[go: up one dir, main page]

JP2005237175A - Motor and electric vehicle including the motor - Google Patents

Motor and electric vehicle including the motor Download PDF

Info

Publication number
JP2005237175A
JP2005237175A JP2004046646A JP2004046646A JP2005237175A JP 2005237175 A JP2005237175 A JP 2005237175A JP 2004046646 A JP2004046646 A JP 2004046646A JP 2004046646 A JP2004046646 A JP 2004046646A JP 2005237175 A JP2005237175 A JP 2005237175A
Authority
JP
Japan
Prior art keywords
motor
coil
superconducting wire
stator
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004046646A
Other languages
Japanese (ja)
Inventor
Toru Okazaki
徹 岡崎
Kenichi Sato
謙一 佐藤
Yasuhisa Yushio
泰久 湯塩
Shingo Oohashi
紳悟 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004046646A priority Critical patent/JP2005237175A/en
Publication of JP2005237175A publication Critical patent/JP2005237175A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Brushless Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor with a permanent magnet capable of increasing an output by enhancing rotating magnetic fields generated by the permanent magnet. <P>SOLUTION: This motor is constructed by combining a coil formed of a superconducting wire with a permanent magnet of a rotor of a rotating magnetic field type motor or a permanent magnet of a stator of the rotating magnetic field type motor to enhance the rotating magnetic field generated in the stator by feeding power to an armature coil of the rotor of the rotating magnetic field type motor or the coil of the superconducting wire. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気自動車等の移動体に用いられるモータに関し、特に、大パワーが必要な時に永久磁石により発生する回転磁界の限界を越えた強力な磁界を発生させ、高出力化が図れるようにするものである。   The present invention relates to a motor used for a moving body such as an electric vehicle, and in particular, to generate a strong magnetic field exceeding the limit of a rotating magnetic field generated by a permanent magnet when a large power is required so that high output can be achieved. To do.

近年、電気自動車用のモータに関して種々の開発がなされている。永久磁石型モータでは、永久磁石による磁界は一定であるため、最大出力(トルク)を大きくするには、電磁力(F)は、F=B(磁界)×I(電流)×L(電機子コイルの大きさ)で一定で、磁界と電流の積がトルクに比例するため、電機子コイルへ供給する電流を大きくせざるを得ない。例えば、10倍の高出力を必要とする場合、10倍の電流を流す必要がある。そのため、電源の容量を大きくする必要があり、かつ、最大出力(トルク)時の大電流に耐え得る容量を持った回路を設ける必要がある。
しかしながら、自動車において最大出力を継続的に利用することはなく、通常走行時には大電流を必要とせず、大容量とした電源や大電流回路が無駄となり、かつ、電源および回路が大型化、重量化する問題がある。
In recent years, various developments have been made on motors for electric vehicles. In the permanent magnet type motor, the magnetic field generated by the permanent magnet is constant. Therefore, in order to increase the maximum output (torque), the electromagnetic force (F) is F = B (magnetic field) × I (current) × L (armature Since the product of the magnetic field and the current is proportional to the torque, the current supplied to the armature coil must be increased. For example, when 10 times higher output is required, 10 times of current needs to flow. For this reason, it is necessary to increase the capacity of the power source and to provide a circuit having a capacity capable of withstanding a large current at the maximum output (torque).
However, automobiles do not continuously use the maximum output, do not require a large current during normal driving, waste a large-capacity power supply and large current circuit, and increase the size and weight of the power supply and circuit. There is a problem to do.

電気自動車用のモータ装置として、従来、特開平6−6907号(特許文献1)に、モータの回転子側に第1の電機子コイルと第2の電機子コイルを設け、固定子側に超電導体からなる界磁コイルを設け、上記2つの電機子コイルに交番電流を夫々流すて磁界を形成する一方、界磁コイルに直流電流を流して磁界を形成し、これらの磁界の相互作用により回転子を回転させる超電導モータ装置が提供されている。   Conventionally, as a motor device for an electric vehicle, Japanese Patent Laid-Open No. 6-6907 (Patent Document 1) is provided with a first armature coil and a second armature coil on the rotor side of the motor, and superconductivity on the stator side. A field coil consisting of a body is provided, and an alternating current is passed through the two armature coils to form a magnetic field, while a direct current is passed through the field coil to form a magnetic field, which is rotated by the interaction of these magnetic fields. A superconducting motor device that rotates a child is provided.

しかしながら、上記超電導モータ装置では、電機子コイルと界磁コイルへの給電により生じる回転磁界にのみに依存して回転子を回転しているため、回転磁界を増強して高出力とする時には電機子コイルおよび界磁コイルへ大電流を流す必要がある。よって、電源の大容量と大電流回路を形成する必要があり、前記した問題は解消できない。
特開平6−6907号公報
However, in the superconducting motor device, since the rotor is rotated only depending on the rotating magnetic field generated by the power supply to the armature coil and the field coil, the armature is used when the rotating magnetic field is increased to obtain a high output. It is necessary to pass a large current through the coil and the field coil. Therefore, it is necessary to form a large capacity and large current circuit of the power source, and the above-described problem cannot be solved.
JP-A-6-6907

本発明は上記問題に鑑みてなされたもので、永久磁石型モータを改良し、永久磁石により発生する回転磁界を利用すると共に、電源容量を増大することなく、永久磁石の特性限界を越えた強力な回転磁界を発生させ、高出力化できるモータを提供することを課題としている。   The present invention has been made in view of the above problems, and has improved a permanent magnet type motor, utilizes a rotating magnetic field generated by the permanent magnet, and has a strength exceeding the characteristic limit of the permanent magnet without increasing the power supply capacity. An object of the present invention is to provide a motor that can generate a rotating magnetic field and increase output.

上記課題を解決するため、本発明は、回転界磁型モータの回転子の永久磁石あるいは回転電機子型モータの固定子の永久磁石に超電導線で形成されたコイルを組み合わせ、回転界磁型モータの固定子の電機子コイルあるいは回転電機子型モータの回転子の電機子コイルと上記超電導線のコイルへの給電で固定子内に発生させる回転磁界を増強させる構成としていることを特徴とするモータを提供している。   In order to solve the above problems, the present invention combines a permanent magnet of a rotor of a rotating field type motor or a permanent magnet of a stator of a rotating armature type motor with a coil formed of a superconducting wire. A motor characterized in that a rotating magnetic field generated in the stator is enhanced by feeding power to the armature coil of the stator or the armature coil of the rotor of the rotary armature type motor and the coil of the superconducting wire. Is provided.

