
JP2002141525A (ja) * 2000-10-31 2002-05-17 National Institute Of Advanced Industrial & Technology 太陽電池用基板および薄膜太陽電池
JP2003243676A (ja) * 2002-02-19 2003-08-29 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換装置

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314326B2 (en) 2006-05-15 2012-11-20 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US9105776B2 (en) 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
US8017860B2 (en) 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
WO2008062685A1 (en) 2006-11-20 2008-05-29 Kaneka Corporation Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
US8658887B2 (en) 2006-11-20 2014-02-25 Kaneka Corporation Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
JP5156641B2 (ja) * 2006-11-20 2013-03-06 株式会社カネカ 光電変換装置用透明導電膜付基板及び光電変換装置の製造方法
JP2008235687A (ja) * 2007-03-22 2008-10-02 Kaneka Corp 薄膜光電変換装置用基板とそれを含む薄膜光電変換装置
JP2008277387A (ja) * 2007-04-26 2008-11-13 Kaneka Corp 光電変換装置の製造方法
JP2008300732A (ja) * 2007-06-01 2008-12-11 Kaneka Corp 薄膜太陽電池の製造方法
US8871305B2 (en) 2007-06-29 2014-10-28 Stion Corporation Methods for infusing one or more materials into nano-voids of nanoporous or nanostructured materials
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US7919400B2 (en) 2007-07-10 2011-04-05 Stion Corporation Methods for doping nanostructured materials and nanostructured thin films
US8759671B2 (en) 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
WO2009041659A1 (ja) 2007-09-28 2009-04-02 Fujifilm Corporation 太陽電池
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8058092B2 (en) 2007-09-28 2011-11-15 Stion Corporation Method and material for processing iron disilicide for photovoltaic application
US8614396B2 (en) 2007-09-28 2013-12-24 Stion Corporation Method and material for purifying iron disilicide for photovoltaic application
US8501507B2 (en) 2007-11-14 2013-08-06 Stion Corporation Method for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8642361B2 (en) 2007-11-14 2014-02-04 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8623677B2 (en) 2007-11-14 2014-01-07 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8512528B2 (en) 2007-11-14 2013-08-20 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration
JP2009267222A (ja) * 2008-04-28 2009-11-12 Kaneka Corp 薄膜光電変換装置用透明導電膜付き基板の製造方法
US7939454B1 (en) 2008-05-31 2011-05-10 Stion Corporation Module and lamination process for multijunction cells
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US8617917B2 (en) 2008-06-25 2013-12-31 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
WO2009157447A1 (ja) * 2008-06-27 2009-12-30 株式会社カネカ 透明導電膜付き基板、薄膜光電変換装置および該基板の製造方法
US8941132B2 (en) 2008-09-10 2015-01-27 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8198122B2 (en) 2008-09-29 2012-06-12 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8258000B2 (en) 2008-09-29 2012-09-04 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8691618B2 (en) 2008-09-29 2014-04-08 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8084291B2 (en) 2008-09-30 2011-12-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8088640B2 (en) 2008-09-30 2012-01-03 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8067263B2 (en) 2008-09-30 2011-11-29 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8071421B2 (en) 2008-09-30 2011-12-06 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US8318531B2 (en) 2008-09-30 2012-11-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8076176B2 (en) 2008-09-30 2011-12-13 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US8673675B2 (en) 2008-09-30 2014-03-18 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8084292B2 (en) 2008-09-30 2011-12-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8435822B2 (en) 2008-09-30 2013-05-07 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US8377736B2 (en) 2008-10-02 2013-02-19 Stion Corporation System and method for transferring substrates in large scale processing of CIGS and/or CIS devices
US8193028B2 (en) 2008-10-06 2012-06-05 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8557625B1 (en) 2008-10-17 2013-10-15 Stion Corporation Zinc oxide film method and structure for cigs cell
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
JP5559704B2 (ja) * 2009-02-03 2014-07-23 株式会社カネカ 透明導電膜付き基板の製造方法ならびに多接合型薄膜光電変換装置および発光素子の製造方法
JPWO2010090142A1 (ja) * 2009-02-03 2012-08-09 株式会社カネカ 透明導電膜付き基板および薄膜光電変換装置
WO2010090142A1 (ja) * 2009-02-03 2010-08-12 株式会社カネカ 透明導電膜付き基板および薄膜光電変換装置
US9059422B2 (en) 2009-02-03 2015-06-16 Kaneka Corporation Substrate with transparent conductive film and thin film photoelectric conversion device
TWI493728B (zh) * 2009-03-13 2015-07-21 Sumitomo Metal Mining Co 透明導電膜積層體以及其製造方法、及矽系薄膜太陽電池
JP2012522265A (ja) * 2009-03-27 2012-09-20 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド 保護コーティングを有する太陽反射鏡及びその製造方法
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
JP2013515373A (ja) * 2009-12-21 2013-05-02 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド 改善されたヘイズを有するシリコン薄膜太陽電池及びその製造方法
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
CN102934240A (zh) * 2010-04-22 2013-02-13 艾思科集团有限公司 用于制造包括tco层的光伏电池的改良方法
CN102934240B (zh) * 2010-04-22 2016-03-16 艾思科集团有限公司 用于制造包括tco层的光伏电池的改良方法
WO2011131634A1 (en) * 2010-04-22 2011-10-27 Excico Group Nv Improved method for manufacturing a photovoltaic cell comprising a tco layer
EP2381482A1 (en) * 2010-04-22 2011-10-26 Excico Group NV Improved method for manufacturing a photovoltaic cell comprising a TCO layer
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US9166080B2 (en) 2010-07-28 2015-10-20 Kaneka Corporation Transparent electrode for thin film solar cell, substrate having transparent electrode for thin film solar cell and thin film solar cell using same, and production method for transparent electrode for thin film solar cell
WO2012014572A1 (ja) 2010-07-28 2012-02-02 株式会社カネカ 薄膜太陽電池用透明電極、それを用いた薄膜太陽電池用透明電極付き基板および薄膜太陽電池、ならびに薄膜太陽電池用透明電極の製造方法
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
JP2012089712A (ja) * 2010-10-20 2012-05-10 Mitsubishi Electric Corp 薄膜太陽電池およびその製造方法
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
JP2012174735A (ja) * 2011-02-17 2012-09-10 Kaneka Corp 薄膜太陽電池
WO2013002394A1 (ja) 2011-06-30 2013-01-03 株式会社カネカ 薄膜太陽電池およびその製造方法
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices

Similar Documents

Publication Publication Date Title
JP5600660B2 (ja) 薄膜太陽電池用基板および薄膜太陽電池の製造方法
JP2005311292A (ja) 薄膜太陽電池用基板、及びその製造方法、並びにそれを用いた薄膜太陽電池
JP5156641B2 (ja) 光電変換装置用透明導電膜付基板及び光電変換装置の製造方法
JP5012793B2 (ja) 透明導電性酸化物膜付き基体および光電変換素子
CN102473750B (zh) 晶体硅系太阳能电池及其制造方法
JP5069790B2 (ja) 薄膜光電変換装置用基板とそれを含む薄膜光電変換装置、並びに薄膜光電変換装置用基板の製造方法
JP4222500B2 (ja) シリコン系薄膜光電変換装置
JP5243697B2 (ja) 光電変換装置用透明導電膜とその製造方法
JP4928337B2 (ja) 光電変換装置の製造方法
JP2003243676A (ja) 薄膜光電変換装置
JP2000252500A (ja) シリコン系薄膜光電変換装置
JP4713819B2 (ja) 薄膜光電変換装置用基板及びそれを用いた薄膜光電変換装置
JP5127925B2 (ja) 薄膜太陽電池およびその製造方法
JPWO2006046397A1 (ja) 薄膜光電変換装置用基板およびそれを用いた集積型薄膜光電変換装置
JP5469298B2 (ja) 光電変換装置用透明導電膜、及びその製造方法
JP5144949B2 (ja) 薄膜光電変換装置用基板とそれを含む薄膜光電変換装置の製造方法
JP2001257369A (ja) 光電変換素子及びその製造方法
JP6199299B2 (ja) 薄膜光電変換装置およびその製造方法
JP2012084843A (ja) 透明導電性酸化物膜付き基体、および光電変換素子
JP5650057B2 (ja) 透明電極基板、及びその製造方法
JP5613296B2 (ja) 光電変換装置用透明導電膜、光電変換装置、およびそれらの製造方法
JP2000252499A (ja) 薄膜光電変換装置の製造方法
JP2012244029A (ja) 薄膜太陽電池用基板、その製造方法及び薄膜太陽電池
JP2009010108A (ja) 光電変換装置の製造方法
JP2011086731A (ja) 光電変換装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111117

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120203