[go: up one dir, main page]

JP2005310479A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005310479A
JP2005310479A JP2004124244A JP2004124244A JP2005310479A JP 2005310479 A JP2005310479 A JP 2005310479A JP 2004124244 A JP2004124244 A JP 2004124244A JP 2004124244 A JP2004124244 A JP 2004124244A JP 2005310479 A JP2005310479 A JP 2005310479A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
group
secondary battery
electrolyte secondary
phosphazene compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004124244A
Other languages
Japanese (ja)
Inventor
Yuji Sugano
裕士 菅野
Masami Ootsuki
正珠 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004124244A priority Critical patent/JP2005310479A/en
Publication of JP2005310479A publication Critical patent/JP2005310479A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with a large charge/discharge capacity and high Coulomb efficiency. <P>SOLUTION: The nonaqueous electrolyte secondary battery is equipped with a positive electrode, a negative electrode containing amorphous carbon, and a nonaqueous electrolyte containing a phosphazene compound and a supporting electrolyte. The amorphous carbon preferably has an average space of (002) planes (d<SB>002</SB>) as determined by an X-ray diffraction of 0.350-0.390 nm, and a crystallite size (L<SB>c</SB>) in the direction of a c-axis of 70 nm or less. The content of the phosphazene compound in the nonaqueous electrolyte is preferably 2 vol.% or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解液2次電池、特に充放電容量を向上させた非水電解液2次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery with improved charge / discharge capacity.

従来、特に、パソコン・VTR等のAV・情報機器のメモリーバックアップやそれらの駆動電源用の2次電池としては、ニカド電池が主流であった。近年、高電圧・高エネルギー密度という利点を有し、かつ、優れた自己放電性を示すことから、ニカド電池に代替するものとしてリチウムイオン2次電池等の非水電解液2次電池が非常に注目され、種々の開発が試みられて、その一部は商品化されている。例えば、ノート型パソコンや携帯電話等は、その半数以上が非水電解液2次電池によって駆動している。   Conventionally, nickel-cadmium batteries have been mainly used as secondary batteries for memory backup of AV and information devices such as personal computers and VTRs, and driving power sources thereof. In recent years, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been very popular as alternatives to nickel-cadmium batteries because they have the advantages of high voltage and high energy density and exhibit excellent self-discharge characteristics. Attention has been paid and various developments have been attempted, and some of them have been commercialized. For example, more than half of notebook computers and mobile phones are driven by non-aqueous electrolyte secondary batteries.

これらの非水電解液2次電池においては、正極を形成する材料としてリチウム含有複合酸化物が用いられ、負極を形成する材料として炭素材料が多用されているが、その表面にリチウムが生成した場合の危険性の低減及び高駆動電圧化を目的として、エステル系有機溶媒等の非プロトン性有機溶媒が電解液として使用されている。   In these non-aqueous electrolyte secondary batteries, a lithium-containing composite oxide is used as a material for forming a positive electrode, and a carbon material is frequently used as a material for forming a negative electrode. An aprotic organic solvent such as an ester organic solvent is used as the electrolytic solution for the purpose of reducing the risk of this and increasing the driving voltage.

また、上記負極に用いられる炭素材料としては、易黒鉛化性炭素や黒鉛等が多用されているが、これらの炭素材料を用いた場合、リチウムイオンが炭素材料にインターカレートされてLiC6が形成されると、それ以上リチウムを挿入することができない。従って、易黒鉛化性炭素や黒鉛等を用いた場合、充放電容量は理論容量である372mAh/gが限界である。 Further, as the carbon material used for the negative electrode, graphitizable carbon, graphite, and the like are frequently used. However, when these carbon materials are used, lithium ions are intercalated into the carbon material and LiC 6 is formed. Once formed, no more lithium can be inserted. Therefore, when graphitizable carbon or graphite is used, the charge / discharge capacity is limited to the theoretical capacity of 372 mAh / g.

一方、難黒鉛化性炭素等の非晶質炭素を負極に用いると、上記理論容量372mAh/gを超えて、負極がリチウムを収容できるため、充放電容量を上昇させる観点からは、負極に非晶質炭素を用いるのが好ましい。しかしながら、非晶質炭素を負極に用いた場合、不可逆容量が大きく、クーロン効率が悪いという問題があった。   On the other hand, when amorphous carbon such as non-graphitizable carbon is used for the negative electrode, the negative electrode can accommodate lithium exceeding the theoretical capacity of 372 mAh / g. It is preferable to use crystalline carbon. However, when amorphous carbon is used for the negative electrode, there are problems that the irreversible capacity is large and the Coulomb efficiency is poor.

特開平8−279358号公報JP-A-8-279358 マテリアルインテグレーション,vol.17,No.1,(2004),p.45Material integration, vol. 17, no. 1, (2004), p. 45

そこで、本発明の目的は、上記従来技術の問題を解決し、充放電容量が高く、且つクーロン効率の優れた非水電解液2次電池を提供することにある。   Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that solves the above-described problems of the prior art, has a high charge / discharge capacity, and is excellent in coulomb efficiency.

本発明者らは、上記目的を達成するために鋭意検討した結果、負極に非晶質炭素を用い、且つ非水電解液にホスファゼン化合物を添加することで、非水電解液2次電池のクーロン効率を維持しつつ充放電容量を大幅に改善できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have used amorphous carbon for the negative electrode and added a phosphazene compound to the non-aqueous electrolyte so that the coulomb of the non-aqueous electrolyte secondary battery can be obtained. The inventors have found that the charge / discharge capacity can be significantly improved while maintaining the efficiency, and have completed the present invention.

即ち、本発明の非水電解液2次電池は、正極と、非晶質炭素を含む負極と、ホスファゼン化合物及び支持塩を含む非水電解液とを備えることを特徴とする。   That is, the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode containing amorphous carbon, and a non-aqueous electrolyte containing a phosphazene compound and a supporting salt.

本発明の非水電解液2次電池の好適例においては、前記非晶質炭素は、X線回折法による(002)面の平均面間隔d002が0.350〜0.390nmである。 In a preferable embodiment of the non-aqueous electrolyte secondary battery of the present invention, the amorphous carbon, the average spacing d 002 of the X-ray diffraction (002) plane is 0.350~0.390Nm.

本発明の非水電解液2次電池の他の好適例においては、前記非晶質炭素は、c軸方向の結晶子の大きさLc(002)が70nm以下である。 In another preferred embodiment of the non-aqueous electrolyte secondary battery of the present invention, the amorphous carbon has a crystallite size L c (002) in the c-axis direction of 70 nm or less.

