JP2011093738A - Cement-based solidifying material - Google Patents
Cement-based solidifying material Download PDFInfo
- Publication number
- JP2011093738A JP2011093738A JP2009248705A JP2009248705A JP2011093738A JP 2011093738 A JP2011093738 A JP 2011093738A JP 2009248705 A JP2009248705 A JP 2009248705A JP 2009248705 A JP2009248705 A JP 2009248705A JP 2011093738 A JP2011093738 A JP 2011093738A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- slag fine
- fine powder
- mass
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
本発明は、六価クロムを含有するセメント系固化物からの六価クロムの溶出防止方法に関する。より詳しくは、六価クロムの溶出抑制効果に優れると共に、固化後の強度が大きいセメント系固化材に関する。 The present invention relates to a method for preventing elution of hexavalent chromium from cement-based solidified material containing hexavalent chromium. More specifically, the present invention relates to a cement-based solidified material having an excellent hexavalent chromium elution inhibitory effect and a high strength after solidification.
クロムは六価イオンの状態で溶出し、土壌の汚染源になるので、汚染防止のために六価クロムの溶出量は厳しく制限されており、土壌環境基準では0.05mg/L以下に制限されている。このため、固化処理土からの六価クロムの溶出を防止する方法として、種々の方法が提案され試行されている。 Since chromium elutes in the form of hexavalent ions and becomes a source of soil contamination, the elution amount of hexavalent chromium is strictly limited to prevent contamination, and the soil environment standard limits it to 0.05 mg / L or less. Yes. For this reason, various methods have been proposed and tried as methods for preventing the elution of hexavalent chromium from the solidified soil.
六価クロムの溶出量を低減する手段としては、六価クロムを三価クロムに還元する方法が一般的であり、セメントに還元剤ないし吸着剤として高炉スラグなどを配合した処理材が従来から知られている。 As a means of reducing the elution amount of hexavalent chromium, a method of reducing hexavalent chromium to trivalent chromium is generally used, and a treatment material in which blast furnace slag or the like is blended with cement as a reducing agent or adsorbent has been conventionally known. It has been.
例えば、特開2001−348571号公報には、水硬性材料(セメント)に高炉スラグ粉末および石膏を配合してなる地盤改良材が記載されており、高炉スラグによってアルミ成分を供給してカルシウムアルミネート系水和物の生成を促進し、またその第一鉄塩等の還元成分によって六価クロムを還元して溶出量を抑えることが記載されている。 For example, Japanese Patent Application Laid-Open No. 2001-348571 describes a ground improvement material obtained by blending hydraulic material (cement) with blast furnace slag powder and gypsum, and supplying an aluminum component with blast furnace slag to produce calcium aluminate. It is described that the production of a system hydrate is promoted, and hexavalent chromium is reduced by a reducing component such as a ferrous salt to suppress the elution amount.
また、特開2007−222694号公報には、ポルトランドセメントと、高炉スラグ粉末と、石膏とを含む重金属汚染土壌用セメント系固化材が記載されている。高炉スラグ粉末を30〜70質量%含有することによって、汚染土壌の六価クロムと共にセメント自体に含まれる六価クロムの二次的な溶出をも抑制することが記載されている。 Japanese Patent Application Laid-Open No. 2007-222694 describes a cement-based solidifying material for heavy metal-contaminated soil containing Portland cement, blast furnace slag powder, and gypsum. It is described that by containing 30 to 70% by mass of blast furnace slag powder, secondary elution of hexavalent chromium contained in cement itself as well as hexavalent chromium in contaminated soil is suppressed.
従来の上記処理材において、高炉スラグ粉末を多量に配合すると、六価クロムの溶出量を低減できるが、固化後の強度発現性が低下するという問題がある。例えば、火山灰質粘性土などは六価クロムの溶出量が多いが、このような被処理土についても、固化後に十分な強度が発現でき、かつ六価クロムの溶出を効果的に抑制する処理材が求められている。 In the conventional treatment material, when a large amount of blast furnace slag powder is blended, the elution amount of hexavalent chromium can be reduced, but there is a problem that strength developability after solidification is lowered. For example, volcanic ash cohesive soil has a large amount of hexavalent chromium elution, but for such treated soil, it is possible to develop sufficient strength after solidification and effectively suppress the elution of hexavalent chromium. Is required.
