[go: up one dir, main page]

JP2005187356A - Organic metal compound and its solution raw material and method for forming metal-containing film using the compound - Google Patents

Organic metal compound and its solution raw material and method for forming metal-containing film using the compound Download PDF

Info

Publication number
JP2005187356A
JP2005187356A JP2003428750A JP2003428750A JP2005187356A JP 2005187356 A JP2005187356 A JP 2005187356A JP 2003428750 A JP2003428750 A JP 2003428750A JP 2003428750 A JP2003428750 A JP 2003428750A JP 2005187356 A JP2005187356 A JP 2005187356A
Authority
JP
Japan
Prior art keywords
film
raw material
compound
metal
solution raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003428750A
Other languages
Japanese (ja)
Inventor
Atsushi Sai
篤 齋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003428750A priority Critical patent/JP2005187356A/en
Publication of JP2005187356A publication Critical patent/JP2005187356A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic metal compound which has excellent evaporation stability, has a high film-forming rate, and can grow the film at lower temperature than those for conventional organic metal compounds, to provide its solution raw material, and to provide a method for forming a metal-containing film from the compound. <P>SOLUTION: This organic metal compound is a compound represented by M(RCp)<SB>4</SB>(M is hafnium or zirconium; R is a 1 to 4C linear or branched alkyl; Cp is cyclopentadienyl). The organic metal compound for forming metal-containing films is a compound represented by M(Cp)<SB>4</SB>(M is hafnium or zirconium; Cp is cyclopentadienyl). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機金属化学気相成長法(Metal Organic Chemical Vapor Deposition、以下、MOCVD法という。)により成膜されるHfO2膜、Hf-N膜、Hf-Si-O膜及びHf-Si-O-N膜等の金属含有膜や、チタン酸ジリコン酸鉛(Pb(Zr,Ti)O3;PZT)膜等の複合酸化物系誘電体薄膜の原料として好適な有機金属化合物及びその溶液原料並びに該化合物を用いた金属含有膜の形成方法に関するものである。 The present invention relates to an HfO 2 film, an Hf—N film, an Hf—Si—O film, and an Hf—Si— film formed by metal organic chemical vapor deposition (hereinafter referred to as MOCVD method). Organometallic compounds suitable as raw materials for metal-containing films such as O—N films, and complex oxide-based dielectric thin films such as lead titanate zirconate (Pb (Zr, Ti) O 3 ; PZT) films, and solution raw materials thereof The present invention also relates to a method for forming a metal-containing film using the compound.

高誘電体ゲート絶縁膜としてシリコン酸化膜が使用されているが、近年LSIの高集積化に伴って、シリコン酸化膜の薄膜化が進んでいる。膜厚が100nm以下の薄さとなった薄膜にはトンネル電流が流れて絶縁効果が低下してしまうため、シリコン酸化膜でのこれ以上の薄膜化は限界となっている。
そのためシリコン酸化膜に代わるゲート絶縁膜が要望されており、候補としてハフニウム含有膜、具体的にはHfO2膜、Hf-Si-O膜やHf-Si-O-N膜のようなハフニウム酸化物系膜が注目されている。これらハフニウム酸化物系膜の製造方法としては、スパッタリング、イオンプレーティング、塗布熱分解、ゾルゲル等のMOD(Metal Organic Deposition)が挙げられるが、上記製造方法に比べて組成制御性、段差被覆性に優れること、半導体製造プロセスとの整合性等の面からMOCVD法が最適な膜製造プロセスとして検討されている。
ハフニウム含有膜を成膜するための材料としては、ターシャリーブトキシハフニウム(以下、Hf(OtBu)4という。)や、テトラキスジピバロイルメタネートハフニウム(以下、Hf(DPM)4という。)等が検討されている。しかし、Hf(OtBu)4は低温で成膜できるが再現性が悪く、Hf(DPM)4は安定性はあるが成膜温度が高いという欠点があった。
Although a silicon oxide film is used as the high dielectric gate insulating film, in recent years, the silicon oxide film is becoming thinner as the LSI is highly integrated. Since a tunnel current flows through a thin film having a thickness of 100 nm or less and the insulation effect is lowered, further reduction in the thickness of the silicon oxide film is limited.
Therefore, there is a demand for a gate insulating film that replaces the silicon oxide film. As a candidate, a hafnium-containing film, specifically, a hafnium oxide such as an HfO 2 film, an Hf—Si—O film, or an Hf—Si—O—N film is proposed. System membranes are attracting attention. Examples of the method for producing these hafnium oxide films include MOD (Metal Organic Deposition) such as sputtering, ion plating, coating pyrolysis, and sol-gel. The MOCVD method has been studied as an optimum film manufacturing process from the viewpoints of superiority and compatibility with the semiconductor manufacturing process.
As a material for forming the hafnium-containing film, tertiary butoxy hafnium (hereinafter referred to as Hf (OtBu) 4 ), tetrakisdipivaloylmethanate hafnium (hereinafter referred to as Hf (DPM) 4 ), or the like. Is being considered. However, although Hf (OtBu) 4 can be formed at a low temperature, the reproducibility is poor, and Hf (DPM) 4 has a drawback that the film forming temperature is high although it is stable.

上記問題を解決する方策として、ハフニウム等の薄膜形成材料としてビスシクロペンタジエニルジカルボニル金属錯体(以下、Cp2M(CO)2という。)を有効成分とする薄膜形成用材料が開示されている(例えば、特許文献1参照。)。特許文献1に示されるビスシクロペンタジエニルジカルボニル金属錯体はCVD法等に用いることができる薄膜形成材料であり、このビスシクロペンタジエニルジカルボニル金属錯体を製造する方法としてビスシクロペンタジエニル金属ジクロライドを用いて簡便で、安価にかつ収率良く製造できることが記載されている。
特開平6−179974号公報(請求項1、請求項2、段落[0004])
As a measure for solving the above problems, a thin film forming material containing biscyclopentadienyl dicarbonyl metal complex (hereinafter referred to as Cp 2 M (CO) 2 ) as an active ingredient is disclosed as a thin film forming material such as hafnium. (For example, refer to Patent Document 1). The biscyclopentadienyl dicarbonyl metal complex disclosed in Patent Document 1 is a thin film-forming material that can be used in a CVD method or the like. As a method for producing this biscyclopentadienyl dicarbonyl metal complex, biscyclopentadienyl metal complex is used. It is described that it is simple, inexpensive and can be produced with good yield using metal dichloride.
JP-A-6-179974 (Claim 1, Claim 2, Paragraph [0004])

しかし、上記特許文献1に示されるCp2M(CO)2のような有機金属化合物を用いてMOCVD法により成膜すると、膜中に炭酸ガスが含まれてしまい、成膜速度を阻害する不具合を生じる問題があった。 However, when an organic metal compound such as Cp 2 M (CO) 2 disclosed in Patent Document 1 is used to form a film by the MOCVD method, carbon dioxide gas is contained in the film, which hinders the film formation rate. There was a problem that caused.

本発明の目的は、気化安定性に優れ、高い成膜速度を有する有機金属化合物及びその溶液原料並びに該化合物を用いた金属含有膜の形成方法を提供することにある。
本発明の別の目的は、従来の有機金属化合物よりも低温での膜成長が可能な有機金属化合物及びその溶液原料並びに該化合物を用いた金属含有膜の形成方法を提供することにある。
An object of the present invention is to provide an organometallic compound having excellent vaporization stability and a high film forming rate, a solution raw material thereof, and a method for forming a metal-containing film using the compound.
Another object of the present invention is to provide an organometallic compound capable of growing a film at a lower temperature than a conventional organometallic compound, a solution raw material thereof, and a method for forming a metal-containing film using the compound.

請求項1に係る発明は、次の式(1)で示される有機金属化合物である。
M(RCp)4 ……(1)
但し、式中のMはハフニウム又はジルコニウムであり、Rは炭素数1〜4の直鎖又は分岐状アルキル基であり、Cpはシクロペンタジエニル基を示す。
The invention according to claim 1 is an organometallic compound represented by the following formula (1).
M (RCp) 4 ...... (1)
However, M in a formula is hafnium or zirconium, R is a C1-C4 linear or branched alkyl group, and Cp shows a cyclopentadienyl group.

請求項1に係る化合物では、金属原子MにアルキルCp基が4つπ結合した構造をとるため、従来の有機金属化合物に比べて低い温度で分解する。この化合物を用いて金属含有膜を成膜する場合、従来の有機金属化合物を用いた場合の成膜温度よりも低い温度、具体的には200〜400℃程度の温度で成膜することができるため、成膜する基板を痛めることがなく、また気化安定性にも優れ、高い成膜速度で金属含有膜を形成することができる。また、式(1)のRが炭素数1〜4の直鎖又は分岐状アルキル基で表される有機金属化合物は室温で液体として存在するため、これらの化合物単体で金属含有膜形成用溶液原料として使用できる。   Since the compound according to claim 1 has a structure in which four alkyl Cp groups are π-bonded to the metal atom M, it is decomposed at a temperature lower than that of a conventional organometallic compound. When a metal-containing film is formed using this compound, the film can be formed at a temperature lower than the film formation temperature when a conventional organometallic compound is used, specifically at a temperature of about 200 to 400 ° C. Therefore, the substrate on which the film is formed is not damaged, the vaporization stability is excellent, and the metal-containing film can be formed at a high film formation rate. In addition, since the organometallic compound in which R in the formula (1) is a linear or branched alkyl group having 1 to 4 carbon atoms exists as a liquid at room temperature, the solution raw material for forming a metal-containing film is composed of these compounds alone. Can be used as

請求項2に係る発明は、次の式(2)で示される金属含有膜形成用の有機金属化合物である。
M(Cp)4 ……(2)
但し、式中のMはハフニウム又はジルコニウムであり、Cpはシクロペンタジエニル基を示す。
The invention according to claim 2 is an organometallic compound for forming a metal-containing film represented by the following formula (2).
M (Cp) 4 ...... (2)
However, M in the formula is hafnium or zirconium, and Cp represents a cyclopentadienyl group.

請求項2に係る化合物では、金属原子MにCp基が4つπ結合した構造をとるため、従来の有機金属化合物に比べて低い温度で分解する。この化合物を用いて金属含有膜を成膜する場合、従来の有機金属化合物を用いた場合の成膜温度よりも低い温度、具体的には200〜400℃程度の温度で成膜することができるため、成膜する基板を痛めることがなく、また気化安定性にも優れ、高い成膜速度で金属含有膜を形成することができる。   Since the compound according to claim 2 has a structure in which four Cp groups are π-bonded to the metal atom M, it is decomposed at a temperature lower than that of a conventional organometallic compound. When a metal-containing film is formed using this compound, the film can be formed at a temperature lower than the film formation temperature when a conventional organometallic compound is used, specifically at a temperature of about 200 to 400 ° C. Therefore, the substrate on which the film is formed is not damaged, the vaporization stability is excellent, and the metal-containing film can be formed at a high film formation rate.

請求項3に係る発明は、請求項1記載の式(1)で示される有機金属化合物又は請求項2記載の式(2)で示される有機金属化合物を有機溶媒に溶解したことを特徴とする金属含有膜形成用溶液原料である。
請求項4に係る発明は、請求項3に係る発明であって、有機溶媒がテトラヒドロフラン(以下、THFという。)、メチルTHF、n-オクタン、イソオクタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ピリジン、ルチジン、酢酸ブチル、酢酸アミル、酢酸メチル及び酢酸エチルからなる群より選ばれた1種又は2種以上の溶媒である溶液原料である。
請求項3又は4に係る溶液原料では、本発明の有機金属化合物を上記列挙した有機溶媒に溶解した溶液原料は、有機金属化合物をより安定して気化室や成膜室まで送込むことができるため、結果としてMOCVDにおける薄膜の成長速度が促進される。
The invention according to claim 3 is characterized in that an organometallic compound represented by formula (1) according to claim 1 or an organometallic compound represented by formula (2) according to claim 2 is dissolved in an organic solvent. A solution raw material for forming a metal-containing film.
The invention according to claim 4 is the invention according to claim 3, wherein the organic solvent is tetrahydrofuran (hereinafter referred to as THF), methyl THF, n-octane, isooctane, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, pyridine. , Lutidine, butyl acetate, amyl acetate, methyl acetate, and ethyl acetate. The solution raw material is one or more solvents selected from the group consisting of ethyl acetate and ethyl acetate.
In the solution raw material according to claim 3 or 4, the solution raw material in which the organometallic compound of the present invention is dissolved in the above-described organic solvent can send the organometallic compound more stably to the vaporization chamber or the film formation chamber. As a result, the growth rate of the thin film in MOCVD is promoted.

請求項5に係る発明は、請求項1又は2記載の有機金属化合物、又は請求項3又は4記載の溶液原料を用いて成膜することを特徴とする金属含有膜の形成方法である。
請求項5に係る形成方法では、上記式(1)に示される本発明の有機金属化合物又はこの化合物を含む溶液原料を用いて金属含有膜を形成することで、従来の有機金属化合物を用いた場合の成膜温度よりも低い200〜400℃程度の成膜温度で成膜することができるため、成膜する基板を痛めることがない。また気化安定性にも優れており、高い成膜速度で金属含有膜を形成することができる。
請求項6に係る発明は、請求項5に係る発明であって、MOCVD法により成膜する金属含有膜の形成方法である。
The invention according to claim 5 is a method for forming a metal-containing film, characterized in that a film is formed using the organometallic compound according to claim 1 or 2, or the solution raw material according to claim 3 or 4.
In the forming method according to claim 5, a conventional organometallic compound is used by forming a metal-containing film using the organometallic compound of the present invention represented by the above formula (1) or a solution raw material containing this compound. Since the film can be formed at a film formation temperature of about 200 to 400 ° C. lower than the film formation temperature in the case, the substrate on which the film is formed is not damaged. Moreover, it is excellent in vaporization stability, and a metal-containing film can be formed at a high film formation rate.
The invention according to claim 6 is the invention according to claim 5, wherein the metal-containing film is formed by MOCVD.

以上述べたように、本発明の有機金属化合物は、金属原子にπ配位のシクロペンタジエニル基又はアルキルシクロペンタジエニル基が4つ結合した構造をとるため、従来の有機金属化合物に比べて低い温度で分解する。この化合物又はこの化合物を含む溶液原料を用いて金属含有膜を成膜する場合、従来の有機金属化合物を用いた場合の成膜温度よりも低い温度で成膜することができるため、成膜する基板を痛めることがない。また気化安定性にも優れており、高い成膜速度で金属含有膜を形成することができる。   As described above, the organometallic compound of the present invention has a structure in which four π-coordinate cyclopentadienyl groups or alkylcyclopentadienyl groups are bonded to a metal atom. Decomposes at low temperatures. When a metal-containing film is formed using this compound or a solution raw material containing this compound, the film can be formed at a temperature lower than the film formation temperature when a conventional organometallic compound is used. Does not damage the board. Moreover, it is excellent in vaporization stability, and a metal-containing film can be formed at a high film formation rate.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
本発明の有機金属化合物は、次の式(1)に示される化合物である。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
The organometallic compound of the present invention is a compound represented by the following formula (1).

M(RCp)4 ……(1)
但し、式中のMはハフニウム又はジルコニウムであり、Rは炭素数1〜4の直鎖又は分岐状アルキル基であり、Cpはシクロペンタジエニル基を示す。
M (RCp) 4 ...... (1)
However, M in a formula is hafnium or zirconium, R is a C1-C4 linear or branched alkyl group, and Cp shows a cyclopentadienyl group.

また、次の式(2)で示される金属含有膜形成用の有機金属化合物である。
M(Cp)4 ……(2)
但し、式中のMはハフニウム又はジルコニウムであり、Cpはシクロペンタジエニル基を示す。
Further, it is an organometallic compound for forming a metal-containing film represented by the following formula (2).
M (Cp) 4 ...... (2)
However, M in the formula is hafnium or zirconium, and Cp represents a cyclopentadienyl group.

上記式(1)又は式(2)に示される化合物では、金属原子MにCp基又はアルキルCp基が4つπ結合した構造をとるため、従来の有機金属化合物に比べて低い温度で分解する。この化合物を用いて金属含有膜を成膜する場合、従来の有機金属化合物を用いた場合の成膜温度よりも低い温度、具体的には200〜400℃程度の温度で成膜することができるため、成膜する基板を痛めることがなく、また気化安定性にも優れ、高い成膜速度で金属含有膜を形成することができる。また、式(1)のRが炭素数1〜4の直鎖又は分岐状アルキル基で表される有機金属化合物は室温で液体として存在するため、これらの化合物単体で金属含有膜形成用溶液原料として使用できる。   The compound represented by the above formula (1) or (2) has a structure in which four Cp groups or alkyl Cp groups are bonded to the metal atom M, and therefore decomposes at a lower temperature than the conventional organometallic compound. . When a metal-containing film is formed using this compound, it can be formed at a temperature lower than the film formation temperature when a conventional organometallic compound is used, specifically at a temperature of about 200 to 400 ° C. Therefore, the substrate on which the film is formed is not damaged, the vaporization stability is excellent, and the metal-containing film can be formed at a high film formation rate. In addition, since the organometallic compound in which R in the formula (1) is a linear or branched alkyl group having 1 to 4 carbon atoms exists as a liquid at room temperature, the solution raw material for forming a metal-containing film is composed of these compounds alone. Can be used as

次に本発明の有機金属化合物のうち、上記式(2)中のMがハフニウムであるHf(Cp)4の製造方法について説明する。
先ず、出発原料としてHfCl4を20g用意する。次いで、n-ヘキサンにHfCl4を添加して懸濁させ、更に金属亜鉛粉1gを加えて室温で30分攪拌する。この攪拌液にLi-ビスシクロペンタジエン15gを加えたのち、40℃に加熱して24時間反応させる。攪拌した懸濁液をろ別して固形分を取除く。このろ別した溶液を2.66×103Pa(20Torr)の条件下で濃縮することにより、白色固体として本発明の有機金属化合物であるHf(Cp)4を5g得ることができる。
Next, among the organometallic compounds of the present invention, a method for producing Hf (Cp) 4 in which M in the above formula (2) is hafnium will be described.
First, 20 g of HfCl 4 is prepared as a starting material. Next, HfCl 4 is added and suspended in n-hexane, and 1 g of metal zinc powder is further added and stirred at room temperature for 30 minutes. After adding 15 g of Li-biscyclopentadiene to this stirring liquid, it is heated to 40 ° C. and allowed to react for 24 hours. The stirred suspension is filtered to remove solids. By concentrating the filtered solution under the condition of 2.66 × 10 3 Pa (20 Torr), 5 g of Hf (Cp) 4 that is the organometallic compound of the present invention can be obtained as a white solid.

また本発明の有機金属化合物を有機溶媒に溶解して本発明の溶液原料としてもよい。本発明の有機金属化合物を有機溶媒に溶解した溶液原料は、有機金属化合物をより安定して気化室や成膜室まで送込むことができるため、結果としてMOCVDにおける薄膜の成長速度が促進される。有機溶媒としてはTHF、メチルTHF、n-オクタン、イソオクタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ピリジン、ルチジン、酢酸ブチル、酢酸アミル、酢酸メチル及び酢酸エチルからなる群より選ばれた1種又は2種以上の溶媒が挙げられる。   Alternatively, the organometallic compound of the present invention may be dissolved in an organic solvent to form the solution raw material of the present invention. Since the solution raw material in which the organometallic compound of the present invention is dissolved in an organic solvent can send the organometallic compound more stably to the vaporization chamber or the deposition chamber, the growth rate of the thin film in MOCVD is promoted as a result. . As the organic solvent, one selected from the group consisting of THF, methyl THF, n-octane, isooctane, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, pyridine, lutidine, butyl acetate, amyl acetate, methyl acetate and ethyl acetate or Two or more solvents can be mentioned.

室温で固体の有機金属化合物をそのまま減圧下で加熱して気化させる固体昇華法では、装置内の配管全てを加熱しておく必要があり、加熱されていない部分があると配管内で析出してしまい、配管が閉塞するおそれがある。また、加熱された状態で長時間保存されるため、材質の変質が起こって気化しにくくなり、原料の供給量が減少して成膜速度が低減する問題も生じる。一方、有機金属化合物を有機溶媒に溶解して溶液原料とした場合は、室温で気化室まで原料を供給できるため配管の閉塞がなくなり、原料が加熱されている時間が短くなるので原料の変質が抑制でき、安定して原料が供給されるので成膜速度が促進する。   In the solid sublimation method in which a solid organometallic compound is vaporized by heating under reduced pressure as it is at room temperature, it is necessary to heat all the pipes in the apparatus. As a result, the piping may be blocked. In addition, since the material is stored for a long time in a heated state, the material is changed in quality and is difficult to be vaporized. On the other hand, when the organic metal compound is dissolved in an organic solvent to form a solution raw material, the raw material can be supplied to the vaporization chamber at room temperature, so that the piping is not clogged and the time during which the raw material is heated is shortened. Since the raw material can be supplied stably, the film formation rate is accelerated.

本発明の金属含有膜の形成方法では、本発明の有機金属化合物、又は本発明の溶液原料を用いて成膜することを特徴とする。本発明の有機金属化合物又はこの化合物を含む溶液原料を用いて金属含有膜を形成することで、従来の有機金属化合物を用いた場合の成膜温度よりも低い温度で成膜することができるため、成膜する基板を痛めることがない。また気化安定性にも優れており、高い成膜速度で金属含有膜を形成することができる。
このようにして得られた有機金属化合物は、MOCVD法を用いて基体上、例えばシリコン基板上に金属含有膜を形成する。上記式(1)に示される有機金属化合物のうち、Rが炭素数1〜4の直鎖又は分岐状アルキル基であるときは室温で液体であるため、熱CVD法が好適である。
The metal-containing film forming method of the present invention is characterized by forming a film using the organometallic compound of the present invention or the solution raw material of the present invention. By forming a metal-containing film using the organometallic compound of the present invention or a solution raw material containing this compound, it is possible to form a film at a temperature lower than the film formation temperature when a conventional organometallic compound is used. No damage to the substrate on which the film is formed. Moreover, it is excellent in vaporization stability, and a metal-containing film can be formed at a high film formation rate.
The organometallic compound thus obtained forms a metal-containing film on a substrate, for example, a silicon substrate, using MOCVD. Among the organometallic compounds represented by the above formula (1), when R is a linear or branched alkyl group having 1 to 4 carbon atoms, it is a liquid at room temperature, and thus a thermal CVD method is suitable.

次に、本発明の有機金属化合物の金属をハフニウムとした有機ハフニウム化合物を有機溶媒に溶解した溶液原料を用いて溶液気化CVD法によりHfO2薄膜を成膜する例を説明する。溶液気化CVD法とは、各溶液を加熱された気化器に供給し、ここで各溶液原料を瞬時に気化させ、成膜室に送って基材上に成膜する方法である。
図1に示すように、MOCVD装置は、成膜室10と蒸気発生装置11を備える。成膜室10の内部にはヒータ12が設けられ、ヒータ12上には基板13が保持される。この成膜室10の内部は圧力センサー14、コールドトラップ15及びニードルバルブ16を備える配管17により真空引きされる。成膜室10にはニードルバルブ36、ガス流量調節装置34を介してO2ガス導入管37が接続される。ここで成膜される薄膜がHf-N薄膜である場合、ガス導入管37からはNH3ガスが導入される。蒸気発生装置11は原料容器18を備え、この原料容器18は本発明の溶液原料を貯蔵する。原料容器18にはガス流量調節装置19を介してキャリアガス導入管21が接続され、また原料容器18には供給管22が接続される。供給管22にはニードルバルブ23及び溶液流量調節装置24が設けられ、供給管22は気化器26に接続される。気化器26にはニードルバルブ31、ガス流量調節装置28を介してキャリアガス導入管29が接続される。気化器26は更に配管27により成膜室10に接続される。また気化器26には、ガスドレイン32及びドレイン33がそれぞれ接続される。
この装置では、N2、He、Ar等の不活性ガスからなるキャリアガスがキャリアガス導入管21から原料容器18内に導入され、原料容器18に貯蔵されている溶液原料を供給管22により気化器26に搬送する。気化器26で気化されて蒸気となった有機ハフニウム化合物は、更にキャリアガス導入管28から気化器26へ導入されたキャリアガスにより配管27を経て成膜室10内に供給される。成膜室10内において、有機ハフニウム化合物の蒸気を熱分解させ、O2ガス導入管37より成膜室10内に導入されたO2ガスと反応させることにより、生成したHfO2を加熱された基板13上に堆積させてHfO2薄膜を形成する。本発明の有機金属化合物は従来の有機金属化合物よりも低温で熱分解するため、低温での膜成長が可能である。また本発明の有機金属化合物は、気化安定性に優れており、高い成膜速度を有する。
Next, an example in which an HfO 2 thin film is formed by a solution vaporization CVD method using a solution raw material obtained by dissolving an organic hafnium compound in which the metal of the organometallic compound of the present invention is hafnium in an organic solvent will be described. The solution vaporization CVD method is a method in which each solution is supplied to a heated vaporizer, where each solution raw material is instantaneously vaporized and sent to a film formation chamber to form a film on a substrate.
As shown in FIG. 1, the MOCVD apparatus includes a film formation chamber 10 and a vapor generator 11. A heater 12 is provided inside the film forming chamber 10, and a substrate 13 is held on the heater 12. The inside of the film forming chamber 10 is evacuated by a pipe 17 including a pressure sensor 14, a cold trap 15 and a needle valve 16. An O 2 gas introduction pipe 37 is connected to the film forming chamber 10 via a needle valve 36 and a gas flow rate adjusting device 34. When the thin film formed here is an Hf—N thin film, NH 3 gas is introduced from the gas introduction pipe 37. The steam generator 11 includes a raw material container 18, which stores the solution raw material of the present invention. A carrier gas introduction pipe 21 is connected to the raw material container 18 via a gas flow rate control device 19, and a supply pipe 22 is connected to the raw material container 18. The supply pipe 22 is provided with a needle valve 23 and a solution flow rate adjusting device 24, and the supply pipe 22 is connected to a vaporizer 26. A carrier gas introduction pipe 29 is connected to the vaporizer 26 via a needle valve 31 and a gas flow rate control device 28. The vaporizer 26 is further connected to the film forming chamber 10 by a pipe 27. A gas drain 32 and a drain 33 are connected to the vaporizer 26, respectively.
In this apparatus, a carrier gas composed of an inert gas such as N 2 , He, Ar is introduced into the raw material container 18 from the carrier gas introduction pipe 21, and the solution raw material stored in the raw material container 18 is vaporized by the supply pipe 22. To the container 26. The organic hafnium compound vaporized by the vaporizer 26 to become vapor is further supplied into the film forming chamber 10 through the pipe 27 by the carrier gas introduced into the vaporizer 26 from the carrier gas introduction pipe 28. In the film forming chamber 10, the vapor of the organic hafnium compound was thermally decomposed and reacted with O 2 gas introduced into the film forming chamber 10 through the O 2 gas introduction pipe 37, thereby heating the generated HfO 2 . An HfO 2 thin film is formed by depositing on the substrate 13. Since the organometallic compound of the present invention is thermally decomposed at a lower temperature than conventional organometallic compounds, film growth at a low temperature is possible. The organometallic compound of the present invention is excellent in vaporization stability and has a high film forming rate.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、出発原料としてHfCl4を用意し、n-ヘキサンにHfCl4を添加して懸濁させ、更に金属亜鉛粉1gを加えて室温で30分攪拌した。この攪拌液にLi-ビスシクロペンタジエン15gを加えたのち、40℃に加熱して24時間反応させた。攪拌した懸濁液をろ別して固形分を取除いた。このろ別した溶液を2.66×103Pa(20Torr)の条件下で濃縮することにより、Hf(Cp)4を得た。このHf(Cp)4の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, HfCl 4 was prepared as a starting material, HfCl 4 was added and suspended in n-hexane, 1 g of metal zinc powder was further added, and the mixture was stirred at room temperature for 30 minutes. After adding 15 g of Li-biscyclopentadiene to this stirring liquid, it was heated to 40 ° C. and reacted for 24 hours. The stirred suspension was filtered to remove solids. The filtered solution was concentrated under the condition of 2.66 × 10 3 Pa (20 Torr) to obtain Hf (Cp) 4 . A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Hf (Cp) 4 was 1.0 molar.

<実施例2>
Cpの代わりにMeCpを用いた以外は実施例1と同様にして合成を行い、Hf(MeCp)4を得た。このHf(MeCp)4の濃度が1.0モル濃度となるように有機溶媒であるn-オクタンに溶解して溶液原料を調製した。
<実施例3>
Cpの代わりにEtCpを用いた以外は実施例1と同様にして合成を行い、Hf(EtCp)4を得た。このHf(EtCp)4の濃度が1.0モル濃度となるように有機溶媒であるヘキサンに溶解して溶液原料を調製した。
<実施例4>
Cpの代わりにn-PrCpを用いた以外は実施例1と同様にして合成を行い、Hf(n-PrCp)4を得た。このHf(n-PrCp)4の濃度が1.0モル濃度となるように有機溶媒であるシクロヘキサンに溶解して溶液原料を調製した。
<Example 2>
Synthesis was performed in the same manner as in Example 1 except that MeCp was used in place of Cp to obtain Hf (MeCp) 4 . A solution raw material was prepared by dissolving in n-octane as an organic solvent so that the concentration of Hf (MeCp) 4 was 1.0 molar.
<Example 3>
Synthesis was performed in the same manner as in Example 1 except that EtCp was used in place of Cp to obtain Hf (EtCp) 4 . A solution raw material was prepared by dissolving in hexane as an organic solvent so that the concentration of Hf (EtCp) 4 was 1.0 molar.
<Example 4>
Synthesis was carried out in the same manner as in Example 1 except that n-PrCp was used instead of Cp to obtain Hf (n-PrCp) 4 . A solution raw material was prepared by dissolving in cyclohexane as an organic solvent so that the concentration of Hf (n-PrCp) 4 was 1.0 molar.

<実施例5>
Cpの代わりにi-PrCpを用いた以外は実施例1と同様にして合成を行い、Hf(i-PrCp)4を得た。このHf(i-PrCp)4の濃度が1.0モル濃度となるように有機溶媒であるピリジンに溶解して溶液原料を調製した。
<実施例6>
Cpの代わりにn-BuCpを用いた以外は実施例1と同様にして合成を行い、Hf(n-BuCp)4を得た。このHf(n-BuCp)4の濃度が1.0モル濃度となるように有機溶媒であるルチジンに溶解して溶液原料を調製した。
<実施例7>
Cpの代わりにt-BuCpを用いた以外は実施例1と同様にして合成を行い、Hf(t-BuCp)4を得た。このHf(t-BuCp)4の濃度が1.0モル濃度となるように有機溶媒である酢酸ブチルに溶解して溶液原料を調製した。
<Example 5>
Synthesis was performed in the same manner as in Example 1 except that i-PrCp was used in place of Cp to obtain Hf (i-PrCp) 4 . A solution raw material was prepared by dissolving in pyridine as an organic solvent so that the concentration of Hf (i-PrCp) 4 was 1.0 molar.
<Example 6>
Synthesis was carried out in the same manner as in Example 1 except that n-BuCp was used in place of Cp to obtain Hf (n-BuCp) 4 . A solution raw material was prepared by dissolving in lutidine as an organic solvent so that the concentration of Hf (n-BuCp) 4 was 1.0 molar.
<Example 7>
Synthesis was carried out in the same manner as in Example 1 except that t-BuCp was used instead of Cp to obtain Hf (t-BuCp) 4 . A solution raw material was prepared by dissolving in butyl acetate as an organic solvent so that the concentration of Hf (t-BuCp) 4 was 1.0 molar.

<比較例1>
Cp2Hf(CO)2を用意し、この化合物をそのまま有機ハフニウム化合物として用いた。このCp2Hf(CO)2の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<比較例2>
Hf(DPM)4を用意し、この化合物をそのまま有機ハフニウム化合物として用いた。このHf(DPM)4の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<比較例3>
テトラキスジエチルアミノハフニウム(以下、Hf(DEA)4という。)を用意し、この化合物をそのまま有機ハフニウム化合物として用いた。このHf(DEA)4の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<Comparative Example 1>
Cp 2 Hf (CO) 2 was prepared, and this compound was used as an organic hafnium compound as it was. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Cp 2 Hf (CO) 2 was 1.0 molar.
<Comparative example 2>
Hf (DPM) 4 was prepared and this compound was used as an organic hafnium compound as it was. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Hf (DPM) 4 was 1.0 molar.
<Comparative Example 3>
Tetrakisdiethylaminohafnium (hereinafter referred to as Hf (DEA) 4 ) was prepared, and this compound was used as an organic hafnium compound as it was. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Hf (DEA) 4 was 1.0 molar.

<比較評価1>
実施例2〜7でそれぞれ得られた有機ハフニウム化合物単体をそのまま溶液原料として用意した。また実施例1〜7及び比較例1〜3でそれぞれ得られた有機ハフニウム化合物の溶液原料を用いて成膜時間当たりの膜厚試験を行った。
先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を6枚ずつ用意し、基板を図1に示す溶液気化CVD法を用いたMOCVD装置の成膜室に設置した。次いで、基板温度を220℃、気化温度を70℃、圧力を約266Pa(2Torr)にそれぞれ設定した。反応ガスとしてO2ガスを用い、その分圧を100ccmとした。次に、キャリアガスとしてArガスを用い、溶液原料を0.05cc/分の割合でそれぞれ供給し、成膜時間が30秒、1分、2分、3分、5分及び8分となったときにそれぞれ1枚ずつ成膜室より取出した。
<Comparison evaluation 1>
The organic hafnium compound simple substance obtained in each of Examples 2 to 7 was directly prepared as a solution raw material. Moreover, the film thickness test per film-forming time was done using the solution raw material of the organic hafnium compound obtained in Examples 1-7 and Comparative Examples 1-3, respectively.
First, six silicon substrates each having a SiO 2 film (thickness 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in a film formation chamber of an MOCVD apparatus using the solution vaporization CVD method shown in FIG. Next, the substrate temperature was set to 220 ° C., the vaporization temperature was set to 70 ° C., and the pressure was set to about 266 Pa (2 Torr). O 2 gas was used as a reaction gas, and its partial pressure was 100 ccm. Next, Ar gas was used as the carrier gas, and the solution raw material was supplied at a rate of 0.05 cc / min. The film formation time was 30 seconds, 1 minute, 2 minutes, 3 minutes, 5 minutes, and 8 minutes. Occasionally, one sheet was taken out from the film forming chamber.

・ 成膜時間あたりの膜厚試験
成膜を終えた基板上のHfO2薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
-Film thickness test per film formation time The film thickness of the HfO 2 thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.

<評価>
得られた成膜時間あたりの膜厚結果を表1にそれぞれ示す。
<Evaluation>
The obtained film thickness results per film formation time are shown in Table 1, respectively.

Figure 2005187356
Figure 2005187356

表1より明らかなように、比較例1〜3の溶液原料を用いた薄膜は、時間が経過しても膜厚が厚くならず、また均等な厚さに成膜されていないことから成膜の安定性が悪いことが判る。これに対して実施例1〜7の溶液原料を用いた薄膜は、成膜時間あたりの膜厚が厚く、かつ均等になっており、成膜安定性が高く、また成膜速度も高い結果が得られた。   As is clear from Table 1, the thin films using the solution raw materials of Comparative Examples 1 to 3 did not increase in thickness over time, and were not formed to a uniform thickness. It turns out that the stability of is bad. On the other hand, the thin film using the solution raw materials of Examples 1 to 7 has a thick and uniform film thickness per film formation time, high film formation stability, and high film formation speed. Obtained.

