[go: up one dir, main page]

JP2005281401A - Semiconductor encapsulation material, its manufacturing process, and manufacturing equipment - Google Patents

Semiconductor encapsulation material, its manufacturing process, and manufacturing equipment Download PDF

Info

Publication number
JP2005281401A
JP2005281401A JP2004094937A JP2004094937A JP2005281401A JP 2005281401 A JP2005281401 A JP 2005281401A JP 2004094937 A JP2004094937 A JP 2004094937A JP 2004094937 A JP2004094937 A JP 2004094937A JP 2005281401 A JP2005281401 A JP 2005281401A
Authority
JP
Japan
Prior art keywords
dry air
sealing material
semiconductor
semiconductor sealing
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004094937A
Other languages
Japanese (ja)
Other versions
JP4647223B2 (en
Inventor
Toshio Kinoshita
俊夫 木下
Akira Kimura
明 木村
Toshiki Aoki
利樹 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2004094937A priority Critical patent/JP4647223B2/en
Publication of JP2005281401A publication Critical patent/JP2005281401A/en
Application granted granted Critical
Publication of JP4647223B2 publication Critical patent/JP4647223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor encapsulation material which, with the suppressed moisture absorption, excels in storage stability and resin curability. <P>SOLUTION: The manufacturing process of the semiconductor encapsulation material has the kneading step wherein the mixture of raw materials of the semiconductor encapsulation material is molten/kneaded to obtain a kneaded mass, the cooling step wherein the above kneaded mass is cooled to obtain a solidified product, and the pulverizing step wherein the above solidified product is pulverized to obtain a pulverent. In the process, during or after the pulverizing step, the above pulverent is brought into contact with dry air. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体封止材料とその製造方法、製造装置に係り、特に吸湿による特性低下が抑制された半導体封止材料とその製造方法、製造装置に関する。   The present invention relates to a semiconductor sealing material, a manufacturing method thereof, and a manufacturing apparatus, and more particularly to a semiconductor sealing material in which deterioration of characteristics due to moisture absorption is suppressed, a manufacturing method thereof, and a manufacturing apparatus.

半導体装置に適用される半導体封止材料は、例えばエポキシ樹脂、硬化剤、硬化促進剤および無機充填材等を所定量配合して均一に混合した後、溶融混練、冷却固化した後、さらに所定の大きさに粉砕することにより製造されている(例えば、特許文献1参照。)。   The semiconductor sealing material applied to the semiconductor device includes, for example, a predetermined amount of an epoxy resin, a curing agent, a curing accelerator, an inorganic filler, and the like, and after uniformly mixing, melt-kneading, cooling and solidifying, It is manufactured by pulverizing to a size (for example, refer to Patent Document 1).

近年、このような半導体封止材料において、低軟化点樹脂の使用により充填材を高充填化することが行われている。しかしながら、このような低軟化点樹脂は吸湿しやすいため、半導体封止材料の吸湿は多くなる傾向にある。   In recent years, in such a semiconductor sealing material, it has been performed to increase the filling material by using a low softening point resin. However, since such a low softening point resin is easy to absorb moisture, the semiconductor sealing material tends to absorb more moisture.

半導体封止材料の吸湿が多くなると、その中の硬化促進剤に水分子が付着して触媒活性が失われ、本来機能すべき硬化促進剤の絶対量が不足することにより硬化反応の進行が妨げられる。このため半導体封止材料を成形したときに、ランナー部や成形物の機械的強度が低下することがある。   When moisture absorption of the semiconductor encapsulating material increases, water molecules adhere to the curing accelerator in the semiconductor sealing material and the catalytic activity is lost, and the progress of the curing reaction is hindered by the lack of the absolute amount of the curing accelerator that should function originally. It is done. For this reason, when the semiconductor sealing material is molded, the mechanical strength of the runner part and the molded product may be lowered.

このような吸湿による硬化性の低下等を抑制するため、例えば半導体封止材料を製造する際の環境を低温低湿とし、半導体封止材料を吸湿させないような環境下で製造することが行われている。
特開2003−327666号公報
In order to suppress such a decrease in curability due to moisture absorption, for example, an environment for manufacturing a semiconductor sealing material is set to a low temperature and low humidity, and the semiconductor sealing material is manufactured in an environment that does not absorb moisture. Yes.
JP 2003-327666 A

しかしながら、近年、半導体封止材料のさらなる高充填化を達成するために、さらに低軟化点の樹脂が使用されるようになっている。このため、半導体封止材料の吸湿による保存安定性の低下、硬化性の低下がより顕著になっている。特に、夏期は高温高湿のため製造環境を十分に低温低湿にすることが困難であり、半導体封止材料の保存安定性の低下、硬化性の低下を抑制することが困難となっている。   However, in recent years, in order to achieve further higher filling of the semiconductor sealing material, a resin having a lower softening point has been used. For this reason, the storage stability fall by the moisture absorption of a semiconductor sealing material and the sclerosis | hardenability fall are more remarkable. In particular, in summer, it is difficult to make the manufacturing environment sufficiently low temperature and low humidity due to high temperature and high humidity, and it is difficult to suppress a decrease in storage stability and a decrease in curability of the semiconductor sealing material.

半導体封止材料を製造する際の環境を真空中で行うものとすればこのような半導体封止材料の吸湿を抑制することが可能となるが、そのために必要な設備、付帯設備、設置工事に要する費用は膨大であり、実現するのは困難である。   If the environment for manufacturing the semiconductor sealing material is to be performed in a vacuum, it becomes possible to suppress the moisture absorption of such a semiconductor sealing material, but it is necessary for such facilities, incidental facilities, and installation work. The cost required is enormous and difficult to implement.

本発明は上述したような課題を解決するためになされたものであって、吸湿による保存安定性の低下、硬化性の低下が抑制された半導体封止材料を提供することを目的としている。また、本発明は吸湿による特性低下が抑制された半導体封止材料を製造するための製造方法、製造装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor sealing material in which a decrease in storage stability and a decrease in curability due to moisture absorption are suppressed. Moreover, this invention aims at providing the manufacturing method and manufacturing apparatus for manufacturing the semiconductor sealing material by which the characteristic fall by moisture absorption was suppressed.

本発明の半導体封止材料の製造方法は、半導体封止材料の原料混合物を溶融混練して混練物を得る混練工程と、前記混練物を冷却して粉砕可能な固化物を得る冷却工程と、前記固化物を粉砕して粉砕物を得る粉砕工程とを有する半導体封止材料の製造方法であって、前記粉砕工程中または前記粉砕工程後に、前記粉砕物に乾燥空気を接触させることを特徴とする。   The method for producing a semiconductor sealing material of the present invention includes a kneading step for obtaining a kneaded product by melting and kneading a raw material mixture of the semiconductor sealing material, a cooling step for cooling the kneaded product to obtain a pulverized solidified product, A method for producing a semiconductor encapsulating material comprising a pulverization step of pulverizing the solidified product to obtain a pulverized product, wherein the pulverized product is contacted with dry air during or after the pulverization step. To do.

また、本発明の半導体封止材料の他の製造方法は、半導体封止材料の原料混合物を溶融混練、冷却、粉砕してなり、前記粉砕後に吸湿した半導体封止材料に、乾燥空気を接触させることを特徴とする。   Another method for manufacturing a semiconductor sealing material of the present invention is to melt and knead, cool and pulverize a raw material mixture of the semiconductor sealing material, and bring dry air into contact with the semiconductor sealing material which has absorbed moisture after the pulverization. It is characterized by that.