上記のように、本発明は永久磁石型モータに超電導線コイルを付設した複合型のモータとしている。永久磁石型モータとしては、図4(A)に示すように回転子1に永久磁石2を設けると共に、固定子3のスロット3a内に電機子コイルを収容した回転界磁型モータAと、図4(B)に示すように回転子1’側のスロット1a内に電機子コイルを収容すると共に固定子3’側に永久磁石2を設けた回転電機子型モータBがある。これら永久磁石型モータの電機子コイルに電流が供給されることにより、固定子の中空部に回転磁界が発生して回転子が回転し、回転子に連結された駆動軸が回転される。   As described above, the present invention is a composite motor in which a superconducting wire coil is attached to a permanent magnet motor. As the permanent magnet type motor, as shown in FIG. 4 (A), a rotor 1 is provided with a permanent magnet 2 and an armature coil is accommodated in a slot 3a of the stator 3; As shown in FIG. 4B, there is a rotary armature type motor B in which an armature coil is accommodated in a slot 1a on the rotor 1 ′ side and a permanent magnet 2 is provided on the stator 3 ′ side. When current is supplied to the armature coils of these permanent magnet type motors, a rotating magnetic field is generated in the hollow portion of the stator, the rotor is rotated, and the drive shaft connected to the rotor is rotated.

本発明では、上記のように、回転子側あるいは固定子側に配置する永久磁石に超電導線からなるコイル(以下、超電導線コイルと称す)を組み合わせている。超電導材から形成した超電導線のコイルを用いているのは、通常の導体では電流密度を大きくすることが出来ず、永久磁石に付設するコイルが大きくなり過ぎ、その結果、モータが大型化するが、超電導線コイルを用いるとコイルを大きくすることなく電流密度を大きくすることができる。
このように、永久磁石を配置していない側の電機子コイルと永久磁石側の超電導線コイルの両方に給電することにより、永久磁石により発生する回転磁界が増強され、高出力を発生させることができる。例えば、上記超電導線コイルに給電して発生する回転磁界を3倍に増強すると、電機子コイルへ給電する電流量を約3倍とするだけで10倍近い高出力を得ることができる。よって、電源容量を10倍にすることなく10倍の高出力を得ることが出来ることとなる。
In the present invention, as described above, a coil made of a superconducting wire (hereinafter referred to as a superconducting wire coil) is combined with a permanent magnet disposed on the rotor side or the stator side. The superconducting wire coil made of superconducting material is used because the current density cannot be increased with a normal conductor, and the coil attached to the permanent magnet becomes too large, resulting in an increase in the size of the motor. If a superconducting wire coil is used, the current density can be increased without increasing the coil.
Thus, by supplying power to both the armature coil on the side where the permanent magnet is not disposed and the superconducting wire coil on the permanent magnet side, the rotating magnetic field generated by the permanent magnet can be enhanced and high output can be generated. it can. For example, when the rotating magnetic field generated by feeding the superconducting wire coil is increased by a factor of 3, a high output nearly 10 times can be obtained by simply increasing the amount of current supplied to the armature coil by about a factor of three. Therefore, 10 times higher output can be obtained without increasing the power source capacity 10 times.

上記超電導線コイルを形成する超電導線は、例えば、酸化ビスマス・ストロンチウム・カルシウム・銅系超電導材、酸化イットリウム・バリウム・銅系超電導材、水銀をベースとした超電導材、タリウムをベースとした超電導材等の酸化物からなる高温超電導材が用いられる。該高温超電導材は液体窒素の温度77(K)でも超電導特性を示し、さらに、液体水素の温度20(K)であれば、液体窒素の温度の時と比較して約10倍の大電流を流せるためである。   The superconducting wire forming the superconducting wire coil is, for example, a bismuth oxide / strontium / calcium / copper superconducting material, a yttrium oxide / barium / copper superconducting material, a superconducting material based on mercury, or a superconducting material based on thallium. A high-temperature superconducting material made of an oxide such as is used. The high-temperature superconducting material exhibits superconducting characteristics even at a liquid nitrogen temperature of 77 (K). Further, if the temperature of liquid hydrogen is 20 (K), the current is about 10 times larger than that at the temperature of liquid nitrogen. It is for flowing.

また、高温超電導材は冷却温度を高くできると共に、多少の発熱を許容するIc(臨界電流)を越えた大電流での利用が可能となり、通常導体の数百倍以上の電流密度をとることも困難ではない。よって、コイルをより小さくでき、モータ全体を大きくすること無しに、高出力のモータとすることができる。   In addition, the high-temperature superconducting material can increase the cooling temperature, and can be used with a large current exceeding Ic (critical current) that allows some heat generation, and can take a current density several hundred times that of a normal conductor. Not difficult. Therefore, the coil can be made smaller, and a high output motor can be obtained without enlarging the entire motor.

なお、永久磁石に付設する回転磁界増強用のコイルは、要求される最高出力がさほど大きくない場合には、超電導線からなる超電導線コイルに代えて、銅等からなる通常の常電導材からなるコイルを用いてもよい。   Note that the coil for enhancing the rotating magnetic field attached to the permanent magnet is made of a normal conducting material made of copper or the like instead of the superconducting wire coil made of a superconducting wire when the required maximum output is not so large. A coil may be used.

本発明のモータは、電機子コイルの冷却の点から、電機子コイルを固定側に配置する回転界磁型モータとすることが好ましい。
よって、回転界磁型モータとし、永久磁石と、該永久磁石のN−S極方向と直交方向の外周面に巻回した上記超電導線コイルを回転子に備えている。
The motor of the present invention is preferably a rotating field motor in which the armature coil is disposed on the fixed side from the viewpoint of cooling the armature coil.
Therefore, it is set as a rotating field type motor, The rotor is equipped with the permanent magnet and the said superconducting wire coil wound around the outer peripheral surface of the permanent magnet in the direction orthogonal to the NS pole direction.