本発明の非水電解液2次電池の他の好適例においては、前記ホスファゼン化合物が下記式(I):

Figure 2005310479

(式中、R1は、それぞれ独立して一価の置換基又はハロゲン元素を表し;Y1は、それぞれ独立して2価の連結基、2価の元素又は単結合を表し;Xは、炭素、ケイ素、ゲルマニウム、スズ、窒素、リン、ヒ素、アンチモン、ビスマス、酸素、硫黄、セレン、テルル及びポロニウムからなる群から選ばれる元素の少なくとも1種を含む置換基を表す)又は下記式(II):
(NPR2 2)n ・・・ (II)
(式中、R2はそれぞれ独立して一価の置換基又はハロゲン元素を表し;nは3〜15を表す)で表される。 In another preferred embodiment of the non-aqueous electrolyte secondary battery of the present invention, the phosphazene compound is represented by the following formula (I):
Figure 2005310479

(In the formula, each R 1 independently represents a monovalent substituent or a halogen element; Y 1 each independently represents a divalent linking group, a divalent element, or a single bond; Represents a substituent containing at least one element selected from the group consisting of carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth, oxygen, sulfur, selenium, tellurium and polonium) or the following formula (II ):
(NPR 2 2 ) n ... (II)
(In the formula, each R 2 independently represents a monovalent substituent or a halogen element; n represents 3 to 15).

本発明の非水電解液2次電池の他の好適例においては、前記正極の活物質がLiCoO2、LiNiO2及びLiMn24からなる群から選択される少なくとも1種のリチウム含有複合酸化物である。 In another preferred embodiment of the non-aqueous electrolyte secondary battery of the present invention, at least one lithium-containing composite oxide wherein the positive electrode active material is selected from the group consisting of LiCoO 2 , LiNiO 2 and LiMn 2 O 4 . It is.

本発明の非水電解液2次電池の他の好適例においては、前記非水電解液が、更に非プロトン性有機溶媒を含む。   In another preferred embodiment of the non-aqueous electrolyte secondary battery of the present invention, the non-aqueous electrolyte further contains an aprotic organic solvent.

本発明の非水電解液2次電池の他の好適例においては、前記非水電解液中のホスファゼン化合物の含有率が2体積%以上である。   In another preferable example of the non-aqueous electrolyte secondary battery of the present invention, the content of the phosphazene compound in the non-aqueous electrolyte is 2% by volume or more.

本発明によれば、負極に非晶質炭素を用い、且つ非水電解液にホスファゼン化合物を添加することで、クーロン効率を維持しつつ充放電容量を大幅に向上させた非水電解液2次電池を提供することができる。   According to the present invention, the non-aqueous electrolyte secondary that has substantially improved charge / discharge capacity while maintaining coulomb efficiency by using amorphous carbon for the negative electrode and adding a phosphazene compound to the non-aqueous electrolyte. A battery can be provided.

以下に、本発明を詳細に説明する。本発明の非水電解液2次電池は、正極と、非晶質炭素を含む負極と、ホスファゼン化合物及び支持塩を含む非水電解液とを備え、必要に応じて、セパレーター等の非水電解液2次電池の技術分野で通常使用されている他の部材を備える。本発明の非水電解液2次電池においては、負極の活物質として非晶質炭素を用い、更に非水電解液にホスファゼン化合物を添加することで、電池のクーロン効率を維持しつつ充放電容量を向上させる。そのため、本発明の非水電解液2次電池は、従来両立することが難しかった高い充放電容量と優れたクーロン効率とを兼ね備えている。   The present invention is described in detail below. The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode containing amorphous carbon, and a non-aqueous electrolyte containing a phosphazene compound and a supporting salt, and, if necessary, non-aqueous electrolysis such as a separator. Other members that are usually used in the technical field of liquid secondary batteries are provided. In the non-aqueous electrolyte secondary battery of the present invention, by using amorphous carbon as the negative electrode active material and further adding a phosphazene compound to the non-aqueous electrolyte, the charge / discharge capacity is maintained while maintaining the coulomb efficiency of the battery. To improve. Therefore, the nonaqueous electrolyte secondary battery of the present invention has a high charge / discharge capacity that has been difficult to achieve in the past and excellent coulomb efficiency.

本発明の非水電解液2次電池の正極に用いる正極活物質としては、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、V25、V613、MnO2、MnO3等の金属酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiFexCoyNi(1-x-y)2(式中、0≦x<1、0≦y<1、0<x+y≦1)、あるいはLiMnxFey2-x-y等で表される。これらの中でも、高容量で安全性が高く、更には電解液の濡れ性に優れる点で、LiCoO2、LiNiO2、LiMn24が特に好適である。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the positive electrode active material used for the positive electrode of the non-aqueous electrolyte secondary battery of the present invention, lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 and LiFePO 4 , V 2 O 5 , V Preferable examples include metal oxides such as 6 O 13 , MnO 2 and MnO 3 , metal sulfides such as TiS 2 and MoS 2 , and conductive polymers such as polyaniline. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and Ni. In this case, the composite oxide includes: LiFe x Co y Ni (wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1) (1-xy) O 2, or represented by LiMn x Fe y O 2-xy like. Among these, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are particularly preferable in terms of high capacity, high safety, and excellent electrolyte wettability. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

本発明の非水電解液2次電池の負極に用いる負極活物質は、非晶質炭素を含む。該非晶質炭素としては、難黒鉛化性炭素が挙げられる。該非晶質炭素は、X線回折法による(002)面の平均面間隔d002が0.350〜0.390nmであるのが好ましく、0.360〜0.380nmであるのが更に好ましい。また、該非晶質炭素は、c軸方向の結晶子の大きさLc(002)が70nm以下であるのが好ましく、35nm以下であるのが更に好ましい。更に、該非晶質炭素は、表面積が0.5〜5.0m2/gであるのが好ましく、0.8〜4.0m2/gであるのが更に好ましく、密度が1.40〜2.00g/cm3であるのが好ましく、1.45〜1.70g/cm3であるのが更に好ましい。なお、上記負極活物質は、非晶質炭素以外の炭素材料、例えば、易黒鉛化性炭素、黒鉛、メソフェーズカーボンマイクロビーズ(MCMB)等を一部含んでもよい。上記負極活物質中の非晶質炭素の含有率は、20質量%以上であるのが好ましく、40質量%以上であるのが更に好ましく、80質量%以上であるのがより一層好ましい。負極活物質中の非晶質炭素の含有率が20質量%以上であれば、非水電解液2次電池の充放電容量を向上させることができる。 The negative electrode active material used for the negative electrode of the non-aqueous electrolyte secondary battery of the present invention contains amorphous carbon. Examples of the amorphous carbon include non-graphitizable carbon. Amorphous carbon preferably has an average spacing d 002 of the X-ray diffraction (002) plane is 0.350~0.390Nm, and even more preferably 0.360~0.380Nm. The amorphous carbon preferably has a crystallite size L c (002) in the c-axis direction of 70 nm or less, and more preferably 35 nm or less. Furthermore, amorphous carbon is preferably surface area of 0.5~5.0m 2 / g, more preferably in the range of 0.8~4.0m 2 / g, that density of 1.40~2.00g / cm 3 Preferably, it is 1.45 to 1.70 g / cm 3 . The negative electrode active material may partially include carbon materials other than amorphous carbon, such as graphitizable carbon, graphite, mesophase carbon microbeads (MCMB), and the like. The content of amorphous carbon in the negative electrode active material is preferably 20% by mass or more, more preferably 40% by mass or more, and still more preferably 80% by mass or more. When the content of amorphous carbon in the negative electrode active material is 20% by mass or more, the charge / discharge capacity of the non-aqueous electrolyte secondary battery can be improved.

