[go: up one dir, main page]

JP2005239509A - Method for suppressing fluorine elution from steel slag and material for embedding in soil - Google Patents

Method for suppressing fluorine elution from steel slag and material for embedding in soil Download PDF

Info

Publication number
JP2005239509A
JP2005239509A JP2004054356A JP2004054356A JP2005239509A JP 2005239509 A JP2005239509 A JP 2005239509A JP 2004054356 A JP2004054356 A JP 2004054356A JP 2004054356 A JP2004054356 A JP 2004054356A JP 2005239509 A JP2005239509 A JP 2005239509A
Authority
JP
Japan
Prior art keywords
calcium
fluorine
steel slag
water
elution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004054356A
Other languages
Japanese (ja)
Inventor
Shogo Matsumura
省吾 松村
Ryuji Nakao
隆二 中尾
Tetsuya Yamamoto
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2004054356A priority Critical patent/JP2005239509A/en
Publication of JP2005239509A publication Critical patent/JP2005239509A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently controlling an eluting amount of fluorine from steel slag containing fluorine at a low cost. <P>SOLUTION: The elution of fluorine from steel slag is effectively controlled by mixing a compound comprising water-soluble calcium or/and a calcium mixture containing a compound comprising water-soluble calcium into steel slag containing fluorine. By mixing a concrete waste material into the steel slag containing fluorine, the eluting amount of fluorine from the steel slag is reduced to a level lower than the legal standard and the mixture is usable as an underground burying material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鉄鋼スラグからのフッ素の効果的な溶出抑制方法と、鉄鋼スラグを有効に利用した土中埋設材料に関する。   The present invention relates to an effective method for suppressing the elution of fluorine from steel slag and a material embedded in soil that effectively uses steel slag.

鉄鋼の溶解・製錬において、スラグと溶融メタルとの反応性を向上させるため、副原料の一部にホタル石(主としてCaF2を含む)を投入してスラグの融点や粘性を下げている。そのため、ホタル石が使用された工程で発生する鉄鋼スラグには、フッ素が不可避的に含有される。 In the melting and smelting of steel, in order to improve the reactivity between slag and molten metal, fluorite (mainly containing CaF 2 ) is added as a part of the auxiliary material to lower the melting point and viscosity of the slag. Therefore, fluorine is unavoidably contained in the steel slag generated in the process in which fluorite is used.

このようなフッ素を含有する鉄鋼スラグを、路盤材、土木埋立て材等の土中埋設材料に利用すると、雨水、地下水の作用で該スラグからフッ素が徐々に溶け出し、周辺の土壌を汚染する可能性がある。そのため、該鉄鋼スラグからのフッ素の溶出を抑制する検討が行なわれている。   When such steel-containing steel slag is used for underground materials such as roadbed materials and civil engineering landfill materials, fluorine gradually dissolves from the slag due to the action of rainwater and groundwater and contaminates the surrounding soil. there is a possibility. For this reason, studies have been conducted to suppress elution of fluorine from the steel slag.

例えば、特許文献1は、フッ素を含有する鉄鋼製錬スラグに、フッ素溶出抑制物質として、高炉スラグ微粉末の水和固化体、クロム鉱石溶融還元炉スラグ、含フッ素物質を使用しない二次精錬より排出される二次精錬スラグ及び多孔質の炭化物から選ばれる1種又は2種以上を混合する技術を公開している。また、特許文献2は、フッ素固定剤として、合成されたカルシウムアルミネート化合物、天然に産するカルシウムアルミネート鉱物、および、カルシウムアルミネートを含む二次精錬スラグの1種又は2種以上を用いて、カルシウムアルミネートを含む平均粒径が0.5mm以下の粉末5〜80重量部と、フッ素を含む製鋼スラグ100重量部と、徐冷高炉スラグ、高炉水砕スラグ等の増容材300重量部以下とを混合することにより、フッ素を含む鉄鋼スラグを安定化処理し、土中埋立て用材料を製造する技術を提案している。   For example, Patent Document 1 discloses a smelting slag containing fluorine, a hydrated solidified product of blast furnace slag fine powder, chromium ore smelting reduction furnace slag, and secondary refining that does not use a fluorine-containing substance as a fluorine elution inhibitor. The technique which mixes the 1 type (s) or 2 or more types chosen from the secondary refining slag discharged | emitted and porous carbide | carbonized_material is disclosed. Patent Document 2 uses, as a fluorine fixing agent, one or more of a synthesized calcium aluminate compound, a naturally occurring calcium aluminate mineral, and a secondary refining slag containing calcium aluminate. 5 to 80 parts by weight of powder having an average particle size of 0.5 mm or less containing calcium aluminate, 100 parts by weight of steel-making slag containing fluorine, 300 parts by weight of a bulking agent such as slowly cooled blast furnace slag and granulated blast furnace slag We propose a technology to stabilize the steel slag containing fluorine by mixing the following to produce materials for land reclamation.