本発明の半導体封止材料の製造方法に用いられる前記乾燥空気は、20℃での相対湿度が20%RH以下であれば好ましい。   The dry air used in the method for producing a semiconductor sealing material of the present invention is preferably such that the relative humidity at 20 ° C. is 20% RH or less.

本発明の半導体封止材料の製造装置は、半導体封止材料の原料混合物を溶融混練、冷却してなる固化物を粉砕する粉砕機と、前記粉砕機に乾燥空気を供給する乾燥空気供給部とを有することを特徴とする。   The semiconductor sealing material manufacturing apparatus of the present invention includes a pulverizer for pulverizing a solidified product obtained by melt-kneading and cooling a raw material mixture of a semiconductor sealing material, and a dry air supply unit for supplying dry air to the pulverizer. It is characterized by having.

本発明の半導体封止材料の他の製造装置は、半導体封止材料の原料混合物を溶融混練、冷却、粉砕してなる半導体封止材料を収容し、乾燥空気を導入するための乾燥空気導入部を有する乾燥用容器と、前記乾燥空気導入部に乾燥空気を供給する乾燥空気供給部とを有することを特徴とする。   Another apparatus for manufacturing a semiconductor sealing material of the present invention is a dry air introduction unit for containing a semiconductor sealing material obtained by melting, kneading, cooling, and pulverizing a raw material mixture of a semiconductor sealing material and introducing dry air. And a dry air supply unit that supplies dry air to the dry air introduction unit.

本発明の半導体封止材料は、半導体封止材料の原料混合物を溶融混練、冷却、粉砕してなる半導体封止材料であって、上述したような半導体封止材料の製造方法により製造されることを特徴とする。   The semiconductor sealing material of the present invention is a semiconductor sealing material obtained by melting, kneading, cooling, and pulverizing a raw material mixture of a semiconductor sealing material, and is manufactured by the method for manufacturing a semiconductor sealing material as described above. It is characterized by.

本発明では、半導体封止材料の原料混合物を溶融混練して混練物を得る混練工程と、混練物を冷却して固化物を得る冷却工程と、固化物を粉砕して粉砕物を得る粉砕工程とを有する半導体封止材料の製造方法において、粉砕工程中または粉砕工程後に粉砕物に乾燥空気を接触させることにより半導体封止材料の吸湿を抑制し、保存安定性、硬化性等に優れた半導体封止材料を提供することが可能となる。   In the present invention, a kneading step for melting and kneading the raw material mixture of the semiconductor sealing material to obtain a kneaded product, a cooling step for cooling the kneaded product to obtain a solidified product, and a pulverizing step for pulverizing the solidified product to obtain a crushed product In the method for producing a semiconductor sealing material having the above, a semiconductor excellent in storage stability, curability and the like by suppressing moisture absorption of the semiconductor sealing material by bringing dry air into contact with the pulverized product during or after the pulverization step It becomes possible to provide a sealing material.

また本発明では、半導体封止材料の原料混合物を溶融混練、冷却、粉砕してなり、前記粉砕後に吸湿した半導体封止材料に乾燥空気を接触させることにより、吸湿した半導体封止材料から水分を除去し、保存安定性、硬化性等に優れたものとすることが可能となる。   In the present invention, the raw material mixture of the semiconductor sealing material is melt-kneaded, cooled, and pulverized, and moisture is absorbed from the absorbed semiconductor sealing material by bringing dry air into contact with the semiconductor sealing material that has absorbed moisture after the pulverization. It is possible to remove it and make it excellent in storage stability, curability and the like.

以下、本発明について詳細に説明する。図1は本発明の半導体封止材料の製造方法の一例を示した流れ図である。本発明の半導体封止材料の製造方法では、まず原料調製工程1にて所定の組成となるように原料を配合、混合して半導体封止材料の原料混合物を調製する。   Hereinafter, the present invention will be described in detail. FIG. 1 is a flowchart showing an example of a method for producing a semiconductor sealing material of the present invention. In the method for producing a semiconductor sealing material of the present invention, first, raw materials are blended and mixed so as to have a predetermined composition in the raw material preparation step 1 to prepare a raw material mixture of the semiconductor sealing material.

所定の組成とされた半導体封止材料の原料混合物は、混練工程2にて二軸混練機などで溶融混練した後、成形工程3にて例えばシート状に延伸する。このシート状混練物は冷却工程4にて、例えば冷却水を接触させて冷却することにより粉砕可能な状態にまで固化させてシート状固化物とする。さらに、粉砕工程5にて、このシート状固化物を粉砕機で粉砕して粉砕物である半導体封止材料6を得る。   The raw material mixture of the semiconductor encapsulating material having a predetermined composition is melt-kneaded with a biaxial kneader or the like in the kneading step 2 and then stretched into, for example, a sheet shape in the molding step 3. In the cooling step 4, the sheet-like kneaded product is solidified to a pulverizable state by, for example, cooling with contact with cooling water to obtain a sheet-like solidified product. Further, in the pulverization step 5, the sheet-like solidified product is pulverized by a pulverizer to obtain a semiconductor sealing material 6 which is a pulverized product.

本発明ではこのような半導体封止材料の製造において、粉砕工程5における粉砕中または粉砕後に粉砕物に乾燥空気7を接触させる。半導体封止材料の製造においては特に溶融混練物の固化物を粉砕するときまたは粉砕した後において粉砕した粉砕物が吸湿しやすく、この粉砕物である半導体封止材料6の保存安定性、硬化性が低下する。このため粉砕工程5中あるいは粉砕工程5後において、粉砕物に乾燥空気7を接触させることとしたものである。   In the present invention, in the production of such a semiconductor sealing material, dry air 7 is brought into contact with the pulverized product during or after pulverization in the pulverization step 5. In the production of a semiconductor encapsulating material, the pulverized product that has been pulverized, particularly when the solidified product of the melt-kneaded product is pulverized or after pulverization, easily absorbs moisture. Decreases. Therefore, dry air 7 is brought into contact with the pulverized product during the pulverization step 5 or after the pulverization step 5.

本発明では粉砕中および粉砕後の少なくとも一方で粉砕物である半導体封止材料に乾燥空気7を接触させればよいが、好ましくは粉砕中および粉砕物を所定の容器に収容するまで、粉砕物に乾燥空気7を接触させる。このようにすることで、粉砕物である半導体封止材料の吸湿をより抑制することが可能となる。   In the present invention, the dry air 7 may be brought into contact with the semiconductor sealing material which is a pulverized product at least one of during pulverization and after pulverization, but preferably the pulverized product during pulverization and until the pulverized product is accommodated in a predetermined container. Is brought into contact with dry air 7. By doing in this way, it becomes possible to suppress the moisture absorption of the semiconductor sealing material which is a pulverized material.

本発明では、粉砕工程5における粉砕中または粉砕後に粉砕物に乾燥空気を接触させるものであるが、特に粉砕により平均粒径を3mm以下にするとき、または、そのような平均粒径とした後に乾燥空気に接触させればより効果的である。   In the present invention, dry air is brought into contact with the pulverized product during or after pulverization in the pulverization step 5, but particularly when the average particle size is reduced to 3 mm or less by pulverization, or after such an average particle size is obtained. It is more effective if it is brought into contact with dry air.