上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。   The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black. Examples of the binder include polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethylcellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.

また、上記正極及び負極の形状としては、特に制限はなく、電極として公知の形状の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイラル形状等が挙げられる。   Moreover, there is no restriction | limiting in particular as a shape of the said positive electrode and a negative electrode, It can select suitably from well-known shapes as an electrode. For example, a sheet shape, a columnar shape, a plate shape, a spiral shape, and the like can be given.

本発明の非水電解液2次電池の非水電解液は、ホスファゼン化合物及び支持塩を含み、必要に応じて、非プロトン性有機溶媒等を含んでもよい。ホスファゼン化合物を非水電解液に添加することで、電池の充放電容量及びクーロン効率を改善することができると共に、非水電解液の安全性を改善することもできる。即ち、通常非水電解液には非プロトン性有機溶媒が用いられ、電池が短絡等により高温になった場合、電解液中の非プロトン性有機溶媒が発火・引火する可能性があったが、ホスファゼン化合物が添加された非水電解液においては、ホスファゼン化合物から誘導される窒素ガスの作用によって、非プロトン性有機溶媒の発火・引火等の危険性が低減されている。また、ホスファゼン化合物を構成するリンには、リン酸エステル等を発生して電池を構成する高分子材料の連鎖分解を抑制する作用があるため、電池の発火・引火の危険性を効果的に低減することができる。更に、上記ホスファゼン化合物がハロゲンを含む場合、万が一の燃焼時にはハロゲンが活性ラジカルの捕捉剤として機能し、電解液の燃焼の危険性を更に低減する。   The non-aqueous electrolyte of the non-aqueous electrolyte secondary battery of the present invention contains a phosphazene compound and a supporting salt, and may contain an aprotic organic solvent and the like as necessary. By adding the phosphazene compound to the non-aqueous electrolyte, the charge / discharge capacity and coulomb efficiency of the battery can be improved, and the safety of the non-aqueous electrolyte can also be improved. In other words, an aprotic organic solvent is usually used for the non-aqueous electrolyte, and when the battery becomes high temperature due to a short circuit or the like, the aprotic organic solvent in the electrolyte may ignite and ignite. In the non-aqueous electrolyte to which the phosphazene compound is added, the risk of ignition and ignition of the aprotic organic solvent is reduced by the action of nitrogen gas derived from the phosphazene compound. In addition, phosphorus, which constitutes phosphazene compounds, acts to suppress chain decomposition of polymer materials constituting the battery by generating phosphate esters, etc., effectively reducing the risk of battery ignition and ignition. can do. Furthermore, when the phosphazene compound contains a halogen, the halogen functions as an active radical scavenger in the unlikely event of combustion, further reducing the risk of the electrolyte burning.

上記非水電解液に用いるホスファゼン化合物としては、上記式(I)で表される鎖状ホスファゼン化合物及び上記式(II)で表される環状ホスファゼン化合物が好適に挙げられる。また、式(I)又は式(II)で表されるホスファゼン化合物の中でも、25℃(室温)において液体であるものが好ましい。該液状ホスファゼン化合物の25℃における粘度は、300mPa・s(300cP)以下が好ましく、20mPa・s(20cP)以下が更に好ましく、5mPa・s(5cP)以下が特に好ましい。なお、本発明において粘度は、粘度測定計[R型粘度計Model RE500-SL、東機産業(株)製]を用い、1rpm、2rpm、3rpm、5rpm、7rpm、10rpm、20rpm及び50rpmの各回転速度で120秒間づつ測定し、指示値が50〜60%となった時の回転速度を分析条件とし、その際の粘度を測定することによって求めた。ホスファゼン化合物の25℃における粘度が300mPa・s(300cP)を超えると、支持塩が溶解し難くなり、正極材料、負極材料、セパレーター等への濡れ性が低下し、電解液の粘性抵抗の増大によりイオン導電性が著しく低下し、特に氷点以下等の低温条件下での使用において性能不足となる。また、これらのホスファゼン化合物は、液状であるため、通常の液状電解質と同等の導電性を有し、電解液に使用することで、優れたサイクル特性を発現させることができる。   Preferred examples of the phosphazene compound used in the non-aqueous electrolyte include a chain phosphazene compound represented by the above formula (I) and a cyclic phosphazene compound represented by the above formula (II). Of the phosphazene compounds represented by formula (I) or formula (II), those which are liquid at 25 ° C. (room temperature) are preferred. The viscosity at 25 ° C. of the liquid phosphazene compound is preferably 300 mPa · s (300 cP) or less, more preferably 20 mPa · s (20 cP) or less, and particularly preferably 5 mPa · s (5 cP) or less. In the present invention, the viscosity is measured at 1 rpm, 2 rpm, 3 rpm, 5 rpm, 7 rpm, 10 rpm, 20 rpm and 50 rpm using a viscometer [R-type viscometer Model RE500-SL, manufactured by Toki Sangyo Co., Ltd.] The measurement was performed at a speed of 120 seconds, and the rotation speed when the indicated value reached 50 to 60% was set as an analysis condition, and the viscosity was measured at that time. If the viscosity of the phosphazene compound at 25 ° C exceeds 300 mPa · s (300 cP), the supporting salt becomes difficult to dissolve, the wettability to the positive electrode material, the negative electrode material, the separator, etc. decreases, and the viscosity resistance of the electrolyte increases. The ionic conductivity is remarkably lowered, and the performance becomes insufficient particularly when used under low temperature conditions such as below the freezing point. In addition, since these phosphazene compounds are in a liquid state, they have the same conductivity as that of a normal liquid electrolyte, and can exhibit excellent cycle characteristics when used in an electrolytic solution.