特開2003−183718号公報JP 2003-183718 A 特開2000−335946号公報JP 2000-335946 A

しかし、これらの各技術にはそれぞれ下記のような問題がある。すなわち、特許文献1に記載された技術は、高炉スラグ、溶融還元炉スラグ、二次精錬スラグなどのフッ素物質を含まないスラグで希釈する必要が有り、同一敷地内で該スラグが発生する製造プロセスがなく、あるいは容易に該スラグを調達できない場合、この方法は適応できず、実施者が限定される。また、特許文献2の技術においても、フッ素を含む製鋼スラグ100重量部に対して、希釈を目的とした増容材を300重量部以下と大量に混合した上に、更にカルシウムアルミネートを含むフッ素固定剤を5〜80重量部と混合することでフッ素が抑制できるものである。この技術においても、フッ素を含まない増容材、およびスラグなどのフッ素固定剤が同一製造敷地内で調達でき、あるいは容易に且つ安価に調達できる場合を除き、フッ素を含むスラグに対して増容材、フッ素固定剤が必要となり、効率が悪く経済的でない。   However, each of these technologies has the following problems. That is, the technique described in Patent Document 1 requires a dilution process using slag that does not contain fluorine substances such as blast furnace slag, smelting reduction furnace slag, secondary refining slag, and the like. If the slag cannot be procured easily, this method cannot be applied and the practitioner is limited. Further, in the technique of Patent Document 2 as well, fluorine-containing steel containing slag containing 100 parts by weight of fluorine is further mixed with 300 parts by weight or less of a bulking material for dilution, and further containing calcium aluminate Fluorine can be suppressed by mixing the fixative with 5 to 80 parts by weight. This technology also increases the capacity of fluorine-containing slag, except that fluorine-free volume-enhancing materials and fluorine-fixing agents such as slag can be procured on the same production site, or can be easily and inexpensively procured. Material and fluorine fixing agent are required, which is inefficient and not economical.

本発明は、かかる事情に鑑み、フッ素を含有する鉄鋼スラグからのフッ素の溶出量をより効率的に且つ安価に抑制する方法を提供することを目的としている。 また、法に定められた基準値以下まで鉄鋼スラグのフッ素の溶出量を抑制した土中埋設材料を提供する。   In view of such circumstances, an object of the present invention is to provide a method for suppressing the amount of fluorine eluted from steel slag containing fluorine more efficiently and inexpensively. In addition, the present invention provides a material embedded in the soil in which the amount of fluorine elution from steel slag is suppressed to below the standard value stipulated by law.

発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。   The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention.

すなわち、本発明は、
(1) フッ素を含有する鉄鋼スラグに、水溶性カルシウムからなる化合物又は/および水溶性カルシウムからなる化合物を含むカルシウム混合物を混合する鉄鋼スラグからのフッ素溶出抑制方法。
(2)(1)に記載の水溶性カルシウムからなる化合物が、酸化カルシウム、水酸化カルシウム、硫酸カルシウムの1種以上である鉄鋼スラグからのフッ素溶出抑制方法。
(3)(1)に記載の水溶性カルシウムからなる化合物を含むカルシウム混合物が、コンクリート廃材である鉄鋼スラグからのフッ素溶出抑制方法。
(4)フッ素を含有する鉄鋼スラグとカルシウム化合物又は/およびカルシウム混合物の混合割合は、予め任意に混合してフッ素の溶出量を確認して決定する(1)〜(3)に記載されたいずれかの鉄鋼スラグからのフッ素溶出抑制方法。
(5)フッ素を含有する鉄鋼スラグに、水溶性カルシウムからなる化合物又は/および水溶性カルシウムからなる化合物を含むカルシウム混合物を混合されている土中埋設材料。
(6)(5)に記載の水溶性カルシウムからなる化合物が、酸化カルシウム、水酸化カルシウム、硫酸カルシウムの1種以上である土中埋設材料。
(7)(5)に記載の水溶性カルシウムからなる化合物を含むカルシウム混合物がコンクリート廃材である土中埋設材料。
(8)コンクリート廃材は、カルシウム成分の総和を酸化カルシウムに換算して5〜70質量%を含有する(7)に記載の土中埋設材料。
That is, the present invention
(1) A method for suppressing fluorine elution from steel slag, in which a compound composed of water-soluble calcium and / or a calcium mixture containing a compound composed of water-soluble calcium is mixed with steel slag containing fluorine.
(2) A method for suppressing fluorine elution from steel slag, wherein the compound comprising the water-soluble calcium according to (1) is one or more of calcium oxide, calcium hydroxide, and calcium sulfate.
(3) A method for suppressing fluorine elution from steel slag, wherein the calcium mixture containing the compound comprising the water-soluble calcium according to (1) is a concrete waste material.
(4) The mixing ratio between the steel slag containing fluorine and the calcium compound or / and the calcium mixture is determined by confirming the elution amount of fluorine by arbitrarily mixing in advance. To suppress fluorine elution from steel slag.
(5) A material embedded in soil in which fluorine-containing steel slag is mixed with a water-soluble calcium compound or / and a calcium mixture containing a water-soluble calcium compound.
(6) A buried material in soil in which the compound comprising the water-soluble calcium according to (5) is at least one of calcium oxide, calcium hydroxide, and calcium sulfate.
(7) A buried material in soil in which the calcium mixture containing the compound comprising the water-soluble calcium according to (5) is a concrete waste material.
(8) The concrete waste material is an embedding material according to (7), which contains 5 to 70% by mass in terms of calcium oxide as a total of calcium components.

本発明は、鉄鋼スラグを土中埋設物に利用する際に、鉄鋼スラグのフッ素溶出量が、環境基準以下のレベルまで抑制され、鉄鋼スラグを土中埋設物として利用するものであり、フッ素溶出抑制剤として、コンクリート廃材などの産業副生物である安価な物質をも再利用するようにした。   In the present invention, when steel slag is used for buried objects in the soil, the fluorine elution amount of the steel slag is suppressed to a level below the environmental standard, and the steel slag is utilized as a buried object in the soil. As an inhibitor, we also reuse inexpensive materials that are industrial by-products such as concrete waste.

以下、発明をなすに至った経緯に沿い、本発明の実施の形態を詳しく説明する。   In the following, the embodiment of the present invention will be described in detail along with the process leading to the invention.

本発明の対象とする鉄鋼スラグは、製造工程でフッ化カルシウム(CaF2)を多量に含有するホタル石の使用により発生するフッ素含有鉄鋼スラグであって、例えば電気炉スラグ、ステンレス精錬スラグ、転炉スラグ、二次精錬スラグ等である。これらのスラグにフッ素を含む場合には、そのまま、路盤材あるいは埋立て材として使用した場合、雨水等の水と接触して、フッ素が水に徐々に溶解する。 Steel slag targeted by the present invention is fluorine-containing steel slag generated by the use of fluorite containing a large amount of calcium fluoride (CaF 2 ) in the production process. For example, electric furnace slag, stainless steel slag, Furnace slag, secondary refining slag, etc. When these slags contain fluorine, when they are used as they are as roadbed materials or landfill materials, they come into contact with water such as rainwater and the fluorine gradually dissolves in the water.

一般的に、フッ素溶出量が土壌の汚染に関わる環境基準(土壌環境基準という)などの用途により定められた基準より高い鉄鋼スラグを土中埋設材料などに利用しようとする場合には、土壌あるいはフッ素を含まないスラグなどの材料と混合し希釈することが行われ、鉄鋼スラグのフッ素溶出量と環境基準以下に設定した目標値を勘案して希釈量を決定し混合する。しかし、希釈は鉄鋼スラグ中のフッ素溶出量が多い場合、フッ素を含まない希釈土壌などが多量に必要となり、経済的に採算が取れなくなる場合がある。そこで、フッ素の効率的な抑制方法を検討した。   In general, when steel slag whose fluorine elution amount is higher than the standard set by the application such as the environmental standard related to soil contamination (referred to as soil environmental standard) is used for buried materials in soil, Mixing and dilution with materials such as slag that does not contain fluorine is performed, and the dilution amount is determined and mixed in consideration of the fluorine elution amount of steel slag and the target value set below the environmental standard. However, dilution requires a large amount of diluted soil that does not contain fluorine when the amount of fluorine elution in the steel slag is large, and may not be economically profitable. Therefore, an efficient method for suppressing fluorine was examined.

まず、CaF2試薬を用いてフッ素の溶出を抑制する物質の調査を行なった。表1に、CaF2のフッ素溶出量に及ぼす物質の影響について示す。種々の物質および混合量を変化させて調査した結果、酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH)2)、硫酸カルシウム(CaSO4)が抑制に効果的であることが分かった。CaF2単独ではフッ素溶出量が14mg/lと高く溶出するのに対して、酸化カルシウム、水酸化カルシウム、硫酸カルシウムを添加した場合いずれのフッ素溶出量も0.8〜0.9mg/lと低く、溶出が抑制されていた。 First, it was conducted to investigate the substance that suppresses the dissolution of fluorine using CaF 2 reagent. Table 1 shows the influence of substances on the fluorine elution amount of CaF 2 . As a result of investigating various substances and mixing amounts, it was found that calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ), and calcium sulfate (CaSO 4 ) are effective for suppression. CaF 2 alone elutes as high as 14 mg / l, whereas when calcium oxide, calcium hydroxide, or calcium sulfate is added, any fluorine elution is as low as 0.8 to 0.9 mg / l. Elution was suppressed.

Figure 2005239509
Figure 2005239509

さらに、カルシウム分を含むコンクリート廃材の利用に着目して検討を行なった。鉄鋼スラグに建築物の廃材であるコンクリート廃材を混合してフッ素溶出量を測定した。表2に鉄鋼スラグとコンクリート廃材との混合によるフッ素の溶出量の確認結果を示す。フッ素溶出量が3.55mg/lの鉄鋼スラグとフッ素溶出量が0.71mg/lのコンクリート廃材を混合比5対5で混合した結果、混合材のフッ素溶出量は0.52mg/lと鉄鋼スラグのフッ素溶出量とコンクリート廃材のフッ素溶出量から混合比で計算した計算値2.13mg/lよりも大幅に低減していた。そこで、更に混合比を変え、また、溶出挙動を調査するため、pH, カルシウム溶出量についても調査を行った。図1にフッ素溶出量に及ぼす鉄鋼スラグの混合比の影響を示す。鉄鋼スラグにコンクリート廃材を混合させたいずれの場合もフッ素溶出量が低減していた。また、鉄鋼スラグに比較して、混合材はカルシウム溶出量が高く、pHも上昇していた。   Furthermore, the study was conducted focusing on the utilization of waste concrete containing calcium. The amount of fluorine leaching was measured by mixing concrete slag, which is the waste material of buildings, with steel slag. Table 2 shows the results of confirming the elution amount of fluorine by mixing steel slag and concrete waste. As a result of mixing steel slag with a fluorine elution amount of 3.55 mg / l and concrete waste with a fluorine elution amount of 0.71 mg / l at a mixing ratio of 5 to 5, the fluorine elution amount of the mixture was 0.52 mg / l and steel. This was significantly lower than the calculated value of 2.13 mg / l calculated from the mixing ratio of the slag fluorine elution amount and the concrete eluate fluorine elution amount. Therefore, in order to further change the mixing ratio and to investigate the elution behavior, the pH and calcium elution amount were also investigated. FIG. 1 shows the influence of the mixing ratio of steel slag on the fluorine elution amount. In each case where concrete waste was mixed with steel slag, the amount of fluorine elution was reduced. Moreover, compared with steel slag, the mixed material had a high calcium elution amount, and the pH also increased.

Figure 2005239509
Figure 2005239509

また、鉄鋼スラグ中のフッ素の形態をEPMAで組成調査を行なった。その結果、フッ素を含むスラグの鉱物組成は3CaO・2SiO2・CaF2および2CaOSiO2+CaF2であることが分かった。 The composition of the form of fluorine in steel slag was investigated by EPMA. As a result, mineral composition of slag containing fluorine was found to be 3CaO · 2SiO 2 · CaF 2 and 2CaOSiO 2 + CaF 2.

これらの調査結果から、鉄鋼スラグからフッ素の溶出を抑制する機構は以下のように考える。予め鉄鋼スラグにカルシウムを含む物質を混合しておくと、雨水などにさらされた場合には、酸化カルシウム、水酸化カルシウムなどからカルシウムが溶解してカルシウム濃度が高くなり、CaF2からのフッ素の溶出が抑制されるものと考えられる。また、3CaO・2SiO2・CaF2のように鉱物を形成していた場合には、カルシウム濃度が高くなることによって水のpHが高くなり、溶解が抑制されることが考えられる。 From these investigation results, the mechanism for suppressing the elution of fluorine from steel slag is considered as follows. Advance idea to mix the material containing calcium iron and steel slag, when exposed like rain water, calcium oxide, calcium concentration dissolved calcium from calcium hydroxide is increased, the fluorine from CaF 2 Elution is considered to be suppressed. In addition, when minerals are formed such as 3CaO.2SiO 2 .CaF 2 , it is considered that the pH of water increases due to an increase in calcium concentration, and dissolution is suppressed.

これらのフッ素溶出抑制機構の考え方から、フッ素溶出抑制法を検証した。   Based on the concept of these fluorine elution suppression mechanisms, the fluorine elution suppression method was verified.

鉄鋼スラグからフッ素の溶出を防止するためには酸化カルシウム、水酸化カルシウム、硫酸カルシウムなどのカルシウムが水に溶解する水溶性カルシウムの添加が有効であることが分かった。カルシウムの溶出量は、100mg/l以上、望ましくは150mg/l以上が必要である。炭酸カルシウム、メタあるいはオルト珪酸カルシウム等は水に溶解せず好ましくない。これら水溶性カルシウムの添加量は、鉄鋼スラグからのフッ素溶出量が5mg/l程度の場合、フッ素溶出量を土壌環境基準以下の0.8mg/lまで抑制するには酸化カルシウム粉末で2質量%、もしくはそれ以上を鉄鋼スラグに混合させれば良い。   In order to prevent the elution of fluorine from steel slag, it has been found that the addition of water-soluble calcium which dissolves calcium such as calcium oxide, calcium hydroxide and calcium sulfate in water is effective. The calcium elution amount is required to be 100 mg / l or more, desirably 150 mg / l or more. Calcium carbonate, meta, or calcium orthosilicate are not preferable because they do not dissolve in water. The amount of water-soluble calcium added is 2% by mass with calcium oxide powder in order to suppress the fluorine elution amount to 0.8 mg / l below the soil environmental standard when the fluorine elution amount from steel slag is about 5 mg / l. Or more than that may be mixed with steel slag.