図2、図3に、粉砕工程5に用いられる装置の一例を示す。なお、ここでは粉砕工程5を2回(粗砕、微砕)に分けて行う場合について説明する。図2に示す装置は、例えば混練工程2、成形工程3により得られたシート状混練物を冷却、固化するための冷却機10とこれに接続された粉砕機11(以下、粗砕機11と呼ぶ)とを有するものである。   2 and 3 show an example of an apparatus used in the pulverizing step 5. FIG. Here, the case where the pulverization step 5 is performed twice (coarse pulverization, fine pulverization) will be described. The apparatus shown in FIG. 2 is, for example, a cooler 10 for cooling and solidifying the sheet-like kneaded material obtained in the kneading step 2 and the molding step 3 and a pulverizer 11 connected thereto (hereinafter referred to as a coarse pulverizer 11). ).

冷却機10には、混練工程2、成形工程3により得られたシート状混練物が混練物供給部12に供給され、ベルトコンベア13にて粗砕機11へと運ばれる。この際、冷却手段(図示せず)により、例えば冷却水が噴霧されシート状混練物を固化させシート状固化物とする。このシート状固化物は粗砕機11に投入する直前に切断手段(図示せず)により、粗砕機11に投入できる程度の大きさに切断される。   In the cooler 10, the sheet-like kneaded material obtained in the kneading step 2 and the molding step 3 is supplied to the kneaded material supply unit 12 and is conveyed to the crusher 11 by the belt conveyor 13. At this time, for example, cooling water is sprayed by a cooling means (not shown) to solidify the sheet-like kneaded product to obtain a sheet-like solidified product. This sheet-like solidified product is cut into a size that can be charged into the coarse crusher 11 by a cutting means (not shown) immediately before being charged into the coarse crusher 11.

この切断されたシート状固化物は粗砕機11に投入され、粗く粉砕が行われる。このとき粗砕機11には、後述するような乾燥空気製造装置にて製造された乾燥空気が乾燥空気供給部14を通して供給され、乾燥空気が供給された状態で固化物の粉砕が行われる。このようにして粗く粉砕が行われた粉砕物(以下、粗砕物と呼ぶ)は、粗砕機11の下部に設けられた排出口より排出され、その下部に設置された粗砕物収容容器15に収容される。   The cut sheet-like solidified product is put into the coarse crusher 11 and coarsely pulverized. At this time, dry air produced by a dry air production apparatus as will be described later is supplied to the crusher 11 through the dry air supply unit 14, and the solidified product is pulverized in a state where the dry air is supplied. The coarsely pulverized product (hereinafter referred to as “crushed material”) is discharged from a discharge port provided at the lower part of the coarse crusher 11 and accommodated in a coarsely crushed material container 15 installed at the lower part thereof. Is done.

さらに、粗砕物収容容器15に収容された粗砕物は、粉砕機20(以下、微砕機20と呼ぶ)を用いて微細に粉砕して粉砕物(以下、微砕物と呼ぶ)とする。すなわち、粗砕物収容容器15に収容された粗砕物は、微砕機20の投入口21より投入され、粉砕部22において微細に粉砕される。このとき粉砕部22には、上記粗砕機11に乾燥空気を供給した乾燥空気製造装置にて製造された乾燥空気が乾燥空気供給部23を通して供給され、乾燥空気中にて粗砕物の粉砕が行われる。   Further, the crushed material accommodated in the crushed material container 15 is finely pulverized into a pulverized material (hereinafter referred to as a pulverized material) using a pulverizer 20 (hereinafter referred to as a pulverizer 20). That is, the crushed material accommodated in the crushed material container 15 is introduced from the inlet 21 of the pulverizer 20 and is finely pulverized in the pulverization unit 22. At this time, the pulverizing unit 22 is supplied with the dry air produced by the dry air production apparatus that supplied the dry air to the crusher 11 through the dry air supply unit 23, and the crushed material is crushed in the dry air. Is called.

このようにして得られた微砕物は、粉砕部22の下部に設けられた排出口24より排出され、その下部に設置された微砕物収容容器25に収容される。この得られた微砕物は半導体封止材料として、一般の半導体封止材料と同様に半導体素子の封止に用いることができる。   The pulverized product thus obtained is discharged from the discharge port 24 provided at the lower part of the pulverizing unit 22 and is stored in the pulverized product storage container 25 installed at the lower part thereof. The obtained pulverized material can be used as a semiconductor sealing material for sealing a semiconductor element in the same manner as a general semiconductor sealing material.

以上、本発明の製造方法について説明したが、本発明においては粉砕工程5は必ずしも2回に分けて行わなくてもよく1回のみとしてもよいし、また3回以上に分けて行っても構わない。粉砕工程5を複数回に分けて行う場合、必ずしも全ての段階について乾燥空気を接触させる必要はなく、乾燥空気を接触させる段階は適宜選択することができる。   Although the production method of the present invention has been described above, in the present invention, the pulverizing step 5 does not necessarily have to be performed twice, and may be performed only once, or may be performed three or more times. Absent. When the pulverization step 5 is performed in a plurality of times, it is not always necessary to contact the dry air for all the steps, and the step of contacting the dry air can be selected as appropriate.

また、上述した例では粉砕機中に乾燥空気を供給し、乾燥空気中で粉砕を行う例について説明したが、例えば粉砕機の排出口から排出された粉砕物に乾燥空気を吹きつけたり、また排出口から排出された粉砕物を乾燥空気中に通過させるようなものとしてもよい。さらに、粉砕機の排出口から排出された粉砕物が収容された粉砕物収容容器中に乾燥空気を導入、接触させるようにしても構わない。   In the example described above, dry air is supplied to the pulverizer and pulverization is performed in the dry air. However, for example, the pulverized material discharged from the pulverizer outlet is blown or discharged. It is good also as what passes the ground material discharged | emitted from the exit in dry air. Furthermore, dry air may be introduced and brought into contact with a pulverized material storage container in which the pulverized material discharged from the discharge port of the pulverizer is stored.

このように、乾燥空気を接触させる段階、位置等は特に制限されるものではないが、最終的に得られる粉砕物(半導体封止材料)の硬化性等の観点から、乾燥空気を接触させる段階、位置、さらには乾燥空気の供給量等を設定することが好ましい。   As described above, the stage, position, etc. of bringing the dry air into contact are not particularly limited, but the stage of bringing the dry air into contact from the viewpoint of the curability of the finally obtained pulverized product (semiconductor encapsulating material). It is preferable to set the position, the supply amount of dry air, and the like.

本発明では、このように粉砕工程中あるいは粉砕工程後に粉砕物に乾燥空気を接触させることで、吸湿しやすい粉砕物の吸湿を抑制し、これにより粉砕物である半導体封止材料の保存安定性、硬化性の低下を抑制することが可能となる。   In the present invention, by bringing dry air into contact with the pulverized product during the pulverization step or after the pulverization step, the moisture absorption of the pulverized product that easily absorbs moisture is suppressed, whereby the storage stability of the semiconductor sealing material as the pulverized product is suppressed. It becomes possible to suppress a decrease in curability.