式(I)のR1は、一価の置換基又はハロゲン元素である限り特に制限はなく、各R1は、同一でも、異なってもよい。ここで、一価の置換基としては、アルコキシ基、アルキル基、カルボキシル基、アシル基、アリール基等が挙げられ、これらの中でも、ホスファゼン化合物が低粘度となる点で、アルコキシ基が好ましい。一方、ハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられる。上記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、メトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられ、これらの中でも、メトキシ基、エトキシ基、メトキシエトキシ基及びメトキシエトキシエトキシ基が好ましく、低粘度・高誘電率の観点から、メトキシ基及びエトキシ基が更に好ましい。また、上記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられ、上記アシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基等が挙げられ、上記アリール基としては、フェニル基、トリル基、ナフチル基等が挙げられる。これら一価の置換基中の水素元素は、ハロゲン元素で置換されているのが好ましく、該ハロゲン元素としては、フッ素、塩素、臭素が好適であり、フッ素が最も好ましく、次いで塩素が好ましい。 R 1 in formula (I) is not particularly limited as long as it is a monovalent substituent or a halogen element, and each R 1 may be the same or different. Here, examples of the monovalent substituent include an alkoxy group, an alkyl group, a carboxyl group, an acyl group, and an aryl group. Among these, an alkoxy group is preferable in that the phosphazene compound has low viscosity. On the other hand, preferred examples of the halogen element include fluorine, chlorine, bromine and the like. Examples of the alkoxy group include methoxy group, ethoxy group, propoxy group, butoxy group, and alkoxy-substituted alkoxy groups such as methoxyethoxy group and methoxyethoxyethoxy group. Among these, methoxy group, ethoxy group, methoxy group, etc. An ethoxy group and a methoxyethoxyethoxy group are preferable, and a methoxy group and an ethoxy group are more preferable from the viewpoint of low viscosity and high dielectric constant. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Examples of the acyl group include a formyl group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, and a valeryl group. Examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group. The hydrogen element in these monovalent substituents is preferably substituted with a halogen element. As the halogen element, fluorine, chlorine and bromine are preferred, fluorine is most preferred, and chlorine is then preferred.

式(I)のY1は、2価の連結基、2価の元素又は単結合である限り特に制限はなく、各Y1は、同一でも、異なってもよい。ここで、2価の連結基としては、CH2基の他、酸素、硫黄、セレン、窒素、ホウ素、アルミニウム、スカンジウム、ガリウム、イットリウム、インジウム、ランタン、タリウム、炭素、ケイ素、チタン、スズ、ゲルマニウム、ジルコニウム、鉛、リン、バナジウム、ヒ素、ニオブ、アンチモン、タンタル、ビスマス、クロム、モリブデン、テルル、ポロニウム、タングステン、鉄、コバルト、ニッケルからなる群から選ばれる元素の少なくとも1種を含む2価の連結基が挙げられ;2価の元素としては、酸素、硫黄、セレン等が挙げられる。これらの中でも、式(I)のY1としては、CH2基、及び、酸素、硫黄、セレン、窒素からなる群から選ばれる元素の少なくとも1種を含む2価の連結基が好ましい。特に、硫黄及び/又はセレンの元素を含む2価の連結基の場合には、電解液の発火・引火の危険性が著しく低減するため好ましい。 Y 1 in formula (I) is not particularly limited as long as it is a divalent linking group, a divalent element, or a single bond, and each Y 1 may be the same or different. Here, as the divalent linking group, in addition to the CH 2 group, oxygen, sulfur, selenium, nitrogen, boron, aluminum, scandium, gallium, yttrium, indium, lanthanum, thallium, carbon, silicon, titanium, tin, germanium Divalent containing at least one element selected from the group consisting of zirconium, lead, phosphorus, vanadium, arsenic, niobium, antimony, tantalum, bismuth, chromium, molybdenum, tellurium, polonium, tungsten, iron, cobalt, nickel A divalent element includes oxygen, sulfur, selenium and the like. Among these, Y 1 in the formula (I) is preferably a divalent linking group containing a CH 2 group and at least one element selected from the group consisting of oxygen, sulfur, selenium, and nitrogen. In particular, a divalent linking group containing sulfur and / or selenium is preferable because the risk of ignition and ignition of the electrolyte is remarkably reduced.

式(I)のXは、炭素、ケイ素、ゲルマニウム、スズ、窒素、リン、ヒ素、アンチモン、ビスマス、酸素、硫黄、セレン、テルル及びポロニウムからなる群から選ばれる元素の少なくとも1種を含む置換基である限り特に制限はない。有害性、環境等への配慮の観点から、式(I)のXとしては、炭素、ケイ素、窒素、リン、酸素及び硫黄からなる群から選ばれる元素の少なくとも1種を含む置換基が好ましく、下記式(III)、式(IV)又は式(V):

Figure 2005310479

Figure 2005310479

Figure 2005310479

[式(III)、式(IV)及び式(V)中、R3、R4及びR5は、それぞれ独立に一価の置換基又はハロゲン元素を表し;Y3、Y4及びY5は、それぞれ独立に2価の連結基、2価の元素又は単結合を表し;Zは2価の基又は2価の元素を表す]で表される置換基が更に好ましい。 X in formula (I) is a substituent containing at least one element selected from the group consisting of carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth, oxygen, sulfur, selenium, tellurium and polonium. There is no particular limitation as long as it is. From the viewpoint of consideration for toxicity, environment, etc., X in formula (I) is preferably a substituent containing at least one element selected from the group consisting of carbon, silicon, nitrogen, phosphorus, oxygen and sulfur, The following formula (III), formula (IV) or formula (V):
Figure 2005310479

Figure 2005310479

Figure 2005310479

[In Formula (III), Formula (IV) and Formula (V), R 3 , R 4 and R 5 each independently represents a monovalent substituent or a halogen element; Y 3 , Y 4 and Y 5 are And each independently represents a divalent linking group, a divalent element or a single bond; and Z represents a divalent group or a divalent element].

式(III)のR3、式(IV)のR4及び式(V)のR5としては、式(I)のR1で述べたのと同様の一価の置換基又はハロゲン元素がいずれも好適に挙げられる。また、式(III)の2つのR3、並びに式(V)の2つのR5は、それぞれ同一でも、異なってもよく、互いに結合して環を形成していてもよい。 R 3 of formula (III), R 5 of formula (IV) R 4 and formula (V), substituent or a halogen element similar monovalent to that described in R 1 of formula (I) is either Are also preferred. Further, two R 3 s in the formula (III) and two R 5 s in the formula (V) may be the same or different, and may be bonded to each other to form a ring.