水溶性のカルシウムを混合する混合物として、ポルトランドセメントに代表される各種セメントがある。セメントには、CaO,Ca(OH)2,CaSO4が主成分として混合されており、それらのカルシウム量をCaOに換算すると70質量%まで含まれている。用途に応じて、セメント単独での使用、川砂などと混合してモルタルとして使用、更に砕石などを混合してコンクリートなどに使用されている。例えば、建築物のコンクリートなどの場合には、コンクリート廃材で分析した結果、10質量%程度の酸化カルシウム換算量が含まれている。鉄鋼スラグにこのコンクリート廃材を混合した場合、前記の鉄鋼スラグからフッ素が5mg/l程度溶出するが、鉄鋼スラグ量85質量%に対して15質量%もしくはそれ以上のコンクリート廃材を混合すればフッ素溶出を土壌環境基準以下の0.8mg/lまで抑制することができる。コンクリート廃材のカルシウム成分の総和を酸化カルシウムに換算した質量としての上限は70質量%が通常安価に入手できる品位であり、下限は5質量%を下回る場合、フッ素の溶出を抑制するカルシウム混合量が少なくなり、処理すべき鉄鋼スラグの量に対して多量のコンクリート廃材を必要とし効率的でない。 As a mixture for mixing water-soluble calcium, there are various cements represented by Portland cement. Cement contains CaO, Ca (OH) 2 , and CaSO 4 as main components, and the amount of calcium in the cement is contained up to 70% by mass when converted to CaO. Depending on the application, it is used as cement alone, mixed with river sand and used as mortar, and further mixed with crushed stone and used in concrete. For example, in the case of concrete of a building, as a result of analysis with concrete waste material, a calcium oxide equivalent amount of about 10% by mass is included. When this waste concrete is mixed with steel slag, about 5 mg / l of fluorine is eluted from the above steel slag, but when 15% by weight or more of concrete waste is mixed with 85% by weight of steel slag, the elution of fluorine Can be suppressed to 0.8 mg / l below the soil environmental standard. The upper limit as the mass of the total calcium component of the concrete waste is converted to calcium oxide is 70% by mass, which is normally available at a low price, and when the lower limit is less than 5% by mass, the amount of calcium mixed to suppress elution of fluorine is It is less efficient and requires a large amount of concrete waste for the amount of steel slag to be processed.

鉄鋼スラグからのフッ素溶出量は、スラグ中のフッ素量およびCaO,SiO2,Al23などスラグ成分などで決まるフッ素の鉱物組成により変動する。またコンクリートなどの廃材中の酸化カルシウム量もコンクリート、モルタル、セメントなどの混合比により変動する。従って、鉄鋼スラグと水溶性カルシウムからなる化合物又は/およびコンクリート廃材の混合材からのフッ素溶出量を目標値以下に制御する適切な混合比を決める実施対応については、簡単な事前調査が必要である。すなわち、ロット単位で、鉄鋼スラグとカルシウム化合物又は/およびコンクリート廃材の各々のフッ素溶出量を把握し、これらを基に任意に3水準程度の混合比を変えて溶出試験を行なうことで、目標とするフッ素溶出管理値以下となる混合比を決定することができる。 The amount of fluorine elution from steel slag varies depending on the fluorine content in the slag and the fluorine mineral composition determined by slag components such as CaO, SiO 2 , Al 2 O 3 . The amount of calcium oxide in waste materials such as concrete also varies depending on the mixing ratio of concrete, mortar, cement, and the like. Therefore, it is necessary to conduct a simple preliminary survey on the implementation measures to determine an appropriate mixing ratio that controls the amount of fluorine leaching from the compound of steel slag and water-soluble calcium or / and the mixture of concrete waste to below the target value. . In other words, the amount of fluorine leaching of steel slag and calcium compound or / and concrete waste material is grasped in lot units, and the leaching test is carried out by arbitrarily changing the mixing ratio of about three levels based on these amounts. It is possible to determine a mixing ratio that is less than or equal to the fluorine elution control value.

本発明に従い、フッ素を含有する鉄鋼スラグからのフッ素の溶出を抑制した。表3に使用した鉄鋼スラグおよびコンクリート廃材の組成分析値とそれらの溶出量の結果を示す。溶出試験は環境庁告示46号で行なった。溶出試験に供した試料の粒度は環境庁告示46号法に従い、2mm以下に調整した。試料のフッ素の溶出量は3.96mg/l(試料C)から6.6mg/l(試料A)の範囲であった。溶出抑制剤を含む物質としては、セメントが主体である試料aと、コンクリート、モルタル廃材の混合量の異なる試料b〜dの4種類を準備した。   According to the present invention, elution of fluorine from steel slag containing fluorine was suppressed. Table 3 shows the composition analysis values of the steel slag and concrete waste materials used and the results of their elution amounts. The dissolution test was conducted according to Notification No. 46 of the Environment Agency. The particle size of the sample subjected to the dissolution test was adjusted to 2 mm or less in accordance with the Environmental Agency Notification No. 46 method. The amount of fluorine elution from the sample was in the range of 3.96 mg / l (sample C) to 6.6 mg / l (sample A). As a substance containing an elution inhibitor, four kinds of samples a to b mainly including cement and samples b to d having different mixing amounts of concrete and mortar waste materials were prepared.