次に、本発明の半導体封止材料の他の製造方法について説明する。本発明の半導体封止材料の製造方法は、所定の組成とされた半導体封止材料の原料を溶融混練、冷却、粉砕してなり、粉砕後に吸湿した半導体封止材料に乾燥空気を接触させることを特徴とするものである。   Next, another method for manufacturing the semiconductor sealing material of the present invention will be described. The method for producing a semiconductor encapsulating material of the present invention comprises melting and kneading, cooling and pulverizing a raw material of a semiconductor encapsulating material having a predetermined composition, and bringing dry air into contact with the semiconductor encapsulating material that has absorbed moisture after pulverization. It is characterized by.

先に説明した半導体封止材料の製造方法は粉砕工程中あるいは粉砕工程後に粉砕物に乾燥空気を接触させることにより吸湿を抑制するものであるが、本製造方法は半導体封止材料を製造した後に所定の期間を経て吸湿してしまったものに乾燥空気を接触させて水分を除去することにより、その硬化性等を改善あるいは回復するものである。   Although the manufacturing method of the semiconductor sealing material described above suppresses moisture absorption by bringing dry air into contact with the pulverized product during or after the pulverization step, this manufacturing method is performed after manufacturing the semiconductor sealing material. By removing moisture by bringing dry air into contact with moisture absorbed after a predetermined period, its curability and the like are improved or recovered.

図4は、この半導体封止材料の製造方法を模式的に示したものである。乾燥用容器30には、吸湿した半導体封止材料が収容される。乾燥用容器30には、乾燥空気を導入するための円状の孔部等からなる乾燥空気導入部31が設けられている。この乾燥空気導入部31には後述するような乾燥空気供給装置から乾燥空気供給部を通して乾燥空気が供給され、乾燥用容器30内の半導体封止材料に乾燥空気を接触させる。このようにすることで一旦吸湿してしまった半導体封止材料から水分を除去することが可能となり、その硬化性等を改善あるいは回復することができる。   FIG. 4 schematically shows a method for manufacturing this semiconductor sealing material. The drying container 30 accommodates a semiconductor sealing material that has absorbed moisture. The drying container 30 is provided with a dry air introduction portion 31 including a circular hole for introducing dry air. The dry air introduction unit 31 is supplied with dry air from a dry air supply device (described later) through the dry air supply unit to bring the dry air into contact with the semiconductor sealing material in the drying container 30. By doing so, it becomes possible to remove moisture from the semiconductor sealing material that has once absorbed moisture, and its curability and the like can be improved or recovered.

なお、図4における乾燥用容器30は乾燥空気導入部31において乾燥空気が供給されると共に、この乾燥空気導入部31から半導体封止材料の乾燥に用いられた乾燥空気が排出される。すなわち、図4における乾燥用容器では乾燥空気導入部31が乾燥空気排出部を兼ねている。   4 is supplied with dry air from the dry air introduction section 31, and the dry air used for drying the semiconductor sealing material is discharged from the dry air introduction section 31. That is, in the drying container in FIG. 4, the dry air introduction unit 31 also serves as the dry air discharge unit.

また、図4に示すような簡易な構造のものの他に、例えば図5に示すように、乾燥用容器35に乾燥空気導入部36と乾燥空気排出部37とを別個に設けたものであってもよい。このような構造とすれば乾燥空気の導入と排出とが効率的に行われ、半導体封止材料の乾燥がより効率的に行われるため好ましい。   In addition to the simple structure shown in FIG. 4, for example, as shown in FIG. 5, the drying container 35 is provided with a dry air introduction part 36 and a dry air discharge part 37 separately. Also good. Such a structure is preferable because dry air can be efficiently introduced and discharged, and the semiconductor sealing material can be dried more efficiently.

本発明は粉砕物である半導体封止材料の大きさによらずに有効であるが、特に平均粒径が3mm以下の吸湿しやすい半導体封止材料の水分の除去に用いればより効果を発揮する。   The present invention is effective regardless of the size of the semiconductor encapsulating material, which is a pulverized product, but is more effective when used to remove moisture from a semiconductor encapsulating material that has an average particle size of 3 mm or less and that is likely to absorb moisture. .

このような乾燥用容器での乾燥空気による処理時間は、乾燥用容器の容量、その中に収容される粉砕物の重量、乾燥空気の供給量等により適宜選択することができるが、処理された後の粉砕物(半導体封止材料)の硬化性等が向上するように行うことが好ましい。   The treatment time with dry air in such a drying container can be appropriately selected depending on the capacity of the drying container, the weight of the pulverized material accommodated therein, the supply amount of dry air, etc. It is preferable to carry out so as to improve the curability of the pulverized product (semiconductor sealing material) later.

次に、本発明に用いられる乾燥空気の製造について説明する。図6は乾燥空気供給装置40の一例を示したものである。乾燥空気供給装置40における原料空気としては、例えば一般の工場等に設置されている一般圧縮空気供給装置からの一般圧縮空気を利用することができる。   Next, the production of dry air used in the present invention will be described. FIG. 6 shows an example of the dry air supply device 40. As the raw material air in the dry air supply device 40, for example, general compressed air from a general compressed air supply device installed in a general factory or the like can be used.

乾燥空気供給装置40は、バルブ41を介して一般圧縮空気供給装置に接続されている。バルブ41には、フィルタ付きレギュレータ42が接続されており、一般圧縮空気供給装置からの一般圧縮空気の圧力調整を行うと共に、一般圧縮空気中の比較的大きな不純物を除去する。一般の工場等に設置されている一般圧縮空気供給装置からの一般圧縮空気にはコンプレッサからの油分や配管からの鉄粉が混入しており、これらが半導体封止材料の特性に悪影響を与えるため、これを取り除くためにフィルタを通す。   The dry air supply device 40 is connected to a general compressed air supply device via a valve 41. A regulator with filter 42 is connected to the valve 41 to adjust the pressure of the general compressed air from the general compressed air supply device and remove relatively large impurities in the general compressed air. General compressed air from general compressed air supply equipment installed in general factories contains oil from the compressor and iron powder from the piping, which adversely affects the characteristics of semiconductor sealing materials Go through the filter to get rid of this.

フィルタ付きレギュレータ42には、ミストセパレータ43、44、ドレインキャッチ45が接続される。ミストセパレータ43、44は、フィルタ付きレギュレータ42で除去されなかった油分、鉄粉等の微粒子のうち、例えば0.3μm以上のものを分離、除去するために接続される。また、ドレインキャッチ45は、水滴を除去するために用いられる。   Mist separators 43 and 44 and a drain catch 45 are connected to the regulator with filter 42. The mist separators 43 and 44 are connected to separate and remove, for example, 0.3 μm or more of fine particles such as oil and iron powder that have not been removed by the regulator with filter 42. The drain catch 45 is used to remove water droplets.

さらに、このドレインキャッチ45には、レギュレータ46、フィルタ47、ヒートレスエアドライヤ48が接続される。ヒートレスエアドライヤ48は、ヒータを有せず小型であり、低露点の乾燥空気を比較的容易に得ることができるため用いられる。このヒートレスエアドライヤ48には、レギュレータ49、マイクロミストセパレータ50、スーパーミストセパレータ51、フィルタ52が順次接続される。   Further, a regulator 46, a filter 47 and a heatless air dryer 48 are connected to the drain catch 45. The heatless air dryer 48 is used because it does not have a heater and is small and can obtain dry air with a low dew point relatively easily. A regulator 49, a micro mist separator 50, a super mist separator 51, and a filter 52 are sequentially connected to the heatless air dryer 48.