式(III)のY3、式(IV)のY4及び式(V)のY5としては、式(I)のY1で述べたのと同様の2価の連結基又は2価の元素がいずれも好適に挙げられる。同様に、硫黄及び/又はセレンの元素を含む2価の連結基の場合には、電解液の発火・引火の危険性が大きく低減するため特に好ましい。また、Y3、Y4及びY5としては、単結合も好ましい。式(III)の2つのY3、並びに式(V)の2つのY5は、それぞれ同一でも、異なってもよい。 Y 3 of the formula (III), Y 4 and Y 5 of formula (V) of the formula (IV), the divalent linking group or bivalent element similar to that described by Y 1 in the formula (I) Are preferably mentioned. Similarly, in the case of a divalent linking group containing sulfur and / or selenium elements, the risk of ignition and ignition of the electrolyte is greatly reduced, which is particularly preferable. Y 3 , Y 4 and Y 5 are also preferably single bonds. Two Y 3 in the formula (III) and two Y 5 in the formula (V) may be the same or different.

式(III)のZは、2価の基又は2価の元素である限り特に制限はない。ここで、2価の基としては、CH2基、CHR基(ここで、Rは、アルキル基、アルコキシ基、フェニル基等を表す)、NR基の他、酸素、硫黄、セレン、ホウ素、アルミニウム、スカンジウム、ガリウム、イットリウム、インジウム、ランタン、タリウム、炭素、ケイ素、チタン、スズ、ゲルマニウム、ジルコニウム、鉛、リン、バナジウム、ヒ素、ニオブ、アンチモン、タンタル、ビスマス、クロム、モリブデン、テルル、ポロニウム、タングステン、鉄、コバルト、ニッケルからなる群から選ばれる元素の少なくとも1種を含む2価の基等が挙げられ;2価の元素としては、酸素、硫黄、セレン等が挙げられる。これらの中でも、式(III)のZとしては、CH2基、CHR基、NR基の他、酸素、硫黄、セレンからなる群から選ばれる元素の少なくとも1種を含む2価の基が好ましい。特に、硫黄及び/又はセレンの元素を含む2価の基の場合には、電解液の発火・引火の危険性が大幅に低減するため好ましい。 Z in the formula (III) is not particularly limited as long as it is a divalent group or a divalent element. Here, as the divalent group, CH 2 group, CHR group (where R represents an alkyl group, alkoxy group, phenyl group, etc.), NR group, oxygen, sulfur, selenium, boron, aluminum , Scandium, gallium, yttrium, indium, lanthanum, thallium, carbon, silicon, titanium, tin, germanium, zirconium, lead, phosphorus, vanadium, arsenic, niobium, antimony, tantalum, bismuth, chromium, molybdenum, tellurium, polonium, tungsten , A divalent group containing at least one element selected from the group consisting of iron, cobalt, and nickel; and examples of the divalent element include oxygen, sulfur, and selenium. Among these, Z in the formula (III) is preferably a divalent group containing at least one element selected from the group consisting of oxygen, sulfur and selenium in addition to the CH 2 group, CHR group and NR group. In particular, a divalent group containing an element of sulfur and / or selenium is preferable because the risk of ignition and ignition of the electrolyte is greatly reduced.

これら置換基としては、特に効果的に発火・引火の危険性を低減し得る点で、式(III)で表されるようなリンを含む置換基が特に好ましい。また、置換基が式(IV)で表されるような硫黄を含む置換基である場合には、電解液の小界面抵抗化の点で特に好ましい。   As these substituents, a substituent containing phosphorus as represented by the formula (III) is particularly preferable in that the risk of ignition / flammability can be particularly effectively reduced. Further, when the substituent is a substituent containing sulfur as represented by the formula (IV), it is particularly preferable in terms of reducing the interface resistance of the electrolytic solution.

式(II)のR2は、一価の置換基又はハロゲン元素である限り特に制限はない。ここで、一価の置換基としては、アルコキシ基、アルキル基、カルボキシル基、アシル基、アリール基等が挙げられ、これらの中でも、ホスファゼン化合物が低粘度となる点で、アルコキシ基が好ましい。一方、ハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられ、これらの中でも、フッ素が特に好ましい。上記アルコキシ基としては、メトキシ基、エトキシ基、メトキシエトキシ基、プロポキシ基、フェノキシ基等が挙げられ、これらの中でも、メトキシ基、エトキシ基、メトキシエトキシ基、フェノキシ基が特に好ましい。また、上記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられ;上記アシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基等が挙げられ;上記アリール基としては、フェニル基、トリル基、ナフチル基等が挙げられる。これら一価の置換基中の水素元素は、ハロゲン元素で置換されているのが好ましく、ハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられ、フッ素原子で置換された置換基としては、トリフルオロエトキシ基等が挙げられる。 R 2 in formula (II) is not particularly limited as long as it is a monovalent substituent or a halogen element. Here, examples of the monovalent substituent include an alkoxy group, an alkyl group, a carboxyl group, an acyl group, and an aryl group. Among these, an alkoxy group is preferable in that the phosphazene compound has low viscosity. On the other hand, preferred examples of the halogen element include fluorine, chlorine, bromine and the like, and among these, fluorine is particularly preferred. Examples of the alkoxy group include a methoxy group, an ethoxy group, a methoxyethoxy group, a propoxy group, and a phenoxy group. Among these, a methoxy group, an ethoxy group, a methoxyethoxy group, and a phenoxy group are particularly preferable. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group; examples of the acyl group include a formyl group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, and a valeryl group. Examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group. The hydrogen element in these monovalent substituents is preferably substituted with a halogen element. Preferred examples of the halogen element include fluorine, chlorine, bromine, and the like. And a trifluoroethoxy group.

式(I)〜式(V)におけるR1〜R5、Y1、Y3〜Y5、Zを適宜選択することにより、より好適な粘度、添加・混合に適する溶解性等を有するホスファゼン化合物が得られる。これらホスファゼン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。 A phosphazene compound having more suitable viscosity, solubility suitable for addition and mixing, etc., by appropriately selecting R 1 to R 5 , Y 1 , Y 3 to Y 5 , and Z in formulas (I) to (V) Is obtained. These phosphazene compounds may be used alone or in combination of two or more.