上記回転界磁型モータでは、固定子を冷却手段で冷却し、該固定子からの間接伝導冷却で上記超電導線コイルを備えた回転子を冷却する構成としている。
例えば、固定子の冷却手段として、固定子を囲む冷媒容器を設け、冷却される固定子からの間接伝導冷却で上記超電導線コイルを備えた回転子を冷却する構成としている。
具体的には、固定子の外周を冷媒が流通する容器で囲み、冷媒により固定子および該固定子に取り付けた電機子コイルを冷却すると、固定子の中空部も冷媒温度まで冷却され、該中空部に配置される回転子も冷却され、該回転子の永久磁石に付設した超電導線コイルも冷却される。
あるいは、固定子と回転子の間の空間に高熱伝導性材料で形成した仕切板を設け、該仕切板で仕切られた外周側空間に冷媒を導入し、固定子側の電機子を直接冷却すると共に、仕切板を介して固定子側の超電導線コイルを間接冷却する構成としてもよい。
In the rotating field motor, the stator is cooled by cooling means, and the rotor provided with the superconducting wire coil is cooled by indirect conduction cooling from the stator.
For example, a cooling vessel surrounding the stator is provided as a cooling means for the stator, and the rotor including the superconducting wire coil is cooled by indirect conduction cooling from the stator to be cooled.
Specifically, when the outer periphery of the stator is surrounded by a container through which a refrigerant flows, and the stator and the armature coil attached to the stator are cooled by the refrigerant, the hollow portion of the stator is also cooled to the refrigerant temperature, and the hollow The rotor disposed in the section is also cooled, and the superconducting wire coil attached to the permanent magnet of the rotor is also cooled.
Alternatively, a partition plate formed of a high thermal conductivity material is provided in the space between the stator and the rotor, and a refrigerant is introduced into the outer peripheral space partitioned by the partition plate to directly cool the armature on the stator side. At the same time, the stator-side superconducting wire coil may be indirectly cooled via a partition plate.

上記いずれの手段も簡単な冷却機構となる。このような超電導線コイルを直接冷媒に浸漬しない簡単な間接冷却機構とすることが出来るのは、本発明のモータを電気自動車用モータとした場合、最高出力で継続的に運転するため超電導線コイルに電流を流すことは稀であり、加速が必要な数秒だけ超電導線コイルを冷却すれば良いためである。よって、超電導線コイルを用いて電磁石とした場合に必要な浸漬冷却として継続的に冷却する必要はなく、上記間接伝導冷却で十分であることによる。また、回転子に冷媒の流体を接触させないため、流体同士の摩擦による抵抗を生じない。
上記冷媒としては、電気自動車の場合には、電源用燃料電池の燃料となる液体水素や液体窒素等が好適に用いられる。
Any of the above means is a simple cooling mechanism. A simple indirect cooling mechanism in which such a superconducting wire coil is not directly immersed in the refrigerant can be realized by using a superconducting wire coil in order to continuously operate at the maximum output when the motor of the present invention is a motor for an electric vehicle. This is because it is rare to pass a current through the superconducting wire coil, and it is only necessary to cool the superconducting wire coil for a few seconds that require acceleration. Therefore, there is no need for continuous cooling as immersion cooling required when an electromagnet is formed using a superconducting wire coil, and the indirect conduction cooling is sufficient. Further, since the refrigerant fluid is not brought into contact with the rotor, resistance due to friction between the fluids does not occur.
As the refrigerant, in the case of an electric vehicle, liquid hydrogen, liquid nitrogen, or the like used as a fuel for a power source fuel cell is preferably used.

さらに、回転界磁型モータの固定子側の電機子コイルの少なくとも一部を超電導線から形成することが好ましい。このように、電機子コイルも超電導線コイルとすると、電流密度を高めることができるため、電機子コイルも小型化でき、モータの小型化に寄与することができる。なお、電機子コイルの全部を超電導線コイルとする方が有利であることは言うまでもない。   Furthermore, it is preferable to form at least a part of the armature coil on the stator side of the rotating field motor from a superconducting wire. As described above, when the armature coil is also a superconducting wire coil, the current density can be increased, so that the armature coil can also be reduced in size and contribute to the reduction in the size of the motor. Needless to say, it is advantageous to use all the armature coils as superconducting wire coils.

さらにまた、回転界磁型モータの固定子の界磁側の内周面に超電導線コイルを付設してもよい。このように、固定子側において電機子コイルに超電導線コイルを組み合わせると、さらに発生させる回転磁界の増強を図ることができ、最高出力をパワーアップさせることができる。   Furthermore, a superconducting wire coil may be provided on the inner peripheral surface on the field side of the stator of the rotating field motor. In this way, when the superconducting wire coil is combined with the armature coil on the stator side, the rotating magnetic field to be generated can be further increased, and the maximum output can be increased.

上記回転界磁型モータに変えて、回転電機子型モータとした場合には、固定子の固定ヨークの内周面に周方向に間隔をあけて取り付ける永久磁石に超電導線コイルを巻き付けている。
このように、固定子側に永久磁石と超電導線コイル、回転子側に電機子コイルを取り付け、た回転電機子型モータにおいても、永久磁石と超電導線コイルを組み合わせていることにより、発生する回転磁界を増強でき、高出力を得ることができる。
上記のように、固定子側に超電導線コイルを付設した場合、前記のように、固定子と回転子の間の空間に高熱伝導材からなる仕切板を配置し、外周側空間に冷媒を導入すると、超電導線コイルを冷媒により直接冷却でき、前記間接冷却となる回転界磁型モータよりも超電導線コイルに大電流を長時間流すことができ、高出力の持続期間を長期化することができる。
When a rotary armature type motor is used instead of the rotary field type motor, a superconducting wire coil is wound around a permanent magnet that is attached to the inner peripheral surface of the fixed yoke of the stator with a space in the circumferential direction.
Thus, even in a rotary armature type motor in which a permanent magnet and a superconducting wire coil are attached to the stator side and an armature coil is attached to the rotor side, the rotation generated by combining the permanent magnet and the superconducting wire coil. The magnetic field can be enhanced and high output can be obtained.
As described above, when a superconducting wire coil is provided on the stator side, as described above, a partition plate made of a high thermal conductivity material is disposed in the space between the stator and the rotor, and the refrigerant is introduced into the outer peripheral space. Then, the superconducting wire coil can be directly cooled by the refrigerant, and a larger current can be passed through the superconducting wire coil for a longer time than the rotating field motor that is indirect cooling, and the duration of high output can be prolonged. .

常電導材からなる上記電機子コイルと上記超電導線からなるコイルには高出力が必要な時に給電され、通常出力時は上記電機子コイルのみ給電される構成としている。
例えば、本発明のモータを電気自動車用モータとした場合、通常走行時には、電機子コイルのみに電流を流して、固定子の中空部に回転磁界を発生させて回転子を回転させ、この回転力で電気自動車の通常走行の駆動力を得ている。一方、加速時等の高出力が必要な場合には、電機子コイルと共に永久磁石に付設した超電導線コイルにも給電すると、永久磁石により発生する回転磁界に増強され、高出力を得ることができる。
The armature coil made of a normal conducting material and the coil made of the superconducting wire are fed when a high output is required, and only the armature coil is fed at a normal output.
For example, when the motor of the present invention is a motor for an electric vehicle, during normal running, an electric current is supplied only to the armature coil to generate a rotating magnetic field in the hollow portion of the stator, thereby rotating the rotor. The driving force for normal driving of an electric vehicle is obtained. On the other hand, when high output is required, such as during acceleration, if power is supplied to the superconducting wire coil attached to the permanent magnet together with the armature coil, the rotating magnetic field generated by the permanent magnet is enhanced and high output can be obtained. .

このように、本発明のモータは永久磁石に超電導線コイルを組み合わせた複合型のモータとし、高出力が必要な時には超電導線コイルに給電して回転磁界を増強して高出力が得られる構成としているため、加速時に瞬間的に高出力を必要とする電気自動車用のモータとして好適に用いられるものである。   As described above, the motor of the present invention is a composite motor in which a superconducting wire coil is combined with a permanent magnet, and when high output is required, the superconducting wire coil is fed to enhance the rotating magnetic field to obtain high output. Therefore, it is suitably used as a motor for an electric vehicle that requires a high output instantaneously during acceleration.

以上の説明より明らかなように、本発明のモータでは、永久磁石型モータに改良を加え、永久磁石に超電導線コイルを組わせた複合型モータとしていることにより、電源容量を大きくすることなく、高出力を得ることができる。
よって、瞬間的あるいは短時間に高出力を必要とし、通常時はさほど高出力を必要としないモータとして好適に用いることができる。かつ、該モータは電源容量を大きくすること無く、且つモータも大型化しないため、低コスト化、小型化、軽量化を図ることができる。
As is clear from the above description, in the motor of the present invention, the permanent magnet type motor is improved, and a composite motor in which the superconducting wire coil is combined with the permanent magnet is used, without increasing the power supply capacity. High output can be obtained.
Therefore, it can be suitably used as a motor that requires a high output instantaneously or in a short time and does not require a high output in normal times. In addition, since the motor does not increase the power supply capacity and does not increase in size, the cost can be reduced, the size can be reduced, and the weight can be reduced.

特に、電気自動車用モータとして用いた場合、通常の電気自動車走行時には、常電導材の電機子コイルにのみ給電して、固定子内に回転磁界を発生させて回転駆動軸を回転させ、この回転力で電気自動車の駆動力を得ることが出来る。一方、加速時等の高出力が必要な場合には、超電導線コイルにも給電することで回転磁界を増強され、高出力を得ることができる。
上記のように、本発明のモータは電気自動車用として好適に用いられるが、電気自動車用モータに限定されず、電気鉄道用やエレベータ用等の電動移動体用モータを含め、各種用途のモータとしても好適に用いることができる。
In particular, when used as a motor for an electric vehicle, during normal electric vehicle traveling, only the armature coil of the normal conducting material is fed to generate a rotating magnetic field in the stator to rotate the rotary drive shaft, and this rotation The driving force of an electric vehicle can be obtained with force. On the other hand, when high output is required, such as during acceleration, the rotating magnetic field can be enhanced by supplying power to the superconducting wire coil, and high output can be obtained.
As described above, the motor of the present invention is suitably used for electric vehicles, but is not limited to electric vehicle motors, and is used as a motor for various applications including motors for electric vehicles such as electric railways and elevators. Can also be suitably used.

本発明のモータを電気自動車用モータとした実施形態を図面を参照して説明する。
図1及び図2は、電気自動車のモータとした第1実施形態を示す。
モータ10は水素と酸素を反応させて発電する燃料電池を搭載した電気自動車の駆動用モータとして用いており、水素の供給源として搭載された極低温(約20ケルビン)の液体水素をモータ10の冷媒としても用いている。
An embodiment in which the motor of the present invention is an electric vehicle motor will be described with reference to the drawings.
1 and 2 show a first embodiment of a motor for an electric vehicle.
The motor 10 is used as a drive motor for an electric vehicle equipped with a fuel cell that generates electricity by reacting hydrogen and oxygen, and cryogenic (about 20 Kelvin) liquid hydrogen mounted as a hydrogen supply source is used for the motor 10. It is also used as a refrigerant.

第1実施形態のモータ10は回転界磁型の永久磁石型モータを基本とし、回転子100の永久磁石40に超電導線からなるコイルである超電導線コイル15を付設して複合型としている。該超電導線コイル15はビスマス系高温超電導線で形成している。   The motor 10 of the first embodiment is based on a rotating field type permanent magnet motor, and is a composite type in which a superconducting wire coil 15 that is a coil made of a superconducting wire is attached to the permanent magnet 40 of the rotor 100. The superconducting wire coil 15 is formed of a bismuth high temperature superconducting wire.

図1に示すように、断面円環形状の固定子200の固定ヨーク11には、その内周面に周方向に並列して設けたスロット11a内に常電導材の銅線からなる電機子コイル13を収容している。
固定子200の中空部に回転自在に配置する回転子100は、永久磁石40の中心軸孔に回転駆動軸12を貫通させて固定し、永久磁石40と回転駆動軸12とを共回転させるようにしている。永久磁石40の軸線方向の両端面側がN極とS極となり、該軸線方向と直交する永久磁石40の外周面に上記高温超電導材からなる超電導線コイル15が巻き付けて付設している。回転駆動軸12は固定ヨーク11の両側壁11b、11cに穿設した軸孔内の軸受18で回転自在に支承し、一端側を外方に突出させて駆動伝達手段21を介して車軸(図示せず)と連繋している。
As shown in FIG. 1, a fixed yoke 11 of a stator 200 having an annular cross section has an armature coil made of a copper wire of a normal conducting material in a slot 11a provided in parallel on the inner peripheral surface in the circumferential direction. 13 is accommodated.
The rotor 100 that is rotatably arranged in the hollow portion of the stator 200 is fixed so that the rotation drive shaft 12 passes through the center shaft hole of the permanent magnet 40 and rotates the permanent magnet 40 and the rotation drive shaft 12 together. I have to. Both end surfaces of the permanent magnet 40 in the axial direction are N-pole and S-pole, and the superconducting wire coil 15 made of the high-temperature superconducting material is wound around the outer peripheral surface of the permanent magnet 40 orthogonal to the axial direction. The rotary drive shaft 12 is rotatably supported by bearings 18 in shaft holes drilled in both side walls 11b and 11c of the fixed yoke 11, and one end of the rotary drive shaft 12 protrudes outward to drive the axle (see FIG. (Not shown).

図2に示すように、固定子200側の電機子コイル13と回転子100側の超電導線コイル15には外部の電源25から給電している。超電導線コイル15には、固定子200と超電導線コイル15との間の空間を電磁誘導により給電する非接触給電手段26が設けられている。該非接触給電手段26は、固定子200に取り付けられた誘導給電送信部27と超電導線コイル15に交換器29を介して取り付けられた誘導給電受信部28とを備え、誘導給電送信部27には電源25に接続した電線24を接続している。
誘導給電受信部28で受電される電流は交流であるため、誘導給電受信部28と超電導線コイル15との間に炭化ケイ素(SiC)半導体素子を用いた上記交換器29を介設し、該交流を直流に変換して超電導線コイル15に給電している。
固定子200の電機子コイル13は、固定子200の側壁11bの開口を通じて挿入する電線23を介して電源25と接続している。
As shown in FIG. 2, power is supplied from an external power supply 25 to the armature coil 13 on the stator 200 side and the superconducting wire coil 15 on the rotor 100 side. The superconducting wire coil 15 is provided with non-contact power feeding means 26 that feeds the space between the stator 200 and the superconducting wire coil 15 by electromagnetic induction. The non-contact power supply means 26 includes an induction power transmission unit 27 attached to the stator 200 and an induction power reception unit 28 attached to the superconducting wire coil 15 via the exchanger 29. The induction power transmission unit 27 includes The electric wire 24 connected to the power source 25 is connected.
Since the current received by the inductive power receiving unit 28 is an alternating current, the exchanger 29 using a silicon carbide (SiC) semiconductor element is interposed between the inductive power receiving unit 28 and the superconducting wire coil 15, The alternating current is converted into direct current and power is supplied to the superconducting wire coil 15.
The armature coil 13 of the stator 200 is connected to the power supply 25 via the electric wire 23 inserted through the opening of the side wall 11b of the stator 200.

モータ10の冷却は、液体水素を貯留するタンク(図示せず)と接続された冷媒供給手段20に冷媒流路19を接続し、該冷媒流路19を固定子200の外面を覆うように設けたジャケット17内の冷媒通路17aを還流させている。この冷媒通路17aを還流する液体水素により固定子200は約20ケルビンの極低温に冷却され、該固定子200で囲まれた中空部22内も極低温となるため、該中空部22に位置する回転子100の超電導線コイル15も十分に冷却されるようにしている。   The motor 10 is cooled by connecting a refrigerant flow path 19 to a refrigerant supply means 20 connected to a tank (not shown) for storing liquid hydrogen, and covering the outer surface of the stator 200 with the refrigerant flow path 19. The refrigerant passage 17a in the jacket 17 is recirculated. The stator 200 is cooled to an extremely low temperature of about 20 Kelvin by the liquid hydrogen flowing back through the refrigerant passage 17a, and the inside of the hollow portion 22 surrounded by the stator 200 is also extremely low temperature. Therefore, the stator 200 is located in the hollow portion 22. The superconducting wire coil 15 of the rotor 100 is also sufficiently cooled.

なお、モータ10の冷却機構は図3(A)(B)に示すように、回転子100と固定子200との間の空間に、銅、銀、ダイヤ、アルミニウム(窒化アルミ等)等の高熱伝導性材料から形成した仕切板16を設け、該仕切板16で仕切られた外周側空間22aに冷媒を導入する構成としてもよい。該構成とすると、固定子200の電機子コイル13を冷媒により直接冷却し、回転子100側の超電導線コイル15は間接冷却としてもよい。   As shown in FIGS. 3A and 3B, the cooling mechanism of the motor 10 has high heat such as copper, silver, diamond, aluminum (aluminum nitride, etc.) in the space between the rotor 100 and the stator 200. It is good also as a structure which provides the partition plate 16 formed from the electroconductive material, and introduce | transduces a refrigerant | coolant into the outer peripheral side space 22a partitioned off by this partition plate 16. FIG. With this configuration, the armature coil 13 of the stator 200 may be directly cooled by the refrigerant, and the superconducting wire coil 15 on the rotor 100 side may be indirectly cooled.

次に、上記モータ10の作用について説明する。 まず、通常時においては、液体水素を燃料とする燃料電池の電源25から電線23を介して電機子コイル13に交流電流が供給される。電機子コイル13へ供給された電流の位相ズレにより固定子11内に回転磁界が発生し、この回転磁界により永久磁石40が回転して回転駆動軸12を回転させる。回転駆動軸12のトルクは駆動伝達手段21に伝達して車輪を駆動し、走行させる。
一方、加速時等の高出力が必要な場合には、電源25から電線24、非接触給電手段26及び変換器29を介して超電導線コイル15に給電される。これにより、超電導線コイル15が電磁石となって、永久磁石40により発生する回転磁界を増強し、電機子コイル13に供給する電流を大きくしなくても回転子100の回転力が高められ、高出力となって車輪を高速回転させる。
なお、電機子コイルに供給される電流は直流でもよく、この場合には、電機子コイルに周方向に順次電流を供給して、回転磁界を発生させて回転駆動軸を回転させている。
Next, the operation of the motor 10 will be described. First, in a normal time, an alternating current is supplied to the armature coil 13 from the power supply 25 of the fuel cell using liquid hydrogen as a fuel via the electric wire 23. A rotating magnetic field is generated in the stator 11 due to a phase shift of the current supplied to the armature coil 13, and the rotating magnet 12 is rotated by the rotating magnet 12 by the rotating magnetic field. The torque of the rotary drive shaft 12 is transmitted to the drive transmission means 21 to drive the wheels to run.
On the other hand, when high output is required, such as during acceleration, power is supplied from the power source 25 to the superconducting wire coil 15 via the electric wire 24, the non-contact power supply means 26 and the converter 29. Thereby, the superconducting wire coil 15 becomes an electromagnet, the rotating magnetic field generated by the permanent magnet 40 is enhanced, and the rotational force of the rotor 100 can be increased without increasing the current supplied to the armature coil 13. It becomes an output and rotates the wheel at high speed.
The current supplied to the armature coil may be a direct current. In this case, the current is sequentially supplied to the armature coil in the circumferential direction to generate a rotating magnetic field to rotate the rotary drive shaft.

上記構成とすると、通常の電気自動車走行時には、固定子11に固定した電機子コイル13にのみ電流を流して、固定子11内に回転磁界を発生させて永久磁石40を回転させ、この回転力で電気自動車の駆動力を得ているが、高出力が必要な場合には、回転駆動軸12に固定した高温超電導線コイル15にも電流を流して磁界を強くすることで、電機子コイルへの電流を大きくすることなく超電導モータ装置10による出力を高出力とすることができる。   With the above configuration, during normal electric vehicle traveling, current is passed only through the armature coil 13 fixed to the stator 11 to generate a rotating magnetic field in the stator 11 to rotate the permanent magnet 40, and this rotational force. The driving force of an electric vehicle is obtained, but when high output is required, an electric current is also passed through the high-temperature superconducting wire coil 15 fixed to the rotary drive shaft 12 to strengthen the magnetic field, so that the armature coil The output from the superconducting motor device 10 can be increased without increasing the current of the current.

なお、上記第1実施形態では、固定子200に固定する電機子コイル13を常電導コイルとしているが、少なくとも一部の電機子コイル、好ましくは全ての電機子コイルも超電導材から形成してもよい。このように、固定子200の電機子コイルと回転子100の永久磁石に付設するコイルの両方を超電導線コイルとすると、コイルの電流密度を高くできるためコイルを小型化できると共にさらに高出力を得ることができる。 In the first embodiment, the armature coil 13 fixed to the stator 200 is a normal conducting coil. However, at least a part of the armature coils, preferably all the armature coils may be formed of a superconducting material. Good. Thus, if both the armature coil of the stator 200 and the coil attached to the permanent magnet of the rotor 100 are superconducting wire coils, the current density of the coil can be increased, so that the coil can be reduced in size and higher output can be obtained. be able to.

図4は、回転電機子型とした本発明の第2実施形態のモータを示す。 モータ10’の固定子200’の固定子ヨーク11’の内周面に周方向に90°の間隔をあけて円弧形状とした永久磁石40’を固定している。これらの永久磁石40’には図4(B)に示すように、永久磁石40’を囲むように高温超電導材料からなる超電導線コイル15’を巻き付けて固定している。図中、上下に配置する永久磁石40A’は外周側をS極、内周側をN極とし、左右に配置する永久磁石40B’は外周側をN極、内周側をS極としている。
一方、回転子100’の回転駆動軸12’を貫通させた回転子ヨーク30の外周面に周方向に並列したスロット30aを設け、各スロット30aに常電導材料からなる電機子コイル13’を収容固定している。
FIG. 4 shows a motor of a second embodiment of the present invention that is a rotary armature type. A permanent magnet 40 ′ having an arc shape is fixed to the inner peripheral surface of the stator yoke 11 ′ of the stator 200 ′ of the motor 10 ′ with an interval of 90 ° in the circumferential direction. As shown in FIG. 4B, a superconducting wire coil 15 ′ made of a high-temperature superconducting material is wound around these permanent magnets 40 ′ so as to surround the permanent magnet 40 ′. In the figure, the permanent magnet 40A ′ arranged vertically has an S pole on the outer circumference and the N pole on the inner circumference, and the permanent magnet 40B ′ arranged on the left and right has an N pole on the outer circumference and an S pole on the inner circumference.
On the other hand, a circumferentially parallel slot 30a is provided on the outer peripheral surface of the rotor yoke 30 that passes through the rotational drive shaft 12 'of the rotor 100', and an armature coil 13 'made of a normal conducting material is accommodated in each slot 30a. It is fixed.

この回転電機子型モータ10’では固定子200’側の内周面に超電導線コイル15’を配置しているため、図示のように、固定子200’と回転子100’の間の空間を高伝熱材からなる仕切板16’で仕切り、外周側空間22’に冷媒を循環させ、超電導線コイル15’を冷媒により直接冷却している。回転子200’側の常電導材からなる電機子コイル13’は間接冷却としている。   In this rotary armature type motor 10 ′, since the superconducting wire coil 15 ′ is arranged on the inner peripheral surface on the stator 200 ′ side, a space between the stator 200 ′ and the rotor 100 ′ is formed as shown in the figure. Partitioning is performed by a partition plate 16 ′ made of a high heat transfer material, a refrigerant is circulated in the outer space 22 ′, and the superconducting wire coil 15 ′ is directly cooled by the refrigerant. The armature coil 13 ′ made of normal conducting material on the rotor 200 ′ side is indirectly cooled.

上記固定子200’側の超電導線コイル15’には、電源に接続した電線に交流を直流に変換する交換器を介設して直接接続している。一方、回転子100’側の電機子コイル13’には、第1実施形態と同様の非接触給電手段(図示せず)により電源から給電している。 The superconducting wire coil 15 ′ on the stator 200 ′ side is directly connected to an electric wire connected to a power source via an exchanger for converting alternating current into direct current. On the other hand, the armature coil 13 'on the rotor 100' side is supplied with power from a power source by the same non-contact power supply means (not shown) as in the first embodiment.

上記構成からなる回転電機子型モータとしても、通常時には、常電導材の電機子コイル13’のみに電流を流して固定子200’内に回転磁界を発生させて回転子100’を回転させ、この回転力で通常走行時の駆動力を得ている。加速時等の高出力が必要な場合には、固定子200’に取り付けた超電導線コイル15’にも電流を流して磁界を強くすることで、電機子コイル13’への電流をさほど大きくすることなくモータ10’による出力を高出力とすることができる。
また、超電導線コイル15’を外周空間22’に配置して冷媒により直接冷却できるようにしているため、効率良く超電導線コイル15’を冷却することができ、長時間連続して高出力を得ることができる。
なお、他の構成及び作用効果は第1実施形態と同様のため、同一の符号を付して説明を省略する。
Even in a rotating armature type motor having the above-described configuration, in a normal state, a current is applied only to the armature coil 13 ′ of the normal conducting material to generate a rotating magnetic field in the stator 200 ′ to rotate the rotor 100 ′, The driving force during normal running is obtained with this rotational force. When high output is required, such as during acceleration, the current to the armature coil 13 'is increased by applying a current to the superconducting wire coil 15' attached to the stator 200 'to increase the magnetic field. The output from the motor 10 'can be made high without any problems.
Further, since the superconducting wire coil 15 'is arranged in the outer peripheral space 22' so that it can be directly cooled by the refrigerant, the superconducting wire coil 15 'can be efficiently cooled, and a high output is obtained continuously for a long time. be able to.
In addition, since another structure and an effect are the same as that of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

なお、第2実施形態では固定子側に取り付ける永久磁石は4個としているが、対向位置に2個でも良いし、その個数は限定されず、これら永久磁石に超電導線コイルを付設しておればよい。   In the second embodiment, the number of permanent magnets attached to the stator side is four. However, the number may be two at the opposing position, and the number of permanent magnets is not limited. If a superconducting wire coil is attached to these permanent magnets. Good.

本発明の永久磁石に超電導線コイルを組み合わせた複合型モータは、一時的に高出力が要求される移動体用のモータ、特に、電気自動車の駆動源となるモータとして好適に用いられるものである。   The composite motor in which the superconducting wire coil is combined with the permanent magnet of the present invention is suitably used as a motor for a moving body that is temporarily required to have a high output, particularly as a motor serving as a drive source for an electric vehicle. .

本発明の第1実施形態のモータを示す断面図である。It is sectional drawing which shows the motor of 1st Embodiment of this invention. 第1実施形態のモータを備えたモータ装置の断面図である。It is sectional drawing of the motor apparatus provided with the motor of 1st Embodiment. (A)(B)は第1実施形態の冷却機構の変形例を示す図面である。(A) (B) is drawing which shows the modification of the cooling mechanism of 1st Embodiment. (A)は本発明の第2実施形態のモータを示す断面図、(B)は永久磁石に超電導線コイルを取り付けた状態を示す図面である。(A) is sectional drawing which shows the motor of 2nd Embodiment of this invention, (B) is drawing which shows the state which attached the superconducting wire coil to the permanent magnet. (A)(B)は従来例を示す図面である。(A) (B) is drawing which shows a prior art example.

符号の説明Explanation of symbols

10 モータ
11 固定子ヨーク
12 回転駆動軸
13 電機子コイル
15 超電導線コイル
25 電源
40 永久磁石
100 回転子
200 固定子
DESCRIPTION OF SYMBOLS 10 Motor 11 Stator yoke 12 Rotation drive shaft 13 Armature coil 15 Superconducting wire coil 25 Power supply 40 Permanent magnet 100 Rotor 200 Stator

Claims (9)

回転界磁型モータの回転子の永久磁石あるいは回転電機子型モータの固定子の永久磁石に超電導線で形成されたコイルを組み合わせ、回転界磁型モータの固定子の電機子コイルあるいは回転電機子型モータの回転子の電機子コイルと上記超電導線のコイルへの給電で固定子内に発生させる回転磁界を増強させる構成としていることを特徴とするモータ。   A permanent magnet of a rotor of a rotating field type motor or a permanent magnet of a stator of a rotating armature type motor is combined with a coil formed of a superconducting wire, and the armature coil or rotating armature of the stator of the rotating field type motor is combined. A motor having a configuration in which a rotating magnetic field generated in a stator is increased by feeding power to an armature coil of a rotor and a coil of a superconducting wire. 回転界磁型モータとし、永久磁石と、該永久磁石のN−S極方向と直交方向の外周面に巻回した上記超電導線コイルを回転子に備えている請求項1に記載のモータ。   2. The motor according to claim 1, wherein the rotor is a rotating field motor, and the rotor is provided with a permanent magnet and the superconducting wire coil wound around the outer peripheral surface of the permanent magnet in the direction orthogonal to the NS pole direction. 上記固定子を冷却手段で冷却し、該固定子からの間接伝導冷却で上記超電導線コイルを備えた回転子を冷却する構成としている請求項2に記載のモータ。   The motor according to claim 2, wherein the stator is cooled by a cooling means, and the rotor including the superconducting wire coil is cooled by indirect conduction cooling from the stator. 固定子側の電機子コイルの少なくとも一部を超電導線から形成している請求項2または請求項3に記載のモータ。   The motor according to claim 2 or 3, wherein at least a part of the armature coil on the stator side is formed of a superconducting wire. 回転界磁型モータの固定子の界磁側の内周面に超電導線で形成されたコイルを付設している請求項2乃至請求項4のいずれか1項に記載のモータ。   The motor according to any one of claims 2 to 4, wherein a coil formed of a superconducting wire is attached to an inner peripheral surface on a field side of a stator of a rotary field motor. 回転電機子型モータとし、固定ヨークの内周面に周方向に間隔をあけて配置する永久磁石に超電導線からなるコイルを巻き付けている請求項1に記載のモータ。   The motor according to claim 1, wherein the motor is a rotary armature type motor, and a coil made of a superconducting wire is wound around a permanent magnet arranged on the inner peripheral surface of the fixed yoke with a space in the circumferential direction. 上記電機子コイルと上記超電導線からなるコイルは高出力が必要な時に給電され、通常出力時には上記電機子コイルへのみ給電される構成としている請求項1乃至請求項6のいずれか1項に記載のモータ。   The said armature coil and the coil which consists of the said superconducting wire are electrically fed when a high output is required, and it is set as the structure supplied only to the said armature coil at the time of a normal output. Motor. 上記超電導線は高温超電導線からなる請求項1乃至請求項7のいずれか1項に記載のモータ。   The motor according to any one of claims 1 to 7, wherein the superconducting wire is a high temperature superconducting wire. 請求項1乃至請求項8のいずれか1項に記載のモータを備えた電動移動体。   An electric mobile body comprising the motor according to any one of claims 1 to 8.
JP2004046646A 2004-02-23 2004-02-23 Motor and electric vehicle including the motor Pending JP2005237175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046646A JP2005237175A (en) 2004-02-23 2004-02-23 Motor and electric vehicle including the motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004046646A JP2005237175A (en) 2004-02-23 2004-02-23 Motor and electric vehicle including the motor

Publications (1)

Publication Number Publication Date
JP2005237175A true JP2005237175A (en) 2005-09-02

Family

ID=35019568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046646A Pending JP2005237175A (en) 2004-02-23 2004-02-23 Motor and electric vehicle including the motor

Country Status (1)

Country Link
JP (1) JP2005237175A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245947A (en) * 2006-03-16 2007-09-27 Ihi Corp Pod type propeller
WO2008056580A1 (en) 2006-11-08 2008-05-15 National University Corporation Tokyo University Of Marine Science And Technology Superconductive rotating electric machine drive control system and superconductive rotating electric machine drive control method
JP2010187433A (en) * 2009-02-10 2010-08-26 Railway Technical Res Inst Smoothing reactor apparatus for electric railway vehicle with fuel cell
JP2010268532A (en) * 2009-05-12 2010-11-25 Railway Technical Res Inst Non-contact power feeding device having a permanent magnet moving element
KR101243946B1 (en) 2011-08-26 2013-03-13 한국전기연구원 Superconducting generator
WO2018151422A1 (en) * 2017-02-20 2018-08-23 수퍼코일 (주) Superconducting magnet rotating-type direct current induction heating device
KR20210059374A (en) * 2019-11-15 2021-05-25 한국전력공사 Superconducting magnetic gear device using superconducing coil, generating appartus using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245947A (en) * 2006-03-16 2007-09-27 Ihi Corp Pod type propeller
WO2008056580A1 (en) 2006-11-08 2008-05-15 National University Corporation Tokyo University Of Marine Science And Technology Superconductive rotating electric machine drive control system and superconductive rotating electric machine drive control method
US8076894B2 (en) 2006-11-08 2011-12-13 National University Corporation Tokyo University Of Marine Science And Technology Superconductive rotating electric machine drive control system and superconductive rotating electric machine drive control method
JP2010187433A (en) * 2009-02-10 2010-08-26 Railway Technical Res Inst Smoothing reactor apparatus for electric railway vehicle with fuel cell
JP2010268532A (en) * 2009-05-12 2010-11-25 Railway Technical Res Inst Non-contact power feeding device having a permanent magnet moving element
KR101243946B1 (en) 2011-08-26 2013-03-13 한국전기연구원 Superconducting generator
WO2018151422A1 (en) * 2017-02-20 2018-08-23 수퍼코일 (주) Superconducting magnet rotating-type direct current induction heating device
KR20210059374A (en) * 2019-11-15 2021-05-25 한국전력공사 Superconducting magnetic gear device using superconducing coil, generating appartus using the same
KR102644703B1 (en) 2019-11-15 2024-03-11 한국전력공사 Superconducting magnetic gear device using superconducing coil, generating appartus using the same

Similar Documents

Publication Publication Date Title
JP5625565B2 (en) Rotating machine and vehicle
JP6461385B2 (en) Superconducting motor and generator
JP4890119B2 (en) Superconducting coil device and inductor type synchronous machine
US8008826B2 (en) Brushless motor/generator with trapped-flux superconductors
US7932659B2 (en) Superconducting device and axial-type superconducting motor
CN101107763B (en) Cooling structure of superconducting motor
JP2005237175A (en) Motor and electric vehicle including the motor
TWI338991B (en) Inductor-type synchronous machine
AU2007271814B2 (en) Synchronous machine having magnetic bearing excited by the rotor
JP2005269868A (en) Superconducting motor device and moving body using the superconducting motor device
CN101233672B (en) axial motor
JP2007060744A (en) Power generation / drive motor and vehicle equipped with the same
JP4751134B2 (en) Inductor type motor and vehicle equipped with the same
JP4751135B2 (en) Inductor-type power generation / drive motor and automobile equipped with the same
JP6086224B2 (en) Superconducting rotating machine
JP2006149007A (en) Stator yoke and radial gap motor
JP2006081379A (en) In-vehicle motor device
JP2007060747A (en) Superconducting motor device and vehicle equipped with the same
JP2007037341A (en) Cooling structure for superconducting equipment
JP2009033918A (en) Superconducting motor and superconducting motor cooling system
KR20250099180A (en) Ideal liquid cooled alternating current (AC) rotating electric machine
Ren et al. Multi-stage PM disc motor for ship propulsion application
JP2007295778A (en) Elementary particle motor and elementary particle repulsion type high-speed torque fluctuation three-phase motor therewith
HK1117948B (en) Axial motor
JP2000312467A (en) Ultra-composite generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302