[go: up one dir, main page]

JP2005281597A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2005281597A
JP2005281597A JP2004100255A JP2004100255A JP2005281597A JP 2005281597 A JP2005281597 A JP 2005281597A JP 2004100255 A JP2004100255 A JP 2004100255A JP 2004100255 A JP2004100255 A JP 2004100255A JP 2005281597 A JP2005281597 A JP 2005281597A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
general formula
represented
flame retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004100255A
Other languages
Japanese (ja)
Inventor
Makoto Matsuo
誠 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004100255A priority Critical patent/JP2005281597A/en
Publication of JP2005281597A publication Critical patent/JP2005281597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for sealing semiconductors, which does not contain a halogen-based flame retardant and an antimony compound, has an excellent moldability, flame retardancy and soldering resistance. <P>SOLUTION: The epoxy resin composition comprises: (A) an epoxy resin, (B) a phenol resin, (C) a cure accelerator, (D) an inorganic filler, (E) at least one kind of flame retardants selected from aluminum hydroxide, a metal hydroxide solid solution and zinc borate and (F) a coupling agent having a secondary amino group. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体封止用エポキシ樹脂組成物、及び半導体装置に関するものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device.

従来、ダイオード、トランジスタ、集積回路等の電子部品は、主にエポキシ樹脂組成物で封止されている。これらのエポキシ樹脂組成物中には、難燃性を付与するためにハロゲン系難燃剤、及びアンチモン化合物が配合されている。ところが、環境・衛生の点からハロゲン系難燃剤、及びアンチモン化合物を使用しないで、難燃性に優れたエポキシ樹脂組成物の開発が要求されている。
又、ハロゲン系難燃剤及びアンチモン化合物を含むエポキシ樹脂組成物で封止された半導体装置を高温下で保管した場合、これらの難燃剤成分から熱分解したハロゲン化物が遊離し、半導体素子の接合部を腐食し、半導体装置の信頼性を損なうことが知られており、難燃剤としてハロゲン系難燃剤とアンチモン化合物を使用しなくても難燃グレードV−0を達成できるエポキシ樹脂組成物が要求されている。
このように、半導体装置を高温下(例えば、185℃等)に保管した後の半導体素子の接合部(ボンディングパッド部)の耐腐食性のことを高温保管特性といい、この高温保管特性を改善する手法としては、五酸化二アンチモンを使用する方法(例えば、特許文献1参照)や、酸化アンチモンと有機ホスフィンとを組み合わせる方法(例えば、特許文献2参照)等が提案され、効果が確認されているが、最近の半導体装置に対する高温保管特性の高い要求レベルに対して、エポキシ樹脂組成物の種類によっては不満足なものもある。
Conventionally, electronic components such as diodes, transistors, and integrated circuits are mainly sealed with an epoxy resin composition. In these epoxy resin compositions, a halogen-based flame retardant and an antimony compound are blended in order to impart flame retardancy. However, development of an epoxy resin composition excellent in flame retardancy is required without using halogen-based flame retardants and antimony compounds from the viewpoint of environment and hygiene.
In addition, when a semiconductor device sealed with an epoxy resin composition containing a halogen-based flame retardant and an antimony compound is stored at a high temperature, the thermally decomposed halide is liberated from these flame retardant components, and the junction of the semiconductor element It is known that the reliability of semiconductor devices will be corroded, and an epoxy resin composition capable of achieving flame retardant grade V-0 is required without using halogenated flame retardants and antimony compounds as flame retardants. ing.
In this way, the corrosion resistance of the semiconductor element junction (bonding pad) after storing the semiconductor device at a high temperature (for example, 185 ° C.) is called the high temperature storage characteristic, and this high temperature storage characteristic is improved. As a technique to do so, a method using diantimony pentoxide (for example, refer to Patent Document 1), a method of combining antimony oxide and an organic phosphine (for example, refer to Patent Document 2), etc. have been proposed, and the effects have been confirmed. However, some of the types of epoxy resin compositions are unsatisfactory with respect to the high level required for high-temperature storage characteristics for recent semiconductor devices.

又、難燃剤としてほう酸亜鉛が提案されており、多量に添加することにより難燃グレードV−0を達成でき、高温保管特性も問題ないが、添加量が多いことにより耐湿信頼性、成形性、耐半田性が低下するという問題がある。
前記欠点を改良した技術として、特定の金属水酸化物と特定の金属酸化物の併用、或いは特定の金属水酸化物と特定の金属酸化物の複合化金属水酸化物を用いることにより、難燃性と耐湿信頼性を解決する提案がされているが(例えば、特許文献3、4参照)、十分な難燃性を発現させるためには、多量の添加を必要とし、そのため成形性、耐半田性の低下を引き起こす問題がある。
即ち、難燃性を維持し、成形性、高温保管特性、耐湿信頼性及び耐半田性に優れ、ハロゲン系難燃剤、及びアンチモン化合物を使用しないエポキシ樹脂組成物が求められている。
特開昭55−146950号公報 特開昭61−53321号公報 特開平10−251486号公報(第2〜13頁) 特開平11−11945号公報等(第2〜14頁)
In addition, zinc borate has been proposed as a flame retardant, flame retardant grade V-0 can be achieved by adding a large amount, and there is no problem with high temperature storage characteristics, but moisture addition reliability, moldability, There is a problem that solder resistance is lowered.
Flame retardant by using a specific metal hydroxide and a specific metal oxide in combination or a composite metal hydroxide of a specific metal hydroxide and a specific metal oxide as a technique for improving the above-mentioned drawbacks Has been proposed (see, for example, Patent Documents 3 and 4), but a large amount of addition is required to exhibit sufficient flame retardancy. There is a problem that causes sex decline.
That is, there is a demand for an epoxy resin composition that maintains flame retardancy, is excellent in moldability, high-temperature storage characteristics, moisture resistance reliability, and solder resistance and does not use a halogen-based flame retardant and an antimony compound.
JP 55-146950 A Japanese Patent Laid-Open No. 61-53321 JP-A-10-251486 (pages 2 to 13) Japanese Patent Laid-Open No. 11-11945 (pages 2-14)

本発明は、ハロゲン系難燃剤、及びアンチモン化合物を含まず成形性、難燃性、及び耐半田性に優れた半導体封止用エポキシ樹脂組成物、及びこれを用いて半導体素子を封止してなる半導体装置を提供するものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation that does not contain a halogen-based flame retardant and an antimony compound and has excellent moldability, flame retardancy, and solder resistance, and a semiconductor element using the same. A semiconductor device is provided.