上記非水電解液に用いる支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(CF3SO2)2N及びLi(C25SO2)2N等のリチウム塩が好適に挙げられる。これら支持塩は、1種単独で使用してもよく、2種以上を併用してもよい。 The supporting salt used for the non-aqueous electrolyte is preferably a supporting salt that serves as a lithium ion source. The supporting salt is not particularly limited, and for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N and Li ( Preferable examples include lithium salts such as C 2 F 5 SO 2 ) 2 N. These supporting salts may be used alone or in combination of two or more.

上記非水電解液中の支持塩の濃度としては、0.2〜1.5mol/L(M)が好ましく、0.5〜1mol/L(M)が更に好ましい。支持塩の濃度が0.2mol/L未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、1.5mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。   The concentration of the supporting salt in the non-aqueous electrolyte is preferably 0.2 to 1.5 mol / L (M), more preferably 0.5 to 1 mol / L (M). If the concentration of the supporting salt is less than 0.2 mol / L, the conductivity of the electrolyte cannot be sufficiently ensured, and the discharge characteristics and charging characteristics of the battery may be hindered. Since the viscosity of the electrolytic solution increases and the mobility of lithium ions cannot be ensured sufficiently, the conductivity of the electrolytic solution cannot be sufficiently ensured in the same manner as described above, which may hinder battery discharge characteristics and charge characteristics. .

上記非水電解液に用いることができる非プロトン性有機溶媒は、負極と反応することなく、更には非水電解液の粘度を低く抑えることができる。該非プロトン性有機溶媒として、具体的には、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジフェニルカーボネート、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ-ブチロラクトン(GBL)、γ-バレロラクトン、メチルフォルメート(MF)等のエステル類、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)等のエーテル類が好適に挙げられる。これらの中でも、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート及びメチルフォルメートが好ましい。なお、環状のエステル類は、比誘電率が高く支持塩の溶解性に優れる点で好適であり、一方、鎖状のエステル類及び鎖状のエーテル類は、低粘度であるため、電解液の低粘度化の点で好適である。これら非プロトン性有機溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。   The aprotic organic solvent that can be used for the non-aqueous electrolyte does not react with the negative electrode, and can further suppress the viscosity of the non-aqueous electrolyte. Specific examples of the aprotic organic solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), diphenyl carbonate, ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone ( Preferable examples include esters such as GBL), γ-valerolactone, and methyl formate (MF), and ethers such as 1,2-dimethoxyethane (DME) and tetrahydrofuran (THF). Among these, ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and methyl formate are preferable. Cyclic esters are preferred in that they have a high relative dielectric constant and excellent solubility of the supporting salt, while chain esters and chain ethers have low viscosity, so It is suitable in terms of lowering the viscosity. These aprotic organic solvents may be used alone or in combination of two or more.

上記非水電解液中のホスファゼン化合物の含有率は、電池のクーロン効率の低下を十分に抑制しつつ充放電容量を向上させる観点から、2体積%以上が好ましく、5体積%以上が更に好ましい。また、非水電解液の安全性を改善する観点から、上記非水電解液中のホスファゼン化合物の含有率は、3体積%以上が好ましく、5体積%以上が更に好ましい。   The content of the phosphazene compound in the non-aqueous electrolyte is preferably 2% by volume or more, and more preferably 5% by volume or more, from the viewpoint of improving the charge / discharge capacity while sufficiently suppressing the decrease in the Coulomb efficiency of the battery. From the viewpoint of improving the safety of the non-aqueous electrolyte, the content of the phosphazene compound in the non-aqueous electrolyte is preferably 3% by volume or more, and more preferably 5% by volume or more.

本発明の非水電解液2次電池に使用できる他の部材としては、非水電解液電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用されている公知の各部材が好適に使用できる。   Other members that can be used in the non-aqueous electrolyte secondary battery of the present invention include a separator that is interposed between positive and negative electrodes in a role of preventing current short-circuit due to contact between both electrodes. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. Of these, polypropylene or polyethylene microporous films having a thickness of about 20 to 50 μm, cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in batteries can be suitably used.

以上に説明した本発明の非水電解液2次電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これに、シート状の負極を重ね合わせて巻き上げる等して、非水電解液電池を作製することができる。   The form of the non-aqueous electrolyte secondary battery of the present invention described above is not particularly limited, and various known forms such as a coin type, a button type, a paper type, a square type or a spiral type cylindrical battery are available. Preferably mentioned. In the case of the button type, a non-aqueous electrolyte battery can be produced by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of a spiral structure, for example, a non-aqueous electrolyte battery can be manufactured by preparing a sheet-like positive electrode, sandwiching a current collector, and stacking and winding up a sheet-like negative electrode on the current collector. it can.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
エチレンカーボネート(EC)27体積%、エチルメチルカーボネート(EMC)63体積%及び上記式(II)において、nが3で、6つのR2中、1つがエトキシ基で、5つがフッ素の環状ホスファゼン化合物A[25℃における粘度:1.2mPa・s]10体積%からなる混合溶液に、LiPF6(支持塩)を1mol/L(M)になるように溶解させ、非水電解液を調製した。
(Example 1)
Cyclic phosphazene compound in which ethylene carbonate (EC) 27% by volume, ethyl methyl carbonate (EMC) 63% by volume, and in the above formula (II), n is 3, 1 of 6 R 2 , 1 is an ethoxy group and 5 is fluorine LiPF 6 (supporting salt) was dissolved in a mixed solution consisting of 10% by volume of A [viscosity at 25 ° C .: 1.2 mPa · s] to 1 mol / L (M) to prepare a nonaqueous electrolytic solution.

非晶質カーボン[呉羽化学製、平均面間隔d002=0.379nm、c軸方向の結晶子の大きさLc(002)=1.2nm、表面積=3.5m2/g、密度=1.52g/cm3]94質量部に対して、アセチレンブラック(導電剤)3質量部と、ポリフッ化ビニリデン(結着剤)3質量部とを添加し、有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)で混練した後、該混練物を厚さ25μmのアルミニウム箔(集電体)にドクターブレードで塗工した後、熱風乾燥(100〜120℃)して、厚さ150μmの負極シートを作製した。 Amorphous carbon [manufactured by Kureha Chemical Co., Ltd., average interplanar spacing d 002 = 0.379 nm, c-axis direction crystallite size L c (002) = 1.2 nm, surface area = 3.5 m 2 / g, density = 1.52 g / cm 3 ] For 94 parts by mass, add 3 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder), and add 50/50% by mass of organic solvent (ethyl acetate and ethanol). After kneading with a mixed solvent), the kneaded product was applied to a 25 μm thick aluminum foil (current collector) with a doctor blade, and then dried with hot air (100 to 120 ° C.) to form a 150 μm thick negative electrode sheet. Produced.