これらの試料を用いて混合比を変化させて溶出試験を行なった。混合材のフッ素溶出量の目標は、土壌環境基準である0.8mg/l以下をクリアすることとした。表4に本発明の実施例をまとめて示す。スラグ試料Aとカルシウム化合物を1種〜3種を選んで実施した例を実施例1〜7に示す。鉄鋼スラグそのままではフッ素が6.60mg/l(比較例1)溶出するが、カルシウム化合物を混合させた場合は0.69mg/l以下と目標の土壌環境基準である0.8mg/l以下をクリアした。   Using these samples, the elution test was performed while changing the mixing ratio. The target of the fluorine elution amount of the mixed material was to clear 0.8 mg / l or less which is the soil environment standard. Table 4 summarizes the examples of the present invention. Examples 1 to 7 are shown in which 1 to 3 slag samples A and calcium compounds were selected. If steel slag is used as it is, fluorine is eluted at 6.60 mg / l (Comparative Example 1), but when mixed with calcium compounds, it is 0.69 mg / l or less, clearing the target soil environmental standard of 0.8 mg / l or less. did.

Figure 2005239509
Figure 2005239509

Figure 2005239509
Figure 2005239509

鉄鋼スラグA,B,Cとコンクリート廃材a〜dを混合した本発明の例を実施例8〜13に示す。鉄鋼スラグとコンクリート廃材の混合量を変えることでフッ素溶出量を目標の土壌環境基準を満足するレベルに抑制することができる。鉄鋼スラグ混合比を下げコンクリート廃材の混合比を増すことで、より安全な領域までフッ素溶出量も下げることができる。   Examples 8 to 13 show examples of the present invention in which steel slags A, B, and C and concrete waste materials a to d are mixed. By changing the mixing amount of steel slag and concrete waste, the fluorine elution amount can be suppressed to a level that satisfies the target soil environmental standard. By reducing the mixing ratio of steel slag and increasing the mixing ratio of concrete waste, it is possible to reduce the fluorine elution amount to a safer area.

鉄鋼スラグとカルシウム量をCaOに換算して5質量%と低い場合の実施例を13〜15に示す。この実施例の場合、土壌環境基準である0.8mg/l以下をクリアするためには、鉄鋼スラグ40質量%、コンクリート廃材60質量%の混合が必要であり、鉄鋼スラグよりコンクリート廃材の量が多くなる。コンクリート廃材の量を少なくするためにカルシウム化合物を合わせて混合した場合が実施例14、15である。鉄鋼スラグの混合量が80質量%で環境基準を十分下回るまで抑制できた。これらのことから、フッ素を含有する鉄鋼スラグに、水溶性カルシウムからなる化合物又は/および水溶性カルシウム化からなる合物を含むカルシウム混合物を混合することで鉄鋼スラグからのフッ素の溶出を効果的に抑制できることは明らかである。   Examples in which the amount of steel slag and calcium is as low as 5 mass% in terms of CaO are shown in 13-15. In the case of this example, in order to clear the soil environmental standard of 0.8 mg / l or less, it is necessary to mix 40% by mass of steel slag and 60% by mass of concrete waste, and the amount of concrete waste is less than steel slag. Become more. Examples 14 and 15 are cases in which calcium compounds are mixed and mixed in order to reduce the amount of waste concrete. It was suppressed until the mixing amount of steel slag was 80% by mass and well below the environmental standard. From these things, the elution of fluorine from steel slag can be effectively performed by mixing a calcium mixture containing a compound consisting of water-soluble calcium and / or a compound consisting of water-soluble calcium into steel slag containing fluorine. Clearly it can be suppressed.

フッ素の溶出量におよぼす鉄鋼スラグとコンクリート廃材との混合の影響を示す図である。It is a figure which shows the influence of the mixing of the steel slag and the concrete waste material on the elution amount of fluorine.

Claims (8)