<実施例8>
金属含有化合物としてZrCl4を用いた以外は実施例1と同様にして合成を行い、Zr(Cp)4を得た。このZr(Cp)4の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<実施例9>
Cpの代わりにMeCpを用いた以外は実施例8と同様にして合成を行い、Zr(MeCp)4を得た。このZr(MeCp)4の濃度が1.0モル濃度となるように有機溶媒であるn-オクタンに溶解して溶液原料を調製した。
<実施例10>
Cpの代わりにEtCpを用いた以外は実施例8と同様にして合成を行い、Zr(EtCp)4を得た。このZr(EtCp)4の濃度が1.0モル濃度となるように有機溶媒であるヘキサンに溶解して溶液原料を調製した。
<Example 8>
Synthesis was performed in the same manner as in Example 1 except that ZrCl 4 was used as the metal-containing compound, and Zr (Cp) 4 was obtained. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Zr (Cp) 4 was 1.0 molar.
<Example 9>
Synthesis was performed in the same manner as in Example 8 except that MeCp was used instead of Cp, to obtain Zr (MeCp) 4 . A solution raw material was prepared by dissolving in n-octane, which is an organic solvent, so that the concentration of Zr (MeCp) 4 was 1.0 molar.
<Example 10>
Synthesis was performed in the same manner as in Example 8 except that EtCp was used instead of Cp, to obtain Zr (EtCp) 4 . A solution raw material was prepared by dissolving in hexane as an organic solvent so that the concentration of Zr (EtCp) 4 was 1.0 molar.

<実施例11>
Cpの代わりにn-PrCpを用いた以外は実施例8と同様にして合成を行い、Zr(n-PrCp)4を得た。このZr(n-PrCp)4の濃度が1.0モル濃度となるように有機溶媒であるシクロヘキサンに溶解して溶液原料を調製した。
<実施例12>
Cpの代わりにi-PrCpを用いた以外は実施例8と同様にして合成を行い、Zr(i-PrCp)4を得た。このZr(i-PrCp)4の濃度が1.0モル濃度となるように有機溶媒であるピリジンに溶解して溶液原料を調製した。
<実施例13>
Cpの代わりにn-BuCpを用いた以外は実施例8と同様にして合成を行い、Zr(n-BuCp)4を得た。このZr(n-BuCp)4の濃度が1.0モル濃度となるように有機溶媒であるルチジンに溶解して溶液原料を調製した。
<実施例14>
Cpの代わりにt-BuCpを用いた以外は実施例8と同様にして合成を行い、Zr(t-BuCp)4を得た。このZr(t-BuCp)4の濃度が1.0モル濃度となるように有機溶媒である酢酸ブチルに溶解して溶液原料を調製した。
<Example 11>
Synthesis was performed in the same manner as in Example 8 except that n-PrCp was used instead of Cp, to obtain Zr (n-PrCp) 4 . A solution raw material was prepared by dissolving in cyclohexane as an organic solvent so that the concentration of Zr (n-PrCp) 4 was 1.0 molar.
<Example 12>
Synthesis was performed in the same manner as in Example 8 except that i-PrCp was used in place of Cp to obtain Zr (i-PrCp) 4 . A solution raw material was prepared by dissolving in pyridine, which is an organic solvent, so that the concentration of Zr (i-PrCp) 4 was 1.0 molar.
<Example 13>
Synthesis was performed in the same manner as in Example 8 except that n-BuCp was used instead of Cp, to obtain Zr (n-BuCp) 4 . A solution raw material was prepared by dissolving in lutidine, an organic solvent, so that the concentration of Zr (n-BuCp) 4 was 1.0 molar.
<Example 14>
Synthesis was performed in the same manner as in Example 8 except that t-BuCp was used in place of Cp to obtain Zr (t-BuCp) 4 . A solution raw material was prepared by dissolving in butyl acetate as an organic solvent so that the concentration of Zr (t-BuCp) 4 was 1.0 molar.

<比較例4>
Cp2Zr(CO)2を用意し、この化合物をそのまま有機ジルコニウム化合物として用いた。このCp2Zr(CO)2の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<比較例5>
テトラキスジピバロイルメタネートジルコニウム(以下、Zr(DPM)4という。)を用意し、この化合物をそのまま有機ジルコニウム化合物として用いた。このZr(DPM)4の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<比較例6>
テトラキスジエチルアミノジルコニウム(以下、Zr(DEA)4という。)を用意し、この化合物をそのまま有機ジルコニウム化合物として用いた。このZr(DEA)4の濃度が1.0モル濃度となるように有機溶媒であるTHFに溶解して溶液原料を調製した。
<Comparative example 4>
Cp 2 Zr (CO) 2 was prepared, and this compound was used as an organic zirconium compound as it was. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Cp 2 Zr (CO) 2 was 1.0 molar.
<Comparative Example 5>
Tetrakisdipivaloylmethanate zirconium (hereinafter referred to as Zr (DPM) 4 ) was prepared, and this compound was used as an organic zirconium compound as it was. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Zr (DPM) 4 was 1.0 molar.
<Comparative Example 6>
Tetrakisdiethylaminozirconium (hereinafter referred to as Zr (DEA) 4 ) was prepared, and this compound was used as an organic zirconium compound as it was. A solution raw material was prepared by dissolving in THF as an organic solvent so that the concentration of Zr (DEA) 4 was 1.0 molar.

<比較評価2>
実施例9〜14でそれぞれ得られた有機ジルコニウム化合物単体をそのまま溶液原料として用意した。また実施例8〜14及び比較例4〜6でそれぞれ得られた有機ジルコニウム化合物の溶液原料を用いて成膜時間当たりの膜厚試験を行った。
先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を6枚ずつ用意し、基板を図1に示す溶液気化CVD法を用いたMOCVD装置の成膜室に設置した。次いで、基板温度を250℃、気化温度を80℃、圧力を約266Pa(2Torr)にそれぞれ設定した。反応ガスとしてO2ガスを用い、その分圧を100ccmとした。次に、キャリアガスとしてArガスを用い、溶液原料を0.05cc/分の割合でそれぞれ供給し、成膜時間が30秒、1分、2分、3分、5分及び8分となったときにそれぞれ1枚ずつ成膜室より取出した。
<Comparison evaluation 2>
The organic zirconium compound simple substance obtained in each of Examples 9 to 14 was directly prepared as a solution raw material. Moreover, the film thickness test per film-forming time was done using the solution raw material of the organic zirconium compound obtained in Examples 8-14 and Comparative Examples 4-6, respectively.
First, six silicon substrates each having a SiO 2 film (thickness 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in a film formation chamber of an MOCVD apparatus using the solution vaporization CVD method shown in FIG. Next, the substrate temperature was set to 250 ° C., the vaporization temperature was set to 80 ° C., and the pressure was set to about 266 Pa (2 Torr). O 2 gas was used as a reaction gas, and its partial pressure was 100 ccm. Next, Ar gas was used as the carrier gas, and the solution raw material was supplied at a rate of 0.05 cc / min. The film formation time was 30 seconds, 1 minute, 2 minutes, 3 minutes, 5 minutes, and 8 minutes. Occasionally, one sheet was taken out from the film forming chamber.

・ 成膜時間あたりの膜厚試験
成膜を終えた基板上のZrO2薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
-Film thickness test per film formation time The film thickness of the ZrO 2 thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.

<評価>
得られた成膜時間あたりの膜厚結果を表2にそれぞれ示す。
<Evaluation>
The obtained film thickness results per film formation time are shown in Table 2, respectively.

Figure 2005187356
Figure 2005187356

表2より明らかなように、比較例4〜6の溶液原料を用いた薄膜は、時間が経過しても膜厚が厚くならず、また均等な厚さに成膜されていないことから成膜の安定性が悪いことが判る。これに対して実施例8〜14の溶液原料を用いた薄膜は、成膜時間あたりの膜厚が厚く、かつ均等になっており、成膜安定性が高く、また成膜速度も高い結果が得られた。   As is clear from Table 2, the thin films using the solution raw materials of Comparative Examples 4 to 6 did not increase in thickness over time, and were not formed to a uniform thickness. It turns out that the stability of is bad. On the other hand, the thin films using the solution raw materials of Examples 8 to 14 have a thick and uniform film thickness per film formation time, high film formation stability, and high film formation speed. Obtained.

<比較評価3>
実施例2〜7でそれぞれ得られた有機ハフニウム化合物単体をそのまま溶液原料として用意した。また実施例1〜7及び比較例1〜3でそれぞれ得られた有機ハフニウム化合物の溶液原料を用いて成膜時間当たりの膜厚試験を行った。
先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を6枚ずつ用意し、基板を図2に示す溶液気化CVD法を用いたMOCVD装置の成膜室に設置した。次いで、基板温度を220℃、気化温度を70℃、圧力を約266Pa(2Torr)にそれぞれ設定した。反応ガスとしてO2ガスを用い、その分圧を100ccmとした。次に、キャリアガスとしてArガスを用い、溶液原料を0.05cc/分の割合で、有機シリコン化合物としてテトラキスジメチルアミノシラン(Si(DMA)4)を0.05cc/分の割合でそれぞれ供給し、成膜時間が30秒、1分、2分、3分、5分及び8分となったときにそれぞれ1枚ずつ成膜室より取出した。
<Comparison evaluation 3>
The organic hafnium compound simple substance obtained in each of Examples 2 to 7 was directly prepared as a solution raw material. Moreover, the film thickness test per film-forming time was done using the solution raw material of the organic hafnium compound respectively obtained in Examples 1-7 and Comparative Examples 1-3.
First, six silicon substrates each having a SiO 2 film (thickness 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in a film formation chamber of an MOCVD apparatus using a solution vaporization CVD method shown in FIG. Next, the substrate temperature was set to 220 ° C., the vaporization temperature was set to 70 ° C., and the pressure was set to about 266 Pa (2 Torr). O 2 gas was used as a reaction gas, and its partial pressure was 100 ccm. Next, Ar gas is used as a carrier gas, a solution raw material is supplied at a rate of 0.05 cc / min, and tetrakisdimethylaminosilane (Si (DMA) 4 ) is supplied as an organosilicon compound at a rate of 0.05 cc / min. When the film formation time was 30 seconds, 1 minute, 2 minutes, 3 minutes, 5 minutes, and 8 minutes, one sheet was taken out from the film formation chamber.

・ 成膜時間あたりの膜厚試験
成膜を終えた基板上のHfSiO薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
-Film thickness test per film formation time The film thickness of the HfSiO thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.

<評価>
得られた成膜時間あたりの膜厚結果を表3にそれぞれ示す。
<Evaluation>
Table 3 shows the obtained film thickness results per film formation time.

Figure 2005187356
Figure 2005187356

表3より明らかなように、比較例1〜3の溶液原料を用いた薄膜は、時間が経過しても膜厚が厚くならず、また均等な厚さに成膜されていないことから成膜の安定性が悪いことが判る。これに対して実施例1〜7の溶液原料を用いた薄膜は、成膜時間あたりの膜厚が厚く、かつ均等になっており、成膜安定性が高く、また成膜速度も高い結果が得られた。   As is clear from Table 3, the thin films using the solution raw materials of Comparative Examples 1 to 3 did not increase in thickness over time, and were not formed to a uniform thickness. It turns out that the stability of is bad. On the other hand, the thin film using the solution raw materials of Examples 1 to 7 has a thick and uniform film thickness per film formation time, high film formation stability, and high film formation speed. Obtained.

<比較評価4>
実施例9〜14でそれぞれ得られた有機ジルコニウム化合物単体をそのまま溶液原料として用意した。また実施例8〜14及び比較例4〜6でそれぞれ得られた有機ジルコニウム化合物の溶液原料を用いて成膜時間当たりの膜厚試験を行った。
先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を6枚ずつ用意し、基板を図1に示す溶液気化CVD法を用いたMOCVD装置の成膜室に設置した。次いで、基板温度を250℃、気化温度を80℃、圧力を約266Pa(2Torr)にそれぞれ設定した。反応ガスとしてO2ガスを用い、その分圧を100ccmとした。次に、キャリアガスとしてArガスを用い、溶液原料を0.05cc/分の割合で、有機シリコン化合物としてSi(DMA)4を0.05cc/分の割合でそれぞれ供給し、成膜時間が30秒、1分、2分、3分、5分及び8分となったときにそれぞれ1枚ずつ成膜室より取出した。
<Comparison evaluation 4>
The organic zirconium compound simple substance obtained in each of Examples 9 to 14 was directly prepared as a solution raw material. Moreover, the film thickness test per film-forming time was done using the solution raw material of the organic zirconium compound obtained in Examples 8-14 and Comparative Examples 4-6, respectively.
First, six silicon substrates each having a SiO 2 film (thickness 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in a film formation chamber of an MOCVD apparatus using the solution vaporization CVD method shown in FIG. Next, the substrate temperature was set to 250 ° C., the vaporization temperature was set to 80 ° C., and the pressure was set to about 266 Pa (2 Torr). O 2 gas was used as a reaction gas, and its partial pressure was 100 ccm. Next, Ar gas is used as a carrier gas, a solution raw material is supplied at a rate of 0.05 cc / min, and Si (DMA) 4 as an organosilicon compound is supplied at a rate of 0.05 cc / min, respectively, and a film formation time of 30 When one second, one minute, two minutes, three minutes, five minutes, and eight minutes were reached, one sheet was taken out from the film forming chamber.

・ 成膜時間あたりの膜厚試験
成膜を終えた基板上のZrSiO薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
-Film thickness test per film formation time The film thickness of the ZrSiO thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.

<評価>
得られた成膜時間あたりの膜厚結果を表4にそれぞれ示す。
<Evaluation>
Table 4 shows the obtained film thickness results per film formation time.

Figure 2005187356
Figure 2005187356

表4より明らかなように、比較例4〜6の溶液原料を用いた薄膜は、時間が経過しても膜厚が厚くならず、また均等な厚さに成膜されていないことから成膜の安定性が悪いことが判る。これに対して実施例8〜14の溶液原料を用いた薄膜は、成膜時間あたりの膜厚が厚く、かつ均等になっており、成膜安定性が高く、また成膜速度も高い結果が得られた。   As is clear from Table 4, the thin films using the solution raw materials of Comparative Examples 4 to 6 did not increase in thickness over time, and were not formed to a uniform thickness. It turns out that the stability of is bad. On the other hand, the thin films using the solution raw materials of Examples 8 to 14 have a thick and uniform film thickness per film formation time, high film formation stability, and high film formation speed. Obtained.

溶液気化CVD法を用いたMOCVD装置の概略図。Schematic of the MOCVD apparatus using the solution vaporization CVD method. 別の構造を有するMOCVD装置の概略図。The schematic of the MOCVD apparatus which has another structure.

Claims (6)

次の式(1)で示される有機金属化合物。
M(RCp)4 ……(1)
但し、式中のMはハフニウム又はジルコニウムであり、Rは炭素数1〜4の直鎖又は分岐状アルキル基であり、Cpはシクロペンタジエニル基を示す。
An organometallic compound represented by the following formula (1):
M (RCp) 4 ...... (1)
However, M in a formula is hafnium or zirconium, R is a C1-C4 linear or branched alkyl group, and Cp shows a cyclopentadienyl group.
次の式(2)で示される金属含有膜形成用の有機金属化合物。
M(Cp)4 ……(2)
但し、式中のMはハフニウム又はジルコニウムであり、Cpはシクロペンタジエニル基を示す。
An organometallic compound for forming a metal-containing film represented by the following formula (2).
M (Cp) 4 ...... (2)
However, M in the formula is hafnium or zirconium, and Cp represents a cyclopentadienyl group.
請求項1記載の式(1)で示される有機金属化合物又は請求項2記載の式(2)で示される有機金属化合物を有機溶媒に溶解したことを特徴とする金属含有膜形成用溶液原料。   A solution raw material for forming a metal-containing film, wherein the organometallic compound represented by the formula (1) according to claim 1 or the organometallic compound represented by the formula (2) according to claim 2 is dissolved in an organic solvent. 有機溶媒がテトラヒドロフラン、メチルテトラヒドロフラン、n-オクタン、イソオクタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ピリジン、ルチジン、酢酸ブチル、酢酸アミル、酢酸メチル及び酢酸エチルからなる群より選ばれた1種又は2種以上の溶媒である請求項3記載の溶液原料。   One or two organic solvents selected from the group consisting of tetrahydrofuran, methyltetrahydrofuran, n-octane, isooctane, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, pyridine, lutidine, butyl acetate, amyl acetate, methyl acetate and ethyl acetate The solution raw material according to claim 3, wherein the solution raw material is a seed or more solvent. 請求項1又は2記載の有機金属化合物、又は請求項3又は4記載の溶液原料を用いて成膜することを特徴とする金属含有膜の形成方法。   A method for forming a metal-containing film, comprising forming a film using the organometallic compound according to claim 1 or 2 or the solution raw material according to claim 3 or 4. 有機金属化学気相成長法により成膜する請求項5記載の金属含有膜の形成方法。
6. The method for forming a metal-containing film according to claim 5, wherein the film is formed by a metal organic chemical vapor deposition method.
JP2003428750A 2003-12-25 2003-12-25 Organic metal compound and its solution raw material and method for forming metal-containing film using the compound Pending JP2005187356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428750A JP2005187356A (en) 2003-12-25 2003-12-25 Organic metal compound and its solution raw material and method for forming metal-containing film using the compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428750A JP2005187356A (en) 2003-12-25 2003-12-25 Organic metal compound and its solution raw material and method for forming metal-containing film using the compound

Publications (1)

Publication Number Publication Date
JP2005187356A true JP2005187356A (en) 2005-07-14

Family

ID=34787616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428750A Pending JP2005187356A (en) 2003-12-25 2003-12-25 Organic metal compound and its solution raw material and method for forming metal-containing film using the compound

Country Status (1)

Country Link
JP (1) JP2005187356A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142415A (en) * 2005-11-16 2007-06-07 Asm Internatl Nv Method for film deposition by CVD or ALD
TWI415855B (en) * 2005-12-06 2013-11-21 Tri Chemical Lab Inc Hafnium-based compound, hafnium-based film-forming material, and hafnium-based film forming method
JP2014039045A (en) * 2006-06-02 2014-02-27 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for formation of dielectric film, novel precursor, and their use in semiconductor production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142415A (en) * 2005-11-16 2007-06-07 Asm Internatl Nv Method for film deposition by CVD or ALD
KR101370460B1 (en) 2005-11-16 2014-03-06 에이에스엠 인터내셔널 엔.브이. Method for the deposition of a film by cvd or ald
TWI415855B (en) * 2005-12-06 2013-11-21 Tri Chemical Lab Inc Hafnium-based compound, hafnium-based film-forming material, and hafnium-based film forming method
JP2014039045A (en) * 2006-06-02 2014-02-27 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for formation of dielectric film, novel precursor, and their use in semiconductor production

Similar Documents

Publication Publication Date Title
CN101815807B (en) Methods of preparing thin films by atomic layer deposition using monocyclopentadienyl trialkoxy hafnium and zirconium precursors
TWI464291B (en) Methods of preparing thin films by atomic layer deposition using titanium-based precursors
TWI496929B (en) Hafnium-and zirconium-containing precursors and methods of using the same
JP3499804B2 (en) Method for growing metal oxide thin film on substrate
JP2005209766A (en) Method for manufacturing oxide film containing hafnium
JP2003342732A (en) Solution raw material for organometallic chemical vapor deposition method containing tantalum complex and tantalum-containing thin film produced by using the same
JP2019056133A (en) Atomic layer deposition method for metal thin films
JP2005187356A (en) Organic metal compound and its solution raw material and method for forming metal-containing film using the compound
JP2001524981A (en) Chemical vapor deposition precursor
WO2005122229A1 (en) Material for forming capacitor film
JP2007197804A (en) Raw material for metal organic chemical vapor deposition and method for producing metal-containing film using the raw material
JP4211300B2 (en) ORGANIC TITANIUM COMPOUND, SOLUTION MATERIAL CONTAINING THE SAME, AND TITANIUM-CONTAINING DIELECTRIC THIN FILM PRODUCED THEREFROM
JP4363383B2 (en) Raw material liquid for metal organic chemical vapor deposition method and method for producing Hf-Si-containing composite oxide film using the raw material liquid
JP2006013267A (en) Organic lanthanum compound and manufacturing method of lanthanum-containing film using it
JP3632475B2 (en) Organic amino tantalum compound, raw material solution for metalorganic chemical vapor deposition containing the same, and tantalum nitride film made therefrom
JP4289141B2 (en) ORGANIC SILICON COMPOUND, SOLUTION RAW MATERIAL, AND METHOD FOR FORMING SILICON-CONTAINING FILM USING THE COMPOUND
JP2003335740A (en) Tantalum complex and solution raw material containing the complex and used for organic metal chemical vapor deposition method and tantalum-containing thin film formed from the same
JP2005023010A (en) Organovanadium compound, solution raw material containing the compound and method for forming vanadium-containing thin film
JP3117011B2 (en) Raw materials for metalorganic chemical vapor deposition containing organic tantalum compounds and tantalum-containing thin films made therefrom
JP4451050B2 (en) Zirconium raw material for CVD and method for producing lead zirconate titanate thin film using the same
JP2000053422A (en) Bismuth-containing multiple metal oxide film
KR100508110B1 (en) Organometallic complex and the preparation thereof
JP4296756B2 (en) Method for producing titanium-containing dielectric thin film from organic titanium compound and solution raw material containing the same
JP2005126334A (en) Organometallic compound and solution raw material and meal oxide thin film containing the same compound
JP4356242B2 (en) Organic titanium compound and solution raw material containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A02 Decision of refusal

Effective date: 20090609

Free format text: JAPANESE INTERMEDIATE CODE: A02