次に、LiMn24(正極活物質)94質量部に対して、アセチレンブラック(導電剤)3質量部と、ポリフッ化ビニリデン(結着剤)3質量部とを添加し、有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)で混練した後、該混練物を厚さ25μmのアルミニウム箔(集電体)にドクターブレードで塗工し、更に熱風乾燥(100〜120℃)して、厚さ80μmの正極シートを作製した。 Next, 3 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder) are added to 94 parts by mass of LiMn 2 O 4 (positive electrode active material), and an organic solvent (acetic acid (50/50 mass% mixed solvent of ethyl and ethanol), and then the kneaded product is applied to a 25 μm thick aluminum foil (current collector) with a doctor blade and further dried with hot air (100 to 120 ° C.) Thus, a positive electrode sheet having a thickness of 80 μm was produced.

得られた正極シートに、厚さ25μmのセパレーター(微孔性フィルム:ポリプロピレン製)を介して、上記のようにして作製した負極シートを重ね合わせて巻き上げ、円筒型電極を作製した。該円筒型電極の正極長さは約260mmであった。該円筒型電極に、上記電解液を注入して封口し、単三型リチウムイオン電池(非水電解液2次電池)を作製した。得られた電池に対し、25℃の大気下、上限電圧4.5V、下限電圧3.0V、放電電流100mA、充電電流50mAの条件で、20サイクルまで充放電を繰り返して、各サイクルにおける充放電容量を測定し、更に、各サイクルにおける放電容量を充電容量で除してクーロン効率を算出し、図1に示す結果を得た。   The negative electrode sheet prepared as described above was overlapped and wound up on the obtained positive electrode sheet through a separator (microporous film: made of polypropylene) having a thickness of 25 μm to prepare a cylindrical electrode. The positive electrode length of the cylindrical electrode was about 260 mm. The above electrolytic solution was injected into the cylindrical electrode and sealed to produce an AA lithium ion battery (non-aqueous electrolyte secondary battery). The obtained battery was charged and discharged up to 20 cycles under the conditions of an upper limit voltage of 4.5 V, a lower limit voltage of 3.0 V, a discharge current of 100 mA, and a charge current of 50 mA in an atmosphere of 25 ° C. Further, the coulomb efficiency was calculated by dividing the discharge capacity in each cycle by the charge capacity, and the results shown in FIG. 1 were obtained.

(比較例1)
エチレンカーボネート(EC)30体積%及びエチルメチルカーボネート(EMC)70体積%からなる混合溶液に、LiPF6(支持塩)を1mol/L(M)になるように溶解させた非水電解液を用いる以外は、実施例1と同様にしてリチウムイオン電池を作製し、該電池の充放電容量を20サイクルまで測定し、図1に示す結果を得た。
(Comparative Example 1)
A nonaqueous electrolytic solution in which LiPF 6 (supporting salt) is dissolved to 1 mol / L (M) in a mixed solution composed of 30% by volume of ethylene carbonate (EC) and 70% by volume of ethyl methyl carbonate (EMC) is used. Except for the above, a lithium ion battery was produced in the same manner as in Example 1, the charge / discharge capacity of the battery was measured up to 20 cycles, and the results shown in FIG. 1 were obtained.

(比較例2及び3)
非晶質カーボンに代えてグラファイト[住友金属製]を用いる以外は、実施例1と同様にして負極シートを作製した。該負極シートを用い、比較例1と同じ非水電解液を用いて、比較例2のリチウムイオン電池を作製した。また、該負極シートを用い、実施例1と同じ非水電解液を用いて、比較例3のリチウムイオン電池を作製した。これら電池の放電容量及びクーロン効率を図2に示す。
(Comparative Examples 2 and 3)
A negative electrode sheet was produced in the same manner as in Example 1 except that graphite [manufactured by Sumitomo Metals] was used instead of amorphous carbon. A lithium ion battery of Comparative Example 2 was produced using the negative electrode sheet and the same non-aqueous electrolyte as Comparative Example 1. Moreover, the lithium ion battery of the comparative example 3 was produced using the same non-aqueous electrolyte as Example 1 using this negative electrode sheet. The discharge capacity and coulomb efficiency of these batteries are shown in FIG.

(比較例4及び5)
非晶質カーボンに代えてメソフェーズカーボンマイクロビーズ[MCMB、大阪ガス製]を用いる以外は、実施例1と同様にして負極シートを作製した。該負極シートを用い、比較例1と同じ非水電解液を用いて、比較例4のリチウムイオン電池を作製した。また、該負極シートを用い、実施例1と同じ非水電解液を用いて、比較例5のリチウムイオン電池を作製した。これら電池の放電容量及びクーロン効率を図3に示す。
(Comparative Examples 4 and 5)
A negative electrode sheet was produced in the same manner as in Example 1 except that mesophase carbon micro beads [MCMB, manufactured by Osaka Gas] were used instead of amorphous carbon. A lithium ion battery of Comparative Example 4 was produced using the negative electrode sheet and the same nonaqueous electrolytic solution as Comparative Example 1. Moreover, the lithium ion battery of the comparative example 5 was produced using the same non-aqueous electrolyte as Example 1 using this negative electrode sheet. The discharge capacity and coulomb efficiency of these batteries are shown in FIG.

図1から明らかなように、負極に非晶質炭素を用い、非水電解液にホスファゼン化合物を添加することで、クーロン効率を維持しつつ放電容量を大幅に増大させることができる。また、図1〜図3の比較から、負極に非晶質炭素を用いた場合、非水電解液にホスファゼン化合物を添加することによる低サイクル数における電池の放電容量の向上効果が特に大きいことが分る。   As is apparent from FIG. 1, by using amorphous carbon for the negative electrode and adding a phosphazene compound to the non-aqueous electrolyte, the discharge capacity can be significantly increased while maintaining the Coulomb efficiency. From the comparison of FIGS. 1 to 3, when amorphous carbon is used for the negative electrode, the effect of improving the discharge capacity of the battery at a low cycle number by adding a phosphazene compound to the non-aqueous electrolyte is particularly large. I understand.

実施例1の電池と比較例1の電池の放電容量及びクーロン効率を示すグラフである。It is a graph which shows the discharge capacity and coulomb efficiency of the battery of Example 1 and the battery of Comparative Example 1. 比較例2の電池と比較例3の電池の放電容量及びクーロン効率を示すグラフである。It is a graph which shows the discharge capacity of the battery of the comparative example 2, and the battery of the comparative example 3, and coulomb efficiency. 比較例4の電池と比較例5の電池の放電容量及びクーロン効率を示すグラフである。It is a graph which shows the discharge capacity and the Coulomb efficiency of the battery of Comparative Example 4 and the battery of Comparative Example 5.