本発明は、
[1] (A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)無機充填材、(E)水酸化マグネシウム、水酸化アルミニウム、モリブデン酸亜鉛、一般式(1
)で示される金属水酸化物固溶体、又は一般式(2)で示されるほう酸亜鉛の中から選ばれる1種以上の難燃剤、及び(F)一般式(3)で示されるシランカップリング剤を必須成分とすることを特徴とする半導体封止用エポキシ樹脂組成物、
Mg1-y2+ y (OH)2 (1)
(式中M2+は、Mn2+、Fe2+、Co2+、Ni2+、Cu2+及びZn2+の群から選ばれた少なくとも1種の二価金属イオンを示し、yは0.01≦y≦0.5である。)
pZnO・qB23・rH2O (2)
(式中p、q、rは正数。)
The present invention
[1] (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) inorganic filler, (E) magnesium hydroxide, aluminum hydroxide, zinc molybdate, general formula (1)
1) one or more flame retardants selected from a metal hydroxide solid solution represented by formula (2) or zinc borate represented by formula (2), and (F) a silane coupling agent represented by formula (3) An epoxy resin composition for semiconductor encapsulation, characterized by being an essential component,
Mg 1-y M 2+ y (OH) 2 (1)
( Wherein M 2+ represents at least one divalent metal ion selected from the group consisting of Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+, and Zn 2+ ; 0.01 ≦ y ≦ 0.5.)
pZnO · qB 2 O 3 · rH 2 O (2)
(In the formula, p, q and r are positive numbers.)

Figure 2005281597
(R1は炭素数1〜12の有機基、R2、R3、R4は炭素数1〜12の炭化水素基、nは1〜3の整数。)
Figure 2005281597
(R 1 is an organic group having 1 to 12 carbon atoms, R 2 , R 3 and R 4 are hydrocarbon groups having 1 to 12 carbon atoms, and n is an integer of 1 to 3)

[2] 水酸化マグネシウム、水酸化アルミニウム、モリブデン酸亜鉛、一般式(1)で示される金属水酸化物固溶体、又は一般式(2)で示されるほう酸亜鉛の中から選ばれる1種以上の難燃剤(E)が、一般式(3)で示されるシランカップリング剤(F)により予め表面処理される第[1]項記載の半導体封止用エポキシ樹脂組成物、
[3] 第[1]又は[2]項記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
[2] One or more kinds of difficulties selected from magnesium hydroxide, aluminum hydroxide, zinc molybdate, metal hydroxide solid solution represented by general formula (1), or zinc borate represented by general formula (2) The epoxy resin composition for semiconductor encapsulation according to item [1], wherein the flame retardant (E) is previously surface-treated with a silane coupling agent (F) represented by the general formula (3),
[3] A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to the item [1] or [2],
It is.

本発明に従うと、ハロゲン系難燃剤、及びアンチモン化合物を含まず、成形性に優れた半導体封止用エポキシ樹脂組成物が得られ、これを用いた半導体装置は難燃性、及び耐半田性に優れる。 According to the present invention, an epoxy resin composition for semiconductor encapsulation that does not contain a halogen-based flame retardant and an antimony compound and is excellent in moldability is obtained, and a semiconductor device using the same has flame resistance and solder resistance. Excellent.

本発明のエポキシ樹脂組成物は、特定の難燃剤、特定の2級アミノ基を有するカップリング剤を用いることにより、ハロゲン系難燃剤、及びアンチモン化合物を含まずに難燃性を発現し、成形性及び耐半田性に優れることを見出した。   The epoxy resin composition of the present invention exhibits flame retardancy without using a halogen-based flame retardant and an antimony compound by using a specific flame retardant and a coupling agent having a specific secondary amino group. It has been found that it has excellent properties and solder resistance.

以下、本発明を詳細に説明する。
本発明に用いるエポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造を特に限定するものではないが、例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、これらは単独でも混合して用いても差し支えない。
Hereinafter, the present invention will be described in detail.
The epoxy resin used in the present invention refers to monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited. For example, biphenyl type epoxy resins, Bisphenol type epoxy resin, stilbene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenolmethane type epoxy resin, alkyl modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene modified phenol type Examples thereof include an epoxy resin and a phenol aralkyl type epoxy resin (having a phenylene skeleton, a biphenylene skeleton, etc.), and these may be used alone or in combination.

本発明に用いるフェノール樹脂としては、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する
)等が挙げられ、これらは単独でも混合して用いても差し支えない。
また、全エポキシ樹脂のエポキシ基とフェノール樹脂のフェノール性水酸基の当量比については、エポキシ基数/フェノール性水酸基数=0.7〜1.5の範囲が好ましく、この範囲を外れると、エポキシ樹脂組成物の硬化性の低下、或いは硬化物のガラス転移温度の低下、耐湿信頼性の低下等が生じるので好ましくない。
The phenol resin used in the present invention refers to monomers, oligomers, and polymers generally having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, Examples include cresol novolac resins, dicyclopentadiene-modified phenol resins, terpene-modified phenol resins, triphenolmethane resins, phenol aralkyl resins (having a phenylene skeleton, biphenylene skeleton, etc.), and these may be used alone or in combination. There is no problem.
Moreover, about the equivalent ratio of the epoxy group of all epoxy resins and the phenolic hydroxyl group of a phenol resin, the range of epoxy group number / phenolic hydroxyl group number = 0.7-1.5 is preferable, and if it remove | deviates from this range, an epoxy resin composition This is not preferable because the curability of the product is lowered, the glass transition temperature of the cured product is lowered, and the moisture resistance reliability is lowered.