また、セメント系固化材は、セメント自体がその原料および燃料に起因して六価クロムを含んでいることから,その硬化後も固化処理土から六価クロムが溶出する危険性を有している。 In addition, the cement-based solidification material has a risk of elution of hexavalent chromium from the solidified soil even after its hardening because the cement itself contains hexavalent chromium due to its raw materials and fuel. .
本発明は、従来の上記処理材における上記問題を解決したものであり、六価クロムの溶出抑制効果に優れ、かつ固化後においても十分な強度を発現するセメント系固化材を提供する。 The present invention solves the above-mentioned problems in the conventional treatment material, and provides a cement-based solidified material that is excellent in the elution suppression effect of hexavalent chromium and exhibits sufficient strength even after solidification.
本発明によれば、以下の構成によって上記問題を解決したセメント系固化材が提供される。
〔1〕ポルトランドセメントおよび石膏の水硬性成分に対して、第一鉄化合物または高炉スラグ微粉末の一種または二種と、銅スラグ微粉末とを配合してなることを特徴とし、六価クロムの溶出を抑制するセメント系固化材。
〔2〕銅スラグ微粉末の比表面積が6000cm2/g以上である上記[1]に記載するセメント系固化材。
〔3〕ポルトランドセメント含有量50質量%以上、石膏含有量5〜10質量%、銅スラグ微粉末含有量10〜20質量%、第一鉄化合物と高炉スラグ微粉末の一種または二種の含有量10〜20質量%であり、これらの合計含有量が100質量%である上記[1]または上記[2]に記載するセメント系固化材。
〔4〕銅スラグ微粉末の酸化鉄含有量40質量%以上、塩基度1.0以下である上記[1]〜上記[3]の何れかに記載するセメント系固化材。
According to the present invention, a cement-based solidified material that solves the above problems is provided by the following configuration.
[1] A hydrous component of Portland cement and gypsum, comprising one or two types of ferrous compound or blast furnace slag fine powder and copper slag fine powder, Cement-based solidifying material that suppresses elution.
[2] The cement-based solidified material according to [1], wherein the copper slag fine powder has a specific surface area of 6000 cm 2 / g or more.
[3] Portland cement content 50 mass% or more, gypsum content 5-10 mass%, copper slag fine powder content 10-20 mass%, ferrous compound and blast furnace slag fine powder content of one or two kinds The cement-based solidified material according to the above [1] or [2], which is 10 to 20% by mass and the total content thereof is 100% by mass.
[4] The cement-based solidified material according to any one of [1] to [3], wherein the iron oxide content of the copper slag fine powder is 40% by mass or more and the basicity is 1.0 or less.
本発明の処理材は、ポルトランドセメントおよび石膏の水硬性成分に対して、銅スラグ微粉末と共に、第一鉄化合物および高炉スラグ微粉末の一種または二種を配合することによって、銅スラグ微粉末とこれら第一鉄化合物ないし高炉スラグが相乗的な効果を発揮するので、硫酸第一鉄、高炉スラグ微粉末、銅スラグ微粉末をおのおの単独に含むもの、あるいは硫酸第一鉄と高炉スラグ微粉末を含有するものに比べて格段に六価クロム溶出量が少なく、かつ固化後の圧縮強度が大きい。 The treatment material of the present invention contains copper slag fine powder by mixing one or two types of ferrous compound and blast furnace slag fine powder together with copper slag fine powder with respect to the hydraulic component of Portland cement and gypsum. Since these ferrous compounds or blast furnace slag have a synergistic effect, ferrous sulfate, blast furnace slag fine powder, copper slag fine powder each containing alone, or ferrous sulfate and blast furnace slag fine powder The amount of hexavalent chromium elution is remarkably smaller than that contained, and the compressive strength after solidification is large.