マイクロミストセパレータ50は、例えば0.1μm以上の油分、鉄粉等の微粒子を分離、除去し、さらにスーパーミストセパレータ51では、マイクロミストセパレータ50で除去できなかった油分、鉄粉等の微粒子を分離、除去するために用いられる。   The micro mist separator 50 separates and removes fine particles such as oil and iron powder of 0.1 μm or more, for example, and the super mist separator 51 separates oil and fine particles such as iron powder that could not be removed by the micro mist separator 50. Used to remove.

このように、一般圧縮空気の圧力を調整しながら、各種ミストセパレータを用いて微粒子のうち形状の大きなものから順に分離、除去していくことで、不純物が極めて少ない乾燥空気を容易に得ることが可能となる。   In this way, by adjusting the pressure of general compressed air and separating and removing the particles in order from the largest particles using various mist separators, dry air with very few impurities can be easily obtained. It becomes possible.

なお、乾燥空気供給装置40の装置構成は必ずしもこのようなものに限られず、レギュレータ、ミストセパレータ、ヒートレスエアドライヤ等は適宜選択して用いることができ、またそれらの接続順序も適宜変更することが可能である。   The device configuration of the dry air supply device 40 is not necessarily limited to this, and regulators, mist separators, heatless air dryers, and the like can be appropriately selected and used, and the connection order thereof can be changed as appropriate. Is possible.

また、乾燥空気供給装置40の末端部には分岐部53が設けられており、一般圧縮空気を処理して得られる乾燥空気の一部が測定用容器54に導入される。この測定用容器54には管理用温湿度計55が設けられており、乾燥空気が所定の温度、湿度となっているかを測定する。   A branch portion 53 is provided at the end of the dry air supply device 40, and a part of the dry air obtained by processing the general compressed air is introduced into the measurement container 54. The measuring container 54 is provided with a management temperature and humidity meter 55 to measure whether the dry air has a predetermined temperature and humidity.

このような乾燥空気は15℃以上23℃以下となっていることが好ましい。また、乾燥空気は20℃での相対湿度が20%RH以下であればより好ましい。乾燥空気の温度が高すぎると粉砕物である半導体封止材料に接触させたとき硬化するおそれがあり、温度が低すぎると粉砕物である半導体封止材料に接触させたときにかえって吸湿してしまうおそれがある。また、20℃での相対湿度が20%RHを超えると、粉砕物である半導体封止材料から水分を除去する効果が低くなるため好ましくない。   Such dry air is preferably 15 ° C. or higher and 23 ° C. or lower. Further, it is more preferable that the dry air has a relative humidity at 20 ° C. of 20% RH or less. If the temperature of the dry air is too high, it may be cured when it is brought into contact with the semiconductor encapsulating material that is a pulverized product. If the temperature is too low, it will absorb moisture when brought into contact with the semiconductor encapsulating material that is a crushed product. There is a risk that. Further, if the relative humidity at 20 ° C. exceeds 20% RH, the effect of removing moisture from the crushed semiconductor sealing material is reduced, which is not preferable.

このようにして乾燥空気供給装置40において一般圧縮空気より油分、鉄粉等の不純物および水分が除去され、温度、湿度が所定の範囲に調整された乾燥空気は、上述したような乾燥空気供給部14、23、36により、粉砕機(粗砕機11、微砕機20)、乾燥用容器30、35等に供給される。   In this way, the dry air supply unit 40 removes impurities such as oil and iron powder and moisture from the general compressed air, and the dry air whose temperature and humidity are adjusted to a predetermined range is the dry air supply unit as described above. 14, 23, and 36 are supplied to a pulverizer (crusher 11 and pulverizer 20), drying containers 30 and 35, and the like.

このような本発明の半導体封止材料の製造方法により製造される半導体封止材料は特に制限されるものではなく、一般的な半導体封止材料の製造に用いることができる。半導体封止材料としては、例えばエポキシ樹脂、硬化剤、硬化促進剤および無機充填剤等からなるものが挙げられる。   The semiconductor sealing material manufactured by such a method for manufacturing a semiconductor sealing material of the present invention is not particularly limited, and can be used for manufacturing a general semiconductor sealing material. As a semiconductor sealing material, what consists of an epoxy resin, a hardening | curing agent, a hardening accelerator, an inorganic filler etc. is mentioned, for example.

エポキシ樹脂としては一般に半導体封止材料に用いられるものを使用することができる。このようなエポキシ樹脂としては、例えばo−クレゾールノボラックエポキシ樹脂に代表されるノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、2官能のビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙げられる。これらは単独で使用しても良く、また、2種以上併用しても良い。   As an epoxy resin, what is generally used for a semiconductor sealing material can be used. Examples of such epoxy resins include novolak type epoxy resins represented by o-cresol novolac epoxy resins, dicyclopentadiene type epoxy resins, bifunctional biphenyl type epoxy resins, bisphenol type epoxy resins, and naphthalene type epoxy resins. Can be mentioned. These may be used alone or in combination of two or more.

硬化剤としては一般に半導体封止材料に用いられるものを使用することができ、例えばフェノール系樹脂や酸無水物が挙げられる。フェノール系樹脂としては、例えばフェノールノボラック樹脂、フェノールアラルキル樹脂、シクロペンタジエン、フェノール重合体、ナフタレン型フェノール樹脂、ビスフェノールA、ビスフェノールF等が挙げられる。これらは単独で使用してもよく、2種以上併用してもよい。   As a hardening | curing agent, what is generally used for a semiconductor sealing material can be used, For example, a phenol resin and an acid anhydride are mentioned. Examples of the phenolic resin include phenol novolac resin, phenol aralkyl resin, cyclopentadiene, phenol polymer, naphthalene type phenol resin, bisphenol A, bisphenol F, and the like. These may be used alone or in combination of two or more.

また、酸無水物としては、分子中に酸無水物基を有するものであれば特に限定されるものではなく、例えば、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等が挙げられる。これらは単独で使用してもよく、2種以上併用してもよい。   The acid anhydride is not particularly limited as long as it has an acid anhydride group in the molecule. For example, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydro And phthalic anhydride. These may be used alone or in combination of two or more.

硬化促進剤としては、一般に上述したようなフェノール樹脂を用いてエポキシ樹脂を硬化する際に硬化促進剤剤として使用されることが知られているものであれば特に制限されるものではなく、例えばトリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、トリ(p−メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィン、メチルジフェニルホスフィン、ジブチルフェニルホスフィン、トリシクロヘキシルホスフィン、ビス(ジフェニルホスフィノ)メタン、1,2−ビス(ジフェニルホスフィノ)エタン、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、トリフェニルホスフィントリフェニルボラン等の有機ホスフィン化合物、1,8−ジアザビシクロ[5,4,0]ウンデセン−7(DBU)、2,6−ジクロロベンゾニトリル(DBN)、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、α−メチルベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン化合物、2−ヘプタデシルイミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、4−メチルイミダゾール、4−エチルイミダゾール、2−フェニル−4−ヒドロキシメチルイミダゾール、2−エニル−4−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4、5−ジヒドロキシメチルイミダゾール等のイミダゾール化合物等が挙げられる。   The curing accelerator is not particularly limited as long as it is known to be used as a curing accelerator when generally curing an epoxy resin using a phenol resin as described above. For example, Trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, methyldiphenylphosphine, dibutylphenylphosphine, tricyclohexylphosphine, bis (diphenylphosphino) methane, 1 , 2-bis (diphenylphosphino) ethane, tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, triphenylphosphine triphenylborane, etc. 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), 2,6-dichlorobenzonitrile (DBN), triethylamine, triethylenediamine, benzyldimethylamine, α-methylbenzyldimethylamine, triethanolamine , Tertiary amine compounds such as dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-heptadecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 4 -Methylimidazole, 4-ethylimidazole, 2-phenyl-4-hydroxymethylimidazole, 2-enyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 2-phenyl-4-methyl-5-hydro Examples thereof include imidazole compounds such as xylmethylimidazole and 2-phenyl-4,5-dihydroxymethylimidazole.