本発明に用いる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止材料に用いられているものを使用することができる。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリフェニルホスフィン、2−メチルイミダゾール、テトラフェニルホスホニウム・テトラフェニルボレート等が挙げられ、これらは単独でも混合して用いても差し支えない。   As a hardening accelerator used for this invention, what is necessary is just to accelerate | stimulate the hardening reaction of an epoxy group and a phenolic hydroxyl group, and what is generally used for the sealing material can be used. Examples thereof include 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, 2-methylimidazole, tetraphenylphosphonium / tetraphenylborate and the like. These may be used alone or in combination. Absent.

本発明で用いられる無機充填材は、例えば溶融シリカ、球状シリカ、結晶シリカ、2次凝集シリカ、多孔質シリカ、2次凝集シリカ又は多孔質シリカを粉砕したシリカ、アルミナ、窒化珪素等が挙げられるが、溶融シリカ粉末、結晶シリカ粉末が好ましい。また無機充填材の形状としては、破砕状でも球状でもかまわないが、耐半田性を向上させるために高充填し、その他、流動特性、機械強度及び熱的特性のバランスの点から球状溶融シリカ粉末が好ましい。最大粒径としては75μm以下が好ましく、平均粒径としては5〜35μmが好ましい。この範囲を外れると、エポキシ樹脂組成物の流動性が低下し、成形時の未充填やチップシフト等の半導体装置内部の素子の変形が起こり易くなり好ましくない。粒度分布としては広いものが、成形時のエポキシ樹脂組成物の溶融粘度を低減するために有効である。これらの無機充填材は単独でも混合して用いてもよい。更にシランカップリング剤等で予め表面処理をしたものを用いてもよい。無機充填材の配合量としては、本発明で言う難燃剤と前記無機充填材との合計量が、成形性と耐半田性のバランスから、全エポキシ樹脂組成物中に65〜93重量%含有することが好ましい。下限値を下回ると、エポキシ樹脂組成物の硬化物の吸湿量が増大し、しかも半田処理温度での強度が低下してしまうため、半田処理時に半導体装置にクラックが生じやすくなり、上限値を越えると、エポキシ樹脂組成物の成形時の流動性が低下し、未充填や半導体素子のパッドシフトが発生し易くなり好ましくない。しかし無機充填材はなるべく多く配合した方が、エポキシ樹脂組成物の硬化物の吸湿率が減少し、耐半田性が向上するので、成形時の流動性が許容される範囲内でなるべく多く配合した方が好ましい。   Examples of the inorganic filler used in the present invention include fused silica, spherical silica, crystalline silica, secondary agglomerated silica, porous silica, silica obtained by pulverizing secondary agglomerated silica or porous silica, alumina, silicon nitride, and the like. However, fused silica powder and crystalline silica powder are preferred. The shape of the inorganic filler may be either crushed or spherical, but it is highly filled to improve solder resistance, and in addition, spherical fused silica powder from the viewpoint of balance of flow characteristics, mechanical strength and thermal characteristics. Is preferred. The maximum particle size is preferably 75 μm or less, and the average particle size is preferably 5 to 35 μm. If it is out of this range, the fluidity of the epoxy resin composition is lowered, and deformation of elements in the semiconductor device such as unfilling at the time of molding or chip shift is likely to occur, which is not preferable. A wide particle size distribution is effective for reducing the melt viscosity of the epoxy resin composition during molding. These inorganic fillers may be used alone or in combination. Further, a surface treated beforehand with a silane coupling agent or the like may be used. As the blending amount of the inorganic filler, the total amount of the flame retardant referred to in the present invention and the inorganic filler is 65 to 93% by weight in the total epoxy resin composition from the balance of moldability and solder resistance. It is preferable. Below the lower limit, the moisture absorption of the cured product of the epoxy resin composition increases and the strength at the soldering process temperature decreases, so that the semiconductor device is likely to crack during the soldering process and exceeds the upper limit. Then, the fluidity at the time of molding of the epoxy resin composition is lowered, and unfilling or pad shift of the semiconductor element is likely to occur, which is not preferable. However, blending as many inorganic fillers as possible reduces the moisture absorption rate of the cured epoxy resin composition and improves solder resistance. Therefore, blending as much as possible within the allowable range of fluidity during molding. Is preferred.

本発明に用いる水酸化マグネシウム、水酸化アルミニウム、モリブデン酸亜鉛、一般式(1)で示される金属水酸化物固溶体、又は一般式(2)で示されるほう酸亜鉛は、難燃剤として作用するものである。
水酸化マグネシウム、水酸化アルミニウム及び一般式(1)で示される金属水酸化物固溶体の難燃機構としては、燃焼時に金属水酸化物が脱水を開始し、吸熱することによって燃焼反応を阻害するものである。又樹脂硬化物の炭化を促進することが知られており、硬化物表面に酸素を遮断する難燃層を形成すると考えられる。
更に、一般式(1)で示される金属水酸化物固溶体は、吸熱開始温度を適度に下げ、難燃性能を向上する効果がある。吸熱開始温度が低いと成形性、信頼性に悪影響を及ぼし、又吸熱開始温度が樹脂硬化物の分解温度より高いと難燃性が低下するが、本発明に用いる金属水酸化物固溶体の吸熱開始温度は、300〜350℃近辺で適正な値である。一般式(1)の内で特に好ましいM2+としては、Ni2+、Zn2+である。一般式(1)で示される金属水酸化物固溶体の平均粒径は、0.5〜30μm、より好ましくは0.5〜10μmである。
Magnesium hydroxide, aluminum hydroxide, zinc molybdate, a metal hydroxide solid solution represented by the general formula (1), or zinc borate represented by the general formula (2) used in the present invention acts as a flame retardant. is there.
As the flame retardant mechanism of magnesium hydroxide, aluminum hydroxide and the metal hydroxide solid solution represented by the general formula (1), the metal hydroxide starts dehydration during combustion and inhibits the combustion reaction by absorbing heat. It is. It is also known to promote carbonization of the cured resin and is considered to form a flame retardant layer that blocks oxygen on the surface of the cured product.
Furthermore, the metal hydroxide solid solution represented by the general formula (1) has an effect of appropriately reducing the endothermic start temperature and improving the flame retardancy. If the endothermic start temperature is low, the moldability and reliability are adversely affected, and if the endothermic start temperature is higher than the decomposition temperature of the cured resin, the flame retardancy decreases, but the endothermic start of the metal hydroxide solid solution used in the present invention The temperature is an appropriate value around 300 to 350 ° C. Particularly preferable M 2+ in the general formula (1) is Ni 2+ or Zn 2+ . The average particle diameter of the metal hydroxide solid solution represented by the general formula (1) is 0.5 to 30 μm, more preferably 0.5 to 10 μm.

本発明に用いる一般式(2)で示されるほう酸亜鉛は、難燃性と耐湿信頼性との兼ね合いから2ZnO・3B23・3.5H2Oや4ZnO・B23・H2O等が挙げられ、特に、2ZnO・3B23・3.5H2Oが高い難燃性を示す。平均粒径としては、1〜30
μm、より好ましくは5〜20μmである。
Zinc borate represented by the general formula (2) used in the present invention, 2ZnO · 3B 2 from balance between flame retardancy and moisture resistance reliability O 3 · 3.5 H 2 O and 4ZnO · B 2 O 3 · H 2 O In particular, 2ZnO.3B 2 O 3 .3.5H 2 O exhibits high flame retardancy. As an average particle diameter, it is 1-30.
It is μm, more preferably 5 to 20 μm.

本発明に用いるモリブデン酸亜鉛は、従来塩化ビニル樹脂の発煙抑制剤、難燃剤として有効であることが知られている。その難燃機構については、燃焼時にモリブデン酸亜鉛が、樹脂硬化物の炭化を促進することが知られており、これにより空気中の酸素との遮断が起こり、燃焼が止まり難燃化が達成されると考えられる。又モリブデン酸亜鉛は単独で用いてもよいが、吸湿し易い傾向があり、配合量が多くなると半導体装置の吸湿率が高くなり、耐半田性が低下するおそれがあり、更に成形性も低下する。従って、溶融球状シリカ、タルク等の無機系物質をコア材としてモリブデン酸亜鉛で被覆することにより、難燃剤として表面のモリブデン酸亜鉛のみが作用することとなり、モリブデン酸亜鉛単独配合による吸湿率の上昇を抑え、成形性も改良することができる。溶融球状シリカ、タルク等をモリブデン酸亜鉛で被覆したものの平均粒径としては、0.5〜30μm、最大粒径としては75μm以下が好ましい。   Zinc molybdate used in the present invention is conventionally known to be effective as a smoke suppressant and flame retardant for vinyl chloride resins. As for the flame retardant mechanism, it is known that zinc molybdate promotes carbonization of the cured resin during combustion, which blocks the oxygen from the air, stops the combustion and achieves flame retardancy. It is thought. Zinc molybdate may be used alone, but it tends to absorb moisture. When the blending amount is increased, the moisture absorption rate of the semiconductor device increases, solder resistance may decrease, and moldability also decreases. . Therefore, by coating inorganic materials such as fused spherical silica and talc with zinc molybdate as a core material, only the surface zinc molybdate acts as a flame retardant, and the moisture absorption rate increases due to the zinc molybdate alone compounded. And moldability can be improved. The average particle size of the fused spherical silica, talc or the like coated with zinc molybdate is preferably 0.5 to 30 μm, and the maximum particle size is preferably 75 μm or less.

水酸化マグネシウム、水酸化アルミニウム、モリブデン酸亜鉛、一般式(1)で示される金属水酸化物固溶体、又は一般式(2)で示されるほう酸亜鉛は、各々単独でも難燃性を付与する性質があるが、十分な難燃性を発現させるには、多量の配合量が必要となる。多量に配合することにより、流動性、成形性及び強度の低下を引き起こす傾向にあり、耐半田性が低下する。これらの諸特性の低下を防ぐためにも配合量は極力少なくする必要がある。各々の難燃剤を併用することにより、その相乗効果として更に難燃性が向上し、配合量を低減させることが可能となる。
又、水酸化マグネシウム、水酸化アルミニウム、モリブデン酸亜鉛、一般式(1)で示される金属水酸化物固溶体、又は一般式(2)で示されるほう酸亜鉛の配合量は、特に制限されないが、全エポキシ樹脂組成物中に0.1〜10重量%が好ましく、0.5〜5重量%がより好ましい。
各々の難燃剤とも燃焼時の吸熱を発生させると共に、水酸化マグネシウム、水酸化アルミニウム、一般式(1)で示される金属水酸化物固溶体、又はモリブデン酸亜鉛は、樹脂硬化物の炭化を促進させ、一般式(2)のほう酸亜鉛は、ガラス状被膜形成による炭化層の強度向上の作用がある。理由は定かでないがこれらを併用することにより、互いの能力を補い合い、その相乗効果として高い難燃性を得ることができる。その結果として、配合量を少なくしても難燃性を維持し、流動性、成形性及び強度の低下等を防ぐことができる。
Magnesium hydroxide, aluminum hydroxide, zinc molybdate, metal hydroxide solid solution represented by the general formula (1), or zinc borate represented by the general formula (2) each has a property of imparting flame retardancy. However, a large amount of blending is required to develop sufficient flame retardancy. Mixing in a large amount tends to cause a decrease in fluidity, moldability, and strength, and solder resistance decreases. In order to prevent the deterioration of these various characteristics, it is necessary to reduce the blending amount as much as possible. By using each flame retardant together, the flame retardancy is further improved as a synergistic effect, and the blending amount can be reduced.
Further, the blending amount of magnesium hydroxide, aluminum hydroxide, zinc molybdate, metal hydroxide solid solution represented by general formula (1), or zinc borate represented by general formula (2) is not particularly limited. 0.1-10 weight% is preferable in an epoxy resin composition, and 0.5-5 weight% is more preferable.
Each flame retardant generates endotherm during combustion, and magnesium hydroxide, aluminum hydroxide, metal hydroxide solid solution represented by the general formula (1), or zinc molybdate promotes carbonization of the cured resin. The zinc borate of general formula (2) has the effect of improving the strength of the carbonized layer by forming a glassy film. Although the reason is not clear, by using these together, it is possible to supplement each other's ability and obtain high flame retardancy as a synergistic effect. As a result, flame retardancy can be maintained even if the blending amount is reduced, and fluidity, moldability, strength deterioration, and the like can be prevented.

本発明に用いる一般式(3)で示されるシランカップリング剤はアミノ基を含有し、且つ該アミノ基がすべて二級アミノ基であるシラン化合物である。これらのシランカップリング剤の具体例としては以下の化合物が挙げられるが、これらに限定されるものではない。これらは単独で使用しても2種類以上を併用してもよい。   The silane coupling agent represented by the general formula (3) used in the present invention is a silane compound containing an amino group and all of the amino groups being secondary amino groups. Specific examples of these silane coupling agents include the following compounds, but are not limited thereto. These may be used alone or in combination of two or more.

Figure 2005281597
Figure 2005281597

本発明の上記難燃剤を添加した系において、従来から良く知られている一級のアミノ基を有するシランカップリング剤を用いると難燃剤添加による強度低下は抑えることはできるが、エポキシ樹脂組成物の粘度が上昇し、流動性がさらに低下する。これに対し、本発明のシランカップリング剤を用いることで低粘度化が達成され、難燃剤添加による強度低下と流動性低下の双方を抑えることができる。中でもC65NHC36Si(OCH33が最も望ましい。
さらに本発明の難燃剤を一般式(3)で示されるシランカップリング剤で表面処理することにより、カップリング剤が難燃剤表面に化学的に結合し、有機物と親和し易い被膜を形成するため、樹脂との相溶性に優れ、樹脂中への難燃剤の分散性が向上する。このため、少量の添加で十分な難燃性を発現させることができ、難燃剤添加による強度低下、流動性低下を抑えることができる。
一般式(3)で示されるシランカップリング剤で難燃剤の表面を処理する手法としては、常温で難燃剤をスーパーミキサーにて予備混合した後、カップリング剤をそのまま、或いは適当な溶剤に希釈して滴下し、更に攪拌を行って処理した難燃剤を得る方法等が挙げられる。
又、一般式(3)で示されるシランカップリング剤の配合量は特に制限されないが、全エポキシ樹脂組成物中に0.01〜3重量%が好ましく、0.05〜1重量%がより好ましい。下限値を下回ると十分な強度と流動性が得られない可能性があり、上限値を超えると硬化性が低下する可能性がある。
In the system to which the above flame retardant is added according to the present invention, when a well-known silane coupling agent having a primary amino group is used, a decrease in strength due to the addition of the flame retardant can be suppressed. Viscosity increases and fluidity further decreases. On the other hand, by using the silane coupling agent of the present invention, low viscosity is achieved, and both strength reduction and fluidity reduction due to the addition of the flame retardant can be suppressed. Of these, C 6 H 5 NHC 3 H 6 Si (OCH 3 ) 3 is most desirable.
Furthermore, by subjecting the flame retardant of the present invention to a surface treatment with the silane coupling agent represented by the general formula (3), the coupling agent is chemically bonded to the surface of the flame retardant to form a film that is easily compatible with organic matter. Excellent compatibility with resin, and dispersibility of flame retardant in resin is improved. For this reason, sufficient flame retardance can be expressed by addition of a small amount, and strength reduction and fluidity reduction due to addition of the flame retardant can be suppressed.
As a method of treating the surface of the flame retardant with the silane coupling agent represented by the general formula (3), after pre-mixing the flame retardant with a super mixer at room temperature, the coupling agent is diluted as it is or in an appropriate solvent. And a method of obtaining a treated flame retardant by further stirring and the like.
The amount of the silane coupling agent represented by the general formula (3) is not particularly limited, but is preferably 0.01 to 3% by weight, more preferably 0.05 to 1% by weight in the total epoxy resin composition. . If the lower limit is not reached, sufficient strength and fluidity may not be obtained, and if the upper limit is exceeded, curability may be reduced.

本発明のエポキシ樹脂組成物は、(A)〜(E)成分を必須成分とするが、これ以外に必要に応じてγ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、天然ワックス、合成ワックス等の離型剤、及びシリコーンオイル
、ゴム等の低応力添加剤等の種々の添加剤を適宜配合しても差し支えない。
又、本発明のエポキシ樹脂組成物は、(A)〜(E)成分、及びその他の添加剤等をミキサー等を用いて充分に均一に混合した後、更に熱ロール又はニーダー等で溶融混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体等の各種の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
The epoxy resin composition of the present invention has components (A) to (E) as essential components, but in addition to this, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, carbon black, etc. Various additives such as colorants, release agents such as natural wax and synthetic wax, and low-stress additives such as silicone oil and rubber may be appropriately blended.
In addition, the epoxy resin composition of the present invention is sufficiently kneaded with a hot roll or a kneader after the components (A) to (E) and other additives are sufficiently uniformly mixed using a mixer or the like. It is obtained by pulverizing after cooling.
The epoxy resin composition of the present invention is used to encapsulate various electronic components such as semiconductors and to manufacture a semiconductor device by curing by conventional molding methods such as transfer molding, compression molding, and injection molding. That's fine.

以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
なお、実施例、及び比較例で用いたエポキシ樹脂、フェノール樹脂、シランカップリング剤、シランカップリング剤にて表面処理した難燃剤の詳細を以下にまとめて示す。
エポキシ樹脂A:ビフェニル型エポキシ樹脂(融点105℃、エポキシ当量185)
エポキシ樹脂B:クレゾールノボラック型エポキシ樹脂(軟化点62℃、エポキシ当量210)
フェノール樹脂A:フェノールアラルキル樹脂(軟化点62℃、水酸基当量168)
フェノール樹脂B:フェノールノボラック樹脂(軟化点81℃、水酸基当量105)
シランカップリング剤A:式(4)で示されるカップリング剤(信越化学(株)製、KBM−573)
Examples of the present invention are shown below, but the present invention is not limited thereto. The blending ratio is parts by weight.
In addition, the detail of the flame retardant surface-treated with the epoxy resin, phenol resin, silane coupling agent, and silane coupling agent used in Examples and Comparative Examples is shown below.
Epoxy resin A: biphenyl type epoxy resin (melting point 105 ° C., epoxy equivalent 185)
Epoxy resin B: Cresol novolac type epoxy resin (softening point 62 ° C., epoxy equivalent 210)
Phenol resin A: Phenol aralkyl resin (softening point 62 ° C., hydroxyl group equivalent 168)
Phenol resin B: Phenol novolak resin (softening point 81 ° C., hydroxyl group equivalent 105)
Silane coupling agent A: Coupling agent represented by formula (4) (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-573)

Figure 2005281597
Figure 2005281597

シランカップリング剤B:式(7)で示されるカップリング剤(信越化学(株)製、X12−806)   Silane coupling agent B: Coupling agent represented by formula (7) (X12-806, manufactured by Shin-Etsu Chemical Co., Ltd.)

Figure 2005281597
Figure 2005281597

シランカップリング剤で表面処理した難燃剤の製造例
難燃剤A:金属水酸化物固溶体(Mg0.8Zn0.2(OH)2、平均粒径1μm)50重
量%とほう酸亜鉛(2ZnO・3B23・3.5H2O、平均粒径10μm)50重量%
を常温でスーパーミキサーを用いて攪拌しながら、シランカップリング剤Aを1重量%滴下して加え、そのまま攪拌を5分間継続した後、室温で4時間放置し難燃剤Aを得た。
難燃剤B:水酸化アルミニウム(平均粒径3μm)50重量%とほう酸亜鉛(2ZnO・3B23・3.5H2O、平均粒径10μm)50重量%を常温でスーパーミキサーを
用いて攪拌しながら、シランカップリング剤Aを1重量%滴下して加え、そのまま攪拌を5分間継続した後、室温で4時間放置し難燃剤Bを得た。
難燃剤C:金属水酸化物固溶体(Mg0.8Zn0.2(OH)2、平均粒径1μm)50重
量%とほう酸亜鉛(2ZnO・3B23・3.5H2O、平均粒径10μm)50重量%
を常温でスーパーミキサーを用いて攪拌しながら、シランカップリング剤Bを1重量%滴下して加え、そのまま攪拌を5分間継続した後、室温で4時間放置し難燃剤Cを得た。
難燃剤D:金属水酸化物固溶体(Mg0.8Zn0.2(OH)2、平均粒径1μm)50重
量%とほう酸亜鉛(2ZnO・3B23・3.5H2O、平均粒径10μm)50重量%
を常温でスーパーミキサーを用いて攪拌しながら、γ−アミノプロピルトリメトキシシランを1重量%滴下して加え、そのまま攪拌を5分間継続した後、室温で4時間放置し難燃剤Dを得た。
Example of production of flame retardant surface-treated with silane coupling agent Flame retardant A: 50% by weight of metal hydroxide solid solution (Mg 0.8 Zn 0.2 (OH) 2 , average particle size 1 μm) and zinc borate (2ZnO · 3B 2 O 3・ 3.5H 2 O, average particle size 10 μm) 50% by weight
While stirring at room temperature using a supermixer, 1% by weight of silane coupling agent A was added dropwise, stirring was continued for 5 minutes, and the mixture was allowed to stand at room temperature for 4 hours to obtain flame retardant A.
Flame retardant B: 50% by weight of aluminum hydroxide (average particle size 3 μm) and 50% by weight of zinc borate (2ZnO.3B 2 O 3 .3.5H 2 O, average particle size 10 μm) are stirred at room temperature using a super mixer. Then, 1% by weight of silane coupling agent A was added dropwise, and stirring was continued for 5 minutes. Then, the mixture was allowed to stand at room temperature for 4 hours to obtain flame retardant B.
Flame retardant C: 50% by weight of metal hydroxide solid solution (Mg 0.8 Zn 0.2 (OH) 2 , average particle size 1 μm) and zinc borate (2ZnO.3B 2 O 3 .3.5H 2 O, average particle size 10 μm) 50 weight%
While stirring at room temperature using a supermixer, 1% by weight of silane coupling agent B was added dropwise, stirring was continued for 5 minutes, and the mixture was allowed to stand at room temperature for 4 hours to obtain flame retardant C.
Flame retardant D: 50% by weight of metal hydroxide solid solution (Mg 0.8 Zn 0.2 (OH) 2 , average particle size 1 μm) and zinc borate (2ZnO.3B 2 O 3 .3.5H 2 O, average particle size 10 μm) 50 weight%
While stirring at room temperature using a supermixer, 1% by weight of γ-aminopropyltrimethoxysilane was added dropwise, and stirring was continued for 5 minutes. Then, the mixture was left at room temperature for 4 hours to obtain flame retardant D.

実施例1
エポキシ樹脂A 77重量部
フェノール樹脂A 70重量部
1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという)
2重量部
溶融球状シリカ(平均粒径23μm、最大粒径75μm) 790重量部
難燃剤A 50重量部
γ−グリシドキシプロピルトリメトキシシラン 3重量部
カーボンブラック 3重量部
カルナバワックス 5重量部を常温でスーパーミキサーを用いて混合し、70〜100℃でロール混練し、冷却後粉砕してエポキシ樹脂組成物とした。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
Example 1
Epoxy resin A 77 parts by weight Phenol resin A 70 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU)
2 parts by weight Fused spherical silica (average particle size 23 μm, maximum particle size 75 μm) 790 parts by weight Flame retardant A 50 parts by weight γ-glycidoxypropyltrimethoxysilane 3 parts by weight Carbon black 3 parts by weight Carnauba wax 5 parts by weight The mixture was mixed with a super mixer, roll-kneaded at 70 to 100 ° C., cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.

評価方法
スパイラルフロー:EMMI−1−66に準じたスパラルフロー測定用金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
難燃性:トランスファー成形機を用いて金型温度175℃、注入圧力9.8MPa、硬化時間120秒で試験片(長さ5inch×幅1/2inch×厚さ1/8inch)を成形し、ポストキュアとして175℃で4時間加熱処理した後、UL−94垂直試験を行い、難燃性を判定した。
熱時強度:トランスファー成形機を用いて成形温度175℃、圧力9.8MPa、硬化時間120秒で試験片(80mm×10mm×4mm)を成形し、ポストキュアとして175℃で4時間加熱処理した後、260℃での曲げ強度をJIS K 6911に準じて測定した。単位はN/mm2
耐半田性1:トランスファー成形機を用い、成形温度175℃、圧力9.8MPa、硬化時間120秒で、80pQFP(パッケージサイズは14×20mm、厚み2mm、シリコンチップサイズは7.0×7.0mm、リードフレームはCu製)を成形し、ポストキュアとして175℃で4時間加熱処理したパッケージ10個を、60℃、相対湿度60%の環境下で168時間加湿処理した後、IRリフロー処理(260℃)を行った。IRリフロー処理後の内部の剥離又はクラックの有無を超音波探傷装置で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/10と表示する。
耐半田性2:トランスファー成形機を用い、成形温度175℃、圧力9.8MPa、硬化時間120秒で、80pQFP(パッケージサイズは14×20mm、厚み2mm、シリコンチップサイズは7.0×7.0mm、リードフレームはCu製)を成形し、ポストキュアとして175℃で4時間加熱処理したパッケージ10個を、30℃、相対湿度70%の環境下で168時間加湿処理した後、IRリフロー処理(260℃)を行った。IRリフロー処理後の内部の剥離又はクラックの有無を超音波探傷装置で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/10と表示する。
Evaluation method Spiral flow: Measurement was performed at a mold temperature of 175 [deg.] C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds using a mold for measuring a spiral flow according to EMMI-1-66. The unit is cm.
Flame retardancy: Using a transfer molding machine, mold a test piece (length 5 inch x width 1/2 inch x thickness 1/8 inch) with a mold temperature of 175 ° C, an injection pressure of 9.8 MPa, and a curing time of 120 seconds. After curing at 175 ° C. for 4 hours as a cure, a UL-94 vertical test was performed to determine flame retardancy.
Strength during heating: After molding a test piece (80 mm × 10 mm × 4 mm) at a molding temperature of 175 ° C., a pressure of 9.8 MPa, a curing time of 120 seconds using a transfer molding machine, and post-curing at 175 ° C. for 4 hours. The bending strength at 260 ° C. was measured according to JIS K 6911. The unit is N / mm 2 .
Solder resistance 1: 80 pQFP using a transfer molding machine at a molding temperature of 175 ° C., a pressure of 9.8 MPa, and a curing time of 120 seconds (package size is 14 × 20 mm, thickness is 2 mm, silicon chip size is 7.0 × 7.0 mm) The lead frame was made of Cu), and 10 packages heat treated at 175 ° C. for 4 hours as post cure were humidified for 168 hours in an environment of 60 ° C. and 60% relative humidity, and then IR reflow treatment (260 ° C). The presence or absence of internal peeling or cracks after the IR reflow treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 10 is displayed.
Solder resistance 2: 80 pQFP using a transfer molding machine at a molding temperature of 175 ° C., a pressure of 9.8 MPa and a curing time of 120 seconds (package size is 14 × 20 mm, thickness is 2 mm, silicon chip size is 7.0 × 7.0 mm) The lead frame is made of Cu), and 10 packages heat treated at 175 ° C. for 4 hours as post-cure were humidified for 168 hours in an environment of 30 ° C. and 70% relative humidity, and then IR reflow treatment (260 ° C). The presence or absence of internal peeling or cracks after IR reflow treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 10 is displayed.

実施例2〜8、比較例1〜6
表1、2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を作製し、実施例1と同様にして評価した。結果を表1、2に示す。
Examples 2-8, Comparative Examples 1-6
According to the composition of Tables 1 and 2, an epoxy resin composition was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.

Figure 2005281597
Figure 2005281597

Figure 2005281597
Figure 2005281597

本発明に従うと、ハロゲン系難燃剤、及びアンチモン化合物を含まず、成形性に優れた半導体封止用エポキシ樹脂組成物が得られ、これを用いた半導体装置は難燃性、及び耐半田性に優れるので、ダイオード、トランジスタ、集積化路などの半導体装置全般に好適に用いることができる。
According to the present invention, an epoxy resin composition for semiconductor encapsulation excellent in moldability, which does not contain a halogen-based flame retardant and an antimony compound, is obtained, and a semiconductor device using the same has flame resistance and solder resistance. Since it is excellent, it can be suitably used for semiconductor devices such as diodes, transistors, and integrated paths.

Claims (3)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)無機充填材、(E)水酸化マグネシウム、水酸化アルミニウム、モリブデン酸亜鉛、一般式(1)で示される金属水酸化物固溶体、又は一般式(2)で示されるほう酸亜鉛の中から選ばれる1種以上の難燃剤、及び(F)一般式(3)で示されるシランカップリング剤を必須成分とすることを特徴とする半導体封止用エポキシ樹脂組成物。
Mg1-y2+ y (OH)2 (1)
(式中M2+は、Mn2+、Fe2+、Co2+、Ni2+、Cu2+及びZn2+の群から選ばれた少なくとも1種の二価金属イオンを示し、yは0.01≦y≦0.5である。)
pZnO・qB23・rH2O (2)
(式中p、q、rは正数。)
Figure 2005281597
(R1は炭素数1〜12の有機基、R2、R3、R4は炭素数1〜12の炭化水素基、nは1〜3の整数。)
(A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) inorganic filler, (E) magnesium hydroxide, aluminum hydroxide, zinc molybdate, metal represented by general formula (1) One or more flame retardants selected from hydroxide solid solution or zinc borate represented by the general formula (2) and (F) a silane coupling agent represented by the general formula (3) are essential components. An epoxy resin composition for encapsulating a semiconductor.
Mg 1-y M 2+ y (OH) 2 (1)
( Wherein M 2+ represents at least one divalent metal ion selected from the group consisting of Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+, and Zn 2+ ; 0.01 ≦ y ≦ 0.5.)
pZnO · qB 2 O 3 · rH 2 O (2)
(In the formula, p, q and r are positive numbers.)
Figure 2005281597
(R 1 is an organic group having 1 to 12 carbon atoms, R 2 , R 3 and R 4 are hydrocarbon groups having 1 to 12 carbon atoms, and n is an integer of 1 to 3)
水酸化マグネシウム、水酸化アルミニウム、モリブデン酸亜鉛、一般式(1)で示される金属水酸化物固溶体、又は一般式(2)で示されるほう酸亜鉛の中から選ばれる1種以上の難燃剤(E)が、一般式(3)で示されるシランカップリング剤(F)により予め表面処理される請求項1記載の半導体封止用エポキシ樹脂組成物。 One or more flame retardants (E) selected from magnesium hydroxide, aluminum hydroxide, zinc molybdate, metal hydroxide solid solution represented by general formula (1), or zinc borate represented by general formula (2) The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the surface treatment is performed in advance with a silane coupling agent (F) represented by the general formula (3). 請求項1又は2記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to claim 1.
JP2004100255A 2004-03-30 2004-03-30 Epoxy resin composition and semiconductor device Pending JP2005281597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004100255A JP2005281597A (en) 2004-03-30 2004-03-30 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004100255A JP2005281597A (en) 2004-03-30 2004-03-30 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2005281597A true JP2005281597A (en) 2005-10-13

Family

ID=35180338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004100255A Pending JP2005281597A (en) 2004-03-30 2004-03-30 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2005281597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186673A (en) * 2005-12-13 2007-07-26 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic component device
WO2011118584A1 (en) * 2010-03-26 2011-09-29 パナソニック電工株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255852A (en) * 1996-03-22 1997-09-30 Matsushita Electric Works Ltd Epoxy resin composition for sealing material and semiconductor device using the same
JP2000290470A (en) * 1999-04-05 2000-10-17 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001226561A (en) * 1999-12-09 2001-08-21 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001323050A (en) * 2000-05-12 2001-11-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001329144A (en) * 2000-05-22 2001-11-27 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003082197A (en) * 2001-09-17 2003-03-19 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003226739A (en) * 2002-02-07 2003-08-12 Toray Ind Inc Epoxy resin composition and semiconductor device
JP2003289123A (en) * 2000-09-25 2003-10-10 Hitachi Chem Co Ltd Use of epoxy resin molding material for sealing
JP2004107584A (en) * 2002-09-20 2004-04-08 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic part device provided with element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255852A (en) * 1996-03-22 1997-09-30 Matsushita Electric Works Ltd Epoxy resin composition for sealing material and semiconductor device using the same
JP2000290470A (en) * 1999-04-05 2000-10-17 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001226561A (en) * 1999-12-09 2001-08-21 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001323050A (en) * 2000-05-12 2001-11-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001329144A (en) * 2000-05-22 2001-11-27 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003289123A (en) * 2000-09-25 2003-10-10 Hitachi Chem Co Ltd Use of epoxy resin molding material for sealing
JP2003082197A (en) * 2001-09-17 2003-03-19 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003226739A (en) * 2002-02-07 2003-08-12 Toray Ind Inc Epoxy resin composition and semiconductor device
JP2004107584A (en) * 2002-09-20 2004-04-08 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic part device provided with element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186673A (en) * 2005-12-13 2007-07-26 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic component device
WO2011118584A1 (en) * 2010-03-26 2011-09-29 パナソニック電工株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
CN102822228A (en) * 2010-03-26 2012-12-12 松下电器产业株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
JP5576930B2 (en) * 2010-03-26 2014-08-20 パナソニック株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed wiring board
CN102822228B (en) * 2010-03-26 2015-03-25 松下电器产业株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
US9206308B2 (en) 2010-03-26 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
EP2554561A4 (en) * 2010-03-26 2017-02-22 Panasonic Intellectual Property Management Co., Ltd. Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board

Similar Documents

Publication Publication Date Title
JP3582576B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5164076B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP3537082B2 (en) Epoxy resin composition and semiconductor device
JP2018104683A (en) Composition for sealing molding material and electronic component device
US6297306B1 (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
US20030050399A1 (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
JP2003064185A (en) Method for producing epoxy resin molding material and semiconductor device
JP3714399B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2000281877A (en) Epoxy resin composition and semiconductor device
JP2003089745A (en) Epoxy resin composition and semiconductor device
JP3389095B2 (en) Epoxy resin composition and semiconductor device
JP2003147050A (en) Epoxy resin composition and semiconductor device
JP4345174B2 (en) Epoxy resin composition and semiconductor device
JP2001323050A (en) Epoxy resin composition and semiconductor device
JP2006124420A (en) Epoxy resin composition and semiconductor device
JP2005281597A (en) Epoxy resin composition and semiconductor device
JP5067994B2 (en) Epoxy resin composition and semiconductor device
JP2001049084A (en) Epoxy resin composition and semiconductor apparatus
JP2001226561A (en) Epoxy resin composition and semiconductor device
JP2002053732A (en) Epoxy resin composition and semiconductor device
JP2003040981A (en) Epoxy resin composition and semiconductor device
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP2001226564A (en) Epoxy resin composition and semiconductor device
JP4040370B2 (en) Epoxy resin composition and semiconductor device
JP2001335679A (en) Epoxy resin composition and semi-conductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A131 Notification of reasons for refusal

Effective date: 20090901

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

A131 Notification of reasons for refusal

Effective date: 20100112

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100511

Free format text: JAPANESE INTERMEDIATE CODE: A02