Claims (7)

正極と、非晶質炭素を含む負極と、ホスファゼン化合物及び支持塩を含む非水電解液とを備えた非水電解液2次電池。   A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing amorphous carbon, and a non-aqueous electrolyte containing a phosphazene compound and a supporting salt. 前記非晶質炭素は、X線回折法による(002)面の平均面間隔d002が0.350〜0.390nmであることを特徴とする請求項1に記載の非水電解液2次電池。 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the amorphous carbon has an (002) plane average plane distance d 002 of 0.350 to 0.390 nm according to an X-ray diffraction method. 前記非晶質炭素は、c軸方向の結晶子の大きさLc(002)が70nm以下であることを特徴とする請求項1に記載の非水電解液2次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the amorphous carbon has a crystallite size L c (002) in a c-axis direction of 70 nm or less. 前記ホスファゼン化合物が下記式(I):
Figure 2005310479

(式中、R1は、それぞれ独立して一価の置換基又はハロゲン元素を表し;Y1は、それぞれ独立して2価の連結基、2価の元素又は単結合を表し;Xは、炭素、ケイ素、ゲルマニウム、スズ、窒素、リン、ヒ素、アンチモン、ビスマス、酸素、硫黄、セレン、テルル及びポロニウムからなる群から選ばれる元素の少なくとも1種を含む置換基を表す)又は下記式(II):
(NPR2 2)n ・・・ (II)
(式中、R2はそれぞれ独立して一価の置換基又はハロゲン元素を表し;nは3〜15を表す)で表されることを特徴とする請求項1に記載の非水電解液2次電池。
The phosphazene compound has the following formula (I):
Figure 2005310479

(In the formula, each R 1 independently represents a monovalent substituent or a halogen element; Y 1 each independently represents a divalent linking group, a divalent element, or a single bond; Represents a substituent containing at least one element selected from the group consisting of carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth, oxygen, sulfur, selenium, tellurium and polonium) or the following formula (II ):
(NPR 2 2 ) n ... (II)
2. The nonaqueous electrolyte solution 2 according to claim 1, wherein each R 2 independently represents a monovalent substituent or a halogen element; n represents 3 to 15. Next battery.
前記正極の活物質がLiCoO2、LiNiO2及びLiMn24からなる群から選択される少なくとも1種のリチウム含有複合酸化物であることを特徴とする請求項1に記載の非水電解液2次電池。 2. The non-aqueous electrolyte 2 according to claim 1, wherein the positive electrode active material is at least one lithium-containing composite oxide selected from the group consisting of LiCoO 2 , LiNiO 2, and LiMn 2 O 4. Next battery. 前記非水電解液が、更に非プロトン性有機溶媒を含むことを特徴とする請求項1に記載の非水電解液2次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte further contains an aprotic organic solvent. 前記非水電解液中のホスファゼン化合物の含有率が2体積%以上であることを特徴とする請求項1に記載の非水電解液2次電池。   2. The non-aqueous electrolyte secondary battery according to claim 1, wherein a content of the phosphazene compound in the non-aqueous electrolyte is 2% by volume or more.
JP2004124244A 2004-04-20 2004-04-20 Nonaqueous electrolyte secondary battery Pending JP2005310479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124244A JP2005310479A (en) 2004-04-20 2004-04-20 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124244A JP2005310479A (en) 2004-04-20 2004-04-20 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005310479A true JP2005310479A (en) 2005-11-04

Family

ID=35439016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124244A Pending JP2005310479A (en) 2004-04-20 2004-04-20 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005310479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150920A (en) * 2010-01-22 2011-08-04 Hitachi Vehicle Energy Ltd Lithium ion battery
CN110190332A (en) * 2019-06-20 2019-08-30 东莞东阳光科研发有限公司 Electrolyte for high nickel ternary cathode material system battery and lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021442A (en) * 1998-06-30 2000-01-21 Shin Kobe Electric Mach Co Ltd Non-aqueous electrolyte secondary battery
WO2000033410A1 (en) * 1998-11-30 2000-06-08 Nippon Chemical Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2001052736A (en) * 1999-08-04 2001-02-23 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2005116306A (en) * 2003-10-07 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021442A (en) * 1998-06-30 2000-01-21 Shin Kobe Electric Mach Co Ltd Non-aqueous electrolyte secondary battery
WO2000033410A1 (en) * 1998-11-30 2000-06-08 Nippon Chemical Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2001052736A (en) * 1999-08-04 2001-02-23 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2005116306A (en) * 2003-10-07 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150920A (en) * 2010-01-22 2011-08-04 Hitachi Vehicle Energy Ltd Lithium ion battery
CN110190332A (en) * 2019-06-20 2019-08-30 东莞东阳光科研发有限公司 Electrolyte for high nickel ternary cathode material system battery and lithium ion battery

Similar Documents

Publication Publication Date Title
JP7116311B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
CA2693692C (en) Non-aqueous electrolytic solutions and electrochemical cells comprising the same
CN101202362B (en) Rechargeable lithium battery
CN111048831B (en) Electrolyte solution for secondary battery and lithium secondary battery containing electrolyte solution
JP7223221B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and non-aqueous electrolyte battery
CN1196218C (en) Nonaqueous electrochemical device and its electrolyte
JP2019530955A (en) Non-aqueous electrolyte and lithium secondary battery including the same
KR102601603B1 (en) Lithium metal battery
CN100423333C (en) Organic electrolytic solution and lithium battery using the organic electrolytic solution
CN111276741B (en) Electrolyte solution for lithium secondary batteries and lithium secondary batteries including the same
JP7610126B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4715848B2 (en) battery
US8377598B2 (en) Battery having an electrolytic solution containing difluoroethylene carbonate
CN101267046A (en) Electrolyte solution for lithium ion rechargeable battery and lithium ion rechargeable battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP4578933B2 (en) Method for producing non-aqueous electrolyte secondary battery
CN118213625A (en) Lithium secondary battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
KR20200105233A (en) A compound, and an electrolyte solution and a secondary battery comprising the compound
KR20200105242A (en) A compound, and an electrolyte solution and a secondary battery comprising the compound
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
KR20230094609A (en) Non-aqueous electrolyte and lithium secondary battery including the same
CN117121257A (en) Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
JP2005310479A (en) Nonaqueous electrolyte secondary battery
JP7606103B2 (en) Nonaqueous electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070319

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914