具体的には、実施例に示すように、例えば、ポルトランドセメントおよび石膏の水硬性成分に対して、硫酸第一鉄、高炉スラグ微粉末、銅スラグ微粉末をおのおの単独に配合した場合の六価クロム溶出量は0.12〜0.14mg/Lであるが、銅スラグ微粉末と共に第一鉄化合物および高炉スラグ微粉末の一種または二種を併用した本発明の処理材の六価クロム溶出量は0.02mg/Lであり、六価クロム溶出量が大幅に抑制される。 Specifically, as shown in the examples, for example, ferrous sulfate, fine powder of blast furnace slag, and fine powder of copper slag are mixed with each of the hydraulic components of Portland cement and gypsum. The chromium elution amount is 0.12 to 0.14 mg / L, but the hexavalent chromium elution amount of the treatment material of the present invention in which one or two types of ferrous compound and blast furnace slag fine powder are used together with fine copper slag powder. Is 0.02 mg / L, and the hexavalent chromium elution amount is greatly suppressed.
また、実施例に示すように、本発明の処理材を混合した土壌の一軸圧縮強度は5000kN/m2以上であるが、ポルトランドセメントおよび石膏の水硬性成分に対して、硫酸第一鉄、高炉スラグ微粉末、銅スラグ微粉末をおのおの単独に配合した処理材を用いた場合の一軸圧縮強度は4800〜4870kN/m2であり、本発明の処理材よりも圧縮強度が小さい。 Moreover, as shown in the Examples, the uniaxial compressive strength of the soil mixed with the treatment material of the present invention is 5000 kN / m 2 or more, but ferrous sulfate, blast furnace with respect to the hydraulic components of Portland cement and gypsum. The uniaxial compressive strength in the case of using processing materials each containing slag fine powder and copper slag fine powder alone is 4800 to 4870 kN / m 2 , which is smaller than the compressive strength of the processing material of the present invention.
以下、本発明を実施形態に基づいて具体的に説明する。なお、比表面積はブレーン比表面積である。
本発明の処理材は、ポルトランドセメントおよび石膏の水硬性成分に対して、第一鉄化合物または高炉スラグ微粉末の一種または二種と、銅スラグ微粉末とを配合してなることを特徴とし、六価クロムの溶出を抑制するセメント系固化材である。
Hereinafter, the present invention will be specifically described based on embodiments. The specific surface area is the Blaine specific surface area.
The treatment material of the present invention is characterized by blending one or two types of ferrous compound or blast furnace slag fine powder and copper slag fine powder with respect to the hydraulic component of Portland cement and gypsum, Cement-based solidifying material that suppresses elution of hexavalent chromium.
ポルトランドセメントは、規格(JIS R5210:2003「ポルトランドセメント」)に定めるものを使用することができる。特に普通ポルトランドセメントや早強ポルトランドセメントを好適に使用することができる。本発明の処理材に含まれるポルトランドセメントの含有量は50質量%以上であり、50〜60質量%が好ましい。 As the Portland cement, those defined in the standard (JIS R5210: 2003 “Portland cement”) can be used. In particular, ordinary Portland cement and early-strength Portland cement can be preferably used. The content of Portland cement contained in the treatment material of the present invention is 50% by mass or more, and preferably 50 to 60% by mass.
石膏は、二水石膏、半水石膏、無水石膏のいずれも使用することができる。なお、強度の発現性を高めるには無水石膏が好ましい。本発明の処理材に含まれる石膏の含有量は、SO3基準で5〜10質量%が好ましい。石膏含有量が5質量%よりも少ないと十分な強度を得るのが難しく、10質量%よりも多いと強度に低下傾向が顕われてくるので好ましくない。なお、この石膏はポルトランドセメントに本来含まれているものとは別の追加的な石膏成分である。 As the gypsum, any of dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum can be used. In addition, anhydrous gypsum is preferable in order to increase strength development. The content of gypsum contained in the treatment material of the present invention is preferably 5 to 10% by mass based on SO 3 . If the gypsum content is less than 5% by mass, it is difficult to obtain sufficient strength, and if it is more than 10% by mass, the strength tends to decrease. This gypsum is an additional gypsum component different from that originally contained in Portland cement.
本発明のセメント系固化材は、ポルトランドセメントおよび石膏の水硬性成分と共に、固定化促進成分として、銅スラグ微粉末と共に、第一鉄化合物および高炉スラグ微粉末の一種または二種を含む。 The cement-based solidified material of the present invention includes one or two types of ferrous compound and blast furnace slag fine powder as well as fine components of copper slag as well as a hydraulic component of Portland cement and gypsum as well as copper slag fine powder.
本発明のセメント系固化材は、固定化促進成分の必須成分として銅スラグ微粉末を含有する。銅スラグは、実施例の表1に示すように、鉄分の含有量が多く、アルミニウム、カルシウム、およびマグネシウムなどの塩基成分の含有量は数%である。具体的には、例えば、銅スラグの酸化鉄含有量は40質量%以上であり、塩基度1.0以下である。なお、塩基度はシリカ含有量に対する塩基成分量の比(Al2O3+CaO+MgO)/SiO2である。 The cement-based solidified material of the present invention contains copper slag fine powder as an essential component of the immobilization promoting component. As shown in Table 1 of an Example, copper slag has much iron content, and content of base components, such as aluminum, calcium, and magnesium, is several%. Specifically, for example, the iron oxide content of copper slag is 40% by mass or more, and the basicity is 1.0 or less. The basicity is the ratio of the base component amount to the silica content (Al 2 O 3 + CaO + MgO) / SiO 2 .
一方、高炉スラグはカルシウム分が多く、鉄分含有量は1%以下である。従って、本発明のセメント系固化材において、銅スラグ微粉末と高炉スラグ微粉末を併用することによって鉄分と共にカルシウム分が供給され、また、銅スラグ微粉末と硫酸第一鉄を併用することによって、硫酸第一鉄の還元性によって鉄分の多い銅スラグ微粉末が活性化されるなどの相乗的な作用が期待される。 On the other hand, blast furnace slag has a high calcium content and an iron content of 1% or less. Accordingly, in the cement-based solidified material of the present invention, calcium is supplied together with iron by using copper slag fine powder and blast furnace slag fine powder together, and by using copper slag fine powder and ferrous sulfate together, Synergistic effects such as activation of fine copper slag powder with high iron content due to the reducing properties of ferrous sulfate are expected.
銅スラグ微粉末の粉末度は比表面積6000cm2/g以上が好ましい。実施例に示すように、銅スラグ微粉末の比表面積が4000cm2/g以下では固化処理後の圧縮強度が十分に向上せず、六価クロムの溶出量をやや抑制できない傾向がある。 The fineness of the copper slag fine powder is preferably a specific surface area of 6000 cm 2 / g or more. As shown in the examples, when the specific surface area of the copper slag fine powder is 4000 cm 2 / g or less, the compressive strength after the solidification treatment is not sufficiently improved, and the elution amount of hexavalent chromium tends to be slightly suppressed.
本発明のセメント系固化材中の銅スラグ微粉末含有量は10〜20質量%が好ましい。銅スラグ微粉末量が10質量%より少ないと、その効果が十分ではなく、20質量%より多いと、相対的に他の成分量が少なくなるので好ましくない。 The copper slag fine powder content in the cement-based solidified material of the present invention is preferably 10 to 20% by mass. If the amount of fine copper slag powder is less than 10% by mass, the effect is not sufficient, and if it is more than 20% by mass, the amount of other components is relatively small, which is not preferable.
本発明のセメント系固化材は、銅スラグ微粉末と共に、第一鉄化合物または高炉スラグ微粉末の一種または二種を含む。第一鉄化合物としては硫酸第一鉄が好ましい。硫酸第一鉄などの第一鉄化合物は還元性を有し、六価クロムを三価クロムに還元して固定する作用を有する。 The cement-based solidified material of the present invention contains one or two types of ferrous compound or blast furnace slag fine powder together with copper slag fine powder. Ferrous sulfate is preferred as the ferrous compound. Ferrous compounds such as ferrous sulfate are reducible and have the effect of reducing and fixing hexavalent chromium to trivalent chromium.
高炉スラグは規格(JIS R 5211:2003「高炉セメント」)に規定される品質を有するものであれば良い。高炉スラグ微粉末の粉末度は比表面積3500cm2/g以上が良く、4500cm2/g以上が好ましい。高炉スラグ微粉末を含有することによって、水硬性が向上するなどの作用によって六価クロムの固定化が促進される。 Any blast furnace slag may be used as long as it has the quality specified in the standard (JIS R 5211: 2003 “Blast Furnace Cement”). Fineness of the ground granulated blast furnace slag is a specific surface area of 3500 cm 2 / g or more is good, 4500cm 2 / g or more. By containing the blast furnace slag fine powder, fixation of hexavalent chromium is promoted by an action such as improvement of hydraulic properties.
本発明のセメント系固化材において、銅スラグ微粉末は必須成分として含むが、第一鉄化合物と高炉スラグ微粉末は、何れか一種、または二種を含むものであれば良い。セメント系固化材中のこれらの含有量は、一種の場合には10〜20質量%が好ましく、二種の場合にはその合計量で10〜20質量%が好ましい。 In the cement-based solidified material of the present invention, copper slag fine powder is contained as an essential component, but the ferrous compound and blast furnace slag fine powder may be any one or two kinds. In the case of one kind, the content of these cementitious solidification materials is preferably 10 to 20% by mass, and in the case of two kinds, the total amount is preferably 10 to 20% by mass.
以下、本発明の実施例を比較例と共に示す。
セメント系固化材の材料として、普通ポルトランドセメント(三菱マテリアル社製品)、無水せっこう(関東化学社製品)、硫酸第一鉄(関東化学社製品)、高炉スラグ微粉末(宇部三菱セメント社製品)、および銅スラグ微粉末(三菱マテリアル社製品)を使用した。上記各材料の化学組成を表1に示す。
Examples of the present invention are shown below together with comparative examples.
As materials for cement-based solidification materials, ordinary Portland cement (Mitsubishi Materials Corp. product), anhydrous gypsum (Kanto Chemical Co. product), ferrous sulfate (Kanto Chemical Co. product), blast furnace slag fine powder (Ube Mitsubishi Cement product) , And copper slag fine powder (product of Mitsubishi Materials Corporation) were used. Table 1 shows the chemical composition of each material.
〔実施例1〜5〕
上記各材料を表2に示す配合割合に従って混合し、本発明のセメント系固化材を調製した。なお、実施例1〜4の銅スラグ微粉末の比表面積は6220cm2/gであり、実施例5の銅スラグ微粉末の比表面積は3920cm2/gである。
〔比較例1〜3〕
上記各材料を表2に示す配合割合に従って混合し、比較例のセメント系固化材を調製した。
[Examples 1 to 5]
The above materials were mixed according to the blending ratio shown in Table 2 to prepare the cement-based solidified material of the present invention. In addition, the specific surface area of the copper slag fine powder of Examples 1-4 is 6220 cm < 2 > / g, and the specific surface area of the copper slag fine powder of Example 5 is 3920 cm < 2 > / g.
[Comparative Examples 1-3]
The above materials were mixed according to the blending ratio shown in Table 2 to prepare a cement-based solidified material of a comparative example.
上記セメント系固化材を最終処理場から採取した廃棄物と、別の場所で採取した一般土壌A、Bに対して、上記固化材を250kg/m3の質量割合で混合し、これらを水比100%で混練して供試体とした。この供試体について、固化後の一軸圧縮強度を規格(JIS A 1216「土の一軸圧縮試験方法」)に従って測定し、六価クロム溶出量を環境庁告示第46号に従って測定した。供試体に使用した廃棄物および土壌A、Bの物性を表3に示す。測定結果を表4に示す。 The above solidified material is mixed at a mass ratio of 250 kg / m 3 with the waste collected from the final treatment plant and the general soils A and B collected at different locations, and the water ratio A sample was kneaded at 100%. With respect to this specimen, the uniaxial compressive strength after solidification was measured according to the standard (JIS A 1216 “Soil uniaxial compressive test method”), and the hexavalent chromium elution amount was measured according to Environmental Agency Notification No. 46. Table 3 shows the physical properties of the waste and soils A and B used for the specimen. Table 4 shows the measurement results.
表4に示すように、実施例1〜4の固化材は、廃棄物および一般土壌A〜Bについて、何れも、一軸圧縮強度が5100kN/m2以上であり、大きな圧縮強度が得られる。また、六価クロムの溶出量は0.02mg/Lであり、溶出量が格段に少ない。なお、銅スラグ微粉末の粉末度が6000cm2/g以下の実施例5は、廃棄物および一般土壌A〜Bについて、一軸圧縮強度5000〜5080kN/m2、および六価クロムの溶出量0.05mg/Lであり、実施例1〜4に比べて、一軸圧縮強度および六価クロム溶出抑制効果がやや低い。 As shown in Table 4, the solidified materials of Examples 1 to 4 have a uniaxial compressive strength of 5100 kN / m 2 or more for waste and general soils AB, and a large compressive strength is obtained. The elution amount of hexavalent chromium is 0.02 mg / L, and the elution amount is remarkably small. In Example 5 where the fineness of the copper slag fine powder is 6000 cm 2 / g or less, the uniaxial compressive strength is 5000 to 5080 kN / m 2 and the elution amount of hexavalent chromium is 0. It is 05 mg / L, and compared with Examples 1-4, the uniaxial compressive strength and the hexavalent chromium elution inhibitory effect are a little low.
一方、固定化促進成分として硫酸第一鉄、高炉スラグ微粉末、銅スラグ微粉末の何れか一種を単独に用いた比較例1〜3は、これらの含有量が実施例1〜3、実施例5の固定化促進成分の合計含有量と同量(30質量%)であるが、廃棄物および一般土壌A〜Bについて、一軸圧縮強度は4800〜4920kN/m2であり実施例1〜4に比べて大幅に低い。また、六価クロムの溶出量は0.12〜0.14mg/Lであり、実施例1〜4に比べて6〜7倍である。 On the other hand, Comparative Examples 1-3 using any one of ferrous sulfate, blast furnace slag fine powder, and copper slag fine powder as an immobilization promoting component, these contents are Examples 1-3, Examples 5 is the same as the total content of the immobilization promoting components (30% by mass), but the uniaxial compressive strength is 4800 to 4920 kN / m 2 for waste and general soils AB, and in Examples 1 to 4 It is much lower than that. Moreover, the elution amount of hexavalent chromium is 0.12 to 0.14 mg / L, which is 6 to 7 times that of Examples 1 to 4.
以上のように、本発明に係る実施例1〜4の固化材は、比較例1〜3に比べて六価クロムの溶出量は1/6〜1/7に低減しており、格段に優れた溶出抑制効果を発揮する。また、一軸圧縮強度も大きい。 As described above, the solidification materials of Examples 1 to 4 according to the present invention are significantly superior in that the elution amount of hexavalent chromium is reduced to 1/6 to 1/7 as compared with Comparative Examples 1 to 3. Exhibits effective elution suppression. Moreover, the uniaxial compressive strength is also large.
Claims (4)
Featuring one or two types of ferrous compound or blast furnace slag fine powder and copper slag fine powder for the hydraulic component of Portland cement and gypsum, and suppressing elution of hexavalent chromium. Cement-based solidifying material.
