[go: up one dir, main page]

JP2005185041A - Structure of permanent magnet type generator for distributed power supply - Google Patents

Structure of permanent magnet type generator for distributed power supply Download PDF

Info

Publication number
JP2005185041A
JP2005185041A JP2003424732A JP2003424732A JP2005185041A JP 2005185041 A JP2005185041 A JP 2005185041A JP 2003424732 A JP2003424732 A JP 2003424732A JP 2003424732 A JP2003424732 A JP 2003424732A JP 2005185041 A JP2005185041 A JP 2005185041A
Authority
JP
Japan
Prior art keywords
winding
stator teeth
phase
windings
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003424732A
Other languages
Japanese (ja)
Other versions
JP4544855B2 (en
Inventor
Takeshi Shioda
剛 塩田
Katsutoshi Akaike
勝利 赤池
Takashi Sano
尚 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2003424732A priority Critical patent/JP4544855B2/en
Publication of JP2005185041A publication Critical patent/JP2005185041A/en
Application granted granted Critical
Publication of JP4544855B2 publication Critical patent/JP4544855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein relation among the number of teeth of a stator favorable in starting torque and winding workability, the winding connecting method and the number of poles of a rotor is not clarified, in a permanent magnet type generator of a generation set for a distributed power supply that extracts an approximated maximum output from a windmill by a diode rectifier, without using a PWM converter. <P>SOLUTION: In the permanent magnet type generator, the number of poles of the rotor is set as 6, the number of teeth of the stator is set as 9, and the number of types of windings that generate different induction voltages is set as 3. The first winding lowest, in the induction voltage generated, is wound round the tooth of each of the first to third stators, the second winding second-lowest in generated induction voltage is wound round the tooth of each of the fourth to sixth stators, and the third winding having the highest induction voltage is wound round the tooth of each of the seventh to ninth stators, thus allowing the three types of the windings to constitute three phases, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、風車又は水車により駆動される永久磁石型発電機から概略の最大出力を取り出す分散電源用永久磁石型発電機の構造に関するものである。   The present invention relates to a structure of a permanent magnet generator for a distributed power source that extracts an approximate maximum output from a permanent magnet generator driven by a windmill or a water turbine.

本出願人は先に、風車又は水車に接続された永久磁石型発電機より、PWMコンバータを用いずに交流を直流に変換して概略の最大出力を取り出すために、永久磁石型発電機の異なる誘起電圧を発生する複数の巻線の出力端子に個別のリアクトルを経て直列に個別の整流器を接続し、この個別の整流器の直流出力を加算して外部に出力する分散電源用発電装置について「特願2002−221714号」の「小型風力発電装置」にて提案している(特許文献1)。   In order to obtain an approximate maximum output from a permanent magnet generator connected to a windmill or a water turbine without using a PWM converter, the present applicant firstly uses a different permanent magnet generator. Regarding the power generator for distributed power supply that connects individual rectifiers in series via individual reactors to the output terminals of multiple windings that generate induced voltage, adds the DC output of these individual rectifiers, and outputs them to the outside. This is proposed in “Small wind power generator” of Japanese Patent Application No. 2002-221714 (Patent Document 1).

かかる先願技術を、図8の風車に接続された分散電源用発電装置を示す主回路単線結線図を参照して詳述する。
図8において、1は風車、2は先願技術の分散電源用発電装置、3は永久磁石型発電機、4〜6は第1〜第3のリアクトル、7〜9は第1〜第3の整流器、10は正側出力端子、11は負側出力端子、12はバッテリー、13〜15は第1〜第3の巻線の出力端子である。
The prior application technique will be described in detail with reference to a main circuit single line connection diagram showing a power generator for a distributed power source connected to the wind turbine of FIG.
In FIG. 8, 1 is a windmill, 2 is a power generator for distributed power supply of the prior application, 3 is a permanent magnet generator, 4 to 6 are first to third reactors, and 7 to 9 are first to third. The rectifier 10 is a positive output terminal, 11 is a negative output terminal, 12 is a battery, and 13 to 15 are output terminals of the first to third windings.

この永久磁石型発電機3は、絶縁され、かつ誘起電圧の異なる3巻線を有し、3巻線の中の巻数が一番少ないために一番誘起電圧の低い第1の巻線の出力端子13は、第1のリアクトル4に接続され、さらに第1の整流器7に接続される。
次に巻数が多い第2の巻線の出力端子14は、第2のリアクトル5に接続され、さらに第2の整流器8に接続される。
又、巻数が一番多いために一番誘起電圧の高い第3の巻線の出力端子15は、第3のリアクトル6に接続され、さらに第3の整流器9に接続される。
上記第1〜第3の整流器7〜9の各々の直流側は、正側出力端子10及び負側出力端子11に接続され、各巻線の合計出力がバッテリー12に接続される。
This permanent magnet generator 3 has three windings that are insulated and have different induced voltages, and since the number of turns in the three windings is the smallest, the output of the first winding having the lowest induced voltage is provided. The terminal 13 is connected to the first reactor 4 and further connected to the first rectifier 7.
Next, the output terminal 14 of the second winding having the largest number of turns is connected to the second reactor 5 and further connected to the second rectifier 8.
Further, since the number of turns is the largest, the output terminal 15 of the third winding having the highest induced voltage is connected to the third reactor 6 and further to the third rectifier 9.
The DC side of each of the first to third rectifiers 7 to 9 is connected to the positive output terminal 10 and the negative output terminal 11, and the total output of each winding is connected to the battery 12.

このように構成される分散電源用発電装置2より、概略の風車最大出力を得る方法を以下に示す。
図7は、風速をパラメータとした時の、風車回転数対風車出力特性の概要を説明した図である。
風車は、風車の形状及び風速Uが決まると、風車回転数Nに対する風車出力Pが一義的に定まり、例えば風速Ux及びUyに対する風車出力Pは、それぞれ図7の実線で示される。そして、種々の風速に対する風車出力Pのピークは、図7の一点鎖線で示す最大出力曲線のようになる。
すなわち、図7の風車回転数対風車出力特性において、風速がUxの時は、風速Uxの風車出力曲線と最大出力曲線との交点Sxに示すように、風車回転数Nxにおいて、風車最大出力Pxとなる。
又、風速がUyの時は、風車回転数Nyにおいて、風速Uyでの風車最大出力Pyとなる。
A method of obtaining a rough maximum wind turbine output from the power generator 2 for a distributed power source configured as described above will be described below.
FIG. 7 is a diagram for explaining the outline of the wind turbine rotation speed versus the wind turbine output characteristic when the wind speed is used as a parameter.
When the shape of the windmill and the wind speed U are determined, the windmill output P with respect to the windmill rotational speed N is uniquely determined. For example, the windmill output P with respect to the wind speeds Ux and Uy is indicated by a solid line in FIG. And the peak of the windmill output P with respect to various wind speeds becomes like the maximum output curve shown with the dashed-dotted line of FIG.
That is, when the wind speed is Ux in the wind turbine rotation speed vs. wind turbine output characteristics of FIG. 7, the wind turbine maximum output Px at the wind turbine rotation speed Nx as indicated by the intersection Sx of the wind turbine output curve of the wind speed Ux and the maximum output curve. It becomes.
When the wind speed is Uy, the windmill maximum output Py at the wind speed Uy is obtained at the windmill rotational speed Ny.

