[go: up one dir, main page]

JP2005232026A - Method for purifying taurine - Google Patents

Method for purifying taurine Download PDF

Info

Publication number
JP2005232026A
JP2005232026A JP2004039585A JP2004039585A JP2005232026A JP 2005232026 A JP2005232026 A JP 2005232026A JP 2004039585 A JP2004039585 A JP 2004039585A JP 2004039585 A JP2004039585 A JP 2004039585A JP 2005232026 A JP2005232026 A JP 2005232026A
Authority
JP
Japan
Prior art keywords
taurine
porous solid
inorganic salt
water
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004039585A
Other languages
Japanese (ja)
Inventor
Masami Osabe
雅己 長部
Mitsuo Koito
光男 小糸
Kiyoteru Nagahara
長原  清輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004039585A priority Critical patent/JP2005232026A/en
Publication of JP2005232026A publication Critical patent/JP2005232026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply separating taurine from a solution containing the taurine and an inorganic salt. <P>SOLUTION: This method for purifying the taurine comprises bringing a solution containing the taurine and the inorganic salt into contact with a porous solid substance exhibiting a molecular sieve effect to make the taurine adsorbed on the porous solid substance, thereby removing the inorganic salt, and then releasing the taurine adsorbed on the porous solid substance with an organic solvent which may contain water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はタウリンの精製方法に関する。   The present invention relates to a method for purifying taurine.

タウリンは水に易溶であるため工業的な合成法で副生する無機塩との分離が困難である。従来、これを解決するためアルコールを添加し再結晶を繰り返し、タウリンを分離、精製することが行われているが、収率も低く溶媒を大量に使用しなければならないなど欠点がある(特許文献1参照)。また、強酸性イオン交換体を用いた精製法もあるが、これはタウリンが強酸性イオン交換体に吸着しないことを利用したものである。   Since taurine is readily soluble in water, it is difficult to separate it from inorganic salts produced as a by-product by an industrial synthesis method. Conventionally, in order to solve this problem, alcohol has been added and recrystallization is repeated to separate and purify taurine, but there are drawbacks such as low yield and the need to use a large amount of solvent (Patent Literature). 1). There is also a purification method using a strongly acidic ion exchanger, which utilizes the fact that taurine is not adsorbed on the strongly acidic ion exchanger.

しかし、この方法では、共存する無機塩のうちアニオン成分がタウリンと同様強酸性イオン交換体に吸着しないので、これを後段で陰イオン交換体などを用いて吸着処理する必要があり、操作が煩雑になるほか、酸やアルカリなどの薬液を多量に必要とする。また無機塩の含有量が多くなると樹脂使用量も膨大となり、工業的に好ましいとは言えない。さらにOH型強塩基性イオン交換体にタウリンを吸着させることも考えられるが、イオン交換体を再生し、タウリンを溶離回収するためには苛性ソーダなどのアルカリで行なうのが一般であり、回収したタウリンにアルカリ金属イオンが含まれることが避けられない(特許文献2参照)。また硫酸型及び/または硫酸水素型の強塩基性陰イオン交換樹脂で処理することにより、タウリンをイオン交換樹脂に吸着させ、吸着後溶離剤により脱離回収する方法の報告もあるが、後工程において脱離のための溶離剤を除去するために強酸性型陽イオン交換樹脂等を用いる工程が必要になる事、また樹脂を再生する必要があり、工業的に好ましいとは言えない(特許文献3参照)。   However, in this method, since the anionic component of the coexisting inorganic salt is not adsorbed to the strongly acidic ion exchanger as in the case of taurine, it is necessary to perform an adsorption treatment using an anion exchanger or the like in the subsequent stage, and the operation is complicated. In addition, it requires a large amount of chemicals such as acid and alkali. Moreover, if the content of the inorganic salt is increased, the amount of resin used is enormous, which is not industrially preferable. Furthermore, it is conceivable that taurine is adsorbed on the OH type strongly basic ion exchanger, but in order to regenerate the ion exchanger and to recover the taurine by elution, it is generally carried out with an alkali such as caustic soda. It is inevitable that alkali metal ions are contained in (see Patent Document 2). There is also a report of a method in which taurine is adsorbed on an ion exchange resin by treatment with a sulfuric acid type and / or hydrogen sulfate type strongly basic anion exchange resin, and then desorbed and recovered by an eluent after adsorption. In order to remove the eluent for desorption, a process using a strongly acidic cation exchange resin or the like is required, and it is necessary to regenerate the resin. 3).

一方、電気透析法も考えられるがこの方法では少量の無機塩が残存することが避けられないうえ、イオン交換膜を透過するタウリンも多く効率が悪い。
特開平6−192209公報 特開昭59−212465公報 特開平7−206804公報
On the other hand, although an electrodialysis method is also conceivable, it is inevitable that a small amount of inorganic salt remains in this method, and there are many taurines that permeate the ion exchange membrane, which is inefficient.
JP-A-6-192209 JP 59-212465 A JP-A-7-206804

本発明は、タウリンおよび無機塩を含む溶液から簡便にタウリンを分離する方法を提供することを目的とする。   An object of the present invention is to provide a method for easily separating taurine from a solution containing taurine and an inorganic salt.

本発明者らは、前記課題を解決するために検討した結果、タウリンと無機塩を含有する溶液を特定の吸着剤と接触させることにより、タウリンは特定の吸着剤に吸着されるが、この特定の吸着剤に無機塩は吸着しないことを見出した。また、タウリンが吸着した特定の吸着剤と水を含んでもよい有機溶媒を接触させることにより特定の吸着剤からタウリンが容易に脱離することを見出し、本発明を完成するに至った。   As a result of investigations to solve the above problems, the inventors of the present invention contact taurine and an inorganic salt-containing solution with a specific adsorbent to adsorb taurine to the specific adsorbent. It was found that no inorganic salt was adsorbed on the adsorbent. Further, the inventors have found that taurine is easily desorbed from a specific adsorbent by contacting a specific adsorbent adsorbed with taurine with an organic solvent that may contain water, and the present invention has been completed.

すなわち、本発明は、タウリンと無機塩を含有する溶解液を分子ふるい効果を示す多孔性固体物質と接触させて、該分子ふるい効果を示す多孔性固体物質にタウリンを吸着させて無機塩と分離し、次いで水を含んでいてもよい有機溶媒を用いて該分子ふるい効果を示す多孔性固体物質に吸着したタウリンを脱離させることを特徴とするタウリンの精製方法に関するものである。   That is, the present invention allows a solution containing taurine and an inorganic salt to come into contact with a porous solid material exhibiting a molecular sieving effect, and adsorbs taurine on the porous solid material exhibiting a molecular sieving effect to separate it from the inorganic salt. Then, the present invention relates to a method for purifying taurine, characterized in that taurine adsorbed on the porous solid substance exhibiting the molecular sieving effect is desorbed using an organic solvent which may contain water.

本発明によれば、Na2SO3、Na2S04、NaClを含むタウリン溶液から、簡便にタウリンを分離回収することができる。   According to the present invention, taurine can be easily separated and recovered from a taurine solution containing Na2SO3, Na2S04, and NaCl.

タウリンと無機塩を含有する溶解液に含まれる無機塩に制限を設けるものではないが、例えば、アルカリ金属の硫酸塩、亜硫酸塩、塩化物等のアルカリ金属の塩類を無機塩として含む溶解液は本発明に好ましく適用できる。   Although there is no restriction on the inorganic salt contained in the solution containing taurine and inorganic salt, for example, a solution containing an alkali metal salt such as an alkali metal sulfate, sulfite or chloride as an inorganic salt is It can be preferably applied to the present invention.

タウリンと無機塩を含有する溶解液は、タウリンと無機塩が水に溶解しているのが好ましいが、この溶解液中のタウリンが後記する分子ふるい効果を示す多孔性固体物質に吸着することができれば、タウリンと無機塩は水および水溶性有機溶媒からなる混合溶媒に溶解していても差し支えない。   The solution containing taurine and inorganic salt is preferably such that taurine and inorganic salt are dissolved in water, but taurine in the solution may be adsorbed on a porous solid substance exhibiting the molecular sieving effect described later. If possible, taurine and the inorganic salt may be dissolved in a mixed solvent composed of water and a water-soluble organic solvent.

水溶性有機溶媒としては、メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類やアセトン、アセトニトリル等が挙げられる。
前記混合溶媒中の水溶性有機溶媒の濃度が高いとタウリンの分子ふるい効果を示す多孔性固体物質への吸着量が低下する傾向にあるため、混合溶媒中の水溶性有機溶媒の濃度は50%(w/w)濃度以下、好ましくは30%(w/w)濃度以下である。
Examples of the water-soluble organic solvent include alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, acetone, acetonitrile, and the like.
When the concentration of the water-soluble organic solvent in the mixed solvent is high, the adsorbed amount of the taurine on the porous solid material showing the molecular sieving effect tends to decrease. Therefore, the concentration of the water-soluble organic solvent in the mixed solvent is 50%. (W / w) concentration or less, preferably 30% (w / w) concentration or less.

タウリンと無機塩を含有する溶解液としては、例えば、タウリンを製造する過程で得られる、タウリンを含有する反応混合物、タウリンの分離回収工程で排出されるタウリンを含有する廃液が挙げられるが、これらに制限されるものではない。   Examples of the solution containing taurine and an inorganic salt include a reaction mixture containing taurine obtained in the process of producing taurine, and a waste solution containing taurine discharged in the taurine separation and recovery process. It is not limited to.

分子ふるい効果を示す多孔性固体物質としては、タウリンを吸着することができるものであれば制限を設けるものではないが、例えば、合成吸着剤、活性炭、ゼオライト、活性アルミナが挙げられる。   The porous solid substance showing the molecular sieving effect is not limited as long as it can adsorb taurine, and examples thereof include synthetic adsorbents, activated carbon, zeolite, and activated alumina.

合成吸着剤としては、例えば、レバチット(登録商標)AT5、同AF5、同OC1163(以上バイエル社製)、ダイヤイオン(登録商標)SP206、同SP207、同HP21(以上三菱化学社製)、アンバーライト(登録商標)XAD4、同2000、同16HP、同7HP、同1180(以上ロームアンドハース社製)、モレキュラーシーブ(登録商標)13Xが挙げられ、活性アルミナとしては、活性アルミナA−2(以上ユニオン昭和社製)、活性炭としては、ゼオラム(登録商標)A−3、同A−4、同A−5、同F−9(以上東ソー社製)、白鷺シリーズ、カルボラフィンシリーズ等の活性炭(以上日本エンバイロケミカルズ社製)、太閤活性炭シリーズ等の活性炭(以上二村化学社製)、PMシリーズ、MMシリーズ等の活性炭(以上三倉化成社製)が挙げられる。   Examples of the synthetic adsorbent include Levacit (registered trademark) AT5, AF5, OC1163 (manufactured by Bayer), Diaion (registered trademark) SP206, SP207, HP21 (manufactured by Mitsubishi Chemical), and Amberlite. (Registered Trademark) XAD4, 2000, 16HP, 7HP, 1180 (above Rohm and Haas) and Molecular Sieve (Registered Trademark) 13X may be mentioned, and activated alumina A-2 (above Union) Showa Co., Ltd., activated carbon such as Zeorum (registered trademark) A-3, A-4, A-5, F-9 (above Tosoh), Shirasagi series, carborafin series, etc. Nippon Enviro Chemicals Co., Ltd.), activated carbon such as Dazai activated carbon series (above Nimura Chemical Co., Ltd.), PM series, MM series, etc. Activated carbon (more than Mikura Kasei Co., Ltd.) and the like.

これらの分子ふるい効果を示す多孔性固体物質は、単独で使用することができるが、2種以上を併用することもできる。   These porous solid substances showing the molecular sieving effect can be used alone, but two or more kinds can also be used in combination.

前記のタウリンと無機塩を含有する溶解液を前記の分子ふるい効果を示す多孔性固体物質と接触させて、該分子ふるい効果を示す多孔性固体物質にタウリンを吸着させて無機塩と分離し、次いで水を含んでいてもよい有機溶媒を用いて該分子ふるい効果を示す多孔性固体物質に吸着したタウリンを脱離させることによりタウリンを回収することができる。   Contacting a solution containing taurine and an inorganic salt with the porous solid material exhibiting the molecular sieving effect, adsorbing taurine to the porous solid material exhibiting the molecular sieving effect, and separating the inorganic salt; Subsequently, taurine can be recovered by desorbing taurine adsorbed on the porous solid substance exhibiting the molecular sieving effect using an organic solvent which may contain water.

タウリンと無機塩を含有する溶解液中のタウリン濃度に制限は設けないが、0.1%(w/w)以上20%(w/w)以下のものが処理できる。   Although there is no restriction on the concentration of taurine in the solution containing taurine and an inorganic salt, a concentration of 0.1% (w / w) to 20% (w / w) can be processed.

タウリンと無機塩を含有する溶解液中の金属塩の濃度に制限はなく、濃度の如何を問わず有効に作用する。   There is no restriction | limiting in the density | concentration of the metal salt in the solution containing a taurine and an inorganic salt, and it acts effectively regardless of the density | concentration.

また、溶解液のpHに制限はなく、pH1〜pH13の範囲で吸着可能である。
分子ふるい効果を示す多孔性固体物質の使用量は、使用する分子ふるい効果を示す多孔性固体物質のタウリンの吸着量等が異なるため、一概に特定することはできないが、使用する分子ふるい効果を示す多孔性固体物質に対するタウリンの吸着量を予め求めたうえで最適化を図ることができる。
Moreover, there is no restriction | limiting in pH of a solution, It can adsorb | suck in the range of pH1-pH13.
The amount of porous solid material that exhibits molecular sieving effect cannot be specified because the amount of adsorbed taurine of the porous solid material that exhibits molecular sieving effect is different. Optimization can be achieved after obtaining in advance the amount of taurine adsorbed on the porous solid material to be shown.

分子ふるい効果を示す多孔性固体物質に吸着したタウリンの脱離に用いられる溶離液としては、分子ふるい効果を示す多孔性固体物質に吸着したタウリンを脱離することができれば制限はないが、例えば、水を含んでいてもよい水溶性有機溶媒、および非水溶性有機溶媒を挙げることができる。水溶性溶媒としては、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール等の低級のアルコール類やアセトン、アセトニトリル等が挙げられる。非水溶性有機溶媒としては、例えば、ヘプタノールやオクタノール等の高級アルコール類や酢酸エチルや酢酸ブチル等のエステル類が挙げられる。これらのなかでも水を含む水溶性有機溶媒は好ましい。   The eluent used for desorption of taurine adsorbed on a porous solid substance exhibiting a molecular sieving effect is not limited as long as taurine adsorbed on a porous solid substance exhibiting a molecular sieving effect can be desorbed. , Water-soluble organic solvents that may contain water, and water-insoluble organic solvents. Examples of the water-soluble solvent include lower alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, acetone, acetonitrile, and the like. Examples of the water-insoluble organic solvent include higher alcohols such as heptanol and octanol, and esters such as ethyl acetate and butyl acetate. Among these, a water-soluble organic solvent containing water is preferable.

水を含む水溶性有機溶媒を溶離液として使用する場合、溶離液中の水溶性有機溶媒の濃度に制限はないが、水溶性有機溶媒の濃度が低すぎる場合、吸着したタウリンの分子ふるい効果を示す多孔性固体物質からの回収率が低下する為、好ましくない。溶離液中の水溶性有機溶媒の濃度は50%(w/w)濃度以上であるのが好ましい。   When a water-soluble organic solvent containing water is used as the eluent, there is no restriction on the concentration of the water-soluble organic solvent in the eluent, but if the concentration of the water-soluble organic solvent is too low, the molecular sieving effect of adsorbed taurine can be reduced. Since the recovery rate from the porous solid substance to be shown is lowered, it is not preferable. The concentration of the water-soluble organic solvent in the eluent is preferably 50% (w / w) or higher.

水を含む水溶性有機溶媒中の水と水溶性有機溶媒の配合割合は、使用する分子ふるい効果を示す多孔性固体物質および水溶性有機溶媒の種類によりタウリンの脱離能が異なるため一概に特定することはできないが、例えば、分子ふるい効果を示す多孔性固体物質としてレバチット(登録商標)AT5を用いる場合、タウリンを脱離するための溶離液としては、例えば、メチルアルコールと水が1:1〜9:1(w/w)である溶離液、イソプロパノールと水が1:1〜9:1(w/w)である溶離液、アセトニトリルと水が1:1〜9:1(w/w)である溶離液またはアセトンと水が1:1〜9:1(w/w)である溶離液を用いることができる。分子ふるい効果を示す多孔性固体物質としてレバチット(登録商標)AT5を用いる場合、メチルアルコールと水が9:1(w/w)である溶離液を用いるのがタウリンの回収率の点で好ましい。   The mixing ratio of water and water-soluble organic solvent in the water-soluble organic solvent containing water is generally specified because the ability to desorb taurine differs depending on the type of porous solid substance and water-soluble organic solvent that exhibit the molecular sieving effect. For example, when Levacit (registered trademark) AT5 is used as a porous solid substance exhibiting a molecular sieving effect, eluents for desorbing taurine include, for example, 1: 1 methyl alcohol and water. Eluent that is ~ 9: 1 (w / w), eluent that isopropanol and water are 1: 1 to 9: 1 (w / w), acetonitrile and water 1: 1 to 9: 1 (w / w) Or an eluent in which acetone and water are 1: 1 to 9: 1 (w / w). In the case of using Levacit (registered trademark) AT5 as a porous solid substance exhibiting a molecular sieving effect, it is preferable in terms of taurine recovery rate to use an eluent in which methyl alcohol and water are 9: 1 (w / w).

溶離液の使用量は、使用する溶離液等により異なるため、一概に特定することはできないが、使用する溶離液の量と脱離するタウリンの量を予め求めたうえで最適化を図ることができる。   Since the amount of eluent used varies depending on the eluent used, etc., it cannot be specified unconditionally. However, it is possible to optimize the amount of eluent used and the amount of desorbed taurine in advance. it can.

タウリンと無機塩を含有する溶解液を分子ふるい効果を示す多孔性固体物質と接触させる方法に制限は設けないが、例えば、カラム内に充填した分子ふるい効果を示す多孔性固体物質に該溶解液を下向または上向に通液して、タウリンのみを該分子ふるい効果を示す多孔性固体物質に吸着させ、通液終了後、水洗し、水溶性有機溶媒または水と水溶性有機溶媒をカラムに通液して脱離させたタウリンを回収する方法が挙げられる。   There is no restriction on the method of contacting the solution containing taurine and the inorganic salt with the porous solid material showing the molecular sieving effect. For example, the solution is added to the porous solid material showing the molecular sieving effect packed in the column. Is passed downward or upward to adsorb only taurine to the porous solid substance exhibiting the molecular sieving effect, and after passing through, is washed with water, water-soluble organic solvent or water and water-soluble organic solvent are added to the column. And a method of recovering taurine released by passing through the solution.

カラムの操作温度は、タウリンと無機塩を含有する溶解液の凝固点またはタウリンが飽和溶解度を示す温度以上、脱離の為の溶離液の沸点以下であれば制限はないが、好ましくは10℃〜60℃である。   The operating temperature of the column is not limited as long as it is not lower than the freezing point of the solution containing taurine and the inorganic salt or the temperature at which taurine exhibits saturation solubility, and lower than the boiling point of the eluent for desorption, but preferably 10 ° C to 60 ° C.

以下実施例で本発明を詳細に説明する。以下の実施例において、タウリンの分析は液体クロマトグラフ法、無機イオンの分析はイオンクロマト法により行い、濃度は総て重量基準で示した。   Hereinafter, the present invention will be described in detail with reference to examples. In the following examples, taurine was analyzed by liquid chromatography and inorganic ions were analyzed by ion chromatography, and all concentrations were shown on a weight basis.

分析条件
タウリンの定量分析は、高速液体クロマトグラフィーを用いて、以下の分析方法および条件で行った。
カラム:Inersitol ODS−2
キャリアー:10v%メタノール−30mMリン酸水溶液(pH3.0)
(ただし、0.6重量% 1−ヘプタンスルホン酸含有)
流速:1.0ml/min
カラム温度:40℃
検出法:o−フタルアルデヒドによる蛍光法(EX=365nm,EM=455nm)
塩化ナトリウムおよび硫酸ナトリウムの定量分析は、それぞれ塩素イオンおよび硫酸イオンについて、DIONEX社のイオンクロマトグラフィー装置シリーズ2000i(カラム:AS4A)を用いて行った。
Analysis conditions Quantitative analysis of taurine was performed using high performance liquid chromatography with the following analysis method and conditions.
Column: Inseritol ODS-2
Carrier: 10v% methanol-30 mM phosphoric acid aqueous solution (pH 3.0)
(However, 0.6 wt% 1-heptanesulfonic acid contained)
Flow rate: 1.0 ml / min
Column temperature: 40 ° C
Detection method: Fluorescence method using o-phthalaldehyde (EX = 365 nm, EM = 455 nm)
Quantitative analysis of sodium chloride and sodium sulfate was carried out using an ion chromatography apparatus series 2000i (column: AS4A) manufactured by DIONEX for chloride ion and sulfate ion, respectively.

〔実施例1〕
表1に示す吸着剤を15g、50mlのガラス製バイアルに計り取り、これにタウリン濃度1.3%(w/w)、Na2SO3 0.9%(w/w)、Na2S04 0.3%(w/w)、NaCl6.8%(w/w)の組成を持つ水溶液を25g添加した。そのまま1時間ほど攪拌の後、樹脂と水溶液を濾過、分離し、濾液中のタウリンを分析し、吸着剤へのタウリンの吸着率を算出した。
[Example 1]
The adsorbent shown in Table 1 is weighed into a glass vial of 15 g and 50 ml, to which a taurine concentration of 1.3% (w / w), Na2SO3 0.9% (w / w), Na2S04 0.3% (w / W), 25 g of an aqueous solution having a composition of NaCl 6.8% (w / w) was added. After stirring for about 1 hour, the resin and the aqueous solution were filtered and separated, the taurine in the filtrate was analyzed, and the adsorption rate of taurine to the adsorbent was calculated.

Figure 2005232026
Figure 2005232026

〔実施例2〕
レバチットAT5を65gにタウリン濃度1.3%(w/w)、Na2SO3 0.9%(w/w)、Na2S04 0.3%(w/w)、NaCl6.8%(w/w)の組成を持つ水溶液を108g添加した。そのまま1時間ほど攪拌の後、樹脂と水溶液を濾過、分離し、タウリンの吸着した樹脂画分70gを得た。該樹脂画分を5g、表2の溶出評価液5mlを50mlのガラス製バイアルに計り取り、1時間ほど攪拌の後、樹脂と水溶液を濾過、分離し、濾液中のタウリン量を分析、吸着した樹脂からのタウリンの回収率を算出した。表2に示す通り、水のみでの溶出に比べて、有機溶媒を添加することにより効率的にタウリンを回収する事が可能である。
[Example 2]
Composition of Levacit AT5 to 65 g of taurine concentration 1.3% (w / w), Na2SO3 0.9% (w / w), Na2S04 0.3% (w / w), NaCl 6.8% (w / w) 108 g of an aqueous solution having was added. After stirring for about 1 hour, the resin and the aqueous solution were filtered and separated to obtain 70 g of a resin fraction adsorbed with taurine. 5 g of the resin fraction and 5 ml of the elution evaluation solution shown in Table 2 were weighed into a 50 ml glass vial, stirred for about 1 hour, and then the resin and the aqueous solution were filtered and separated. The amount of taurine in the filtrate was analyzed and adsorbed. The recovery rate of taurine from the resin was calculated. As shown in Table 2, it is possible to efficiently recover taurine by adding an organic solvent as compared to elution with water alone.

Figure 2005232026
Figure 2005232026

〔実施例3〕
レバチットAT5(バイエル社製)50mlを充填した内径15mmのガラス製カラムにタウリン濃度1.3%(w/w)、Na2SO3 0.9%(w/w)、Na2S04 0.3%(w/w)、NaCl6.8%(w/w)の組成を持つ水溶液を下向流で75ml通液しタウリンを吸着させた。この吸着工程におけるタウリン吸着量は0.66gであり原液中の68%(回収率)のタウリンを吸着させることができた。吸着工程に続いて90%(w/w)濃度のメタノール水75mlでタウリンを溶離した結果 、吸着したタウリンの88%(回収率)を溶出させる事が出来た。
溶出した画より濃縮の後、冷却、晶析によりタウリン結晶を取り出した。結晶のタウリン純度は96.0%であった。
Example 3
Levacit AT5 (manufactured by Bayer) packed in a glass column of 15 mm inner diameter packed with 50 ml of taurine concentration 1.3% (w / w), Na2SO3 0.9% (w / w), Na2S04 0.3% (w / w) ), 75 ml of an aqueous solution having a composition of NaCl 6.8% (w / w) was passed in a downward flow to adsorb taurine. The amount of taurine adsorbed in this adsorption step was 0.66 g, and 68% (recovery rate) of taurine in the stock solution could be adsorbed. As a result of elution of taurine with 75 ml of 90% (w / w) aqueous methanol following the adsorption step, 88% (recovery rate) of adsorbed taurine could be eluted.
After concentration from the eluted fraction, taurine crystals were taken out by cooling and crystallization. The taurine purity of the crystals was 96.0%.

Claims (2)

タウリンと無機塩を含有する溶解液を分子ふるい効果を示す多孔性固体物質と接触させて、該分子ふるい効果を示す多孔性固体物質にタウリンを吸着させて無機塩と分離し、次いで水を含んでいてもよい有機溶媒を用いて該分子ふるい効果を示す多孔性固体物質に吸着したタウリンを脱離させることを特徴とするタウリンの精製方法。 A solution containing taurine and an inorganic salt is brought into contact with a porous solid substance exhibiting a molecular sieving effect so that taurine is adsorbed on the porous solid substance exhibiting a molecular sieving effect and separated from an inorganic salt, and then contains water. A method for purifying taurine, comprising desorbing taurine adsorbed on a porous solid substance exhibiting the molecular sieving effect using an organic solvent which may be discharged. 請求項1記載の分子ふるい効果を示す多孔性固体物質が、合成吸着剤、活性炭、ゼオライト、活性アルミナから選ばれる少なくとも一種を含むものである請求項1記載のタウリンの精製方法。 The method for purifying taurine according to claim 1, wherein the porous solid substance showing the molecular sieving effect according to claim 1 contains at least one selected from a synthetic adsorbent, activated carbon, zeolite, and activated alumina.
JP2004039585A 2004-02-17 2004-02-17 Method for purifying taurine Pending JP2005232026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004039585A JP2005232026A (en) 2004-02-17 2004-02-17 Method for purifying taurine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004039585A JP2005232026A (en) 2004-02-17 2004-02-17 Method for purifying taurine

Publications (1)

Publication Number Publication Date
JP2005232026A true JP2005232026A (en) 2005-09-02

Family

ID=35015349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004039585A Pending JP2005232026A (en) 2004-02-17 2004-02-17 Method for purifying taurine

Country Status (1)

Country Link
JP (1) JP2005232026A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857558A (en) * 2009-04-08 2010-10-13 莱茵制药咨询有限公司 Make with extra care the method for 2-aminoethyl sulfonic acid, thus obtained 2-aminoethyl sulfonic acid and uses thereof by rough 2-aminoethyl sulfonic acid
CN113135844A (en) * 2020-01-17 2021-07-20 大连鑫玉龙海洋生物种业科技股份有限公司 Method for extracting taurine from sea cucumber intestines
WO2023199995A1 (en) 2022-04-15 2023-10-19 コスメディ製薬株式会社 Skin external agent composition in which fine needle-like or columnar crystals of taurine are blended
WO2023210059A1 (en) 2022-04-25 2023-11-02 コスメディ製薬株式会社 Dermatological topical agent composition containing useful component-including taurine crystals

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857558A (en) * 2009-04-08 2010-10-13 莱茵制药咨询有限公司 Make with extra care the method for 2-aminoethyl sulfonic acid, thus obtained 2-aminoethyl sulfonic acid and uses thereof by rough 2-aminoethyl sulfonic acid
CN113135844A (en) * 2020-01-17 2021-07-20 大连鑫玉龙海洋生物种业科技股份有限公司 Method for extracting taurine from sea cucumber intestines
WO2023199995A1 (en) 2022-04-15 2023-10-19 コスメディ製薬株式会社 Skin external agent composition in which fine needle-like or columnar crystals of taurine are blended
KR20250004655A (en) 2022-04-15 2025-01-08 코스메드 파마소티컬 씨오 쩜 엘티디 Composition for external skin application containing fine needle-shaped or columnar crystals of taurine
WO2023210059A1 (en) 2022-04-25 2023-11-02 コスメディ製薬株式会社 Dermatological topical agent composition containing useful component-including taurine crystals
KR20240001707A (en) 2022-04-25 2024-01-03 코스메드 파마소티컬 씨오 쩜 엘티디 Composition for external use on skin containing taurine crystals containing useful ingredients

Similar Documents

Publication Publication Date Title
JP5053587B2 (en) High-purity production method of alkali metal hydroxide
JP4587694B2 (en) Method for separating and recovering amino acid and iminodicarboxylic acid
KR20180038421A (en) How to purify methionine
CA3229029A1 (en) Method for lithium sorption extraction from lithium-containing brines
JP2008031014A (en) High-purity production method of alkali metal hydroxide
US5028736A (en) Process for the separation and recovery of naphthalene-sulfonic acids from aqueous solutions
JP2005232026A (en) Method for purifying taurine
JP5049528B2 (en) Method for producing high purity alkali metal hydroxide
Filik et al. A chelating ion exchanger for gallium recovery from alkaline solution using 5-palmitoyl-8-hydroxyquinoline immobilized on a nonpolar adsorbent
FR2543977A1 (en) PROCESS FOR SELECTIVE SEPARATION AND CONCENTRATION OF GALLIUM OR INDIUM OR BOTH SOLUTIONS CONTAINING LOW RATES BUT CONTAINING HIGH RATES OF IONS OF OTHER METALS
US4396585A (en) Silver removal with halogen impregnated non-carbon adsorbents
JP4143707B2 (en) Method for producing high purity sodium chloride crystals
JP2539413B2 (en) Adsorbent for gallium recovery
JP2000202442A (en) Method for separating and recovering boron in boron-containing water
JPH07206804A (en) Purification of taurine
CN114634269B (en) Method for recovering nicotinamide from wastewater
JP6320324B2 (en) Purification method of potassium chloride
JPH0354118A (en) How to recover rhenium
JP2003334458A (en) Anion exchange resin, its manufacturing method, and manufacturing method for purified hydrogen peroxide solution using the resin
RU2184788C1 (en) Method of rhenium desorption
EP1962984A1 (en) Process for the treatment of an aqueous mixture comprising a dipolar aprotic compound
JPH02204324A (en) Method for recovering thallium
JPS6212613A (en) Recovery of alkali metal iodide
SU680999A1 (en) Process for the purification of waste liquor from polychloroisocyanuric acid and salts thereof
JPH06345683A (en) Pyruvate purification method