The cement-based solidified material according to claim 1, wherein the specific surface area of the copper slag fine powder is 6000 cm 2 / g or more.
Portland cement content of 50% by mass or more, gypsum content of 5-10% by mass, copper slag fine powder content of 10-20% by mass, ferrous compound and blast furnace slag fine powder, content of 10 or 20 The cement-based solidified material according to claim 1 or 2, wherein the total content of these is 100% by mass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009248705A JP2011093738A (en) | 2009-10-29 | 2009-10-29 | Cement-based solidifying material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009248705A JP2011093738A (en) | 2009-10-29 | 2009-10-29 | Cement-based solidifying material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011093738A true JP2011093738A (en) | 2011-05-12 |
Family
ID=44111104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009248705A Pending JP2011093738A (en) | 2009-10-29 | 2009-10-29 | Cement-based solidifying material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011093738A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013047153A (en) * | 2011-08-29 | 2013-03-07 | Dc Co Ltd | Neutralization-preventive high-early-strength cement composition |
JP2018109128A (en) * | 2017-01-05 | 2018-07-12 | デンカ株式会社 | Elution reducing agent of hexavalent chromium and elution reducing method of hexavalent chromium using the same |
KR101913694B1 (en) * | 2017-08-16 | 2018-11-01 | (주)베스트로드 | A rapid-hardening binder containing low-heat cement and copper slag powder, and polymer modified concrete composition |
CN110981378A (en) * | 2019-12-18 | 2020-04-10 | 湖北工业大学 | A kind of method for solidifying chromium-containing solid waste |
KR20210133041A (en) * | 2020-04-28 | 2021-11-05 | 대호산업개발(주) | Back fill grout composition using carboxyl-based activator |
CN115368036A (en) * | 2022-08-30 | 2022-11-22 | 攀枝花钢城集团有限公司 | Doping material for reducing water-soluble hexavalent chromium of cement and preparation method and application thereof |
JP7489825B2 (en) | 2020-05-12 | 2024-05-24 | Ube三菱セメント株式会社 | Cement mixture and its manufacturing method |
JP7502891B2 (en) | 2020-05-12 | 2024-06-19 | Ube三菱セメント株式会社 | Cement composition and method for producing the cement composition |
JP7586752B2 (en) | 2021-03-30 | 2024-11-19 | Ube三菱セメント株式会社 | Hydraulic materials |
JP7657081B2 (en) | 2021-03-19 | 2025-04-04 | Ube三菱セメント株式会社 | Hydraulic Materials |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001348571A (en) * | 2000-06-07 | 2001-12-18 | Taiheiyo Cement Corp | Ground-modifying material |
JP2002241166A (en) * | 2000-12-11 | 2002-08-28 | Taiheiyo Cement Corp | Hydraulic composition |
JP2007162444A (en) * | 2005-12-16 | 2007-06-28 | Nippon Solid Co Ltd | Method of processing soil |
JP2008179502A (en) * | 2007-01-24 | 2008-08-07 | Ube Ind Ltd | Water-soluble hexavalent chromium-reducing cement composition and method for producing the same |
-
2009
- 2009-10-29 JP JP2009248705A patent/JP2011093738A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001348571A (en) * | 2000-06-07 | 2001-12-18 | Taiheiyo Cement Corp | Ground-modifying material |
JP2002241166A (en) * | 2000-12-11 | 2002-08-28 | Taiheiyo Cement Corp | Hydraulic composition |
JP2007162444A (en) * | 2005-12-16 | 2007-06-28 | Nippon Solid Co Ltd | Method of processing soil |
JP2008179502A (en) * | 2007-01-24 | 2008-08-07 | Ube Ind Ltd | Water-soluble hexavalent chromium-reducing cement composition and method for producing the same |
Non-Patent Citations (1)
Title |
---|
JPN6013033342; 「港湾・空港等整備におけるリサイクル技術指針のとりまとめ」 , 20040510, 2-80頁〜2-85頁 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013047153A (en) * | 2011-08-29 | 2013-03-07 | Dc Co Ltd | Neutralization-preventive high-early-strength cement composition |
WO2013031246A1 (en) * | 2011-08-29 | 2013-03-07 | 株式会社デイ・シイ | Neutralization-preventive high-early-strength cement composition |
KR101617695B1 (en) | 2011-08-29 | 2016-05-03 | 디씨 컴퍼니 리미티드 | Neutralization-preventive high-early-strength cement composition |
JP2018109128A (en) * | 2017-01-05 | 2018-07-12 | デンカ株式会社 | Elution reducing agent of hexavalent chromium and elution reducing method of hexavalent chromium using the same |
KR101913694B1 (en) * | 2017-08-16 | 2018-11-01 | (주)베스트로드 | A rapid-hardening binder containing low-heat cement and copper slag powder, and polymer modified concrete composition |
CN110981378A (en) * | 2019-12-18 | 2020-04-10 | 湖北工业大学 | A kind of method for solidifying chromium-containing solid waste |
KR20210133041A (en) * | 2020-04-28 | 2021-11-05 | 대호산업개발(주) | Back fill grout composition using carboxyl-based activator |
KR102434735B1 (en) | 2020-04-28 | 2022-08-22 | 대호산업개발(주) | Back fill grout composition using carboxyl-based activator |
JP7489825B2 (en) | 2020-05-12 | 2024-05-24 | Ube三菱セメント株式会社 | Cement mixture and its manufacturing method |
JP7502891B2 (en) | 2020-05-12 | 2024-06-19 | Ube三菱セメント株式会社 | Cement composition and method for producing the cement composition |
JP7657081B2 (en) | 2021-03-19 | 2025-04-04 | Ube三菱セメント株式会社 | Hydraulic Materials |
JP7586752B2 (en) | 2021-03-30 | 2024-11-19 | Ube三菱セメント株式会社 | Hydraulic materials |
CN115368036A (en) * | 2022-08-30 | 2022-11-22 | 攀枝花钢城集团有限公司 | Doping material for reducing water-soluble hexavalent chromium of cement and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011093738A (en) | Cement-based solidifying material | |
JP5500828B2 (en) | Soil hardening material | |
JP5053572B2 (en) | Cement-based solidification material and solidification treatment method | |
JP2012046704A (en) | Solidification material | |
JP3970201B2 (en) | Cement composition, coating material, and salt shielding method using the same | |
JP7422071B2 (en) | Heavy metal insolubilization solidification material and method for improving contaminated soil | |
JP2009185220A (en) | Soil improvement solidifying material | |
JP4600812B2 (en) | Ground improvement method | |
JP2007209848A (en) | Method and agent for treating fluorine compound-containing waste | |
JP6941301B2 (en) | Ground improvement material, improved soil, and method of manufacturing improved soil | |
JP5718562B2 (en) | Soil stabilization treatment material and soil stabilization treatment method using the same | |
JP2004292568A (en) | Soil solidifying material | |
JP6365329B2 (en) | Manufacturing method for civil engineering materials for land use | |
JP4634060B2 (en) | Soil treatment method | |
JP3877583B2 (en) | Hexavalent chromium reducing material | |
JP3725077B2 (en) | Cement admixture and cement composition | |
JP6864778B1 (en) | Ground improvement material and ground solidification treatment method | |
JP2001316143A (en) | Treatment of furnace slag, method for manufacturing material for usderground structure and material for harbor facility | |
JP4883390B2 (en) | Solidifying material for ground improvement and solidified soil using the same | |
JP2004299972A (en) | Cement-based solidifying material and soil improvement method | |
JP2005162862A (en) | Heavy metal elution controller and method for controlling heavy metal elution | |
JP6385818B2 (en) | Cement additive and cement composition | |
JP2006070150A (en) | Cement solidification material for organic soil | |
JP2016121046A (en) | Cement additive and cement composition | |
JP5274739B2 (en) | Method for reducing hexavalent chromium by adjusting the particle size of silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130710 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140129 |