また、無機充填剤としては、シリカ粉末、アルミナ粉末、窒化アルミ粉末、窒化珪素粉末、硝子粉末、三酸化アンチモン等が挙げられ、これらは単独又は2種以上混合して使用することができる。これらの中でも特にシリカ粉末が線膨張率が低いことなどの理由から好ましく用いられる。   Examples of the inorganic filler include silica powder, alumina powder, aluminum nitride powder, silicon nitride powder, glass powder, antimony trioxide and the like, and these can be used alone or in combination of two or more. Among these, silica powder is particularly preferably used because of its low coefficient of linear expansion.

本発明の製造方法は、樹脂、硬化剤、硬化促進剤等の組み合わせによらず有効であるが、特に上述したようなエポキシ樹脂と酸無水物との組み合わせにおいては硬化促進剤の種類によらず、また、エポキシ樹脂とフェノール系樹脂との組み合わせにおいては硬化促進剤として有機ホスフィン化合物、DBU、DBN等の強化塩基性アミン化合物を用いた場合に高い効果を発揮するものである。   The production method of the present invention is effective regardless of the combination of resin, curing agent, curing accelerator, etc., but in particular, the combination of epoxy resin and acid anhydride as described above does not depend on the type of curing accelerator. Moreover, in the combination of an epoxy resin and a phenol resin, a high effect is exhibited when a reinforced basic amine compound such as an organic phosphine compound, DBU or DBN is used as a curing accelerator.

次に、本発明を実施例を参照して説明する。なお、本発明はこれらの実施例により限定されるものではない。   Next, the present invention will be described with reference to examples. In addition, this invention is not limited by these Examples.

(実施例1)
以下の表1に示される原料を用い、表1に示されるような組成で配合、混合し、半導体封止材料の原料混合物を得た。なお、原料混合物の製造量は50kgとした。この原料混合物を80℃〜110℃で溶融混練した後、冷却して固化させ固化物を得た。
(Example 1)
Using the raw materials shown in Table 1 below, the raw materials mixture of the semiconductor sealing material was obtained by blending and mixing with the composition shown in Table 1. The production amount of the raw material mixture was 50 kg. This raw material mixture was melt-kneaded at 80 ° C. to 110 ° C. and then cooled and solidified to obtain a solidified product.

この固化物を粉砕機にて、温度20℃、相対湿度18%RHの乾燥空気を毎分10Lの通気量で20分間通気しながら粉砕し粉砕物である半導体封止材料を得た。   This solidified product was pulverized with a pulverizer while aeration of dry air at a temperature of 20 ° C. and a relative humidity of 18% RH at an air flow rate of 10 L / min for 20 minutes to obtain a semiconductor sealing material as a pulverized product.

(実施例2)
実施例1と同様にして得た固化物を粉砕機にて、温度15℃、相対湿度18%RHの乾燥空気を毎分2Lの通気量で60分間通気しながら粉砕し粉砕物を得た。
(Example 2)
The solidified product obtained in the same manner as in Example 1 was pulverized with a pulverizer while aeration of dry air at a temperature of 15 ° C. and a relative humidity of 18% RH at an air flow rate of 2 L / min for 60 minutes.

(実施例3)
実施例1と同様にして得た固化物を温度20℃、相対湿度60%RHの環境下で粉砕して粉砕物とした後、この粉砕物を容量150Lの乾燥用容器に収容し、この乾燥用容器に温度20℃、相対湿度18%RHの乾燥空気を毎分10Lの通気量で30分間通気を行い半導体封止材料を得た。
(Example 3)
The solidified product obtained in the same manner as in Example 1 was pulverized in an environment of a temperature of 20 ° C. and a relative humidity of 60% RH to obtain a pulverized product, and the pulverized product was placed in a drying container having a capacity of 150 L. A semiconductor encapsulating material was obtained by aeration of dry air having a temperature of 20 ° C. and a relative humidity of 18% RH at a flow rate of 10 L / min for 30 minutes.

(比較例1)
実施例1と同様にして得た固化物を、温度20℃、相対湿度60%RHの環境下で粉砕して粉砕物である半導体封止材料を得た。
(Comparative Example 1)
The solidified product obtained in the same manner as in Example 1 was pulverized in an environment of a temperature of 20 ° C. and a relative humidity of 60% RH to obtain a semiconductor sealing material as a pulverized product.

(比較例2)
実施例1と同様にして得た固化物を、温度15℃、相対湿度40%RHの環境下で粉砕して粉砕物である半導体封止材料を得た。
(Comparative Example 2)
The solidified product obtained in the same manner as in Example 1 was pulverized in an environment of a temperature of 15 ° C. and a relative humidity of 40% RH to obtain a semiconductor sealing material as a pulverized product.

なお、実施例1〜3の半導体封止材料の製造に用いた乾燥空気は、図6に示す乾燥空気供給装置とほぼ同様の装置構成の乾燥空気供給装置を用いて製造した。この乾燥空気供給装置に用いた主要な装置、機器を表2に示す。   In addition, the dry air used for manufacture of the semiconductor sealing material of Examples 1-3 was manufactured using the dry air supply apparatus of the apparatus structure substantially the same as the dry air supply apparatus shown in FIG. Table 2 shows the main devices and equipment used in this dry air supply device.

Figure 2005281401
Figure 2005281401

Figure 2005281401
Figure 2005281401

次に、実施例1〜3、比較例1、2の半導体封止材料についてSF(スパイラルフロー)値、ゲルタイム、フロー粘度の測定を行った。また、実施例1〜3、比較例1、2の半導体封止材料を用いて成形を行い、熱時硬度、曲げ強度、曲げ弾性率、連続ショット数の測定を行った。結果を表3に示す。   Next, SF (spiral flow) value, gel time, and flow viscosity were measured for the semiconductor sealing materials of Examples 1 to 3 and Comparative Examples 1 and 2. Moreover, it shape | molded using the semiconductor sealing material of Examples 1-3 and Comparative Examples 1 and 2, and measured the hardness at the time of heating, bending strength, a bending elastic modulus, and the number of continuous shots. The results are shown in Table 3.

Figure 2005281401
Figure 2005281401

表3から明らかなように、実施例1〜3の半導体封止材料は従来のものと同等の成形性を有していることが認められた。また、それを用いて製造された成形物は従来のものに比べて機械的強度等が向上していることが認められた。   As is clear from Table 3, it was confirmed that the semiconductor sealing materials of Examples 1 to 3 had the same moldability as the conventional one. Moreover, it was recognized that the molded product manufactured using it has improved mechanical strength compared with the conventional one.

(実施例4)
上記表1に示される原料を用い、表1に示されるような組成で配合、混合し、半導体封止材料の原料混合物を得た。なお、原料混合物の製造量は50kgとした。この原料混合物を80℃〜110℃で溶融混練した後、冷却して固化させ固化物を得た。
Example 4
The raw materials shown in Table 1 above were used and blended and mixed in the composition as shown in Table 1 to obtain a raw material mixture of the semiconductor sealing material. The production amount of the raw material mixture was 50 kg. This raw material mixture was melt-kneaded at 80 ° C. to 110 ° C. and then cooled and solidified to obtain a solidified product.

この固化物を粉砕機にて粉砕して粉砕物とした後、この粉砕物を容量150Lの乾燥用容器に収容し、温度15℃、相対湿度21%RHの乾燥空気を毎分10Lの通気量で60分間通気して半導体封止材料を得た。   The solidified product is pulverized by a pulverizer to form a pulverized product, and the pulverized product is placed in a drying container having a capacity of 150 L. Dry air having a temperature of 15 ° C. and a relative humidity of 21% RH is supplied at an air flow rate of 10 L / min. For 60 minutes to obtain a semiconductor sealing material.

(比較例3)
実施例4と同様にして固化物の作製、粉砕、乾燥空気による処理を行った。この後、乾燥空気による処理が行われた粉砕物を、夏場の高温、高湿下での製造、貯蔵を想定し、30℃、相対湿度60%RHの環境下で4時間放置し、半導体封止材料を得た。
(Comparative Example 3)
In the same manner as in Example 4, preparation of a solidified product, pulverization, and treatment with dry air were performed. After that, the pulverized material treated with dry air is assumed to be manufactured and stored under high temperature and high humidity in summer, and left in an environment of 30 ° C. and relative humidity 60% RH for 4 hours, and the semiconductor encapsulated A stop material was obtained.

なお、実施例4、比較例3の半導体封止材料の製造に用いた乾燥空気は、図6に示す乾燥空気供給装置とほぼ同様の装置構成の乾燥空気供給装置を用いて製造した。この乾燥空気供給装置に用いた主要な装置、機器は上記表2に示した通りである。   In addition, the dry air used for manufacture of the semiconductor sealing material of Example 4 and the comparative example 3 was manufactured using the dry air supply apparatus of the apparatus structure substantially the same as the dry air supply apparatus shown in FIG. The main devices and equipment used in this dry air supply device are as shown in Table 2 above.

次に、実施例4、比較例3の半導体封止材料の含水率を測定した後、これらの半導体封止材料を用いて成形を行い、熱時硬度、曲げ強度、曲げ弾性率、連続ショット数の測定を行った。結果を表4に示す。   Next, after measuring the moisture content of the semiconductor encapsulating materials of Example 4 and Comparative Example 3, molding was performed using these semiconductor encapsulating materials, hot hardness, bending strength, flexural modulus, number of continuous shots. Was measured. The results are shown in Table 4.

Figure 2005281401
Figure 2005281401

表4から明らかなように、実施例4の半導体封止材料は従来の製造方法による半導体封止材料に比べて含水率が少なく、その硬化物は機械的強度等に優れていることが認められた。   As is clear from Table 4, the semiconductor encapsulating material of Example 4 has a lower moisture content than the semiconductor encapsulating material produced by the conventional manufacturing method, and the cured product is recognized to have excellent mechanical strength and the like. It was.

本発明の半導体封止材料の製造工程の一例を示した流れ図The flowchart which showed an example of the manufacturing process of the semiconductor sealing material of this invention 本発明に用いられる粉砕機(粗砕機)の一例を示した図The figure which showed an example of the grinder (crusher) used for this invention 本発明に用いられる粉砕機(微砕機)の一例を示した図The figure which showed an example of the grinder (pulverizer) used for this invention 本発明に用いられる乾燥容器の一例を示した図The figure which showed an example of the drying container used for this invention 本発明に用いられる乾燥容器の他の例を示した図The figure which showed the other example of the drying container used for this invention 本発明に用いられる乾燥空気供給装置の一例を示した図The figure which showed an example of the dry air supply apparatus used for this invention

符号の説明Explanation of symbols

1…原料調製工程、2…混練工程、3…成形工程、4…冷却工程、5…粉砕工程、6…半導体封止材料、7…乾燥空気、10…冷却機、11…粉砕機(粗砕機)、14…乾燥空気供給部、15…粉砕物収容容器(粗砕物収容容器)、20…粉砕機(微砕機)、22…粉砕部、23…乾燥空気供給部、24…排出口、25…粉砕物収容容器(微砕物収容容器)、30,35…乾燥用容器、31,36…乾燥空気導入部、37…乾燥空気排出部、40…乾燥空気供給装置   DESCRIPTION OF SYMBOLS 1 ... Raw material preparation process, 2 ... Kneading process, 3 ... Molding process, 4 ... Cooling process, 5 ... Crushing process, 6 ... Semiconductor sealing material, 7 ... Dry air, 10 ... Cooling machine, 11 ... Crusher (crusher) ), 14 ... dry air supply unit, 15 ... pulverized material storage container (crushed material storage container), 20 ... pulverizer (pulverizer), 22 ... pulverization unit, 23 ... dry air supply unit, 24 ... discharge port, 25 ... Pulverized material storage container (fine pulverized material storage container), 30, 35 ... drying container, 31, 36 ... dry air introduction unit, 37 ... dry air discharge unit, 40 ... dry air supply device

Claims (6)

半導体封止材料の原料混合物を溶融混練して混練物を得る混練工程と、前記混練物を冷却して粉砕可能な固化物を得る冷却工程と、前記固化物を粉砕して粉砕物を得る粉砕工程とを有する半導体封止材料の製造方法であって、
前記粉砕工程中または前記粉砕工程後に、前記粉砕物に乾燥空気を接触させることを特徴とする半導体封止材料の製造方法。
A kneading step for obtaining a kneaded product by melting and kneading a raw material mixture of a semiconductor sealing material, a cooling step for cooling the kneaded product to obtain a pulverized solidified product, and a pulverizing method for pulverizing the solidified product to obtain a pulverized product. A process for producing a semiconductor sealing material comprising steps,
A method for producing a semiconductor sealing material, wherein dry air is brought into contact with the pulverized product during or after the pulverizing step.
半導体封止材料の原料混合物を溶融混練、冷却、粉砕してなり、前記粉砕後に吸湿した半導体封止材料に乾燥空気を接触させることを特徴とする半導体封止材料の製造方法。   A method for producing a semiconductor encapsulating material, comprising: melting and kneading, cooling and pulverizing a raw material mixture of a semiconductor encapsulating material, and bringing dry air into contact with the semiconductor encapsulating material which has absorbed moisture after the pulverization. 前記乾燥空気は、20℃での相対湿度が20%RH以下であることを特徴とする請求項1または2記載の半導体封止材料の製造方法。   The method for producing a semiconductor sealing material according to claim 1, wherein the dry air has a relative humidity at 20 ° C. of 20% RH or less. 半導体封止材料の原料混合物を溶融混練、冷却してなる固化物を粉砕する粉砕機と、前記粉砕機に乾燥空気を供給する乾燥空気供給部とを有することを特徴とする半導体封止材料の製造装置。   A semiconductor sealing material comprising: a pulverizer that pulverizes a solidified product obtained by melt kneading and cooling a raw material mixture of a semiconductor sealing material; and a dry air supply unit that supplies dry air to the pulverizer. manufacturing device. 半導体封止材料の原料混合物を溶融混練、冷却、粉砕してなる半導体封止材料を収容し、乾燥空気を導入するための乾燥空気導入部を有する乾燥用容器と、前記乾燥空気導入部に乾燥空気を供給する乾燥空気供給部とを有することを特徴とする半導体封止材料の製造装置。   A semiconductor container containing a semiconductor sealing material obtained by melting, kneading, cooling and pulverizing a raw material mixture of the semiconductor sealing material, and a drying container having a dry air introduction part for introducing dry air, and drying in the dry air introduction part An apparatus for producing a semiconductor encapsulating material, comprising: a dry air supply unit for supplying air. 半導体封止材料の原料混合物を溶融混練、冷却、粉砕してなる半導体封止材料であって、請求項1乃至3のいずれか1項記載の半導体封止材料の製造方法により製造されることを特徴とする半導体封止材料。   A semiconductor encapsulating material obtained by melt-kneading, cooling and pulverizing a raw material mixture of a semiconductor encapsulating material, wherein the semiconductor encapsulating material is produced by the method for producing a semiconductor encapsulating material according to claim 1. A semiconductor sealing material characterized.
JP2004094937A 2004-03-29 2004-03-29 Manufacturing method and manufacturing apparatus of semiconductor sealing material Expired - Fee Related JP4647223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004094937A JP4647223B2 (en) 2004-03-29 2004-03-29 Manufacturing method and manufacturing apparatus of semiconductor sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004094937A JP4647223B2 (en) 2004-03-29 2004-03-29 Manufacturing method and manufacturing apparatus of semiconductor sealing material

Publications (2)

Publication Number Publication Date
JP2005281401A true JP2005281401A (en) 2005-10-13
JP4647223B2 JP4647223B2 (en) 2011-03-09

Family

ID=35180155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004094937A Expired - Fee Related JP4647223B2 (en) 2004-03-29 2004-03-29 Manufacturing method and manufacturing apparatus of semiconductor sealing material

Country Status (1)

Country Link
JP (1) JP4647223B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122211A1 (en) * 2010-03-30 2011-10-06 住友ベークライト株式会社 Method for fabricating resin composition for sealing semiconductors, and pulverizer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216172A (en) * 1992-11-30 1994-08-05 Sony Corp Manufacture for resin-sealed electronic element and dryer used therefor
JPH07242731A (en) * 1994-03-04 1995-09-19 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JPH0873605A (en) * 1994-09-08 1996-03-19 Teijin Ltd Production of polycarbonate resin particle
JPH08337635A (en) * 1995-06-12 1996-12-24 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JP2000129139A (en) * 1998-10-27 2000-05-09 Matsushita Electric Works Ltd Manufacturing method of granular semiconductor sealing material and granular semiconductor sealing material
JP2002201288A (en) * 2001-01-09 2002-07-19 Nitto Denko Corp Process for preparing semiconductor-sealing epoxy resin composition
JP2003311738A (en) * 2002-04-26 2003-11-05 Hitachi Cable Ltd Continuous drying method for pellets

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216172A (en) * 1992-11-30 1994-08-05 Sony Corp Manufacture for resin-sealed electronic element and dryer used therefor
JPH07242731A (en) * 1994-03-04 1995-09-19 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JPH0873605A (en) * 1994-09-08 1996-03-19 Teijin Ltd Production of polycarbonate resin particle
JPH08337635A (en) * 1995-06-12 1996-12-24 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JP2000129139A (en) * 1998-10-27 2000-05-09 Matsushita Electric Works Ltd Manufacturing method of granular semiconductor sealing material and granular semiconductor sealing material
JP2002201288A (en) * 2001-01-09 2002-07-19 Nitto Denko Corp Process for preparing semiconductor-sealing epoxy resin composition
JP2003311738A (en) * 2002-04-26 2003-11-05 Hitachi Cable Ltd Continuous drying method for pellets

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122211A1 (en) * 2010-03-30 2011-10-06 住友ベークライト株式会社 Method for fabricating resin composition for sealing semiconductors, and pulverizer
JP2011207171A (en) * 2010-03-30 2011-10-20 Sumitomo Bakelite Co Ltd Method of manufacturing resin composition for sealing semiconductor, and pulverizing apparatus
CN102791451A (en) * 2010-03-30 2012-11-21 住友电木株式会社 Method for fabricating resin composition for sealing semiconductors, and pulverizer
US20130012624A1 (en) * 2010-03-30 2013-01-10 Sumitomo Bakelite Company Limited Method for producing semiconductor encapsulating resin composition and pulverizing apparatus
CN102791451B (en) * 2010-03-30 2015-09-09 住友电木株式会社 The manufacture method of resin composition for encapsulating semiconductor and reducing mechanism
US9153515B2 (en) 2010-03-30 2015-10-06 Sumitomo Bakelite Company Limited Method for producing semiconductor encapsulating resin composition and pulverizing apparatus
TWI551352B (en) * 2010-03-30 2016-10-01 住友電木股份有限公司 Manufacturing method of resin composition for sealing semiconductors and pulverizing apparatus
KR101770854B1 (en) * 2010-03-30 2017-08-23 스미토모 베이클리트 컴퍼니 리미티드 Method for fabricating resin composition for sealing semiconductors, and pulverizer

Also Published As

Publication number Publication date
JP4647223B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
KR101872556B1 (en) Semiconductor device, and process for manufacturing semiconductor device
CN102167886B (en) Epoxy resin composition and a method for preparing the same
CN1077121C (en) Semiconductor encapsulating epoxy resin compositions and semiconductor devices encapsulated therewith
CN107636071A (en) Epoxy molding compounds with high adhesion to nickel surfaces, their preparation and use
JP7270645B2 (en) Manufacturing method of molding material for semiconductor encapsulation
JP4647223B2 (en) Manufacturing method and manufacturing apparatus of semiconductor sealing material
KR101506745B1 (en) Method for producing epoxy resin composition for semiconductor encapsulation, epoxy resin composition for semiconductor encapsulation and semiconductor device
JP6070529B2 (en) Method for producing granular semiconductor sealing resin composition and semiconductor device
KR102388117B1 (en) Method of Preparing Resin Composition for Sealing Semiconductor
KR20160117316A (en) Method for producing epoxy resin granule for encapsulating semiconductor device, epoxy resin granule for encapsulating semiconductor device, method for producing semiconductor device, and semiconductor device
JPH08269167A (en) Epoxy resin composition for semiconductor encapsulation
JP2007067164A (en) Semiconductor sealing epoxy resin composite and its manufacturing method
JP2021113270A (en) Resin composition, method for producing resin composition, and inorganic particles used therefor
JP2005089710A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2016023279A (en) Resin composition for sealing, semiconductor device and structure
JPH0521651A (en) Epoxy resin molding material for sealing semiconductor
JPH1074779A (en) Granular semiconductor sealing material and its manufacture and semiconductor device using the material
JP2009057393A (en) Epoxy resin composition having latent curing accelerator and semiconductor device
JP2006143784A (en) Epoxy resin composition and semiconductor device
CN109467880B (en) Method for improving reliability of semiconductor device packaged by epoxy resin composition
JP2009046556A (en) Epoxy resin composition
JP4872177B2 (en) Method for producing thermosetting resin composition and semiconductor device
JPH03131057A (en) Semiconductor device
JP3573565B2 (en) Epoxy resin composition tablet
JP2000169675A (en) Epoxy resin composition and semiconductor apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees