[go: up one dir, main page]

JP2005217055A - 熱電モジュールの製造方法 - Google Patents

熱電モジュールの製造方法 Download PDF

Info

Publication number
JP2005217055A
JP2005217055A JP2004020286A JP2004020286A JP2005217055A JP 2005217055 A JP2005217055 A JP 2005217055A JP 2004020286 A JP2004020286 A JP 2004020286A JP 2004020286 A JP2004020286 A JP 2004020286A JP 2005217055 A JP2005217055 A JP 2005217055A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric element
solder paste
support substrate
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020286A
Other languages
English (en)
Inventor
Toshihiro Furukawa
智弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004020286A priority Critical patent/JP2005217055A/ja
Publication of JP2005217055A publication Critical patent/JP2005217055A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】本発明の熱電モジュールの製造方法によれば、熱電素子が倒れたりすることなく半田ペースト上に固定することが可能になり、熱電素子と支持基板を精度良く半田接合でき、低コストで量産性に優れた熱電モジュールの製造が可能になる。
【解決手段】支持基板と、該支持基板上に配列された複数のN型およびP型熱電素子と、複数の該熱電素子間を電気的に直列に接続する配線導体を具備する熱電モジュールの製造方法において、上記支持基板上の配線導体上に半田ペーストを印刷する工程と、耐熱性を有する格子状整列冶具に上記熱電素子を整列して配列する工程と、上記格子状整列冶具に配列された熱電素子を上記半田ペーストが印刷された配線導体上に転写する工程と、上記半田ペーストを乾燥する工程と、転写された熱電素子の端面を半田ペーストに接触させた状態で格子状整列冶具の一部あるいは全体で固定して加熱する工程を含むことを特徴とする
【選択図】図1

Description

本発明は、半導体等の発熱体の温度調整、冷却等に好適に使用される熱電モジュールの量産性に優れる低コストな製造方法に関する。
従来より、ペルチェ効果を利用した熱電素子は、電流を流すことにより一端が発熱するとともに他端が吸熱するため、冷却用の熱電素子として用いられている。特に、熱電モジュールとしてレーザーダイオードの温度制御、小型で構造が簡単でありフロンレスの冷却装置、冷蔵庫、恒温槽、光検出素子、半導体製造装置等の電子冷却素子、レーザーダイオードの温度調節等への幅広い利用が期待されている。
この室温付近で使用される熱電モジュールに使用される熱電素子用材料は、冷却特性が優れるという観点からA型結晶(AはBi及び/又はSb、BはTe及び/又はSe)からなる熱電素子が一般的に用いられる。
例えば、P型の熱電素子にはBiTe(テルル化ビスマス)とSbTe(テルル化アンチモン)との固溶体が、N型の熱電素子にはBiTeとBiSe(セレン化ビスマス)との固溶体が特に優れた性能を示すことから、このA型結晶(AはBi及び/又はSb、BはTe及び/又はSe)が熱電素子として広く用いられている。
ペルチェ効果を利用した熱電モジュールは、図1に示すように、支持基板1a、1bの表面に、それぞれ配線導体2a、2bが形成され、熱電素子3が配線導体2a、2bによって挟持されるとともに、電気的に直列に連結されるように構成されている。
これらのN型熱電素子3a及びP型熱電素子3bは、交互に配列し、電気的に直列になるように配線導体2a、2bで接続され、さらにリード線4に接続しており、外部から熱電素子3に直流電圧を印加することができ、その電流の向きに応じて吸熱あるいは発熱を生じせしめることが出来る。
上記の配線導体2a、2bは、大電流に耐え得るように、通常は銅電極が用いられ、配線導体2a、2bに熱電素子3が半田で接合されている。
上記のような熱電モジュールは、構造が簡単で、取扱が容易であるにもかかわらず、安定な特性を維持することが出来るため、広範囲にわたる利用が注目されている。特に、小型で局所冷却ができ、室温付近の精密な温度制御が可能であるため、半導体レーザや光集積回路等に代表される一定温度に精密制御される装置や小型冷蔵庫等に利用されている。
このような構造を有する熱電モジュールを作製するに当っては、特に、形状が小さく微細な熱電素子3を支持基板1上に、等間隔で支持基板1に対して垂直に傾かないように半田で実装する工程が特に難しく、熱電モジュールのコストを引き上げる要因の一つになっている。半田実装される支持基板1あるいは熱電素子3は、半田成分が熱電素子3に拡散することを妨げ、また半田の濡れ性を高めるために、Niメッキの上にAuメッキが施されている。前述した実装を容易にする目的から、熱電素子3あるいは支持基板1のメッキされた面のいずれか一方を半田メッキにし、接合面にあらかじめ高粘性のフラックスを塗布して熱電素子3と支持基板1を熱により仮止めし、その後加熱して半田接合する方法が知られている(特許文献1)。
特開平4−10674号公報
しかしながら、特許文献1に記載の熱電モジュールの製造方法は、熱電素子を仮止めできる優れた方法ではあるものの、半田メッキ等により熱電素子と支持基板を平坦にする必要があり、半田組成が限定され、高コストになってしまう問題があった。さらには、高粘着性のフラックスを塗布する工程が余計にかかり、また、フラックスが乾燥するまでの短時間に熱電素子を実装させなくては成らず、量産性に乏しく、高コストな製造方法であった。
一方、低コストな熱電モジュールの製造プロセスとして、支持基板に半田ペーストをスクリーン印刷した後に熱電素子を実装する手法が考えられるが、半田ペーストを用いると、印刷した面が山状になり、熱電素子の座りが悪く熱電素子が倒れる等の問題があり、これまで半田ペーストを用いた印刷法による量産方法に適した製造方法は確立されていなかった。
低コストで量産性に優れる半田ペーストを印刷した工程による熱電モジュールの製造方法に関して鋭意検討し、熱電素子を整列冶具中に一度配列させ、その後、半田ペーストを印刷した支持基板上に転写し、転写した状態で加熱する事で半田ペーストと熱電素子が接着により仮止めされる方法によって熱電モジュールが作製できることを知見し、本発明に至った。
すなわち、本発明の熱電モジュールの製造方法は、支持基板と、該支持基板上に配列された複数のN型およびP型熱電素子と、複数の該熱電素子間を電気的に直列に接続する配線導体を具備する熱電モジュールの製造方法において、上記支持基板上の配線導体上に半田ペーストを印刷する工程と、耐熱性を有する格子状整列冶具に上記熱電素子を整列して配列する工程と、上記格子状整列冶具に配列された熱電素子を上記半田ペーストが印刷された配線導体上に転写する工程と、上記半田ペーストを乾燥する工程と、転写された熱電素子の端面を半田ペーストに接触させた状態で格子状整列冶具の一部あるいは全体で固定して加熱する工程を含むことを特徴とする。
上記乾燥する温度が50〜150℃であることを特徴とする。
上記格子状整列冶具の材質がフェノール樹脂、または金属であることを特徴とする。
上記半田ペーストが印刷された支持基板を上記熱電素子の両端に配置した状態で加熱して半田接合することを特徴とする。
上記半田ペーストが印刷された支持基板のうち少なくとも一方を50〜150℃の温度で乾燥したのち、上記熱電素子の両端に配置した状態で加熱して半田接合することを特徴とする。
上記方法によって低コストで量産性に優れる熱電モジュールの製造方法が得られる。
本発明の熱電モジュールの製造方法によれば、熱電素子が倒れたりすることなく半田ペースト上に固定することが可能になり、熱電素子と支持基板を精度良く半田接合でき、低コストで量産性に優れた熱電モジュールの製造が可能になる。
さらにまた、半田ペーストの変質を抑え、半田接合状態を良好にしながら、精度良く熱電素子と半田ペーストを固定することができ、接合工程の歩留まりを高めることができる。
さらにまた、前記熱電素子と半田ペーストを固定させる加熱時における整列冶具の変形を抑え、加熱時の熱電素子と格子上冶具の接触による不良を低減でき、歩留まりを向上できる。
さらにまた、熱電素子と支持基板との半田接合工程が一度で済み、低コストで量産性に優れる熱電モジュールの製造が可能になる。
さらにまた、熱電素子の傾きをさらに抑え、高精度に熱電素子が配列された熱電モジュールを低コストで量産性に優れる方法で製造が可能になる。
図1は本発明の熱電モジュールの製造方法によって作製された熱電モジュールを示す斜視図である。
本発明の熱電モジュールの製造方法によって作製された熱電モジュールは、図1に示すように、支持基板1a、1bの表面に、それぞれ配線導体2a、2bが形成され、熱電素子3が配線導体2a、2bによって挟持されるとともに、電気的に直列に連結されるように構成されている。
これらのN型熱電素子3a及びP型熱電素子3bは、交互に配列し、電気的に直列になるように配線導体2a、2bで接続され、さらにリード線4に接続しており、外部から熱電素子3に直流電圧を印加することができ、その電流の向きに応じて吸熱あるいは発熱を生じせしめることが出来る。
上記の配線導体2a,2bは、大電流に耐え得るように、通常は銅電極が用いられ、配線導体2a,2bに熱電素子3が半田ペースト8で接合されている。
本発明に用いられる熱電素子3は、Bi、Sb、Te及びSeのうち少なくとも2種を主成分とすることが好ましい。BiTe、SbTe、BiSe等のカルコゲナイト型結晶を使用した熱電素子3は、室温付近の熱電特性に優れ、情報通信関連の冷却用熱電モジュールとして好適に使用できる。
また特に、N型熱電素子3は、I及び/又はBrを含むことが好ましい。即ち、半導体を形成するため、ハロゲン元素の添加によって電子濃度の調整がなされ、キャリア濃度の制御されたN型熱電素子3aとして優れた特性を示すことができる。
なお、N型熱電素子及びP型熱電素子は、溶製材料であっても焼結体であっても良いが、N型熱電素子を溶製材料、特に単結晶からなり、P型熱電素子3bが焼結体、特に平均結晶粒径が5μm以下の焼結体からなる、もしくはN型熱電素子3a及びP型熱電素子3bが溶製材料、特に単結晶からなることが、優れた特性とコスト低減を同時に実現しやすい点で好ましい。
さらに、熱電素子3と配線導体2の接合は半田接合が、電気的、機械的性能及びコストの点で最適である。用いられる半田は、使用される熱電モジュールの用途によって様々であるが、一般的にはSn−Pb、Sn−Sb、Au−Sn系が好適に使用される。特に近年ではPbフリーの要求が高まっているため、半田溶融温度の高いSn−Sb、Au−Snが環境及び耐熱性向上の面で好ましい。熱電素子3の電極に接続させる両端面は、ニッケルメッキ層とAuメッキ層を施すことによって、半田の濡れ性を向上し、半田層を構成する半田成分が熱電素子3の内部に拡散し、熱電性能を劣化させることを抑制できる。
次に、本発明の熱電モジュールの製造方法について詳述する。
まず、支持基板1を準備する。支持基板1の材質としては、耐振動及び衝撃性に優れ、配線導体2の密着強度が大きく、また、放熱面や冷却面としての熱抵抗が小さいものが好ましい。具体的には、アルミナ、ムライト、窒化アルミニウム、窒化珪素、炭化珪素の少なくとも1種からなる焼結体を例示できる。特にコストの点からアルミナ焼結体を、熱伝導率が高く、熱抵抗が小さい点で窒化アルミニウム焼結体を、強度及び熱伝導率の点で炭化珪素焼結体を、衝撃性や強度の点で窒化珪素焼結体を好適に使用できる。
支持基板1の曲げ強度は、200MPa以上、特に250MPa以上、更には300MPa以上にすることが、配線導体2の形成や半田層の形成に伴う応力集中に対しても支持基板1の破損を防止する効果を高め、より高い信頼性を得る点において好ましい。
次いで、支持基板1上に配線導体2を形成する。配線導体2は、Cu、Al、Au、Pt、Ni及びWのうち少なくとも1種の金属を用いることが可能である。これらのうち、特にCuが電気伝導性及び支持基板1への密着強度の点で、また、Alがコストの点で望ましい。配線導体2の形成は、例えば支持基板1となるグリーンシート表面に金属ペーストを塗布した後に同時焼成しても良いが、一旦支持基板1を作製した後に金属ペーストを塗布して焼成して作製したメタライズ表面上にメッキで作製することがコスト、電極形状の精度の面で好ましい。
以下、図5(a)の本発明のフロー図に沿って説明する。
支持基板1上に設けた配線導体2上に所望の組成の半田ペースト8を塗布する。半田ペースト8は、粒径が10〜100μm程度の半田にフラックス、有機溶剤等副成分が混合した市販のペーストでよいが、本発明によれば、熱電素子3との接着力を高める上で、溶剤成分が蒸発しないよう、冷暗所で保管しておくことが望ましい。万一、乾燥した場合は、フラックス等を添加して粘度調整すれば使用可能になる。
塗布する方法としては、ディスペンサーで微小のボール状半田を滴下してもよいが、量産性の上であらかじめスクリーンメッシュ上に高精度で開口部15が作製されている版を用いてペーストを印刷するスクリーン印刷法が最適である。スクリーン印刷法では、スクリーンメッシュの厚みや開口形状を調整することで半田量と印刷される半田の高さを調整することができる。
本発明によれば、支持基板1を支持基板ホルダー12に精度良く配置することで、複数個の支持基板1を同時に印刷が可能である。
また、半田量は配線導体2の面積で厚みが5〜30μmになる範囲となるように、また、半田の高さは熱電素子3の幅の1/2以下になるようにすることが、熱電素子3の傾きを抑制し、さらには熱電モジュールの抵抗ばらつきを抑制する上で好ましい。
次に、熱電素子3を整列させる整列冶具5を用意する。
整列冶具5とは、図3(a)に示すような耐熱性を持つ材料の主面に、熱電素子3を支持基板1上にN型及びP型を交互に千鳥状に配置できるように、熱電素子3が配線基板と接合される面の形状に合わせて開口部15が施された冶具である。開口部15の形状は熱電素子3よりも大きい形状であれば良いが、図3(b)に示すような、エッジ部にR加工16を施すことが、熱電素子3を傷つけることなく転写する上で好ましい。この整列冶具5の材質は150℃までの耐熱性が有り、微細で高精度な加工が施せる材料であれば材質は限定しないが、フェノール樹脂または、金属が加工性、コストの上で好ましく、具体的には、ベークライト、ステンレス、アルミニウムが望ましく、その中でも特にステンレスがフォトリソグラフィー技術によるエッチング工程によって高精度で微細な加工が容易に行えるため好ましい。
次に、この整列冶具5の開口部15に熱電素子3の配線導体2に接合させる二つの面のいずれかを上面に向けた方向になるように挿入する。挿入する方法としては、真空ピンセット等により挿入しても良いし、パーツフィーダーとロボットを組み合わせて自動化しても良いが、本発明によれば、低コストで量産性優れる方法としては、振動揺動による振込みによる熱電素子3の挿入が好ましい。N型熱電素子3aとP型熱電素子3bとを交互に配列させるために、一度振込み用の冶具にN型熱電素子3aとP型熱電素子3bを別々に振り込んだ後、整列冶具5に転写する方法が望ましい。整列冶具5の構成としては、図4(a)に示すような、転写のときに引き真空引きして熱電素子3を固定できるような真空引き用の加工穴7をあらかじめ設けておいたほうが転写が容易である。本発明によれば、整列用冶具5は、図4(a)に示されるような一体型でも良いが、粗い加工精度で加工した一体型の整列冶具5の開口部15に、エッチングで高精度に加工された好ましくはステンレス製のメタルマスク17が配置された合体構造が熱電素子3の位置精度を高める上で、特に望ましい。メタルマスク17の開口部15の大きさは、熱電素子3の幅の105〜120%が望ましい。これらの整列冶具5を高精度で加工することによって、複数個の熱電モジュール用の熱電素子3を同時に配列できる。
次に、整列冶具5に配置された熱電素子3を前述した半田ペースト8が印刷された支持基板1上に転写する。支持基板ホルダー12にガイドピン9を設けることで、スペーサー13及び整列冶具5を精度良く配置できる。熱電素子3が挿入されている整列冶具5は真空ポンプを用いて、真空引き用の穴を用いて熱電素子3を吸着させ固定し、そのまま支持基板ホルダー12上にガイドピンを用いて位置決めする。その後、真空引きを止めることで熱電素子3は自重により落下し、半田ペースト8上に熱電素子3が接触される。このとき、前述したメタルマスク17が付属した整列冶具5を用いる場合は同様な工程でも良いが、メタルマスク17のみをあらかじめ、スペーサーの上に配置した状態で熱電素子3を転写しても良い。本発明によれば、メタルマスク17は2枚以上配置することで、電極位置に対して熱電素子3がずれた場合もメタルマスク17によって位置を微調整できるため、メタルマスク17が付属した整列冶具5を用いることが望ましい。この場合、熱電素子3を転写したのちに真空引きの穴が付属される整列冶具5は取り外しても良い。
次に、熱電素子3が半田ペースト8上に接触された状態で整列冶具5を固定したまま加熱する。ここで、整列冶具5が一体型の場合は、そのまま固定するが、メタルマスク17を用いる場合は、熱電素子3の倒れを防止できるメタルマスク17のみが固定されていればよい。加熱温度は半田ペースト8の種類によって異なるが、熱電モジュールに好適に使用される半田の場合、50〜150℃の範囲が望ましく、好ましくは70〜130℃、より望ましくは80〜120℃である。50℃よりも低い場合、熱電素子3と半田ペーストの接着強度が弱く固定できない。また、150℃よりも高いと、この工程によって半田自身の変成が起こる場合があり、変成すると半田の濡れ性が低下し、接合後に半田にボイド、あるいは隙間が多発し、好ましくない。加熱時間は、30分以上あれば十分であるが、本発明によれば1時間以上が再現よく接着させる上で望ましい。
加熱が完了したら整列冶具5を取り外し、その後、再度加熱して半田接合を行うが、本発明によれば、半田接合させる際は、図2に示すように半田印刷した支持基板1を上面に配置してから行うことが、半田接合工程が一度で済み、好ましい。このとき、加圧冶具11を介して加圧機構12により均一に加圧させることで上下の支持基板1を同時に接合することが可能になる。ここで加圧冶具11は均熱性を保つために熱伝導率が低い材質が望ましく、ガラス、ポリイミド樹脂、シリコンゴム等が好適に用いられる。加圧する圧力は、1〜10MPaが望ましい。さらには、上面に配置される支持基板1は、あらかじめ150℃以下で加熱し、半田を硬化させておくことが、加圧した際に半田が熱電素子3側面に回りこむ現象を回避でき、望ましい。半田が熱電素子3の側面に回りこむと、半田接合の際に熱電素子3と半田が反応し、熱電モジュールの性能を低下させることがある。乾燥温度は150℃以下であればよいが、好ましくは80〜120℃である。ここで150℃以上の温度で加熱すると、前述した半田の変成が起こるため好ましくない。
最後に、半田接合処理を施した後、冶具類を外して上下の支持基板1に熱電素子3が配列された熱電モジュールが得られる。熱電モジュールに必要な電流印加用のリード線を、半田こて、先の細いヒーター、局所加熱用のソフトビームあるいはレーザー等で半田接合させ熱電モジュールが得られる。
以上のように本発明によれば、半田ペースト8を印刷した支持基板1上に熱電素子3を接触させた状態で倒れを防止しながら加熱させる事で熱電素子3と支持基板1の仮止めを可能にし、低コストで量産性に優れた半田ペーストによる熱電モジュールの製造が可能になる。
図1に示した熱電モジュールを、本発明の製造方法を用いて作製した。
まず、支持基板1として長さ8.2mm、幅6.0mm、厚み0.375mmの熱電素子3が46個(23対)配置されるCu配線アルミナ基板を準備した。
また、熱電素子3として、N型にはBiTe2.85Se0.15組成の熱電素子3を、P型にはBi0.4Sb1.6Te組成のホットプレスで作成された焼結型多結晶熱電インゴットを準備した。インゴットは厚み0.9mmにスライス後、Ni及びAuメッキを施し、幅0.65mmになるようにダイシングソーで切断し、縦0.65mm、横0.65mm、高さ0.90mmの寸法のN型及びP型熱電素子3を得た。
次に、0.75±0.01mmの開口部15を有する整列冶具5にN型およびP型熱電素子3を振り込み及び転写法により挿入し、表1に示す組成の半田ペーストをスクリーン印刷した支持基板1上にガイドピン9を用いて位置合わせをし、真空ポンプを用いて、熱電素子3を支持基板1上に整列冶具5を用いて転写した。転写した状態で表1に示す温度で1時間加熱したのち、整列冶具5を外した。このとき、熱電素子3が倒れて熱電モジュールが作製不可になったものを加熱時不良数として算出した。次に、半田印刷した上面用基板を表1に示す温度で1時間加熱した後、図2に示す状態で配置し、加圧冶具11を用いて加圧しながら、Sn−Sb半田は280℃、Au−Sn半田は340℃の温度で支持基板ホルダー12のままホットプレート上で半田接合を行った。接合後、リード線を半田こてで接合し、フラックス洗浄を施し、熱電モジュールを得た。熱電モジュールは表1に示す各条件で100個ずつ作製し、最初の加熱後に熱電素子3が3度以上倒れて熱電モジュールが作製できなかった場合を倒れ不良とし、熱電モジュールの外観検査で熱電素子3と電極の半田接合不良があるものを接合不良として算出した。
半田接合不良は、はじきや焼けなどにより熱電素子3の端面全てが覆われていないものとした。
結果を表1に併せて示す。
Figure 2005217055
表1から明らかなように、本発明の範囲外である熱電素子3と半田ペースト8を仮止めしない比較例No.1および2では、歩留まりが5〜10%であるのに対し、本発明の範囲内である、熱電素子3と半田ペースト8を仮固定する実施例No.3〜19では、いずれも歩留まりが91%以上と高い歩留まりを示した。
また、素子密着温度が50℃以上150℃以下が好ましいのは、試料No.3〜9より分かる。
また、上面基板加熱温度が50℃〜150℃が好ましいのは、試料No10〜15で確認できる。
本発明の製造方法における整列冶具を用いた熱電素子転写状態を示す断面図 本発明の製造方法における加圧状態を示す断面図である。 (a)は本発明における整列冶具の開口部を示す上面図、(b)は開口部拡大図である。 (a)は本発明における整列冶具の構成を示す実施形態の断面図、(b)は本発明における整列冶具の構成を示す他の実施形態の断面図である。 (a)は本発明、(b)は従来例のフロー図である。 従来例の熱電モジュールを示す斜視図である。
符号の説明
1 支持基板
2 配線導体
3 熱電素子
3a N型熱電素子
3b P型熱電素子
4 リード線
5 整列冶具
7 真空引用加工穴
8 半田ペースト
9 ガイドピン
11 加圧冶具
12 加圧機構
13 スペーサー

Claims (5)

  1. 支持基板と、該支持基板上に配列された複数のN型およびP型熱電素子と、複数の該熱電素子間を電気的に直列に接続する配線導体を具備する熱電モジュールの製造方法において、上記支持基板上の配線導体上に半田ペーストを印刷する工程と、耐熱性を有する格子状整列冶具に上記熱電素子を整列して配列する工程と、上記格子状整列冶具に配列された熱電素子を上記半田ペーストが印刷された配線導体上に転写する工程と、上記半田ペーストを乾燥する工程と、転写された熱電素子の端面を半田ペーストに接触させた状態で格子状整列冶具の一部あるいは全体で固定して加熱する工程を含むことを特徴とする熱電モジュールの製造方法。
  2. 上記乾燥する温度が50〜150℃であることを特徴とする請求項1記載の熱電モジュールの製造方法。
  3. 上記格子状整列冶具の材質がフェノール樹脂、または金属であることを特徴とする請求項1または2記載の熱電モジュールの製造方法。
  4. 上記半田ペーストが印刷された支持基板を上記熱電素子の両端に配置した状態で加熱して半田接合することを特徴とする請求項1乃至3のいずれかに記載の熱電モジュールの製造方法。
  5. 上記半田ペーストが印刷された支持基板のうち少なくとも一方を50〜150℃の温度で乾燥したのち、上記熱電素子の両端に配置した状態で加熱して半田接合することを特徴とする請求項4記載の熱電モジュールの製造方法。
JP2004020286A 2004-01-28 2004-01-28 熱電モジュールの製造方法 Pending JP2005217055A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020286A JP2005217055A (ja) 2004-01-28 2004-01-28 熱電モジュールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020286A JP2005217055A (ja) 2004-01-28 2004-01-28 熱電モジュールの製造方法

Publications (1)

Publication Number Publication Date
JP2005217055A true JP2005217055A (ja) 2005-08-11

Family

ID=34904244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020286A Pending JP2005217055A (ja) 2004-01-28 2004-01-28 熱電モジュールの製造方法

Country Status (1)

Country Link
JP (1) JP2005217055A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179782A (ja) * 2004-12-24 2006-07-06 Shinko Electric Ind Co Ltd 半導体基板の製造方法
CN102941387A (zh) * 2012-12-07 2013-02-27 中国船舶重工集团公司第七一二研究所 一种超导线的焊接装置及焊接方法
JP2014036973A (ja) * 2012-08-13 2014-02-27 Qel 株式会社 溶融ハンダ塗布装置
WO2014080332A1 (en) 2012-11-20 2014-05-30 Aisin Takaoka Co., Ltd. Method of manufacturing thermoelectric module, and thermoelectric module
CN107240638A (zh) * 2016-03-29 2017-10-10 现代自动车株式会社 用于制造热电模块的装置
US10892240B2 (en) 2018-03-20 2021-01-12 Toshiba Memory Corporation Semiconductor fabrication apparatus and semiconductor fabrication method
CN114682776A (zh) * 2022-03-30 2022-07-01 西安航天发动机有限公司 一种杆状点阵换热器成形方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179782A (ja) * 2004-12-24 2006-07-06 Shinko Electric Ind Co Ltd 半導体基板の製造方法
JP4508859B2 (ja) * 2004-12-24 2010-07-21 新光電気工業株式会社 半導体基板の製造方法
JP2014036973A (ja) * 2012-08-13 2014-02-27 Qel 株式会社 溶融ハンダ塗布装置
WO2014080332A1 (en) 2012-11-20 2014-05-30 Aisin Takaoka Co., Ltd. Method of manufacturing thermoelectric module, and thermoelectric module
US9716218B2 (en) 2012-11-20 2017-07-25 Aisin Takaoka Co., Ltd. Method of manufacturing thermoelectric module, and thermoelectric module
CN102941387A (zh) * 2012-12-07 2013-02-27 中国船舶重工集团公司第七一二研究所 一种超导线的焊接装置及焊接方法
CN102941387B (zh) * 2012-12-07 2015-07-22 中国船舶重工集团公司第七一二研究所 一种超导线的焊接装置及焊接方法
CN107240638A (zh) * 2016-03-29 2017-10-10 现代自动车株式会社 用于制造热电模块的装置
US10553772B2 (en) 2016-03-29 2020-02-04 Hyundai Motor Company Apparatus for manufacturing thermoelectric module
CN107240638B (zh) * 2016-03-29 2020-09-18 现代自动车株式会社 用于制造热电模块的装置
US10892240B2 (en) 2018-03-20 2021-01-12 Toshiba Memory Corporation Semiconductor fabrication apparatus and semiconductor fabrication method
CN114682776A (zh) * 2022-03-30 2022-07-01 西安航天发动机有限公司 一种杆状点阵换热器成形方法

Similar Documents

Publication Publication Date Title
US9269644B2 (en) Method for producing semiconductor device
US6274803B1 (en) Thermoelectric module with improved heat-transfer efficiency and method of manufacturing the same
JP2010109132A (ja) 熱電モジュールを備えたパッケージおよびその製造方法
JP2004031696A (ja) 熱電モジュール及びその製造方法
US9761556B2 (en) Method of manufacturing electronic device
JPH07202063A (ja) セラミックス回路基板
JP4979944B2 (ja) 素子接合用基板、素子接合基板及びその製造方法
US7670879B2 (en) Manufacturing method of semiconductor module including solid-liquid diffusion joining steps
JP7215206B2 (ja) 半導体装置の製造方法
JP2005217055A (ja) 熱電モジュールの製造方法
JP2004031697A (ja) 熱電モジュール
JP2010165807A (ja) 絶縁回路基板の製造方法及び絶縁回路基板並びにパワーモジュール用基板
KR102252979B1 (ko) 고신뢰성을 갖는 반도체용 세라믹 히터의 단자 접합방법
JP2010109054A (ja) 熱電変換モジュールならびに冷却装置、発電装置および温度調節装置
EP3544068B1 (en) Method of production of thermoelectric micro-coolers
JP3840132B2 (ja) ペルチェ素子搭載用配線基板
JP5247531B2 (ja) 熱電変換モジュール
JP2006269572A (ja) 熱電変換モジュール、回路基板及び熱電変換モジュールの製造方法
KR101388492B1 (ko) 골격형 열전 모듈 제조방법 그리고 골격형 열전 모듈이 적용된 열전 유닛 및 그 제조방법
EP3703139B1 (en) Thermoelectric module
JP4005937B2 (ja) 熱電モジュールのパッケージ
JP2004281930A (ja) 熱電変換素子の製造方法
JP2005191040A (ja) 熱電モジュールの製造方法及びそれに用いる位置決め治具
JP3935062B2 (ja) 熱電モジュール
JP4121827B2 (ja) モジュール構造体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105