すなわち、図7の最大出力曲線について見方を変えて見ると、風から最大出力を得るためには、風車回転数Nが決まると、その時の永久磁石型発電機の出力Pを一義的に、最大出力曲線上の値に定めれば良いことを表している。   In other words, looking at the maximum output curve in FIG. 7 in order to obtain the maximum output from the wind, when the wind turbine rotation speed N is determined, the output P of the permanent magnet generator at that time is uniquely determined to be the maximum. This indicates that the value on the output curve may be determined.

図6は、先願技術が対象とする分散電源用発電装置2の直流出力をバッテリー等の定電圧源に接続した場合の説明図であり、分散電源用発電装置2の永久磁石型発電機内3の第1〜第3の巻線の各出力は、各巻線の誘起電圧値の違い、及び各巻線内部インダクタンスと各出力端子に接続される個別リアクトルによる電圧降下のために、図6の風車回転数対出力特性に示すW1〜W3のようになる。 FIG. 6 is an explanatory diagram in the case where the DC output of the distributed power generator 2 targeted by the prior application technology is connected to a constant voltage source such as a battery, and the inside 3 of the permanent magnet generator of the distributed power generator 2 The output of the first to third windings of FIG. 6 is caused by the difference in the induced voltage value of each winding and the voltage drop due to the individual inductance connected to each winding internal inductance and each output terminal. W1-W3 shown in the number vs. output characteristics.

すなわち、風車回転数Nが低い場合には、第3の巻線の発生電圧がバッテリー電圧より低いために、バッテリーには充電されない。しかし、風車回転数Nが上昇して、N3付近になると、電流が流れ始めて、風車回転数NがN3になると、第3の巻線の出力W3はPW3となる。これ以上に風車回転数Nが上昇して誘起電圧が上昇しても、バッテッリー電圧は、ほぼ一定であるが、巻線のインダクタンスによるインピーダンスが周波数に比例するために、出力W3はPW3よりも漸増するに留まる。
第2の巻線については、さらに回転数Nが上昇することにより出力が取れるが、内部インダクタンス等が小さいために大きな出力が取れる。第1の巻線については、さらに回転数Nが上昇したときに、さらに大きな出力が取れる。
That is, when the wind turbine rotation speed N is low, the voltage generated in the third winding is lower than the battery voltage, so the battery is not charged. However, when the wind turbine rotational speed N rises to near N3, current starts to flow, and when the wind turbine rotational speed N reaches N3, the output W3 of the third winding becomes PW3. Even if the wind turbine rotation speed N increases further and the induced voltage rises, the battery voltage is almost constant, but the impedance due to the inductance of the winding is proportional to the frequency, so the output W3 gradually increases from PW3. Stay on.
As for the second winding, an output can be obtained by further increasing the rotational speed N, but a large output can be obtained because the internal inductance and the like are small. As for the first winding, when the rotation speed N further increases, a larger output can be obtained.

このように構成される分散電源用発電装置2のバッテリー12等の定電圧源への出力は、第1〜第3の巻線の出力W1〜W3を加算して得られる合計出力と同一である。
図5は、先願技術が対象とする分散電源用発電装置の風車回転数対風車出力特性図である。
図5の実線で示す最大出力曲線は、図7で示した最大出力曲線と同一の曲線であり、風車回転数Nに対する出力Pが、この曲線上にあれば、風車より最大出力を取り出せる。
従って、分散電源用発電装置2では、図5の点線で示すが如き近似出力曲線上の出力で近似的に取り出す。すなわち、前記第1〜第3の巻線の出力W1〜W3を加算して得られる出力により、近似出力曲線上の合計出力を実現している。
特願2002−221714号(図1)
The output to the constant voltage source such as the battery 12 of the power generator 2 for the distributed power source configured as described above is the same as the total output obtained by adding the outputs W1 to W3 of the first to third windings. .
FIG. 5 is a characteristic diagram of wind turbine rotation speed vs. wind turbine output of the distributed power generator targeted by the prior application technique.
The maximum output curve shown by the solid line in FIG. 5 is the same curve as the maximum output curve shown in FIG. 7. If the output P with respect to the wind turbine rotation speed N is on this curve, the maximum output can be extracted from the wind turbine.
Therefore, in the power generator 2 for the distributed power source, the output is approximately extracted with the output on the approximate output curve as shown by the dotted line in FIG. That is, the total output on the approximate output curve is realized by the output obtained by adding the outputs W1 to W3 of the first to third windings.
Japanese Patent Application No. 2002-221714 (FIG. 1)

以上のような分散電源用発電装置2の永久磁石型発電機3において、近似出力曲線上の合計出力を得るための良好な固定子歯数、巻線結線方法および回転子極数の関係が不明であるという問題があった。   In the permanent magnet generator 3 of the power generator 2 for the distributed power source as described above, the relationship among the number of good stator teeth, the winding connection method, and the number of rotor poles for obtaining the total output on the approximate output curve is unknown. There was a problem of being.

従って、本発明では、永久磁石型発電機3において、回転子極数を6、固定子歯数を9で構成し、異なる誘起電圧を発生する巻線を3種類として、第1〜3の固定子歯には発生する誘起電圧の最も低い第1の巻線を巻き、第4〜6の固定子歯には発生する誘起電圧が次に低い第2の巻線を巻き、第7〜9の固定子歯には誘起電圧の一番高い第3の巻線を巻いて、3種類の巻線は各々3相を構成するものである。   Therefore, in the present invention, in the permanent magnet generator 3, the number of rotor poles is 6 and the number of stator teeth is 9, and three types of windings that generate different induced voltages are used. A first winding with the lowest induced voltage is wound around the child teeth, and a second winding with the next lowest induced voltage is wound around the fourth to sixth stator teeth. The stator teeth are wound with a third winding having the highest induced voltage, and the three types of windings constitute three phases.

