JP2005187356A - Organic metal compound and its solution raw material and method for forming metal-containing film using the compound - Google Patents
Organic metal compound and its solution raw material and method for forming metal-containing film using the compound Download PDFInfo
- Publication number
- JP2005187356A JP2005187356A JP2003428750A JP2003428750A JP2005187356A JP 2005187356 A JP2005187356 A JP 2005187356A JP 2003428750 A JP2003428750 A JP 2003428750A JP 2003428750 A JP2003428750 A JP 2003428750A JP 2005187356 A JP2005187356 A JP 2005187356A
- Authority
- JP
- Japan
- Prior art keywords
- film
- raw material
- compound
- metal
- solution raw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002994 raw material Substances 0.000 title claims abstract description 76
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 44
- 239000002184 metal Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 16
- 150000001875 compounds Chemical class 0.000 title abstract description 27
- 150000002736 metal compounds Chemical class 0.000 title abstract description 7
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 14
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical group [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052726 zirconium Chemical group 0.000 claims abstract description 10
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 9
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 9
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 claims abstract description 9
- 150000002902 organometallic compounds Chemical class 0.000 claims description 45
- 239000003960 organic solvent Substances 0.000 claims description 30
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 24
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 19
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 15
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 claims description 10
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 10
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 10
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 claims description 6
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 claims description 6
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 5
- HPYNZHMRTTWQTB-UHFFFAOYSA-N dimethylpyridine Natural products CC1=CC=CN=C1C HPYNZHMRTTWQTB-UHFFFAOYSA-N 0.000 claims description 5
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims description 5
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 5
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 claims description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 3
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 3
- 229940072049 amyl acetate Drugs 0.000 claims description 3
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 claims description 3
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 claims description 3
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 claims description 3
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 claims 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 abstract 2
- 230000008020 evaporation Effects 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 149
- 230000015572 biosynthetic process Effects 0.000 description 64
- 239000000758 substrate Substances 0.000 description 34
- 239000010409 thin film Substances 0.000 description 22
- 238000009834 vaporization Methods 0.000 description 22
- 230000008016 vaporization Effects 0.000 description 22
- 239000007789 gas Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 14
- 238000003786 synthesis reaction Methods 0.000 description 13
- 239000012159 carrier gas Substances 0.000 description 10
- 150000002363 hafnium compounds Chemical class 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 8
- 239000006200 vaporizer Substances 0.000 description 7
- 150000003755 zirconium compounds Chemical class 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- -1 dicarbonyl metal complex Chemical class 0.000 description 3
- ZNOVTXRBGFNYRX-UHFFFAOYSA-N 2-[[4-[(2-amino-5-methyl-4-oxo-1,6,7,8-tetrahydropteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 ZNOVTXRBGFNYRX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000003961 organosilicon compounds Chemical class 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- SDHZVBFDSMROJJ-UHFFFAOYSA-N CCCCO[Hf] Chemical group CCCCO[Hf] SDHZVBFDSMROJJ-UHFFFAOYSA-N 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- 229910006360 Si—O—N Inorganic materials 0.000 description 1
- 229910007926 ZrCl Inorganic materials 0.000 description 1
- 229910006501 ZrSiO Inorganic materials 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- VBCSQFQVDXIOJL-UHFFFAOYSA-N diethylazanide;hafnium(4+) Chemical compound [Hf+4].CC[N-]CC.CC[N-]CC.CC[N-]CC.CC[N-]CC VBCSQFQVDXIOJL-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
Images
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
Description
本発明は、有機金属化学気相成長法(Metal Organic Chemical Vapor Deposition、以下、MOCVD法という。)により成膜されるHfO2膜、Hf-N膜、Hf-Si-O膜及びHf-Si-O-N膜等の金属含有膜や、チタン酸ジリコン酸鉛(Pb(Zr,Ti)O3;PZT)膜等の複合酸化物系誘電体薄膜の原料として好適な有機金属化合物及びその溶液原料並びに該化合物を用いた金属含有膜の形成方法に関するものである。 The present invention relates to an HfO 2 film, an Hf—N film, an Hf—Si—O film, and an Hf—Si— film formed by metal organic chemical vapor deposition (hereinafter referred to as MOCVD method). Organometallic compounds suitable as raw materials for metal-containing films such as O—N films, and complex oxide-based dielectric thin films such as lead titanate zirconate (Pb (Zr, Ti) O 3 ; PZT) films, and solution raw materials thereof The present invention also relates to a method for forming a metal-containing film using the compound.
高誘電体ゲート絶縁膜としてシリコン酸化膜が使用されているが、近年LSIの高集積化に伴って、シリコン酸化膜の薄膜化が進んでいる。膜厚が100nm以下の薄さとなった薄膜にはトンネル電流が流れて絶縁効果が低下してしまうため、シリコン酸化膜でのこれ以上の薄膜化は限界となっている。
そのためシリコン酸化膜に代わるゲート絶縁膜が要望されており、候補としてハフニウム含有膜、具体的にはHfO2膜、Hf-Si-O膜やHf-Si-O-N膜のようなハフニウム酸化物系膜が注目されている。これらハフニウム酸化物系膜の製造方法としては、スパッタリング、イオンプレーティング、塗布熱分解、ゾルゲル等のMOD(Metal Organic Deposition)が挙げられるが、上記製造方法に比べて組成制御性、段差被覆性に優れること、半導体製造プロセスとの整合性等の面からMOCVD法が最適な膜製造プロセスとして検討されている。
ハフニウム含有膜を成膜するための材料としては、ターシャリーブトキシハフニウム(以下、Hf(OtBu)4という。)や、テトラキスジピバロイルメタネートハフニウム(以下、Hf(DPM)4という。)等が検討されている。しかし、Hf(OtBu)4は低温で成膜できるが再現性が悪く、Hf(DPM)4は安定性はあるが成膜温度が高いという欠点があった。
Although a silicon oxide film is used as the high dielectric gate insulating film, in recent years, the silicon oxide film is becoming thinner as the LSI is highly integrated. Since a tunnel current flows through a thin film having a thickness of 100 nm or less and the insulation effect is lowered, further reduction in the thickness of the silicon oxide film is limited.
Therefore, there is a demand for a gate insulating film that replaces the silicon oxide film. As a candidate, a hafnium-containing film, specifically, a hafnium oxide such as an HfO 2 film, an Hf—Si—O film, or an Hf—Si—O—N film is proposed. System membranes are attracting attention. Examples of the method for producing these hafnium oxide films include MOD (Metal Organic Deposition) such as sputtering, ion plating, coating pyrolysis, and sol-gel. The MOCVD method has been studied as an optimum film manufacturing process from the viewpoints of superiority and compatibility with the semiconductor manufacturing process.
As a material for forming the hafnium-containing film, tertiary butoxy hafnium (hereinafter referred to as Hf (OtBu) 4 ), tetrakisdipivaloylmethanate hafnium (hereinafter referred to as Hf (DPM) 4 ), or the like. Is being considered. However, although Hf (OtBu) 4 can be formed at a low temperature, the reproducibility is poor, and Hf (DPM) 4 has a drawback that the film forming temperature is high although it is stable.
上記問題を解決する方策として、ハフニウム等の薄膜形成材料としてビスシクロペンタジエニルジカルボニル金属錯体(以下、Cp2M(CO)2という。)を有効成分とする薄膜形成用材料が開示されている(例えば、特許文献1参照。)。特許文献1に示されるビスシクロペンタジエニルジカルボニル金属錯体はCVD法等に用いることができる薄膜形成材料であり、このビスシクロペンタジエニルジカルボニル金属錯体を製造する方法としてビスシクロペンタジエニル金属ジクロライドを用いて簡便で、安価にかつ収率良く製造できることが記載されている。
しかし、上記特許文献1に示されるCp2M(CO)2のような有機金属化合物を用いてMOCVD法により成膜すると、膜中に炭酸ガスが含まれてしまい、成膜速度を阻害する不具合を生じる問題があった。 However, when an organic metal compound such as Cp 2 M (CO) 2 disclosed in Patent Document 1 is used to form a film by the MOCVD method, carbon dioxide gas is contained in the film, which hinders the film formation rate. There was a problem that caused.
本発明の目的は、気化安定性に優れ、高い成膜速度を有する有機金属化合物及びその溶液原料並びに該化合物を用いた金属含有膜の形成方法を提供することにある。
本発明の別の目的は、従来の有機金属化合物よりも低温での膜成長が可能な有機金属化合物及びその溶液原料並びに該化合物を用いた金属含有膜の形成方法を提供することにある。
An object of the present invention is to provide an organometallic compound having excellent vaporization stability and a high film forming rate, a solution raw material thereof, and a method for forming a metal-containing film using the compound.
Another object of the present invention is to provide an organometallic compound capable of growing a film at a lower temperature than a conventional organometallic compound, a solution raw material thereof, and a method for forming a metal-containing film using the compound.
請求項1に係る発明は、次の式(1)で示される有機金属化合物である。
M(RCp)4 ……(1)
但し、式中のMはハフニウム又はジルコニウムであり、Rは炭素数1〜4の直鎖又は分岐状アルキル基であり、Cpはシクロペンタジエニル基を示す。
The invention according to claim 1 is an organometallic compound represented by the following formula (1).
M (RCp) 4 ...... (1)
However, M in a formula is hafnium or zirconium, R is a C1-C4 linear or branched alkyl group, and Cp shows a cyclopentadienyl group.
請求項1に係る化合物では、金属原子MにアルキルCp基が4つπ結合した構造をとるため、従来の有機金属化合物に比べて低い温度で分解する。この化合物を用いて金属含有膜を成膜する場合、従来の有機金属化合物を用いた場合の成膜温度よりも低い温度、具体的には200〜400℃程度の温度で成膜することができるため、成膜する基板を痛めることがなく、また気化安定性にも優れ、高い成膜速度で金属含有膜を形成することができる。また、式(1)のRが炭素数1〜4の直鎖又は分岐状アルキル基で表される有機金属化合物は室温で液体として存在するため、これらの化合物単体で金属含有膜形成用溶液原料として使用できる。 Since the compound according to claim 1 has a structure in which four alkyl Cp groups are π-bonded to the metal atom M, it is decomposed at a temperature lower than that of a conventional organometallic compound. When a metal-containing film is formed using this compound, the film can be formed at a temperature lower than the film formation temperature when a conventional organometallic compound is used, specifically at a temperature of about 200 to 400 ° C. Therefore, the substrate on which the film is formed is not damaged, the vaporization stability is excellent, and the metal-containing film can be formed at a high film formation rate. In addition, since the organometallic compound in which R in the formula (1) is a linear or branched alkyl group having 1 to 4 carbon atoms exists as a liquid at room temperature, the solution raw material for forming a metal-containing film is composed of these compounds alone. Can be used as
請求項2に係る発明は、次の式(2)で示される金属含有膜形成用の有機金属化合物である。
M(Cp)4 ……(2)
但し、式中のMはハフニウム又はジルコニウムであり、Cpはシクロペンタジエニル基を示す。
The invention according to claim 2 is an organometallic compound for forming a metal-containing film represented by the following formula (2).
M (Cp) 4 ...... (2)
However, M in the formula is hafnium or zirconium, and Cp represents a cyclopentadienyl group.
請求項2に係る化合物では、金属原子MにCp基が4つπ結合した構造をとるため、従来の有機金属化合物に比べて低い温度で分解する。この化合物を用いて金属含有膜を成膜する場合、従来の有機金属化合物を用いた場合の成膜温度よりも低い温度、具体的には200〜400℃程度の温度で成膜することができるため、成膜する基板を痛めることがなく、また気化安定性にも優れ、高い成膜速度で金属含有膜を形成することができる。 Since the compound according to claim 2 has a structure in which four Cp groups are π-bonded to the metal atom M, it is decomposed at a temperature lower than that of a conventional organometallic compound. When a metal-containing film is formed using this compound, the film can be formed at a temperature lower than the film formation temperature when a conventional organometallic compound is used, specifically at a temperature of about 200 to 400 ° C. Therefore, the substrate on which the film is formed is not damaged, the vaporization stability is excellent, and the metal-containing film can be formed at a high film formation rate.
請求項3に係る発明は、請求項1記載の式(1)で示される有機金属化合物又は請求項2記載の式(2)で示される有機金属化合物を有機溶媒に溶解したことを特徴とする金属含有膜形成用溶液原料である。
請求項4に係る発明は、請求項3に係る発明であって、有機溶媒がテトラヒドロフラン(以下、THFという。)、メチルTHF、n-オクタン、イソオクタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ピリジン、ルチジン、酢酸ブチル、酢酸アミル、酢酸メチル及び酢酸エチルからなる群より選ばれた1種又は2種以上の溶媒である溶液原料である。
請求項3又は4に係る溶液原料では、本発明の有機金属化合物を上記列挙した有機溶媒に溶解した溶液原料は、有機金属化合物をより安定して気化室や成膜室まで送込むことができるため、結果としてMOCVDにおける薄膜の成長速度が促進される。
The invention according to claim 3 is characterized in that an organometallic compound represented by formula (1) according to claim 1 or an organometallic compound represented by formula (2) according to claim 2 is dissolved in an organic solvent. A solution raw material for forming a metal-containing film.
The invention according to claim 4 is the invention according to claim 3, wherein the organic solvent is tetrahydrofuran (hereinafter referred to as THF), methyl THF, n-octane, isooctane, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, pyridine. , Lutidine, butyl acetate, amyl acetate, methyl acetate, and ethyl acetate. The solution raw material is one or more solvents selected from the group consisting of ethyl acetate and ethyl acetate.
In the solution raw material according to claim 3 or 4, the solution raw material in which the organometallic compound of the present invention is dissolved in the above-described organic solvent can send the organometallic compound more stably to the vaporization chamber or the film formation chamber. As a result, the growth rate of the thin film in MOCVD is promoted.
請求項5に係る発明は、請求項1又は2記載の有機金属化合物、又は請求項3又は4記載の溶液原料を用いて成膜することを特徴とする金属含有膜の形成方法である。
請求項5に係る形成方法では、上記式(1)に示される本発明の有機金属化合物又はこの化合物を含む溶液原料を用いて金属含有膜を形成することで、従来の有機金属化合物を用いた場合の成膜温度よりも低い200〜400℃程度の成膜温度で成膜することができるため、成膜する基板を痛めることがない。また気化安定性にも優れており、高い成膜速度で金属含有膜を形成することができる。
請求項6に係る発明は、請求項5に係る発明であって、MOCVD法により成膜する金属含有膜の形成方法である。
The invention according to claim 5 is a method for forming a metal-containing film, characterized in that a film is formed using the organometallic compound according to claim 1 or 2, or the solution raw material according to claim 3 or 4.
In the forming method according to claim 5, a conventional organometallic compound is used by forming a metal-containing film using the organometallic compound of the present invention represented by the above formula (1) or a solution raw material containing this compound. Since the film can be formed at a film formation temperature of about 200 to 400 ° C. lower than the film formation temperature in the case, the substrate on which the film is formed is not damaged. Moreover, it is excellent in vaporization stability, and a metal-containing film can be formed at a high film formation rate.
The invention according to claim 6 is the invention according to claim 5, wherein the metal-containing film is formed by MOCVD.
以上述べたように、本発明の有機金属化合物は、金属原子にπ配位のシクロペンタジエニル基又はアルキルシクロペンタジエニル基が4つ結合した構造をとるため、従来の有機金属化合物に比べて低い温度で分解する。この化合物又はこの化合物を含む溶液原料を用いて金属含有膜を成膜する場合、従来の有機金属化合物を用いた場合の成膜温度よりも低い温度で成膜することができるため、成膜する基板を痛めることがない。また気化安定性にも優れており、高い成膜速度で金属含有膜を形成することができる。 As described above, the organometallic compound of the present invention has a structure in which four π-coordinate cyclopentadienyl groups or alkylcyclopentadienyl groups are bonded to a metal atom. Decomposes at low temperatures. When a metal-containing film is formed using this compound or a solution raw material containing this compound, the film can be formed at a temperature lower than the film formation temperature when a conventional organometallic compound is used. Does not damage the board. Moreover, it is excellent in vaporization stability, and a metal-containing film can be formed at a high film formation rate.
次に本発明を実施するための最良の形態を図面に基づいて説明する。
本発明の有機金属化合物は、次の式(1)に示される化合物である。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
The organometallic compound of the present invention is a compound represented by the following formula (1).
M(RCp)4 ……(1)
但し、式中のMはハフニウム又はジルコニウムであり、Rは炭素数1〜4の直鎖又は分岐状アルキル基であり、Cpはシクロペンタジエニル基を示す。
M (RCp) 4 ...... (1)
However, M in a formula is hafnium or zirconium, R is a C1-C4 linear or branched alkyl group, and Cp shows a cyclopentadienyl group.
また、次の式(2)で示される金属含有膜形成用の有機金属化合物である。
M(Cp)4 ……(2)
但し、式中のMはハフニウム又はジルコニウムであり、Cpはシクロペンタジエニル基を示す。
Further, it is an organometallic compound for forming a metal-containing film represented by the following formula (2).
M (Cp) 4 ...... (2)
However, M in the formula is hafnium or zirconium, and Cp represents a cyclopentadienyl group.
上記式(1)又は式(2)に示される化合物では、金属原子MにCp基又はアルキルCp基が4つπ結合した構造をとるため、従来の有機金属化合物に比べて低い温度で分解する。この化合物を用いて金属含有膜を成膜する場合、従来の有機金属化合物を用いた場合の成膜温度よりも低い温度、具体的には200〜400℃程度の温度で成膜することができるため、成膜する基板を痛めることがなく、また気化安定性にも優れ、高い成膜速度で金属含有膜を形成することができる。また、式(1)のRが炭素数1〜4の直鎖又は分岐状アルキル基で表される有機金属化合物は室温で液体として存在するため、これらの化合物単体で金属含有膜形成用溶液原料として使用できる。 The compound represented by the above formula (1) or (2) has a structure in which four Cp groups or alkyl Cp groups are bonded to the metal atom M, and therefore decomposes at a lower temperature than the conventional organometallic compound. . When a metal-containing film is formed using this compound, it can be formed at a temperature lower than the film formation temperature when a conventional organometallic compound is used, specifically at a temperature of about 200 to 400 ° C. Therefore, the substrate on which the film is formed is not damaged, the vaporization stability is excellent, and the metal-containing film can be formed at a high film formation rate. In addition, since the organometallic compound in which R in the formula (1) is a linear or branched alkyl group having 1 to 4 carbon atoms exists as a liquid at room temperature, the solution raw material for forming a metal-containing film is composed of these compounds alone. Can be used as
次に本発明の有機金属化合物のうち、上記式(2)中のMがハフニウムであるHf(Cp)4の製造方法について説明する。
先ず、出発原料としてHfCl4を20g用意する。次いで、n-ヘキサンにHfCl4を添加して懸濁させ、更に金属亜鉛粉1gを加えて室温で30分攪拌する。この攪拌液にLi-ビスシクロペンタジエン15gを加えたのち、40℃に加熱して24時間反応させる。攪拌した懸濁液をろ別して固形分を取除く。このろ別した溶液を2.66×103Pa(20Torr)の条件下で濃縮することにより、白色固体として本発明の有機金属化合物であるHf(Cp)4を5g得ることができる。
Next, among the organometallic compounds of the present invention, a method for producing Hf (Cp) 4 in which M in the above formula (2) is hafnium will be described.
First, 20 g of HfCl 4 is prepared as a starting material. Next, HfCl 4 is added and suspended in n-hexane, and 1 g of metal zinc powder is further added and stirred at room temperature for 30 minutes. After adding 15 g of Li-biscyclopentadiene to this stirring liquid, it is heated to 40 ° C. and allowed to react for 24 hours. The stirred suspension is filtered to remove solids. By concentrating the filtered solution under the condition of 2.66 × 10 3 Pa (20 Torr), 5 g of Hf (Cp) 4 that is the organometallic compound of the present invention can be obtained as a white solid.
また本発明の有機金属化合物を有機溶媒に溶解して本発明の溶液原料としてもよい。本発明の有機金属化合物を有機溶媒に溶解した溶液原料は、有機金属化合物をより安定して気化室や成膜室まで送込むことができるため、結果としてMOCVDにおける薄膜の成長速度が促進される。有機溶媒としてはTHF、メチルTHF、n-オクタン、イソオクタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ピリジン、ルチジン、酢酸ブチル、酢酸アミル、酢酸メチル及び酢酸エチルからなる群より選ばれた1種又は2種以上の溶媒が挙げられる。 Alternatively, the organometallic compound of the present invention may be dissolved in an organic solvent to form the solution raw material of the present invention. Since the solution raw material in which the organometallic compound of the present invention is dissolved in an organic solvent can send the organometallic compound more stably to the vaporization chamber or the deposition chamber, the growth rate of the thin film in MOCVD is promoted as a result. . As the organic solvent, one selected from the group consisting of THF, methyl THF, n-octane, isooctane, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, pyridine, lutidine, butyl acetate, amyl acetate, methyl acetate and ethyl acetate or Two or more solvents can be mentioned.
室温で固体の有機金属化合物をそのまま減圧下で加熱して気化させる固体昇華法では、装置内の配管全てを加熱しておく必要があり、加熱されていない部分があると配管内で析出してしまい、配管が閉塞するおそれがある。また、加熱された状態で長時間保存されるため、材質の変質が起こって気化しにくくなり、原料の供給量が減少して成膜速度が低減する問題も生じる。一方、有機金属化合物を有機溶媒に溶解して溶液原料とした場合は、室温で気化室まで原料を供給できるため配管の閉塞がなくなり、原料が加熱されている時間が短くなるので原料の変質が抑制でき、安定して原料が供給されるので成膜速度が促進する。 In the solid sublimation method in which a solid organometallic compound is vaporized by heating under reduced pressure as it is at room temperature, it is necessary to heat all the pipes in the apparatus. As a result, the piping may be blocked. In addition, since the material is stored for a long time in a heated state, the material is changed in quality and is difficult to be vaporized. On the other hand, when the organic metal compound is dissolved in an organic solvent to form a solution raw material, the raw material can be supplied to the vaporization chamber at room temperature, so that the piping is not clogged and the time during which the raw material is heated is shortened. Since the raw material can be supplied stably, the film formation rate is accelerated.
本発明の金属含有膜の形成方法では、本発明の有機金属化合物、又は本発明の溶液原料を用いて成膜することを特徴とする。本発明の有機金属化合物又はこの化合物を含む溶液原料を用いて金属含有膜を形成することで、従来の有機金属化合物を用いた場合の成膜温度よりも低い温度で成膜することができるため、成膜する基板を痛めることがない。また気化安定性にも優れており、高い成膜速度で金属含有膜を形成することができる。
このようにして得られた有機金属化合物は、MOCVD法を用いて基体上、例えばシリコン基板上に金属含有膜を形成する。上記式(1)に示される有機金属化合物のうち、Rが炭素数1〜4の直鎖又は分岐状アルキル基であるときは室温で液体であるため、熱CVD法が好適である。
The metal-containing film forming method of the present invention is characterized by forming a film using the organometallic compound of the present invention or the solution raw material of the present invention. By forming a metal-containing film using the organometallic compound of the present invention or a solution raw material containing this compound, it is possible to form a film at a temperature lower than the film formation temperature when a conventional organometallic compound is used. No damage to the substrate on which the film is formed. Moreover, it is excellent in vaporization stability, and a metal-containing film can be formed at a high film formation rate.
The organometallic compound thus obtained forms a metal-containing film on a substrate, for example, a silicon substrate, using MOCVD. Among the organometallic compounds represented by the above formula (1), when R is a linear or branched alkyl group having 1 to 4 carbon atoms, it is a liquid at room temperature, and thus a thermal CVD method is suitable.
次に、本発明の有機金属化合物の金属をハフニウムとした有機ハフニウム化合物を有機溶媒に溶解した溶液原料を用いて溶液気化CVD法によりHfO2薄膜を成膜する例を説明する。溶液気化CVD法とは、各溶液を加熱された気化器に供給し、ここで各溶液原料を瞬時に気化させ、成膜室に送って基材上に成膜する方法である。
図1に示すように、MOCVD装置は、成膜室10と蒸気発生装置11を備える。成膜室10の内部にはヒータ12が設けられ、ヒータ12上には基板13が保持される。この成膜室10の内部は圧力センサー14、コールドトラップ15及びニードルバルブ16を備える配管17により真空引きされる。成膜室10にはニードルバルブ36、ガス流量調節装置34を介してO2ガス導入管37が接続される。ここで成膜される薄膜がHf-N薄膜である場合、ガス導入管37からはNH3ガスが導入される。蒸気発生装置11は原料容器18を備え、この原料容器18は本発明の溶液原料を貯蔵する。原料容器18にはガス流量調節装置19を介してキャリアガス導入管21が接続され、また原料容器18には供給管22が接続される。供給管22にはニードルバルブ23及び溶液流量調節装置24が設けられ、供給管22は気化器26に接続される。気化器26にはニードルバルブ31、ガス流量調節装置28を介してキャリアガス導入管29が接続される。気化器26は更に配管27により成膜室10に接続される。また気化器26には、ガスドレイン32及びドレイン33がそれぞれ接続される。
この装置では、N2、He、Ar等の不活性ガスからなるキャリアガスがキャリアガス導入管21から原料容器18内に導入され、原料容器18に貯蔵されている溶液原料を供給管22により気化器26に搬送する。気化器26で気化されて蒸気となった有機ハフニウム化合物は、更にキャリアガス導入管28から気化器26へ導入されたキャリアガスにより配管27を経て成膜室10内に供給される。成膜室10内において、有機ハフニウム化合物の蒸気を熱分解させ、O2ガス導入管37より成膜室10内に導入されたO2ガスと反応させることにより、生成したHfO2を加熱された基板13上に堆積させてHfO2薄膜を形成する。本発明の有機金属化合物は従来の有機金属化合物よりも低温で熱分解するため、低温での膜成長が可能である。また本発明の有機金属化合物は、気化安定性に優れており、高い成膜速度を有する。
Next, an example in which an HfO 2 thin film is formed by a solution vaporization CVD method using a solution raw material obtained by dissolving an organic hafnium compound in which the metal of the organometallic compound of the present invention is hafnium in an organic solvent will be described. The solution vaporization CVD method is a method in which each solution is supplied to a heated vaporizer, where each solution raw material is instantaneously vaporized and sent to a film formation chamber to form a film on a substrate.
As shown in FIG. 1, the MOCVD apparatus includes a
In this apparatus, a carrier gas composed of an inert gas such as N 2 , He, Ar is introduced into the
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、出発原料としてHfCl4を用意し、n-ヘキサンにHfCl4を添加して懸濁させ、更に金属亜鉛粉1gを加えて室温で30分攪拌した。この攪拌液にLi-ビスシクロペンタジエン15gを加えたのち、40℃に加熱して24時間反応させた。攪拌した懸濁液をろ別して固形分を取除いた。このろ別した溶液を2.66×103Pa(20Torr)の条件下で濃縮することにより、Hf(Cp)4を得た。このHf(Cp)4の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, HfCl 4 was prepared as a starting material, HfCl 4 was added and suspended in n-hexane, 1 g of metal zinc powder was further added, and the mixture was stirred at room temperature for 30 minutes. After adding 15 g of Li-biscyclopentadiene to this stirring liquid, it was heated to 40 ° C. and reacted for 24 hours. The stirred suspension was filtered to remove solids. The filtered solution was concentrated under the condition of 2.66 × 10 3 Pa (20 Torr) to obtain Hf (Cp) 4 . A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Hf (Cp) 4 was 1.0 molar.
<実施例2>
Cpの代わりにMeCpを用いた以外は実施例1と同様にして合成を行い、Hf(MeCp)4を得た。このHf(MeCp)4の濃度が1.0モル濃度となるように有機溶媒であるn-オクタンに溶解して溶液原料を調製した。
<実施例3>
Cpの代わりにEtCpを用いた以外は実施例1と同様にして合成を行い、Hf(EtCp)4を得た。このHf(EtCp)4の濃度が1.0モル濃度となるように有機溶媒であるヘキサンに溶解して溶液原料を調製した。
<実施例4>
Cpの代わりにn-PrCpを用いた以外は実施例1と同様にして合成を行い、Hf(n-PrCp)4を得た。このHf(n-PrCp)4の濃度が1.0モル濃度となるように有機溶媒であるシクロヘキサンに溶解して溶液原料を調製した。
<Example 2>
Synthesis was performed in the same manner as in Example 1 except that MeCp was used in place of Cp to obtain Hf (MeCp) 4 . A solution raw material was prepared by dissolving in n-octane as an organic solvent so that the concentration of Hf (MeCp) 4 was 1.0 molar.
<Example 3>
Synthesis was performed in the same manner as in Example 1 except that EtCp was used in place of Cp to obtain Hf (EtCp) 4 . A solution raw material was prepared by dissolving in hexane as an organic solvent so that the concentration of Hf (EtCp) 4 was 1.0 molar.
<Example 4>
Synthesis was carried out in the same manner as in Example 1 except that n-PrCp was used instead of Cp to obtain Hf (n-PrCp) 4 . A solution raw material was prepared by dissolving in cyclohexane as an organic solvent so that the concentration of Hf (n-PrCp) 4 was 1.0 molar.
<実施例5>
Cpの代わりにi-PrCpを用いた以外は実施例1と同様にして合成を行い、Hf(i-PrCp)4を得た。このHf(i-PrCp)4の濃度が1.0モル濃度となるように有機溶媒であるピリジンに溶解して溶液原料を調製した。
<実施例6>
Cpの代わりにn-BuCpを用いた以外は実施例1と同様にして合成を行い、Hf(n-BuCp)4を得た。このHf(n-BuCp)4の濃度が1.0モル濃度となるように有機溶媒であるルチジンに溶解して溶液原料を調製した。
<実施例7>
Cpの代わりにt-BuCpを用いた以外は実施例1と同様にして合成を行い、Hf(t-BuCp)4を得た。このHf(t-BuCp)4の濃度が1.0モル濃度となるように有機溶媒である酢酸ブチルに溶解して溶液原料を調製した。
<Example 5>
Synthesis was performed in the same manner as in Example 1 except that i-PrCp was used in place of Cp to obtain Hf (i-PrCp) 4 . A solution raw material was prepared by dissolving in pyridine as an organic solvent so that the concentration of Hf (i-PrCp) 4 was 1.0 molar.
<Example 6>
Synthesis was carried out in the same manner as in Example 1 except that n-BuCp was used in place of Cp to obtain Hf (n-BuCp) 4 . A solution raw material was prepared by dissolving in lutidine as an organic solvent so that the concentration of Hf (n-BuCp) 4 was 1.0 molar.
<Example 7>
Synthesis was carried out in the same manner as in Example 1 except that t-BuCp was used instead of Cp to obtain Hf (t-BuCp) 4 . A solution raw material was prepared by dissolving in butyl acetate as an organic solvent so that the concentration of Hf (t-BuCp) 4 was 1.0 molar.
<比較例1>
Cp2Hf(CO)2を用意し、この化合物をそのまま有機ハフニウム化合物として用いた。このCp2Hf(CO)2の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<比較例2>
Hf(DPM)4を用意し、この化合物をそのまま有機ハフニウム化合物として用いた。このHf(DPM)4の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<比較例3>
テトラキスジエチルアミノハフニウム(以下、Hf(DEA)4という。)を用意し、この化合物をそのまま有機ハフニウム化合物として用いた。このHf(DEA)4の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<Comparative Example 1>
Cp 2 Hf (CO) 2 was prepared, and this compound was used as an organic hafnium compound as it was. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Cp 2 Hf (CO) 2 was 1.0 molar.
<Comparative example 2>
Hf (DPM) 4 was prepared and this compound was used as an organic hafnium compound as it was. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Hf (DPM) 4 was 1.0 molar.
<Comparative Example 3>
Tetrakisdiethylaminohafnium (hereinafter referred to as Hf (DEA) 4 ) was prepared, and this compound was used as an organic hafnium compound as it was. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Hf (DEA) 4 was 1.0 molar.
<比較評価1>
実施例2〜7でそれぞれ得られた有機ハフニウム化合物単体をそのまま溶液原料として用意した。また実施例1〜7及び比較例1〜3でそれぞれ得られた有機ハフニウム化合物の溶液原料を用いて成膜時間当たりの膜厚試験を行った。
先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を6枚ずつ用意し、基板を図1に示す溶液気化CVD法を用いたMOCVD装置の成膜室に設置した。次いで、基板温度を220℃、気化温度を70℃、圧力を約266Pa(2Torr)にそれぞれ設定した。反応ガスとしてO2ガスを用い、その分圧を100ccmとした。次に、キャリアガスとしてArガスを用い、溶液原料を0.05cc/分の割合でそれぞれ供給し、成膜時間が30秒、1分、2分、3分、5分及び8分となったときにそれぞれ1枚ずつ成膜室より取出した。
<Comparison evaluation 1>
The organic hafnium compound simple substance obtained in each of Examples 2 to 7 was directly prepared as a solution raw material. Moreover, the film thickness test per film-forming time was done using the solution raw material of the organic hafnium compound obtained in Examples 1-7 and Comparative Examples 1-3, respectively.
First, six silicon substrates each having a SiO 2 film (thickness 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in a film formation chamber of an MOCVD apparatus using the solution vaporization CVD method shown in FIG. Next, the substrate temperature was set to 220 ° C., the vaporization temperature was set to 70 ° C., and the pressure was set to about 266 Pa (2 Torr). O 2 gas was used as a reaction gas, and its partial pressure was 100 ccm. Next, Ar gas was used as the carrier gas, and the solution raw material was supplied at a rate of 0.05 cc / min. The film formation time was 30 seconds, 1 minute, 2 minutes, 3 minutes, 5 minutes, and 8 minutes. Occasionally, one sheet was taken out from the film forming chamber.
・ 成膜時間あたりの膜厚試験
成膜を終えた基板上のHfO2薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
-Film thickness test per film formation time The film thickness of the HfO 2 thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.
<評価>
得られた成膜時間あたりの膜厚結果を表1にそれぞれ示す。
<Evaluation>
The obtained film thickness results per film formation time are shown in Table 1, respectively.
表1より明らかなように、比較例1〜3の溶液原料を用いた薄膜は、時間が経過しても膜厚が厚くならず、また均等な厚さに成膜されていないことから成膜の安定性が悪いことが判る。これに対して実施例1〜7の溶液原料を用いた薄膜は、成膜時間あたりの膜厚が厚く、かつ均等になっており、成膜安定性が高く、また成膜速度も高い結果が得られた。 As is clear from Table 1, the thin films using the solution raw materials of Comparative Examples 1 to 3 did not increase in thickness over time, and were not formed to a uniform thickness. It turns out that the stability of is bad. On the other hand, the thin film using the solution raw materials of Examples 1 to 7 has a thick and uniform film thickness per film formation time, high film formation stability, and high film formation speed. Obtained.
<実施例8>
金属含有化合物としてZrCl4を用いた以外は実施例1と同様にして合成を行い、Zr(Cp)4を得た。このZr(Cp)4の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<実施例9>
Cpの代わりにMeCpを用いた以外は実施例8と同様にして合成を行い、Zr(MeCp)4を得た。このZr(MeCp)4の濃度が1.0モル濃度となるように有機溶媒であるn-オクタンに溶解して溶液原料を調製した。
<実施例10>
Cpの代わりにEtCpを用いた以外は実施例8と同様にして合成を行い、Zr(EtCp)4を得た。このZr(EtCp)4の濃度が1.0モル濃度となるように有機溶媒であるヘキサンに溶解して溶液原料を調製した。
<Example 8>
Synthesis was performed in the same manner as in Example 1 except that ZrCl 4 was used as the metal-containing compound, and Zr (Cp) 4 was obtained. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Zr (Cp) 4 was 1.0 molar.
<Example 9>
Synthesis was performed in the same manner as in Example 8 except that MeCp was used instead of Cp, to obtain Zr (MeCp) 4 . A solution raw material was prepared by dissolving in n-octane, which is an organic solvent, so that the concentration of Zr (MeCp) 4 was 1.0 molar.
<Example 10>
Synthesis was performed in the same manner as in Example 8 except that EtCp was used instead of Cp, to obtain Zr (EtCp) 4 . A solution raw material was prepared by dissolving in hexane as an organic solvent so that the concentration of Zr (EtCp) 4 was 1.0 molar.
<実施例11>
Cpの代わりにn-PrCpを用いた以外は実施例8と同様にして合成を行い、Zr(n-PrCp)4を得た。このZr(n-PrCp)4の濃度が1.0モル濃度となるように有機溶媒であるシクロヘキサンに溶解して溶液原料を調製した。
<実施例12>
Cpの代わりにi-PrCpを用いた以外は実施例8と同様にして合成を行い、Zr(i-PrCp)4を得た。このZr(i-PrCp)4の濃度が1.0モル濃度となるように有機溶媒であるピリジンに溶解して溶液原料を調製した。
<実施例13>
Cpの代わりにn-BuCpを用いた以外は実施例8と同様にして合成を行い、Zr(n-BuCp)4を得た。このZr(n-BuCp)4の濃度が1.0モル濃度となるように有機溶媒であるルチジンに溶解して溶液原料を調製した。
<実施例14>
Cpの代わりにt-BuCpを用いた以外は実施例8と同様にして合成を行い、Zr(t-BuCp)4を得た。このZr(t-BuCp)4の濃度が1.0モル濃度となるように有機溶媒である酢酸ブチルに溶解して溶液原料を調製した。
<Example 11>
Synthesis was performed in the same manner as in Example 8 except that n-PrCp was used instead of Cp, to obtain Zr (n-PrCp) 4 . A solution raw material was prepared by dissolving in cyclohexane as an organic solvent so that the concentration of Zr (n-PrCp) 4 was 1.0 molar.
<Example 12>
Synthesis was performed in the same manner as in Example 8 except that i-PrCp was used in place of Cp to obtain Zr (i-PrCp) 4 . A solution raw material was prepared by dissolving in pyridine, which is an organic solvent, so that the concentration of Zr (i-PrCp) 4 was 1.0 molar.
<Example 13>
Synthesis was performed in the same manner as in Example 8 except that n-BuCp was used instead of Cp, to obtain Zr (n-BuCp) 4 . A solution raw material was prepared by dissolving in lutidine, an organic solvent, so that the concentration of Zr (n-BuCp) 4 was 1.0 molar.
<Example 14>
Synthesis was performed in the same manner as in Example 8 except that t-BuCp was used in place of Cp to obtain Zr (t-BuCp) 4 . A solution raw material was prepared by dissolving in butyl acetate as an organic solvent so that the concentration of Zr (t-BuCp) 4 was 1.0 molar.
<比較例4>
Cp2Zr(CO)2を用意し、この化合物をそのまま有機ジルコニウム化合物として用いた。このCp2Zr(CO)2の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<比較例5>
テトラキスジピバロイルメタネートジルコニウム(以下、Zr(DPM)4という。)を用意し、この化合物をそのまま有機ジルコニウム化合物として用いた。このZr(DPM)4の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<比較例6>
テトラキスジエチルアミノジルコニウム(以下、Zr(DEA)4という。)を用意し、この化合物をそのまま有機ジルコニウム化合物として用いた。このZr(DEA)4の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<Comparative example 4>
Cp 2 Zr (CO) 2 was prepared, and this compound was used as an organic zirconium compound as it was. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Cp 2 Zr (CO) 2 was 1.0 molar.
<Comparative Example 5>
Tetrakisdipivaloylmethanate zirconium (hereinafter referred to as Zr (DPM) 4 ) was prepared, and this compound was used as an organic zirconium compound as it was. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Zr (DPM) 4 was 1.0 molar.
<Comparative Example 6>
Tetrakisdiethylaminozirconium (hereinafter referred to as Zr (DEA) 4 ) was prepared, and this compound was used as an organic zirconium compound as it was. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Zr (DEA) 4 was 1.0 molar.
<比較評価2>
実施例9〜14でそれぞれ得られた有機ジルコニウム化合物単体をそのまま溶液原料として用意した。また実施例8〜14及び比較例4〜6でそれぞれ得られた有機ジルコニウム化合物の溶液原料を用いて成膜時間当たりの膜厚試験を行った。
先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を6枚ずつ用意し、基板を図1に示す溶液気化CVD法を用いたMOCVD装置の成膜室に設置した。次いで、基板温度を250℃、気化温度を80℃、圧力を約266Pa(2Torr)にそれぞれ設定した。反応ガスとしてO2ガスを用い、その分圧を100ccmとした。次に、キャリアガスとしてArガスを用い、溶液原料を0.05cc/分の割合でそれぞれ供給し、成膜時間が30秒、1分、2分、3分、5分及び8分となったときにそれぞれ1枚ずつ成膜室より取出した。
<Comparison evaluation 2>
The organic zirconium compound simple substance obtained in each of Examples 9 to 14 was directly prepared as a solution raw material. Moreover, the film thickness test per film-forming time was done using the solution raw material of the organic zirconium compound obtained in Examples 8-14 and Comparative Examples 4-6, respectively.
First, six silicon substrates each having a SiO 2 film (thickness 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in a film formation chamber of an MOCVD apparatus using the solution vaporization CVD method shown in FIG. Next, the substrate temperature was set to 250 ° C., the vaporization temperature was set to 80 ° C., and the pressure was set to about 266 Pa (2 Torr). O 2 gas was used as a reaction gas, and its partial pressure was 100 ccm. Next, Ar gas was used as the carrier gas, and the solution raw material was supplied at a rate of 0.05 cc / min. The film formation time was 30 seconds, 1 minute, 2 minutes, 3 minutes, 5 minutes, and 8 minutes. Occasionally, one sheet was taken out from the film forming chamber.
・ 成膜時間あたりの膜厚試験
成膜を終えた基板上のZrO2薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
-Film thickness test per film formation time The film thickness of the ZrO 2 thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.
<評価>
得られた成膜時間あたりの膜厚結果を表2にそれぞれ示す。
<Evaluation>
The obtained film thickness results per film formation time are shown in Table 2, respectively.
表2より明らかなように、比較例4〜6の溶液原料を用いた薄膜は、時間が経過しても膜厚が厚くならず、また均等な厚さに成膜されていないことから成膜の安定性が悪いことが判る。これに対して実施例8〜14の溶液原料を用いた薄膜は、成膜時間あたりの膜厚が厚く、かつ均等になっており、成膜安定性が高く、また成膜速度も高い結果が得られた。 As is clear from Table 2, the thin films using the solution raw materials of Comparative Examples 4 to 6 did not increase in thickness over time, and were not formed to a uniform thickness. It turns out that the stability of is bad. On the other hand, the thin films using the solution raw materials of Examples 8 to 14 have a thick and uniform film thickness per film formation time, high film formation stability, and high film formation speed. Obtained.
<比較評価3>
実施例2〜7でそれぞれ得られた有機ハフニウム化合物単体をそのまま溶液原料として用意した。また実施例1〜7及び比較例1〜3でそれぞれ得られた有機ハフニウム化合物の溶液原料を用いて成膜時間当たりの膜厚試験を行った。
先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を6枚ずつ用意し、基板を図2に示す溶液気化CVD法を用いたMOCVD装置の成膜室に設置した。次いで、基板温度を220℃、気化温度を70℃、圧力を約266Pa(2Torr)にそれぞれ設定した。反応ガスとしてO2ガスを用い、その分圧を100ccmとした。次に、キャリアガスとしてArガスを用い、溶液原料を0.05cc/分の割合で、有機シリコン化合物としてテトラキスジメチルアミノシラン(Si(DMA)4)を0.05cc/分の割合でそれぞれ供給し、成膜時間が30秒、1分、2分、3分、5分及び8分となったときにそれぞれ1枚ずつ成膜室より取出した。
<Comparison evaluation 3>
The organic hafnium compound simple substance obtained in each of Examples 2 to 7 was directly prepared as a solution raw material. Moreover, the film thickness test per film-forming time was done using the solution raw material of the organic hafnium compound respectively obtained in Examples 1-7 and Comparative Examples 1-3.
First, six silicon substrates each having a SiO 2 film (thickness 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in a film formation chamber of an MOCVD apparatus using a solution vaporization CVD method shown in FIG. Next, the substrate temperature was set to 220 ° C., the vaporization temperature was set to 70 ° C., and the pressure was set to about 266 Pa (2 Torr). O 2 gas was used as a reaction gas, and its partial pressure was 100 ccm. Next, Ar gas is used as a carrier gas, a solution raw material is supplied at a rate of 0.05 cc / min, and tetrakisdimethylaminosilane (Si (DMA) 4 ) is supplied as an organosilicon compound at a rate of 0.05 cc / min. When the film formation time was 30 seconds, 1 minute, 2 minutes, 3 minutes, 5 minutes, and 8 minutes, one sheet was taken out from the film formation chamber.
・ 成膜時間あたりの膜厚試験
成膜を終えた基板上のHfSiO薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
-Film thickness test per film formation time The film thickness of the HfSiO thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.
<評価>
得られた成膜時間あたりの膜厚結果を表3にそれぞれ示す。
<Evaluation>
Table 3 shows the obtained film thickness results per film formation time.
表3より明らかなように、比較例1〜3の溶液原料を用いた薄膜は、時間が経過しても膜厚が厚くならず、また均等な厚さに成膜されていないことから成膜の安定性が悪いことが判る。これに対して実施例1〜7の溶液原料を用いた薄膜は、成膜時間あたりの膜厚が厚く、かつ均等になっており、成膜安定性が高く、また成膜速度も高い結果が得られた。 As is clear from Table 3, the thin films using the solution raw materials of Comparative Examples 1 to 3 did not increase in thickness over time, and were not formed to a uniform thickness. It turns out that the stability of is bad. On the other hand, the thin film using the solution raw materials of Examples 1 to 7 has a thick and uniform film thickness per film formation time, high film formation stability, and high film formation speed. Obtained.
<比較評価4>
実施例9〜14でそれぞれ得られた有機ジルコニウム化合物単体をそのまま溶液原料として用意した。また実施例8〜14及び比較例4〜6でそれぞれ得られた有機ジルコニウム化合物の溶液原料を用いて成膜時間当たりの膜厚試験を行った。
先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を6枚ずつ用意し、基板を図1に示す溶液気化CVD法を用いたMOCVD装置の成膜室に設置した。次いで、基板温度を250℃、気化温度を80℃、圧力を約266Pa(2Torr)にそれぞれ設定した。反応ガスとしてO2ガスを用い、その分圧を100ccmとした。次に、キャリアガスとしてArガスを用い、溶液原料を0.05cc/分の割合で、有機シリコン化合物としてSi(DMA)4を0.05cc/分の割合でそれぞれ供給し、成膜時間が30秒、1分、2分、3分、5分及び8分となったときにそれぞれ1枚ずつ成膜室より取出した。
<Comparison evaluation 4>
The organic zirconium compound simple substance obtained in each of Examples 9 to 14 was directly prepared as a solution raw material. Moreover, the film thickness test per film-forming time was done using the solution raw material of the organic zirconium compound obtained in Examples 8-14 and Comparative Examples 4-6, respectively.
First, six silicon substrates each having a SiO 2 film (thickness 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in a film formation chamber of an MOCVD apparatus using the solution vaporization CVD method shown in FIG. Next, the substrate temperature was set to 250 ° C., the vaporization temperature was set to 80 ° C., and the pressure was set to about 266 Pa (2 Torr). O 2 gas was used as a reaction gas, and its partial pressure was 100 ccm. Next, Ar gas is used as a carrier gas, a solution raw material is supplied at a rate of 0.05 cc / min, and Si (DMA) 4 as an organosilicon compound is supplied at a rate of 0.05 cc / min, respectively, and a film formation time of 30 When one second, one minute, two minutes, three minutes, five minutes, and eight minutes were reached, one sheet was taken out from the film forming chamber.
・ 成膜時間あたりの膜厚試験
成膜を終えた基板上のZrSiO薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
-Film thickness test per film formation time The film thickness of the ZrSiO thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.
<評価>
得られた成膜時間あたりの膜厚結果を表4にそれぞれ示す。
<Evaluation>
Table 4 shows the obtained film thickness results per film formation time.
表4より明らかなように、比較例4〜6の溶液原料を用いた薄膜は、時間が経過しても膜厚が厚くならず、また均等な厚さに成膜されていないことから成膜の安定性が悪いことが判る。これに対して実施例8〜14の溶液原料を用いた薄膜は、成膜時間あたりの膜厚が厚く、かつ均等になっており、成膜安定性が高く、また成膜速度も高い結果が得られた。 As is clear from Table 4, the thin films using the solution raw materials of Comparative Examples 4 to 6 did not increase in thickness over time, and were not formed to a uniform thickness. It turns out that the stability of is bad. On the other hand, the thin films using the solution raw materials of Examples 8 to 14 have a thick and uniform film thickness per film formation time, high film formation stability, and high film formation speed. Obtained.
Claims (6)
M(RCp)4 ……(1)
但し、式中のMはハフニウム又はジルコニウムであり、Rは炭素数1〜4の直鎖又は分岐状アルキル基であり、Cpはシクロペンタジエニル基を示す。 An organometallic compound represented by the following formula (1):
M (RCp) 4 ...... (1)
However, M in a formula is hafnium or zirconium, R is a C1-C4 linear or branched alkyl group, and Cp shows a cyclopentadienyl group.
M(Cp)4 ……(2)
但し、式中のMはハフニウム又はジルコニウムであり、Cpはシクロペンタジエニル基を示す。 An organometallic compound for forming a metal-containing film represented by the following formula (2).
M (Cp) 4 ...... (2)
However, M in the formula is hafnium or zirconium, and Cp represents a cyclopentadienyl group.
6. The method for forming a metal-containing film according to claim 5, wherein the film is formed by a metal organic chemical vapor deposition method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003428750A JP2005187356A (en) | 2003-12-25 | 2003-12-25 | Organic metal compound and its solution raw material and method for forming metal-containing film using the compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003428750A JP2005187356A (en) | 2003-12-25 | 2003-12-25 | Organic metal compound and its solution raw material and method for forming metal-containing film using the compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005187356A true JP2005187356A (en) | 2005-07-14 |
Family
ID=34787616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003428750A Pending JP2005187356A (en) | 2003-12-25 | 2003-12-25 | Organic metal compound and its solution raw material and method for forming metal-containing film using the compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005187356A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007142415A (en) * | 2005-11-16 | 2007-06-07 | Asm Internatl Nv | Method for film deposition by CVD or ALD |
TWI415855B (en) * | 2005-12-06 | 2013-11-21 | Tri Chemical Lab Inc | Hafnium-based compound, hafnium-based film-forming material, and hafnium-based film forming method |
JP2014039045A (en) * | 2006-06-02 | 2014-02-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for formation of dielectric film, novel precursor, and their use in semiconductor production |
-
2003
- 2003-12-25 JP JP2003428750A patent/JP2005187356A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007142415A (en) * | 2005-11-16 | 2007-06-07 | Asm Internatl Nv | Method for film deposition by CVD or ALD |
KR101370460B1 (en) | 2005-11-16 | 2014-03-06 | 에이에스엠 인터내셔널 엔.브이. | Method for the deposition of a film by cvd or ald |
TWI415855B (en) * | 2005-12-06 | 2013-11-21 | Tri Chemical Lab Inc | Hafnium-based compound, hafnium-based film-forming material, and hafnium-based film forming method |
JP2014039045A (en) * | 2006-06-02 | 2014-02-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for formation of dielectric film, novel precursor, and their use in semiconductor production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101815807B (en) | Methods of preparing thin films by atomic layer deposition using monocyclopentadienyl trialkoxy hafnium and zirconium precursors | |
TWI464291B (en) | Methods of preparing thin films by atomic layer deposition using titanium-based precursors | |
TWI496929B (en) | Hafnium-and zirconium-containing precursors and methods of using the same | |
JP3499804B2 (en) | Method for growing metal oxide thin film on substrate | |
JP2005209766A (en) | Method for manufacturing oxide film containing hafnium | |
JP2003342732A (en) | Solution raw material for organometallic chemical vapor deposition method containing tantalum complex and tantalum-containing thin film produced by using the same | |
JP2019056133A (en) | Atomic layer deposition method for metal thin films | |
JP2005187356A (en) | Organic metal compound and its solution raw material and method for forming metal-containing film using the compound | |
JP2001524981A (en) | Chemical vapor deposition precursor | |
WO2005122229A1 (en) | Material for forming capacitor film | |
JP2007197804A (en) | Raw material for metal organic chemical vapor deposition and method for producing metal-containing film using the raw material | |
JP4211300B2 (en) | ORGANIC TITANIUM COMPOUND, SOLUTION MATERIAL CONTAINING THE SAME, AND TITANIUM-CONTAINING DIELECTRIC THIN FILM PRODUCED THEREFROM | |
JP4363383B2 (en) | Raw material liquid for metal organic chemical vapor deposition method and method for producing Hf-Si-containing composite oxide film using the raw material liquid | |
JP2006013267A (en) | Organic lanthanum compound and manufacturing method of lanthanum-containing film using it | |
JP3632475B2 (en) | Organic amino tantalum compound, raw material solution for metalorganic chemical vapor deposition containing the same, and tantalum nitride film made therefrom | |
JP4289141B2 (en) | ORGANIC SILICON COMPOUND, SOLUTION RAW MATERIAL, AND METHOD FOR FORMING SILICON-CONTAINING FILM USING THE COMPOUND | |
JP2003335740A (en) | Tantalum complex and solution raw material containing the complex and used for organic metal chemical vapor deposition method and tantalum-containing thin film formed from the same | |
JP2005023010A (en) | Organovanadium compound, solution raw material containing the compound and method for forming vanadium-containing thin film | |
JP3117011B2 (en) | Raw materials for metalorganic chemical vapor deposition containing organic tantalum compounds and tantalum-containing thin films made therefrom | |
JP4451050B2 (en) | Zirconium raw material for CVD and method for producing lead zirconate titanate thin film using the same | |
JP2000053422A (en) | Bismuth-containing multiple metal oxide film | |
KR100508110B1 (en) | Organometallic complex and the preparation thereof | |
JP4296756B2 (en) | Method for producing titanium-containing dielectric thin film from organic titanium compound and solution raw material containing the same | |
JP2005126334A (en) | Organometallic compound and solution raw material and meal oxide thin film containing the same compound | |
JP4356242B2 (en) | Organic titanium compound and solution raw material containing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A02 | Decision of refusal |
Effective date: 20090609 Free format text: JAPANESE INTERMEDIATE CODE: A02 |