フッ素を含有する鉄鋼スラグに、水溶性カルシウムからなる化合物又は/および水溶性カルシウムからなる化合物を含むカルシウム混合物を混合することを特徴とする鉄鋼スラグからのフッ素溶出抑制方法。   A method for inhibiting fluorine elution from steel slag, comprising mixing a compound composed of water-soluble calcium and / or a calcium mixture containing a compound composed of water-soluble calcium into steel slag containing fluorine. 請求項1に記載の水溶性カルシウムからなる化合物が、酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH)2)、硫酸カルシウム(CaSO4)の1種以上であることを特徴とする鉄鋼スラグからのフッ素溶出抑制方法。 The steel slag characterized in that the compound comprising water-soluble calcium according to claim 1 is at least one of calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ), and calcium sulfate (CaSO 4 ). For suppressing elution of fluorine from water. 請求項1に記載の水溶性カルシウムからなる化合物を含むカルシウム混合物が、コンクリート廃材であることを特徴とする鉄鋼スラグからのフッ素溶出抑制方法。   A method for suppressing fluorine elution from steel slag, wherein the calcium mixture containing the water-soluble calcium compound according to claim 1 is a concrete waste material. フッ素を含有する鉄鋼スラグとカルシウム化合物又は/およびカルシウム混合物の混合割合は、予め任意に混合してフッ素の溶出量を確認して決定することを特徴とする請求項1〜3に記載されたいずれかの鉄鋼スラグからのフッ素溶出抑制方法。   The mixing ratio of the steel slag containing fluorine and the calcium compound or / and the calcium mixture is determined by confirming the elution amount of fluorine by arbitrarily mixing in advance. To suppress fluorine elution from steel slag. フッ素を含有する鉄鋼スラグに、水溶性カルシウムからなる化合物又は/および水溶性カルシウムからなる化合物を含むカルシウム混合物を混合されていることを特徴とする土中埋設材料。   A soil-embedded material, characterized in that a compound made of water-soluble calcium and / or a calcium mixture containing a compound made of water-soluble calcium are mixed in steel slag containing fluorine. 請求項5に記載の水溶性カルシウムからなる化合物が、酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH)2)、硫酸カルシウム(CaSO4)の1種以上であることを特徴とする土中埋設材料。 The compound comprising the water-soluble calcium according to claim 5 is one or more of calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ), and calcium sulfate (CaSO 4 ). Buried material. 請求項5に記載の水溶性カルシウムからなる化合物を含むカルシウム混合物がコンクリート廃材であることを特徴とする土中埋設材料。   A buried material in soil, wherein the calcium mixture containing the compound of water-soluble calcium according to claim 5 is a concrete waste material. コンクリート廃材は、カルシウム成分の総和を酸化カルシウム(CaO)に換算して5〜70質量%を含有することを特徴とする請求項7に記載の土中埋設材料。   The material for embedding in soil according to claim 7, wherein the concrete waste material contains 5 to 70 mass% in terms of calcium oxide (CaO) in terms of the total of calcium components.
JP2004054356A 2004-02-27 2004-02-27 Method for suppressing fluorine elution from steel slag and material for embedding in soil Pending JP2005239509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004054356A JP2005239509A (en) 2004-02-27 2004-02-27 Method for suppressing fluorine elution from steel slag and material for embedding in soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004054356A JP2005239509A (en) 2004-02-27 2004-02-27 Method for suppressing fluorine elution from steel slag and material for embedding in soil

Publications (1)

Publication Number Publication Date
JP2005239509A true JP2005239509A (en) 2005-09-08

Family

ID=35021641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004054356A Pending JP2005239509A (en) 2004-02-27 2004-02-27 Method for suppressing fluorine elution from steel slag and material for embedding in soil

Country Status (1)

Country Link
JP (1) JP2005239509A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049327A (en) * 2006-07-28 2008-03-06 Nippon Steel Corp Method for suppressing elution of fluorine in steelmaking slag
JP2008195568A (en) * 2007-02-13 2008-08-28 Sumitomo Metal Ind Ltd Fluorine elution prevention method from slag
JP2009040653A (en) * 2007-08-10 2009-02-26 Jfe Steel Kk Processing method of granulated blast furnace slag
JP2009040652A (en) * 2007-08-10 2009-02-26 Jfe Steel Kk Steelmaking slag treatment method
JP2010222227A (en) * 2009-03-25 2010-10-07 Nippon Steel Corp Method for suppressing fluorine elution from electric furnace slag containing fluorine
JP2015202479A (en) * 2014-04-16 2015-11-16 株式会社神戸製鋼所 Method for suppressing elution of fluorine and/or hexavalent chromium
JP2017001909A (en) * 2015-06-10 2017-01-05 チヨダウーテ株式会社 Fluorine insolubilization agent for steel slag
CN110983887A (en) * 2019-10-25 2020-04-10 中冶交通建设集团有限公司 Construction method for filling roadbed with high liquid limit soil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762346A (en) * 1993-08-27 1995-03-07 Sumitomo Metal Ind Ltd Manufacturing method of slag roadbed material
JP2000335946A (en) * 1999-05-27 2000-12-05 Sumitomo Metal Ind Ltd Method for stabilizing steelmaking slag, material for burying in soil, and method for producing the same
JP2001072447A (en) * 1999-07-02 2001-03-21 Nkk Corp Method for suppressing elution of fluorine from steelmaking slag
JP2001259570A (en) * 2000-01-13 2001-09-25 Hideaki Suito Treatment technique for stabilizing industrial waste containing fluorine
JP2001316143A (en) * 2000-02-24 2001-11-13 Kokan Kogyo Kk Method for treating steelmaking slag, method for producing material for burying in soil, and method for producing material for harbor civil engineering
JP2003119057A (en) * 2001-10-10 2003-04-23 Nisshin Steel Co Ltd Treating method for converting slag into aggregate suppressing elution of fluorine
JP2003183718A (en) * 2001-08-10 2003-07-03 Jfe Steel Kk Method for suppressing fluorine elution from steel smelting slag containing fluorine
JP2003261365A (en) * 2002-03-05 2003-09-16 Sumitomo Metal Ind Ltd Roadbed material and method of making roadbed material using steelmaking slag

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762346A (en) * 1993-08-27 1995-03-07 Sumitomo Metal Ind Ltd Manufacturing method of slag roadbed material
JP2000335946A (en) * 1999-05-27 2000-12-05 Sumitomo Metal Ind Ltd Method for stabilizing steelmaking slag, material for burying in soil, and method for producing the same
JP2001072447A (en) * 1999-07-02 2001-03-21 Nkk Corp Method for suppressing elution of fluorine from steelmaking slag
JP2001259570A (en) * 2000-01-13 2001-09-25 Hideaki Suito Treatment technique for stabilizing industrial waste containing fluorine
JP2001316143A (en) * 2000-02-24 2001-11-13 Kokan Kogyo Kk Method for treating steelmaking slag, method for producing material for burying in soil, and method for producing material for harbor civil engineering
JP2003183718A (en) * 2001-08-10 2003-07-03 Jfe Steel Kk Method for suppressing fluorine elution from steel smelting slag containing fluorine
JP2003119057A (en) * 2001-10-10 2003-04-23 Nisshin Steel Co Ltd Treating method for converting slag into aggregate suppressing elution of fluorine
JP2003261365A (en) * 2002-03-05 2003-09-16 Sumitomo Metal Ind Ltd Roadbed material and method of making roadbed material using steelmaking slag

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049327A (en) * 2006-07-28 2008-03-06 Nippon Steel Corp Method for suppressing elution of fluorine in steelmaking slag
JP2008195568A (en) * 2007-02-13 2008-08-28 Sumitomo Metal Ind Ltd Fluorine elution prevention method from slag
JP2009040653A (en) * 2007-08-10 2009-02-26 Jfe Steel Kk Processing method of granulated blast furnace slag
JP2009040652A (en) * 2007-08-10 2009-02-26 Jfe Steel Kk Steelmaking slag treatment method
JP2010222227A (en) * 2009-03-25 2010-10-07 Nippon Steel Corp Method for suppressing fluorine elution from electric furnace slag containing fluorine
JP2015202479A (en) * 2014-04-16 2015-11-16 株式会社神戸製鋼所 Method for suppressing elution of fluorine and/or hexavalent chromium
JP2017001909A (en) * 2015-06-10 2017-01-05 チヨダウーテ株式会社 Fluorine insolubilization agent for steel slag
CN110983887A (en) * 2019-10-25 2020-04-10 中冶交通建设集团有限公司 Construction method for filling roadbed with high liquid limit soil

Similar Documents

Publication Publication Date Title
Tariq et al. A review of binders used in cemented paste tailings for underground and surface disposal practices
JP5189119B2 (en) Method for selecting blast furnace slow-cooled slag powder suitably used as cement admixture
JP2011093738A (en) Cement-based solidifying material
JP2001348571A (en) Ground-modifying material
JP2005239509A (en) Method for suppressing fluorine elution from steel slag and material for embedding in soil
JP3782376B2 (en) Method for suppressing fluorine elution from smelting slag containing fluorine
Chiang et al. Iron and steel slags
JP5092203B2 (en) Method for suppressing elution of fluorine and heavy metals from waste
JP2015101830A (en) Sand arrestation soil cement method utilizing organic soil as construction material
JP4837258B2 (en) Method of embedding stainless steel slag and materials for embedding in the soil
JP6413854B2 (en) Manufacturing method for civil engineering materials for land use
JP2010138053A (en) Method of reducing fluorine elution from steel making slag product
JP3983033B2 (en) Cement admixture, cement composition, and cement concrete using the same
Tariq Synergistic and environmental benefits of using cement kiln dust with slag and fly ash in cemented paste tailings
JP4725302B2 (en) Method for treating eluted component-containing substance, stabilizing material and method for producing the same
JP3877583B2 (en) Hexavalent chromium reducing material
JP3942404B2 (en) Cement admixture
JP5761146B2 (en) Processing method of civil engineering materials using steel slag
JP2005162862A (en) Heavy metal elution controller and method for controlling heavy metal elution
JP2009185159A (en) Soil-improving material and soil-improving method
JP4682118B2 (en) Stabilization method of fluorine eluted from steel slag
JP5163004B2 (en) Steelmaking slag treatment method
JP2003192410A (en) Cement admixture, cement composition, and cement concrete using the same
JP4497775B2 (en) Solidified material
JP2010053327A (en) Solidifying material for oil-contaminated soil, high organic volcanic ash, and oil-containing waste fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110614