本発明においては、PWMコンバータを用いずに交流を直流に変換して概略の最大出力を取り出す永久磁石型発電機の、起動時のトルクを減少させることができ、固定子歯に巻く巻線の種類を減少させることができる固定子歯数、巻線結線方法および回転子極数の関係を与えることができる。   In the present invention, it is possible to reduce the starting torque of the permanent magnet generator that takes out the approximate maximum output by converting alternating current into direct current without using a PWM converter. The relationship between the number of stator teeth, the winding connection method and the number of rotor poles that can be reduced in type can be given.

さらに、本発明では、永久磁石型発電機3において、回転子極数を10、固定子歯を12、異なる誘起電圧を発生する巻線を3種類とし、第1、2、5、6、9、10の固定子歯には発生する誘起電圧の低い第1の巻線のみ巻き、第3、4、7、8、11、12の固定子歯には前記巻線より誘起電圧の高い第2および第3の巻線を巻き、第1と第2の固定子歯、第5と第6の固定子歯、第9と第10の固定子歯、第3と第4の固定子歯、第7と第8の固定子歯、および第11と第12の固定子歯に巻く巻線の方向を互いに逆方向にして、それぞれ直列接続して同一相を構成し、3種類の巻線は各々3相を構成するものである。   Further, in the present invention, in the permanent magnet generator 3, the number of rotor poles is 10, the stator teeth are 12, and the windings generating different induced voltages are three types, and the first, second, fifth, sixth, ninth Only the first winding having a low induced voltage is wound around the 10 stator teeth, and the second, higher induced voltage than the windings is wound on the third, fourth, seventh, eighth, eleventh and twelve stator teeth. And the third winding, the first and second stator teeth, the fifth and sixth stator teeth, the ninth and tenth stator teeth, the third and fourth stator teeth, The windings wound around the seventh and eighth stator teeth and the eleventh and twelfth stator teeth are opposite to each other, and are connected in series to form the same phase. It constitutes three phases.

図1は、本発明の第1の実施例を示す断面図であって、3は永久磁石型発電機、50は固定子、51は固定子ヨーク、60は回転子である。ここでは、回転子極数を6、固定子歯数を9、異なる誘起電圧を発生する巻線を3種類とし、第1〜3の固定子歯31〜33には発生する誘起電圧の最も低い第1の巻線111、211、311を巻き、第4〜6の固定子歯34〜36には発生する誘起電圧が次に低い第2の巻線121、221、321を巻き、第7〜9の固定子歯37〜39には誘起電圧の一番高い第3の巻線131、231、331を巻いて、3種類の巻線は各々3相を構成するものである。   FIG. 1 is a sectional view showing a first embodiment of the present invention, wherein 3 is a permanent magnet generator, 50 is a stator, 51 is a stator yoke, and 60 is a rotor. Here, the number of rotor poles is 6, the number of stator teeth is 9, and three types of windings that generate different induced voltages are used, and the first to third stator teeth 31 to 33 have the lowest induced voltage. The first windings 111, 211, 311 are wound, and the fourth to sixth stator teeth 34 to 36 are wound with the second windings 121, 221, 321 having the next lowest induced voltage, and the seventh to Nine stator teeth 37 to 39 are wound with third windings 131, 231 and 331 having the highest induced voltage, and the three types of windings constitute three phases.

このように各固定子歯に巻かれた3種類の巻線は、第1の巻線111、211、311により図5のW1を出力し、第2の巻線121、221、321により図5のW2を出力し、第3の巻線131、231、331により図5のW3を出力する。   The three types of windings wound around the stator teeth in this way output W1 of FIG. 5 by the first windings 111, 211, 311 and FIG. 5 by the second windings 121, 221 and 321. W2 is output, and the third windings 131, 231 and 331 output W3 in FIG.

図1の構成の固定子歯数および巻線結線方法により、製作工数の少ない分散電源用発電装置2の永久磁石型発電機3を構成できる。さらに、回転子極数が6、固定子歯数が9なので、その最小公倍数は18となり、磁気抵抗の変化が小さいために、永久磁石型発電機の起動時のトルクを減少させることができる。
又、永久磁石型発電機3の巻線に電流が流れて、半径方向の磁気吸引力が問題となるときは、2以上の同一整数nにより回転子極数を6のn倍、固定子歯数を9のn倍で構成すれば、半径方向の磁気吸引力をバランスさせることができる。
The permanent magnet generator 3 of the power generator 2 for a distributed power source with a small number of manufacturing steps can be configured by the number of stator teeth and the winding connection method having the configuration of FIG. Furthermore, since the number of rotor poles is 6 and the number of stator teeth is 9, the least common multiple is 18, and the change in magnetic resistance is small, so that the torque at the time of starting the permanent magnet generator can be reduced.
Also, when a current flows through the winding of the permanent magnet generator 3 and the magnetic attractive force in the radial direction becomes a problem, the number of rotor poles is increased to n times 6 by the same integer n of 2 or more. If the number is configured to be n times nine, the magnetic attractive force in the radial direction can be balanced.

図2は、本発明の第2の実施例を示す断面図であって、回転子極数を10、固定子歯数を12、異なる誘起電圧を発生する巻線を3種類とし、3種類の巻線は各々3相を構成するものである。図1と同一番号は同一構成部品を表す。
第1、2の固定子歯31、32、第5、6の固定子歯35、36、および第9、10の固定子歯39、40には発生する誘起電圧の最も低い第1の巻線111、112、211、212、および311、312を巻く。
ここで、巻線112は巻線111に対して逆方向に巻き直列接続されてU相を構成し、巻線212は巻線211に対して逆方向に巻き直列接続されてV相を構成し、巻線312は巻線311に対して逆方向に巻き直列接続されてW相を構成し、図5のW1を出力する。
FIG. 2 is a cross-sectional view showing a second embodiment of the present invention. The number of rotor poles is 10, the number of stator teeth is 12, and three types of windings generating different induced voltages are used. Each of the windings constitutes three phases. The same numbers as those in FIG. 1 represent the same components.
The first winding with the lowest induced voltage is generated on the first and second stator teeth 31 and 32, the fifth and sixth stator teeth 35 and 36, and the ninth and tenth stator teeth 39 and 40. 111, 112, 211, 212, and 311 and 312 are wound.
Here, the winding 112 is wound in series in the reverse direction with respect to the winding 111 to form a U phase, and the winding 212 is wound in series in the reverse direction to the winding 211 to form a V phase. The winding 312 is wound in series in the reverse direction with respect to the winding 311 to form a W phase and outputs W1 in FIG.

第3、4の固定子歯33、34、第7、8の固定子歯37、38、および第11、12の固定子歯41、42には、発生する誘起電圧が次に低い第2の巻線121、122、221、222、および321、322と、発生する誘起電圧が一番高い第3の巻線131、132、231、232、および331、332を巻く。
ここで、巻線122は巻線121に対して逆方向に巻かれてU相を構成し、巻線222は巻線221に対して逆方向に巻かれてV相を構成し、巻線322は巻線321に対して逆方向に巻かれてW相を構成し、図5のW2を出力する。
さらに、巻線132は巻線131に対して逆方向に巻かれてU相を構成し、巻線232は巻線231に対して逆方向に巻かれてV相を構成し、巻線332は巻線331に対して逆方向に巻かれてW相を構成し、図5のW3を出力する。
The third and fourth stator teeth 33 and 34, the seventh and eighth stator teeth 37 and 38, and the eleventh and twelfth stator teeth 41 and 42 have the second lowest induced voltage generated. The windings 121, 122, 221, 222, and 321, 322 and the third windings 131, 132, 231, 232, and 331, 332 that generate the highest induced voltage are wound.
Here, the winding 122 is wound in the reverse direction with respect to the winding 121 to form the U phase, and the winding 222 is wound in the reverse direction with respect to the winding 221 to form the V phase. Is wound in the reverse direction with respect to the winding 321 to form a W phase, and outputs W2 in FIG.
Further, the winding 132 is wound in the reverse direction with respect to the winding 131 to form the U phase, the winding 232 is wound in the reverse direction with respect to the winding 231 to form the V phase, and the winding 332 is W phase is wound around the winding 331 in the reverse direction, and W3 in FIG. 5 is output.

ここで、第3、4の固定子歯33、34等に、巻線作業を煩雑にしてまで出力の小さい2種類の巻線を巻いたのは、固定子歯と固定子ヨーク51の間を構成する固定子スロットの巻線占有率をできるだけ同じにして、無駄なスペースを無くして永久磁石型発電機3の体積を減少させるためである。 Here, two types of small windings are wound around the third and fourth stator teeth 33, 34, etc. until the winding work is complicated, between the stator teeth and the stator yoke 51. This is to reduce the volume of the permanent magnet generator 3 by making the winding occupancy ratios of the stator slots to be configured the same as much as possible to eliminate useless space.

図2の構成の固定子歯数および巻線結線方法により、図1の本発明の第1の実施例に示す構成よりは同一固定子歯に巻く巻線の種類は多いが、製作工数の比較的少ない分散電源用発電装置2の永久磁石型発電機3を構成できる。
又、回転子極数が10、固定子歯数が12なので、その最小公倍数は60となり、図1の本発明の第1の実施例に示す構成よりも多くなり、より磁気抵抗の変化が小さいので、さらに永久磁石型発電機の起動時のトルクを減少させることができる。
Compared with the configuration shown in the first embodiment of the present invention in FIG. 1, there are more types of windings wound on the same stator tooth, but the number of manufacturing steps is compared. Therefore, it is possible to configure the permanent magnet generator 3 of the power generator 2 for the distributed power source.
Further, since the number of rotor poles is 10 and the number of stator teeth is 12, the least common multiple is 60, which is larger than the configuration shown in the first embodiment of the present invention in FIG. 1, and the change in magnetic resistance is smaller. Therefore, the torque at the time of starting the permanent magnet generator can be further reduced.

多極が要求される永久磁石型発電機3においては、2以上の同一整数nにより回転子極数を10のn倍、固定子歯数を12のn倍で構成すれば良い。
nが2以上の整数のとき、3種類の巻線の誘起電圧は直列または並列に接続して、バッテリー電圧に合わせて外部に出力することが可能である。
In the permanent magnet generator 3 requiring multiple poles, the number of rotor poles may be configured to be n times 10 and the number of stator teeth 12 times by the same integer n of 2 or more.
When n is an integer of 2 or more, the induced voltages of the three types of windings can be connected in series or in parallel and output to the outside in accordance with the battery voltage.

図3は、本発明の第3の実施例を示す断面図であって、回転子極数を16、固定子歯数を18、異なる誘起電圧を発生する巻線を3種類とし、3種類の巻線は各々3相を構成するものである。図1と同一番号は同一構成部品を表す。
第1〜第3の固定子歯31〜33に、第1のU相巻線111〜113を巻き、第7〜第9の固定子歯37〜39に、第1のV相巻線211〜213を巻き、第13〜第15の固定子歯に、第1のW相巻線311〜313を巻く。
ここで、第1のU相巻線112は他の第1のU相巻線とは逆方向に、第1のV相巻線212は他の第1のV相巻線とは逆方向に、さらに第1のW相巻線312は他の第1のW相巻線とは逆方向に、それぞれ巻かれて図5のW1を出力する。
FIG. 3 is a cross-sectional view showing a third embodiment of the present invention. The number of rotor poles is 16, the number of stator teeth is 18, and three types of windings generating different induced voltages are used. Each of the windings constitutes three phases. The same numbers as those in FIG. 1 represent the same components.
First U-phase windings 111 to 113 are wound around first to third stator teeth 31 to 33, and first V-phase windings 211 to 111 are wound around seventh to ninth stator teeth 37 to 39. 213 is wound, and first W-phase windings 311 to 313 are wound around the 13th to 15th stator teeth.
Here, the first U-phase winding 112 is in the opposite direction to the other first U-phase windings, and the first V-phase winding 212 is in the opposite direction to the other first V-phase windings. Further, the first W-phase winding 312 is wound in the opposite direction to the other first W-phase windings, and outputs W1 in FIG.

第4〜第6の固定子歯34〜36に、第2のU相巻線121〜123と第3のU相巻線131〜133を巻き、第10〜第12の固定子歯40〜42に、第2のV相巻線221〜223と第3のV相巻線231〜233を巻き、第16〜第18の固定子歯に、第2のW相巻線321〜323と第3のW相巻線331〜333を巻く。
ここで、第2のU相巻線122は他の第2のU相巻線とは逆方向に、第2のV相巻線222は他の第2のV相巻線とは逆方向に、さらに第2のW相巻線322は他の第2のW相巻線とは逆方向に、それぞれ巻かれて図5のW2を出力する。
又、第3のU相巻線132は他の第3のU相巻線とは逆方向に、第3のV相巻線232は他の第3のV相巻線とは逆方向に、さらに第3のW相巻線332は他の第3のW相巻線とは逆方向に、それぞれ巻かれて図5のW3を出力する。
The second U-phase windings 121 to 123 and the third U-phase windings 131 to 133 are wound around the fourth to sixth stator teeth 34 to 36, and the tenth to twelfth stator teeth 40 to 42 are wound. The second V-phase windings 221 to 223 and the third V-phase windings 231 to 233 are wound around the 16th to 18th stator teeth, and the second W-phase windings 321 to 323 and the third W-phase windings 331 to 333 are wound.
Here, second U-phase winding 122 is in the opposite direction to the other second U-phase winding, and second V-phase winding 222 is in the opposite direction to the other second V-phase winding. Further, the second W-phase winding 322 is wound in the opposite direction to the other second W-phase windings, and outputs W2 in FIG.
Also, the third U-phase winding 132 is in the opposite direction to the other third U-phase winding, and the third V-phase winding 232 is in the opposite direction from the other third V-phase winding. Further, the third W-phase winding 332 is wound in the opposite direction to the other third W-phase windings to output W3 in FIG.

図3の構成の固定子歯数および巻線結線方法により、図1の本発明の第1の実施例に示す構成よりは同一固定子歯に巻く巻線の種類は多いが、製作工数の比較的少ない分散電源用発電装置2の永久磁石型発電機3を構成できる。
又、回転子極数が16、固定子歯数が18なので、その最小公倍数は72となり、図2の本発明の第2の実施例に示す構成よりも多くなり、より磁気抵抗の変化が小さいので、さらに永久磁石型発電機の起動時のトルクを減少させることができる。
Compared with the configuration shown in the first embodiment of the present invention in FIG. 1, there are more types of windings wound on the same stator tooth by the number of stator teeth and the winding connection method of the configuration in FIG. Therefore, it is possible to configure the permanent magnet generator 3 of the power generator 2 for the distributed power source.
Further, since the number of rotor poles is 16 and the number of stator teeth is 18, its least common multiple is 72, which is larger than the configuration shown in the second embodiment of the present invention in FIG. 2, and the change in magnetic resistance is smaller. Therefore, the torque at the time of starting the permanent magnet generator can be further reduced.

多極が要求される永久磁石型発電機3においては、2以上の同一整数nにより回転子極数を16のn倍、固定子歯数を18のn倍で構成すれば良い。
nが2以上の整数のとき、3種類の巻線の誘起電圧は直列または並列に接続して、バッテリー電圧に合わせて外部に出力することが可能である。
In the permanent magnet generator 3 that requires multiple poles, the number of rotor poles may be configured to be n times 16 and the number of stator teeth 18 times by the same integer n of 2 or more.
When n is an integer of 2 or more, the induced voltages of the three types of windings can be connected in series or in parallel and output to the outside in accordance with the battery voltage.

図4は、本発明の第4の実施例を示す断面図であって、回転子極数を8、固定子歯数を6、異なる誘起電圧を発生する巻線を3種類とし、3種類の巻線は各々3相を構成するものである。図1と同一番号は同一構成部品を表す。
第1、第4の固定子歯31、34に、第1のU相巻線111、112、第2のU相巻線121、122、および第3のU相巻線131、132を巻き、第2、第5の固定子歯32、35に、第1のV相巻線211、212、第2のV相巻線221、222、および第3のV相巻線231、232を巻き、第3、第6の固定子歯33、36に、第1のW相巻線311、312、第2のW相巻線321、322、および第3のW相巻線331、332を巻く。
FIG. 4 is a cross-sectional view showing a fourth embodiment of the present invention. The number of rotor poles is 8, the number of stator teeth is 6, and three types of windings generating different induced voltages are used. Each of the windings constitutes three phases. The same numbers as those in FIG. 1 represent the same components.
First U-phase windings 111, 112, second U-phase windings 121, 122, and third U-phase windings 131, 132 are wound around the first and fourth stator teeth 31, 34, Wind the first V-phase windings 211 and 212, the second V-phase windings 221 and 222, and the third V-phase windings 231 and 232 around the second and fifth stator teeth 32 and 35, The first W-phase windings 311 and 312, the second W-phase windings 321 and 322, and the third W-phase windings 331 and 332 are wound around the third and sixth stator teeth 33 and 36.

ここで、第1のU相巻線111、112、第1のV相巻線211、212、および第1のW相巻線311、312は、それぞれ直列に接続して図5のW1を出力する。又、第2のU相巻線121、122、第2のV相巻線221、222、および第2のW相巻線321、322は、それぞれ直列に接続して図5のW2を出力する。さらに第3のU相巻線131、132、第3のV相巻線231、232、および第3のW相巻線331、332は、それぞれ直列に接続して図5のW3を出力する。   Here, the first U-phase windings 111 and 112, the first V-phase windings 211 and 212, and the first W-phase windings 311 and 312 are connected in series to output W1 in FIG. To do. Further, the second U-phase windings 121 and 122, the second V-phase windings 221 and 222, and the second W-phase windings 321 and 322 are connected in series to output W2 in FIG. . Furthermore, third U-phase windings 131 and 132, third V-phase windings 231 and 232, and third W-phase windings 331 and 332 are connected in series to output W3 in FIG.

図4の構成の固定子歯数および巻線結線方法により、図1の本発明の第1の実施例に示す構成よりは同一固定子歯に巻く巻線の種類は多いが、固定子歯数が少ないために製作工数の少ない分散電源用発電装置2の永久磁石型発電機3を構成できる。
又、回転子極数が8、固定子歯数が6なので、その最小公倍数は24となり、磁気抵抗の変化が小さいので、永久磁石型発電機の起動時のトルクを減少させることができる。
Although the number of types of windings wound around the same stator teeth is larger than that of the configuration shown in the first embodiment of the present invention in FIG. Therefore, it is possible to configure the permanent magnet generator 3 of the power generator 2 for the distributed power source with a small number of manufacturing steps.
Further, since the number of rotor poles is 8 and the number of stator teeth is 6, the least common multiple is 24, and the change in magnetic resistance is small, so that the torque at the time of starting the permanent magnet generator can be reduced.

多極が要求される永久磁石型発電機3においては、回転子極数と固定子歯数の比を8:6、12:9、16:12のように、n=1を除く整数nを用いて、回転子極数を4のn倍、固定子歯数を3のn倍で構成すれば良い。
又、3種類の巻線の誘起電圧は直列または並列に接続して、バッテリー電圧に合わせて外部に出力することが可能である。
In the permanent magnet generator 3 that requires multiple poles, the ratio of the number of rotor poles to the number of stator teeth is set to an integer n excluding n = 1, such as 8: 6, 12: 9, and 16:12. The number of rotor poles may be configured to be n times 4 and the number of stator teeth may be n times 3.
The induced voltages of the three types of windings can be connected in series or in parallel and output to the outside in accordance with the battery voltage.

図1〜図4における本発明の実施例では、インナーロータで説明したがアウターロータにおいても、同様に構成できる。 In the embodiment of the present invention shown in FIGS. 1 to 4, the inner rotor has been described. However, the outer rotor can be similarly configured.

このような分散電源用発電装置の永久磁石型発電機を用いれば、風車又は水車の出力特性に沿った近似出力曲線上の合計出力を得るための、巻線の作業性が良好で、起動トルクが小さな固定子歯数、巻線結線方法および回転子極数の関係を与えることができるので、実用上おおいに有用である。 By using such a permanent magnet generator of a power generator for a distributed power source, the workability of the winding is good for obtaining the total output on the approximate output curve in accordance with the output characteristics of the windmill or turbine, and the starting torque Can provide a small relationship between the number of stator teeth, the winding connection method, and the number of rotor poles, which is very useful in practice.

本発明の、第1の風車又は水車により駆動される分散電源用発電装置の永久磁石型発電機の構造図である。(実施例1)FIG. 3 is a structural diagram of a permanent magnet generator of a power generator for a distributed power source driven by a first windmill or water turbine according to the present invention. (Example 1) 本発明の、第2の風車又は水車により駆動される分散電源用発電装置の永久磁石型発電機の構造図である。(実施例2)FIG. 3 is a structural diagram of a permanent magnet generator of a distributed power generator that is driven by a second windmill or water turbine according to the present invention. (Example 2) 本発明の、第3の風車又は水車により駆動される分散電源用発電装置の永久磁石型発電機の構造図である。(実施例3)FIG. 6 is a structural diagram of a permanent magnet generator of a distributed power generator that is driven by a third windmill or water turbine of the present invention. Example 3 本発明の、第4の風車又は水車により駆動される分散電源用発電装置の永久磁石型発電機の構造図である。(実施例4)FIG. 6 is a structural diagram of a permanent magnet generator of a power generator for a distributed power source driven by a fourth wind turbine or water turbine according to the present invention. (Example 4) 先願技術が対象とする分散電源用発電装置の風車回転数対風車出力特性図である。It is a windmill rotation speed vs. windmill output characteristic figure of the generator device for distributed power sources which a prior application technique makes object. 先願技術が対象とする分散電源用発電装置の動作原理を説明するための図である。It is a figure for demonstrating the operation | movement principle of the power generator for distributed power supplies which a prior application technique makes object. 風速をパラメータとした時の、風車回転数対風車出力特性の概要を説明する図である。It is a figure explaining the outline | summary of a windmill rotation speed versus windmill output characteristic when a wind speed is made into a parameter. 先願技術の分散電源用発電装置の主回路単線結線図である。It is a main circuit single line connection diagram of the power generator for distributed power supplies of prior application technology.

符号の説明Explanation of symbols

1 風車
2 分散電源用発電装置
3 永久磁石型発電機
4〜6 第1〜第3のリアクトル
7〜9 第1〜第3の整流器
10 正側出力端子
11 負側出力端子
12 バッテリー
13〜15 第1〜第3の出力端子
31〜48 第1〜第18の固定子歯
50 固定子
51 固定子ヨーク
60 回転子
111〜113 第1のU相巻線
211〜213 第1のV相巻線
311〜313 第1のW相巻線
121〜123 第2のU相巻線
221〜223 第2のV相巻線
321〜323 第2のW相巻線
131〜133 第3のU相巻線
231〜233 第3のV相巻線
331〜333 第3のW相巻線
DESCRIPTION OF SYMBOLS 1 Windmill 2 Distributed power generator 3 Permanent magnet type generators 4-6 First to third reactors 7-9 First to third rectifiers 10 Positive output terminal 11 Negative output terminal 12 Batteries 13-15 1st to 3rd output terminals 31 to 48 1st to 18th stator teeth 50 Stator 51 Stator yoke 60 Rotors 111 to 113 First U-phase windings 211 to 213 First V-phase winding 311 313 First W-phase windings 121-123 Second U-phase windings 221-223 Second V-phase windings 321-323 Second W-phase windings 131-133 Third U-phase winding 231 ~ 233 Third V-phase winding 331-333 Third W-phase winding

Claims (4)

風車又は水車により駆動されて、異なる誘起電圧を発生する複数の巻線により構成される永久磁石型発電機の交流出力を、前記複数の巻線の出力端子に個別のリアクトルを経て直列に接続される個別の整流器により整流し、該個別の整流器の直流出力を加算して外部に出力する分散電源用発電装置の永久磁石型発電機3において、回転子極数を6、固定子歯数を9、異なる誘起電圧を発生する巻線を3種類とし、第1〜3の固定子歯には発生する誘起電圧の最も低い第1の巻線を巻き、第4〜6の固定子歯には発生する誘起電圧が次に低い第2の巻線を巻き、第7〜9の固定子歯には誘起電圧の一番高い第3の巻線を巻いて、3種類の巻線は各々3相を構成することを特徴とする分散電源用永久磁石型発電機の構造。 The AC output of a permanent magnet generator that is driven by a windmill or a water turbine and is composed of a plurality of windings that generate different induced voltages is connected in series to the output terminals of the plurality of windings via individual reactors. In the permanent magnet generator 3 of the power generator for a distributed power source that rectifies by an individual rectifier and adds the direct current output of the individual rectifier and outputs it to the outside, the number of rotor poles is 6 and the number of stator teeth is 9 Three types of windings that generate different induced voltages are used, the first winding having the lowest induced voltage is wound around the first to third stator teeth, and the fourth to sixth stator teeth are generated. The second winding with the next lowest induced voltage is wound, and the third winding having the highest induced voltage is wound on the seventh to ninth stator teeth. A structure of a permanent magnet generator for a distributed power source, characterized by comprising: 回転子極数を10、固定子歯を12、異なる誘起電圧を発生する巻線を3種類とし、第1、2、5、6、9、10の固定子歯には第1の巻線を巻き、第2の固定子歯の巻線は第1の固定子歯の巻線に対して逆方向に巻かれてU相を構成し、第6の固定子歯の巻線は第5の固定子歯の巻線に対して逆方向に巻かれてV相を構成し、第10の固定子歯の巻線は第9の固定子歯の巻線に対して逆方向に巻かれてW相を構成し、第3、4、7、8、11、12の固定子歯には第2の巻線および第3の巻線を巻き、第4の固定子歯の巻線は第3の固定子歯の巻線に対して逆方向に巻かれて各々U相を構成し、第8の固定子歯の巻線は第7の固定子歯の巻線に対して逆方向に巻かれて各々V相を構成し、第12の固定子歯の巻線は第11の固定子歯の巻線に対して逆方向に巻かれて各々W相を構成することを特徴とする請求項1記載の分散電源用永久磁石型発電機の構造。 The number of rotor poles is 10, the stator teeth are 12, the windings generating different induced voltages are three types, and the first winding is used for the first, second, fifth, sixth, ninth and tenth stator teeth. The winding of the second stator tooth is wound in the opposite direction to the winding of the first stator tooth to form the U phase, and the winding of the sixth stator tooth is the fifth fixed Winding in the opposite direction with respect to the winding of the child tooth constitutes the V phase, and winding of the tenth stator tooth is wound in the opposite direction with respect to the winding of the ninth stator tooth to form the W phase. And the third, fourth, seventh, eighth, eleventh and twelfth stator teeth are wound with the second and third windings, and the fourth stator tooth winding is the third fixed. Each of the stator teeth is wound in the opposite direction to form a U phase, and each of the eighth stator teeth is wound in the opposite direction with respect to the seventh stator teeth. The V-phase is formed, and the winding of the twelfth stator tooth is changed to the winding of the eleventh stator tooth. Claim 1 structure of a permanent magnet generator for distributed power wherein the wound in opposite directions, characterized in that each constituting the W phase and. 回転子極数を16、固定子歯数を18、異なる誘起電圧を発生する巻線を3種類とし、第1〜第3の固定子歯に第1のU相巻線を巻き、第7〜第9の固定子歯に第1のV相巻線を巻き、第13〜第15の固定子歯に第1のW相巻線を巻き、第4〜第6の固定子歯に第2のU相巻線と第3のU相巻線を巻き、第10〜第12の固定子歯に第2のV相巻線と第3のV相巻線を巻き、第16〜第18の固定子歯に第2のW相巻線と第3のW相巻線を巻き、第2、5、8、11、14、17の固定子歯に巻く巻線は他の固定子歯に巻く巻線に対して逆方向に巻くことを特徴とする請求項1記載の分散電源用永久磁石型発電機の構造。   The number of rotor poles is 16, the number of stator teeth is 18, three types of windings generating different induced voltages, the first U-phase winding is wound around the first to third stator teeth, A first V-phase winding is wound around the ninth stator tooth, a first W-phase winding is wound around the thirteenth to fifteenth stator teeth, and a second is wound around the fourth to sixth stator teeth. The U-phase winding and the third U-phase winding are wound, the second V-phase winding and the third V-phase winding are wound around the 10th to 12th stator teeth, and the 16th to 18th fixings are wound. The second W-phase winding and the third W-phase winding are wound around the child teeth, and the windings wound around the second, fifth, eighth, eleventh, fourteenth and seventeenth stator teeth are wound around the other stator teeth. The structure of a permanent magnet generator for a distributed power source according to claim 1, wherein the structure is wound in a direction opposite to the wire. 回転子極数を8、固定子歯数を6、異なる誘起電圧を発生する巻線を3種類とし、第1、第4の固定子歯に第1〜第3のU相巻線を巻き、第2、第5の固定子歯に第1〜第3のV相巻線を巻き、第3、第6の固定子歯に第1〜第3のW相巻線を巻くことを特徴とする請求項1記載の分散電源用永久磁石型発電機の構造。   The number of rotor poles is 8, the number of stator teeth is 6, and three types of windings generating different induced voltages are used, and the first to third U-phase windings are wound around the first and fourth stator teeth. The first to third V-phase windings are wound around the second and fifth stator teeth, and the first to third W-phase windings are wound around the third and sixth stator teeth. The structure of the permanent magnet generator for a distributed power source according to claim 1.
JP2003424732A 2003-12-22 2003-12-22 Structure of permanent magnet generator for distributed power supply Expired - Fee Related JP4544855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424732A JP4544855B2 (en) 2003-12-22 2003-12-22 Structure of permanent magnet generator for distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424732A JP4544855B2 (en) 2003-12-22 2003-12-22 Structure of permanent magnet generator for distributed power supply

Publications (2)

Publication Number Publication Date
JP2005185041A true JP2005185041A (en) 2005-07-07
JP4544855B2 JP4544855B2 (en) 2010-09-15

Family

ID=34784837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424732A Expired - Fee Related JP4544855B2 (en) 2003-12-22 2003-12-22 Structure of permanent magnet generator for distributed power supply

Country Status (1)

Country Link
JP (1) JP4544855B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005102477A (en) * 2003-08-26 2005-04-14 Honda Motor Co Ltd Stator winding and method for manufacturing stator winding
JP2006311716A (en) * 2005-04-28 2006-11-09 Toyota Motor Corp Winding structure of rotating electrical machine
JP2007110790A (en) * 2005-10-12 2007-04-26 Toyo Electric Mfg Co Ltd Winding method for permanent magnet type generator for distributed power source
WO2008046345A1 (en) * 2006-10-18 2008-04-24 Gang Liu A magnetic-path-enclosing generator
WO2009021461A1 (en) * 2007-08-14 2009-02-19 Gang Liu A generator with magnetic-path-enclosing coils
CN102005884A (en) * 2010-11-11 2011-04-06 哈尔滨工业大学 Wide rotation speed range output permanent magnet constant speed generator system
JP2011103732A (en) * 2009-11-11 2011-05-26 Toyo Electric Mfg Co Ltd Power generation device for distributed power supply
JP2011528891A (en) * 2008-07-22 2011-11-24 ドゥラショー エス.アー. Motor with eccentric rotor
WO2013102444A1 (en) * 2012-01-06 2013-07-11 Liu Gang Electromagnetic coupler
CN104092411A (en) * 2014-07-07 2014-10-08 扬州大学 Arc Stator Winding Magnetic Suspension Drive Motor
US9692268B2 (en) 2007-08-14 2017-06-27 Gang Liu Conductive wire unit and generator with closed magnetic path
WO2021008507A1 (en) * 2019-07-14 2021-01-21 刘刚 Dual magnetic circuit coupler

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253164A (en) * 1985-08-29 1987-03-07 Sanyo Electric Co Ltd Brushless motor
JPS62168772U (en) * 1986-04-17 1987-10-26
JPH0246150A (en) * 1988-08-08 1990-02-15 Nippon Denso Co Ltd Ac generation set
JPH0617374U (en) * 1992-07-30 1994-03-04 株式会社三協精機製作所 Rotating electric machine
JPH0759287A (en) * 1993-08-18 1995-03-03 Shibaura Eng Works Co Ltd Stator of motor
JPH11252845A (en) * 1998-03-04 1999-09-17 Mitsuba Corp Ac generator
JP2001112226A (en) * 1999-10-08 2001-04-20 Moriyama Manufacturing Co Ltd Three phase magnet generator
JP2002272072A (en) * 2001-03-09 2002-09-20 Nakatomo Sangyo Kk Dc power generator and dc power supply equipment
JP2005073398A (en) * 2003-08-25 2005-03-17 Favess Co Ltd Rotating machine and steering system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253164A (en) * 1985-08-29 1987-03-07 Sanyo Electric Co Ltd Brushless motor
JPS62168772U (en) * 1986-04-17 1987-10-26
JPH0246150A (en) * 1988-08-08 1990-02-15 Nippon Denso Co Ltd Ac generation set
JPH0617374U (en) * 1992-07-30 1994-03-04 株式会社三協精機製作所 Rotating electric machine
JPH0759287A (en) * 1993-08-18 1995-03-03 Shibaura Eng Works Co Ltd Stator of motor
JPH11252845A (en) * 1998-03-04 1999-09-17 Mitsuba Corp Ac generator
JP2001112226A (en) * 1999-10-08 2001-04-20 Moriyama Manufacturing Co Ltd Three phase magnet generator
JP2002272072A (en) * 2001-03-09 2002-09-20 Nakatomo Sangyo Kk Dc power generator and dc power supply equipment
JP2005073398A (en) * 2003-08-25 2005-03-17 Favess Co Ltd Rotating machine and steering system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005102477A (en) * 2003-08-26 2005-04-14 Honda Motor Co Ltd Stator winding and method for manufacturing stator winding
JP2006311716A (en) * 2005-04-28 2006-11-09 Toyota Motor Corp Winding structure of rotating electrical machine
JP2007110790A (en) * 2005-10-12 2007-04-26 Toyo Electric Mfg Co Ltd Winding method for permanent magnet type generator for distributed power source
KR101078169B1 (en) 2006-10-18 2011-10-28 강 리우 A magnetic-path-enclosing generator
WO2008046345A1 (en) * 2006-10-18 2008-04-24 Gang Liu A magnetic-path-enclosing generator
US7696664B2 (en) 2006-10-18 2010-04-13 Gang Liu Magnetic path closed electric generator
EA016294B1 (en) * 2006-10-18 2012-03-30 Ган Лю A magnetic-path-enclosing generator
WO2009021461A1 (en) * 2007-08-14 2009-02-19 Gang Liu A generator with magnetic-path-enclosing coils
US9692268B2 (en) 2007-08-14 2017-06-27 Gang Liu Conductive wire unit and generator with closed magnetic path
JP2011528891A (en) * 2008-07-22 2011-11-24 ドゥラショー エス.アー. Motor with eccentric rotor
JP2011103732A (en) * 2009-11-11 2011-05-26 Toyo Electric Mfg Co Ltd Power generation device for distributed power supply
CN102005884A (en) * 2010-11-11 2011-04-06 哈尔滨工业大学 Wide rotation speed range output permanent magnet constant speed generator system
WO2013102444A1 (en) * 2012-01-06 2013-07-11 Liu Gang Electromagnetic coupler
CN103688444A (en) * 2012-01-06 2014-03-26 刘刚 Electromagnetic coupler
CN104092411A (en) * 2014-07-07 2014-10-08 扬州大学 Arc Stator Winding Magnetic Suspension Drive Motor
WO2021008507A1 (en) * 2019-07-14 2021-01-21 刘刚 Dual magnetic circuit coupler
CN114128114A (en) * 2019-07-14 2022-03-01 刘刚 Double-magnetic-circuit coupler

Also Published As

Publication number Publication date
JP4544855B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP6008473B2 (en) Generator and manufacturing method thereof
US9231513B2 (en) Electric motor system
Polinder et al. Comparison of direct-drive and geared generator concepts for wind turbines
JP4544855B2 (en) Structure of permanent magnet generator for distributed power supply
EP1296439A2 (en) Five phase alternating current generator
JP2007097272A (en) Main circuit of distributed power supply generating set
JP4587655B2 (en) Power generator for distributed power supply
JP2007288917A (en) Power generation device
JP4245369B2 (en) Rectifier circuit for power generator for distributed power supply
JP2004064928A (en) Small-sized wind power generator
JP4641823B2 (en) Rectifier circuit for power generator for distributed power supply
CN100583596C (en) Double Y moving ten degree commutating generator
JP5147339B2 (en) Power generator for distributed power supply
JP2016158460A (en) Rotating electric machine
JP3973535B2 (en) Power generator for distributed power supply
JP5300427B2 (en) Rectifier circuit for power generator for distributed power supply
JP5349258B2 (en) Power generator for distributed power supply
CN213990327U (en) High-efficiency permanent-magnet DC generator
JP2011062029A (en) Generator
JP4822793B2 (en) Winding method of permanent magnet generator for distributed power supply
JP2004064807A (en) Wind-power generator and its operation method
Amuhaya et al. Design and optimisation of variable-flux synchronous generators over the grid-code range using analytical and pso methods
JP4601348B2 (en) Power generator for distributed power supply
CN200959561Y (en) 2-polar convex-polar rectifying generator without casing
JP5975561B2 (en) Rectifier circuit and power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4544855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees