JP2005174565A - POLYMER ELECTROLYTE MEMBRANE, MEMBRANE / ELECTRODE ASSEMBLY, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME - Google Patents
POLYMER ELECTROLYTE MEMBRANE, MEMBRANE / ELECTRODE ASSEMBLY, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME Download PDFInfo
- Publication number
- JP2005174565A JP2005174565A JP2003408385A JP2003408385A JP2005174565A JP 2005174565 A JP2005174565 A JP 2005174565A JP 2003408385 A JP2003408385 A JP 2003408385A JP 2003408385 A JP2003408385 A JP 2003408385A JP 2005174565 A JP2005174565 A JP 2005174565A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- electrolyte membrane
- membrane
- electrode layer
- polymer electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Abstract
【課題】
本発明の目的は、高分子電解質膜と電極層の密着性を向上させるとともに、燃料電池の効率を向上させることのできる表面の凹凸が大きく、極めて立体的で表面積が多い高分子電解質膜と、高分子電解質膜上に形成した電極層とからなる膜・電極接合体と、その製造方法及び燃料電池を提供することにある。
【解決手段】
本発明は、燃料電池用高分子電解質膜の電極層が形成される部分の片面又は両面に、塑性加工によって形成された微小穴群を有する高分子電解質膜および高分子電解質膜の製造方法にある。高分子電解質膜に形成された微小穴群に電極材料が充填された膜・電極接合体および膜・電極接合体の製造方法にある。電極層の片面又は両面に組成加工によって形成された微小穴群を有することを特徴とする燃料電池用膜・電極接合体および膜・電極接合体の製造方法にある。
【選択図】図2
【Task】
The object of the present invention is to improve the adhesion between the polymer electrolyte membrane and the electrode layer, and to improve the efficiency of the fuel cell. An object of the present invention is to provide a membrane / electrode assembly comprising an electrode layer formed on a polymer electrolyte membrane, a production method thereof, and a fuel cell.
[Solution]
The present invention relates to a polymer electrolyte membrane having a microhole group formed by plastic working on one side or both sides of a portion where an electrode layer of a polymer electrolyte membrane for a fuel cell is formed, and a method for producing the polymer electrolyte membrane . The present invention is in a membrane / electrode assembly in which minute hole groups formed in a polymer electrolyte membrane are filled with an electrode material and a method for producing the membrane / electrode assembly. The present invention is directed to a fuel cell membrane / electrode assembly and a method for producing the membrane / electrode assembly, which has a group of minute holes formed by composition processing on one side or both sides of an electrode layer.
[Selection] Figure 2
Description
本発明は、新規な燃料電池用電解質膜と膜・電極接合体とその製造方法及び燃料電池に関する。 The present invention relates to a novel electrolyte membrane for a fuel cell, a membrane / electrode assembly, a production method thereof, and a fuel cell.
高分子電解質膜を用いた燃料電池は、近年電解質膜や触媒技術の発展により性能の向上が著しくなり、低公害自動車用電源や高効率発電方法として注目を集めている。高分子電解質膜を用いた燃料電池は電解質膜表面に酸化、還元触媒を有する電極層を形成した構造を有している。この場合、高分子電解質膜の表面に凹凸を形成し表面積を増大させると、高分子電解質膜と電極層の密着性が向上するとともに、電気化学反応の効率が向上することが知られている。凹凸を形成する方法としては、特許文献1に開示された化学的、機械的な研磨法等により膜表面に凹凸を付ける方法、特許文献2に開示された固体電解質材料と熱分解材料との混合成形体を焼成してその表面に凹凸を形成する方法、特許文献3に開示された表面に凹凸を有する金属箔を圧着し、その金属箔を溶解除去する方法等が知られている。
In recent years, fuel cells using polymer electrolyte membranes have been remarkably improved in performance due to the development of electrolyte membranes and catalyst technology, and are attracting attention as a low-pollution automobile power source and a high-efficiency power generation method. A fuel cell using a polymer electrolyte membrane has a structure in which an electrode layer having an oxidation / reduction catalyst is formed on the surface of the electrolyte membrane. In this case, it is known that when unevenness is formed on the surface of the polymer electrolyte membrane to increase the surface area, the adhesion between the polymer electrolyte membrane and the electrode layer is improved and the efficiency of the electrochemical reaction is improved. As a method for forming the unevenness, a method of applying unevenness to the film surface by a chemical or mechanical polishing method disclosed in
しかしながら、いずれの特許文献においても、表面の凹凸を制御し難く、凹凸を膜表面に均一に形成することが困難である。更に、いずれ特許文献においても、凹凸の形状が山谷状にしかならず、凹凸がより大きく、表面積をさらに増加さることができなかった。また、熱分解材料や金属箔成分がその除去工程においても完全に除去できず、燃料電池の性能に悪影響を及ぼしてしまうと言う問題点があった。 However, in any of the patent documents, it is difficult to control the surface unevenness, and it is difficult to form the unevenness uniformly on the film surface. Furthermore, in any of the patent documents, the shape of the unevenness was only a mountain-valley shape, the unevenness was larger, and the surface area could not be further increased. In addition, there is a problem that the pyrolysis material and the metal foil component cannot be completely removed even in the removing step, which adversely affects the performance of the fuel cell.
本発明の目的は、高分子電解質膜と電極層の密着性を向上させるとともに、燃料電池の効率を向上させることのできる表面の凹凸が大きく、極めて立体的で表面積が多い高分子電解質膜と、高分子電解質膜上に形成した電極層とからなる膜・電極接合体と、その製造方法及び燃料電池を提供することにある。 The object of the present invention is to improve the adhesion between the polymer electrolyte membrane and the electrode layer, and to improve the efficiency of the fuel cell. An object of the present invention is to provide a membrane / electrode assembly comprising an electrode layer formed on a polymer electrolyte membrane, a production method thereof, and a fuel cell.
本発明の第1の工程は、高分子電解質膜の片面又は両面に、特定の平面形状を有する凸部(以下、ピラーと称する)を形成した微小成形型(精密金型)を用いて、熱可塑性の高分子電解質膜に押圧し、ピラー群の型に従ってパターンを形成することである。塑性加工によって形成された微小穴群を有することを特徴とする燃料電池用電解質膜にある。 The first step of the present invention uses a micro mold (precision mold) in which convex portions (hereinafter referred to as pillars) having a specific planar shape are formed on one side or both sides of a polymer electrolyte membrane. Pressing against a plastic polymer electrolyte membrane and forming a pattern according to the type of pillar group. The electrolyte membrane for fuel cells has a microhole group formed by plastic working.
前記微小穴群は所定の平面形状に従って形成され、柱状であること、更に、直径が0.1μm〜500μm、深さが1μm以上であり、かつ高分子電解質膜厚の50%以下とすることが好ましい。 The microhole group is formed in accordance with a predetermined planar shape, is columnar, and preferably has a diameter of 0.1 μm to 500 μm, a depth of 1 μm or more, and 50% or less of the thickness of the polymer electrolyte. .
前記微小穴群の形状として、先端部の相当直径が柱状穴群の底面部の相当直径と等しいかあるいは小さいことが好ましい。本発明において、柱状微小穴の相当直径とは、穴の中間位置における相当直径である。なお、相当直径という語を用いたのは、穴の断面が必ずしも円形ではなく、楕円,多角形,非対称形などの場合があるので、これらを全て包含するために相当直径とした。 As the shape of the minute hole group, it is preferable that the equivalent diameter of the tip end part is equal to or smaller than the equivalent diameter of the bottom face part of the columnar hole group. In the present invention, the equivalent diameter of the columnar microhole is an equivalent diameter at an intermediate position of the hole. The term equivalent diameter is used because the cross section of the hole is not necessarily circular but may be an ellipse, a polygon, an asymmetric shape, and the like.
第2の工程は、第1の工程で微小穴群を設けた高分子型電解質膜上に、スプレー方式,インクジェット方式等により直接電極層を形成することである。高分子電解質膜上に電極材料を微小液滴で投下することにより、微小穴群内部にまで電極材料を行き渡らせる。このようにして形成した電極層と高分子電解質膜は、その凹凸を持った幾何形状により接触面積が増大する。また高分子電解質膜が使用環境に存在する水分を吸収することにより体積膨張する為、電極層と高分子電解質膜の密着性が向上する。以上により電極層と高分子電解質膜間の接触抵抗が低減できる。また、電極層の最外面は高分子電極層に形成した微小穴群の形状に伴い、表面に凹凸が形成されるため、反応種との接触面積が増大することにより電極層の活性が向上する。 The second step is to directly form an electrode layer on the polymer electrolyte membrane provided with the microhole group in the first step by a spray method, an ink jet method or the like. By dropping the electrode material on the polymer electrolyte membrane with fine droplets, the electrode material is spread to the inside of the microhole group. The electrode layer and the polymer electrolyte membrane formed in this way have an increased contact area due to the geometrical shape having the irregularities. In addition, since the polymer electrolyte membrane expands by absorbing moisture present in the use environment, the adhesion between the electrode layer and the polymer electrolyte membrane is improved. As described above, the contact resistance between the electrode layer and the polymer electrolyte membrane can be reduced. In addition, since the outermost surface of the electrode layer is formed with irregularities on the surface in accordance with the shape of the microhole group formed in the polymer electrode layer, the activity of the electrode layer is improved by increasing the contact area with the reactive species. .
さらに第3の工程として電極層の凹凸を制御し、反応活性表面積を増加させる為に、高分子電解質膜上に電極層を形成した後、微小突起群を有する微小成形型(精密金型)を用いて電極層に微小穴群を形成しても良い。そうする事により反応活性表面積がさらに増加するとともに、電極層の深部(高分子電解質膜側)まで反応種が拡散しやすくなり、高負荷時の反応種の拡散律速による性能低下を防ぐことが可能となる。前記微小形成型の微小突起群は所定の平面形状に従って形成され、柱状であること、更に、直径が0.1μm 〜500μm、高さが1μm以上であり、かつ最大で電極層の厚さ+高分子電解質膜厚の
50%以下とすることが好ましい。
Further, as a third step, in order to control the unevenness of the electrode layer and increase the reaction active surface area, after forming the electrode layer on the polymer electrolyte membrane, a micro mold (precision mold) having micro protrusions is formed. A microhole group may be formed in the electrode layer. By doing so, the reactive surface area is further increased, and the reactive species can easily diffuse to the deep part of the electrode layer (on the polymer electrolyte membrane side), thereby preventing performance degradation due to diffusion rate limiting of the reactive species at high loads. It becomes. The micro-formation type microprojection group is formed according to a predetermined plane shape, has a columnar shape, has a diameter of 0.1 μm to 500 μm, a height of 1 μm or more, and a maximum thickness of the electrode layer + high It is preferable to be 50% or less of the molecular electrolyte film thickness.
又、本発明は、高分子電解質膜の片面又は両面に、塑性加工によって微小穴群を形成することを特徴とする燃料電池用電解質膜の製造方法、微小穴群を形成した燃料電池用電解質膜上に触媒層を塗布してなる燃料電池用膜・電極接合体の製造方法にある。 The present invention also provides a method for producing an electrolyte membrane for a fuel cell, wherein a microhole group is formed on one side or both sides of a polymer electrolyte membrane by plastic working, and an electrolyte membrane for a fuel cell in which the microhole group is formed The present invention resides in a method for producing a membrane / electrode assembly for a fuel cell obtained by applying a catalyst layer thereon.
更に、本発明は、高分子電解質膜の片面又は両面に、所定の平面パターンの凸部を有する成形型を押圧することにより、前記高分子電解質膜に微小穴群を形成することを特徴とする燃料電池用膜の製造方法にある。穴部の直径が500μm以下であることが好ましい。本発明は、このようにして製造した前記燃料電池用電解質膜上の片面又は両面に凹部の最深部まで電極層が行き渡るようスプレー法,インクジェット法により直接高分子電解質膜上に電極材料を微小液滴で投下する電極層の形成方法である。本発明は前記燃料電池用電解質膜上に形成した電極層の片面又は両面に、所定の平面パターンの凸部を有する成形型を押圧することにより、前記電極層に微小穴群を形成することを特徴とする燃料電池用膜・電極接合体の製造方法にある。 Furthermore, the present invention is characterized in that a microhole group is formed in the polymer electrolyte membrane by pressing a mold having convex portions of a predetermined plane pattern on one side or both sides of the polymer electrolyte membrane. It is in the manufacturing method of the membrane for fuel cells. The diameter of the hole is preferably 500 μm or less. In the present invention, the electrode material is directly applied onto the polymer electrolyte membrane by a spray method or an ink jet method so that the electrode layer reaches the deepest part of the recess on one side or both sides of the fuel cell electrolyte membrane thus produced. It is the formation method of the electrode layer dropped by a drop. According to the present invention, a microhole group is formed in the electrode layer by pressing a mold having convex portions of a predetermined plane pattern on one or both sides of the electrode layer formed on the electrolyte membrane for a fuel cell. It is in the manufacturing method of the membrane electrode assembly for fuel cells characterized.
本発明は、高分子電解質膜と、該電解質膜の両面側表面に担体に担持されて形成された等しいあるいは各々異なった種類の触媒層と、該各々の触媒層に接して形成された拡散層と、一方の前記拡散層に接して形成されたアノード電極と、他方の前記拡散層に接して形成されたカソード電極とを有する燃料電池において、前記高分子電解質膜は、その表面に微小穴群が塑性加工によって形成され、前記微小穴群に触媒が前記担体に担持されて形成されていることを特徴とする。 The present invention relates to a polymer electrolyte membrane, equal or different kinds of catalyst layers formed on a support on both surfaces of the electrolyte membrane, and diffusion layers formed in contact with the catalyst layers. And the anode electrode formed in contact with one of the diffusion layers and the cathode electrode formed in contact with the other diffusion layer, wherein the polymer electrolyte membrane has microhole groups on its surface. Is formed by plastic working, and the catalyst is supported on the carrier in the microhole group.
前記担体が炭素材料より形成されていること、前記拡散層が炭素シートであることが好ましい。 It is preferable that the carrier is made of a carbon material and the diffusion layer is a carbon sheet.
本発明において高分子電解質膜とは、高分子骨格中にイオン交換能を有する基を持つ重合体を成膜したもの、あるいは高分子膜中にイオン交換能を有する物質を含ませてなるものの総称であり、陽イオン交換膜と陰イオン交換膜に大別される。なお、両交換膜を接合した膜も存在する。陽イオン交換膜としては例えば、スルホン酸基,カルボン酸基,リン酸基を膜中の高分子鎖に有するイオン交換膜、高分子膜中に硫酸,スルホン酸類,リン酸類,カルボン酸類や固体酸の微粒子等の酸性物質を含ませたもの等が挙げられる。 In the present invention, the polymer electrolyte membrane is a general term for a polymer film having a polymer having a group having ion exchange ability or a substance having an ion exchange ability contained in the polymer film. It is roughly divided into a cation exchange membrane and an anion exchange membrane. There are also membranes in which both exchange membranes are joined. Examples of the cation exchange membrane include an ion exchange membrane having a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group in a polymer chain in the membrane, and sulfuric acid, sulfonic acids, phosphoric acids, carboxylic acids and solid acids in the polymer membrane. And those containing acidic substances such as fine particles.
また陰イオン交換膜としては例えば、アミノ基,水酸化第四アンモニウム,グアニジン基等の塩基性基を有する高分・子膜,膜中に固体塩基を分散させた膜等が挙げられる。また、膜中の酸又は塩基部分を塩にしたものや、塩を含浸させたものもある。 Examples of the anion exchange membrane include a polymer molecule having a basic group such as an amino group, quaternary ammonium hydroxide, and guanidine group, and a membrane in which a solid base is dispersed in the membrane. In addition, there are those in which the acid or base portion in the film is made into a salt, and those in which the salt is impregnated.
燃料電池用イオン交換膜として最も典型的なものとして、ポリパーフルオロスルホン酸を成膜した、例えば米国デュポン杜製;商品名ナフィオン,旭硝子(株)製:商品名フレミオン,旭化成工業(株)製:商品名アシプレックス等又は、芳香族炭化水素系高分子電解質膜等が挙げられる。 As the most typical ion exchange membrane for fuel cells, polyperfluorosulfonic acid is formed into a film, for example, manufactured by DuPont, USA; trade name Nafion, Asahi Glass Co., Ltd .: trade name Flemion, Asahi Kasei Kogyo Co., Ltd. : Product name Aciplex or aromatic hydrocarbon polymer electrolyte membrane or the like.
本発明により製造された表面が粗面化された高分子電解質膜を、燃料電池に用いると反応効率が向上し、その結果電池出力等の性能が向上する。この理由としては、膜の表面に極めて大きな凹凸を形成でき、膜表面積が大きく増加し、その結果、膜表面における電気化学的反応により生成したイオンを効率良く溶かし込む事ができるためと考えられる。 When the polymer electrolyte membrane having a roughened surface produced according to the present invention is used in a fuel cell, the reaction efficiency is improved, and as a result, the performance such as battery output is improved. The reason is considered to be that extremely large irregularities can be formed on the surface of the film, and the surface area of the film is greatly increased. As a result, ions generated by an electrochemical reaction on the film surface can be efficiently dissolved.
本発明の高分子電解質膜はフィルムやシートも含むものである。 The polymer electrolyte membrane of the present invention includes a film and a sheet.
本発明の微小穴群を備えたフィルムまたは基板は、特定の平面形状を有する凸部(以下、ピラーと称する)を形成した微小成形型(精密金型)を用いて、熱可塑性の高分子電解質膜に押圧し、ピラー群の型に従ってパターンを形成する。形成型の凸部の高さにより高分子電解質膜に形成される凹部の深さが調整でき、凸部の位置と底面積により高分子電解質膜表面に形成される凹部の位置と面積が調整できる。 The film or substrate provided with the group of micro holes of the present invention is a thermoplastic polymer electrolyte using a micro mold (precision mold) in which convex portions (hereinafter referred to as pillars) having a specific planar shape are formed. Press against the film to form a pattern according to the type of pillar group. The depth of the concave portion formed in the polymer electrolyte membrane can be adjusted by the height of the forming convex portion, and the position and area of the concave portion formed on the surface of the polymer electrolyte membrane can be adjusted by the position and bottom area of the convex portion. .
微小穴群は、先端部の相当直径が底面部の相当直径と等しいか、先端部の相当直径よりも底面部の相当直径がわずかに大きいことが望ましい。微小形成型に形成する凸部の位置と底面積によって、高分子電解質膜上の凹部の位置と底面積が任意に調整できる。本発明の微小穴集合体は、微小穴を密集した構造とすることができるため、これにより個々の微小穴がつぶれにくい性質とすることが可能である。 In the microhole group, it is desirable that the equivalent diameter of the tip portion is equal to the equivalent diameter of the bottom surface portion, or the equivalent diameter of the bottom surface portion is slightly larger than the equivalent diameter of the tip portion. The position and the bottom area of the recess on the polymer electrolyte membrane can be arbitrarily adjusted by the position and the bottom area of the protrusion formed in the micro-forming mold. Since the microhole assembly of the present invention can have a structure in which microholes are densely packed, individual microholes can be made difficult to collapse.
本発明において電極層とは触媒金属および電解質よりなる。また電極層はポリテトラフルオロエチレンに代表される撥水材を含んでも良い。触媒とは白金,ルテニウム,ロジウム,レニウム,パラジウム,金,ロジウム,パラジウム,イリジウム,オスミウム,レニウム,金,銀,ニッケル,コバルト,イットリウム等の担体および合金が例示される。触媒はカーボンブラック,カーボンナノチューブ等に代表される炭素材料に担持された状態で使用しても良い。最も典型的なものとして、田中貴金属社製のTEC61E54や
TEC10E50Eなどが挙げられる。電解質は前記高分子電解質膜の材料の内から選択することが可能である。電解質は選択した各高分子電解質材料に適した溶媒に溶解した状態で使用する。なお、高分子電解質膜の膜材料と、電極層に混入する電解質は同じ材質である必要はない。
In the present invention, the electrode layer comprises a catalyst metal and an electrolyte. The electrode layer may contain a water repellent material typified by polytetrafluoroethylene. Examples of the catalyst include platinum and ruthenium, rhodium, rhenium, palladium, gold, rhodium, palladium, iridium, osmium, rhenium, gold, silver, nickel, cobalt, yttrium and other supports and alloys. The catalyst may be used in a state of being supported on a carbon material typified by carbon black or carbon nanotube. Most typical examples include TEC61E54 and TEC10E50E manufactured by Tanaka Kikinzoku Co., Ltd. The electrolyte can be selected from the materials of the polymer electrolyte membrane. The electrolyte is used in a state dissolved in a solvent suitable for each selected polymer electrolyte material. The membrane material of the polymer electrolyte membrane and the electrolyte mixed in the electrode layer need not be the same material.
本発明の前記高分子電解質膜上への電極層の形成は、スプレー法あるいはインクジェット法等を用いて直接電解質膜上へ直接塗布することによって行う。触媒,電解質を含む溶液の粘度(溶媒量),塗布量,電解質膜の温度を制御することにより、電極形成材料を高分子電解質膜上に形成された微小凹部の深部まで行き渡らせることが可能となる。このようにして形成した電極層と高分子電解質膜は、その凹凸を持った幾何形状により接触面積が増大する。また高分子電解質膜が使用環境に存在する水分を吸収することにより体積膨張する為、電極層と高分子電解質膜の密着性が向上する。以上により電極層と高分子電解質膜間の接触抵抗が低減できる。また、電極層の最外面は高分子電極層に形成した微小穴群の形状に伴い、表面に凹凸が形成されるため、反応種との接触面積が増大することにより電極層の活性が向上する。さらに高分子電解質膜上に電極層を形成した後、微小突起群を有する微小成形型(精密金型)を用いて電極層に微小穴群を形成しても良い。そうする事により反応活性表面積がさらに増加するとともに、電極層の深部(高分子電解質膜側)まで反応種が拡散しやすくなり、高負荷時の反応種の拡散律速による性能低下を防ぐことが可能となる。 The electrode layer is formed on the polymer electrolyte membrane of the present invention by directly applying the electrode layer onto the electrolyte membrane using a spray method or an ink jet method. By controlling the viscosity (solvent amount) of the solution containing the catalyst and electrolyte, the coating amount, and the temperature of the electrolyte membrane, it is possible to spread the electrode forming material to the deep part of the minute recesses formed on the polymer electrolyte membrane. Become. The electrode layer and the polymer electrolyte membrane formed in this way have an increased contact area due to the geometrical shape having the irregularities. In addition, since the polymer electrolyte membrane expands by absorbing moisture present in the use environment, the adhesion between the electrode layer and the polymer electrolyte membrane is improved. As described above, the contact resistance between the electrode layer and the polymer electrolyte membrane can be reduced. In addition, since the outermost surface of the electrode layer is formed with irregularities on the surface in accordance with the shape of the microhole group formed in the polymer electrode layer, the activity of the electrode layer is improved by increasing the contact area with the reactive species. . Further, after the electrode layer is formed on the polymer electrolyte membrane, the micro hole group may be formed in the electrode layer using a micro mold (precision mold) having a micro projection group. By doing so, the reactive surface area is further increased, and the reactive species can easily diffuse to the deep part of the electrode layer (on the polymer electrolyte membrane side), thereby preventing performance degradation due to diffusion rate limiting of the reactive species at high loads. It becomes.
本発明によれば、燃料電池の効率を向上させることのできる表面の凹凸が大きく、極めて立体的で表面積が多い高分子電解質膜と、前記高分子電解質膜との密着性に優れ、表面積が多い電極層からなる膜・電極接合体とその製造方法及び燃料電池を提供することができる更に、柱状微小穴群を製造するのに、微小形成型を使用するので、プレス成形による簡単な製造技術で形成できるものである。 According to the present invention, the surface unevenness capable of improving the efficiency of the fuel cell is large, the polymer electrolyte membrane having a large three-dimensional surface area is excellent, and the polymer electrolyte membrane has excellent adhesion, and the surface area is large. It is possible to provide a membrane / electrode assembly comprising an electrode layer, a manufacturing method thereof, and a fuel cell. Further, since a micro-forming mold is used for manufacturing a columnar micro-hole group, a simple manufacturing technique by press molding is used. It can be formed.
以下に、本発明を実施するための最良の形態を説明する。なお、本発明は、以下に示す実施例に限定されるものではない。 The best mode for carrying out the present invention will be described below. In addition, this invention is not limited to the Example shown below.
本実施例では高分子電解質膜として、米国デュポン社製:ナフィオン115(膜厚約
125μm)を使用した。6cm角に切り出したナフィオン115の中心3cm角の広さに、径が20μm、高さが30μmの円錐が50μm間隔でX−Y平面状に形成された微小形成型を押し付け、ナフィオン115上の片面に微小穴群を形成した。次いで、もう片面についても同様の方法により微小穴群を形成した。このようにして微小穴群を形成した高分子電解質膜上に電極層を形成した。アノード極については、触媒には田中貴金属社製の
TEC61E54を使用した。このTEC61E54とアルドリッチ社製のナフィオン5%溶液を固形分比で10:10となるよう混合し、アノード電極溶液とした。このアノード溶液を、ホットプレートを用いて80℃に加熱したナフィオン115上の微小穴群を形成した3cm角の部分にスプレーを用いて白金量が1mg/cm2 となるようスプレーを用いて塗布した。次いでアノード極を形成した面の反対側の面にカソード極を形成した。カソード極の触媒には田中貴金属社製のTEC10E50Eを使用した。このTEC10E50E とアルドリッチ社製のナフィオン5%溶液を固形分比で10:10となるよう混合し、カソード電極溶液とした。このカソード溶液を、ホットプレートを用いて80℃に加熱したナフィオン115上の微小穴群を形成した3cm角の部分にスプレーを用いて白金量が1mg/cm2 となるようスプレーを用いて塗布した。このようにしてアノード極,カソード極を形成した後、これを120℃、圧力50kg/cm2 の条件で2分間加熱プレスを実施し、燃料電池用の膜・電極接合体を作製した。図1は、本実施例で作製した膜・電極接合体の断面模式図である。本実施例では高分子電解質膜のアノード側カソード側両面に微小穴群を形成したが、穴群の形成はアノード側あるいはカソード側いずれかのみ実施してもかまわない。また、アノード極,カソード極とも同じ微小形成型を用いて同じ形状の微小穴群を形成したが、アノード極,カソード極で異なった微小形成型を用いて異なった形状の微小穴群を形成しても良い。また、穴の径,深さ,間隔についても任意に設定可能であり、隣り合った穴同士が同じ径,深さである必要はない。
In this example, Nafion 115 (thickness: about 125 μm) manufactured by DuPont, USA was used as the polymer electrolyte membrane. One side on the Nafion 115 is pressed onto a 3 cm square center of the Nafion 115 cut into a 6 cm square, a micro-forming mold in which cones with a diameter of 20 μm and a height of 30 μm are formed in an XY plane at intervals of 50 μm. A microhole group was formed in Next, a microhole group was formed on the other side by the same method. Thus, an electrode layer was formed on the polymer electrolyte membrane in which the microhole group was formed. Regarding the anode electrode, TEC61E54 manufactured by Tanaka Kikinzoku Co., Ltd. was used as the catalyst. This TEC61E54 and Aldrich Nafion 5% solution were mixed at a solid content ratio of 10:10 to obtain an anode electrode solution. This anolyte solution was applied using a spray to a 3 cm square portion where a microhole group was formed on Nafion 115 heated to 80 ° C. using a hot plate so that the amount of platinum was 1 mg / cm 2 . . Next, a cathode electrode was formed on the surface opposite to the surface on which the anode electrode was formed. TEC10E50E manufactured by Tanaka Kikinzoku Co., Ltd. was used as the cathode electrode catalyst. This TEC10E50E and Alfrich Nafion 5% solution were mixed at a solid content ratio of 10:10 to obtain a cathode electrode solution. This catholyte solution was applied using a spray to a 3 cm square portion where a microhole group was formed on Nafion 115 heated to 80 ° C. using a hot plate so that the amount of platinum was 1 mg / cm 2 . . After forming the anode and cathode in this manner, this was heated and pressed for 2 minutes under the conditions of 120 ° C. and a pressure of 50 kg / cm 2 to produce a membrane-electrode assembly for a fuel cell. FIG. 1 is a schematic cross-sectional view of a membrane / electrode assembly produced in this example. In this embodiment, the microhole group is formed on both the anode side and the cathode side of the polymer electrolyte membrane. However, the hole group may be formed only on either the anode side or the cathode side. In addition, although the same micro-forming mold was used for both the anode and cathode electrodes, micro-hole groups with the same shape were formed. May be. Further, the diameter, depth, and interval of the holes can be arbitrarily set, and adjacent holes do not need to have the same diameter and depth.
本実施例においては、実施例1で作成した膜・電極接合体の電極面に微小形成型を押し付けることで、電極層に微小穴群を形成した。実施例1で作製した膜・電極接合体のアノード電極層が形成された部分に径が10μm、高さが30μmの円錐が50μm間隔でX−Y平面状に形成された微小形成型を押し付け、アノード電極層上の片面に微小穴群を形成した。次いでカソード電極層が形成された部分に径が50μm、高さが40μmの円錐が250μm間隔でX−Y平面状に形成された微小形成型を押し付け、カソード電極層上の片面に微小穴群を形成した。図2は、本実施例で作製した膜・電極接合体の断面模式図である。本実施例では電極層のアノード側カソード側両面に微小穴群を形成したが、穴群の形成はアノード側あるいはカソード側いずれかのみ実施してもかまわない。また、アノード極,カソード極とも同じ微小形成型を用いて同じ形状の微小穴群を形成したが、アノード極,カソード極で異なった微小形成型を用いて異なった形状の微小穴群を形成しても良い。また、穴の径、深さ、間隔についても任意に設定可能であり、隣り合った穴同士が同じ径、深さである必要はない。 In this example, a micro-hole group was formed in the electrode layer by pressing a micro-forming mold against the electrode surface of the membrane-electrode assembly prepared in Example 1. A micro-forming mold in which a cone having a diameter of 10 μm and a height of 30 μm is formed in an XY plane at an interval of 50 μm is pressed against the portion where the anode electrode layer of the membrane-electrode assembly produced in Example 1 is formed, Microhole groups were formed on one side of the anode electrode layer. Next, a micro-forming mold in which a cone having a diameter of 50 μm and a height of 40 μm is formed in an XY plane is pressed against the portion where the cathode electrode layer is formed, and a group of micro holes is formed on one side of the cathode electrode layer. Formed. FIG. 2 is a schematic cross-sectional view of the membrane-electrode assembly produced in this example. In this embodiment, the micro hole group is formed on both the anode side and the cathode side of the electrode layer, but the hole group may be formed only on either the anode side or the cathode side. In addition, although the same micro-forming mold was used for both the anode and cathode electrodes, micro-hole groups with the same shape were formed, but micro-hole groups with different shapes were formed using different micro-forming molds for the anode and cathode electrodes. May be. Further, the diameter, depth, and interval of the holes can be arbitrarily set, and adjacent holes do not have to have the same diameter and depth.
〔比較例1〕
米国デュポン社製:ナフィオン115(膜厚約125μm)を使用した。6cm角に切り出したナフィオン115の中心3cm角の広さにそのまま電極層を形成した。アノード極については、触媒には田中貴金属社製のTEC61E54を使用した。このTEC61E54とアルドリッチ社製のナフィオン5%溶液を固形分比で10:10となるよう混合し、アノード電極溶液とした。このアノード溶液を、ホットプレートを用いて80℃に加熱したナフィオン115上の微小穴群を形成した3cm角の部分にスプレーを用いて白金量が1mg/cm2 となるようスプレーを用いて塗布した。次いでアノード極を形成した面の反対側の面にカソード極を形成した。カソード極の触媒には田中貴金属社製のTEC10E50Eを使用した。このTEC10E50Eとアルドリッチ社製のナフィオン5%溶液を固形分比で10:10となるよう混合し、カソード電極溶液とした。このカソード溶液を、ホットプレートを用いて80℃に加熱したナフィオン115上の微小穴群を形成した3cm角の部分にスプレーを用いて白金量が1mg/cm2 となるようスプレーを用いて塗布した。このようにしてアノード極,カソード極を形成した後、これを120℃、圧力50kg/cm2 の条件で2分間加熱プレスを実施し、燃料電池用の膜・電極接合体を作製した。
[Comparative Example 1]
Made by DuPont, USA: Nafion 115 (film thickness: about 125 μm) was used. An electrode layer was formed as it was in the
実施例1,実施例2および比較例1で作製した膜・電極接合体を燃料電池評価用のセルに組み込み性能を評価した。性能評価条件は以下に示した条件とした。アノード極側には、3wt%のメタノール水溶液を5ml/min の条件で用いて供給した。カソード極側には空気を200ml/min の条件で供給した。温度は室温とした。ポテンショスタットを用いて電流を変化させながら、その時の電圧を測定し、その結果より電流密度−電圧曲線を作成した。その結果、比較例1に対し、実施例1および実施例2で作製した膜・電極接合体は高性能であることが確認された。特に実施例2がもっとも高い性能を示した。 The membrane / electrode assembly produced in Example 1, Example 2 and Comparative Example 1 was incorporated into a cell for fuel cell evaluation to evaluate the performance. The performance evaluation conditions were as shown below. A 3 wt% aqueous methanol solution was supplied to the anode side using 5 ml / min. Air was supplied to the cathode electrode side at 200 ml / min. The temperature was room temperature. The voltage at that time was measured while changing the current using a potentiostat, and a current density-voltage curve was created from the result. As a result, it was confirmed that the membrane / electrode assembly produced in Example 1 and Example 2 had higher performance than Comparative Example 1. In particular, Example 2 showed the highest performance.
101…高分子電解質膜、102…アノード電極層、103…カソード電極層。
DESCRIPTION OF
Claims (20)
μm、深さが1μm以上であり、かつ最大で電極層の厚さ+高分子電解質膜厚の50%以下とする事を特徴とする燃料電池用膜・電極接合体およびこれを利用した燃料電池。 The microhole group formed in the electrode layer according to claim 12 has a diameter of 0.1 μm to 500 μm.
Membrane / electrode assembly for fuel cell and fuel cell using the same characterized by having a thickness of μm and depth of 1 μm or more and at most 50% or less of electrode layer thickness + polymer electrolyte film thickness .
In Claim 19, The diameter of the said convex part is 0.1 micrometer-500 micrometers, the depth is 1 micrometer or more, and it is 50% or less of the thickness of an electrode layer + polymer electrolyte film thickness at maximum. Manufacturing method of membrane-electrode assembly for fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003408385A JP2005174565A (en) | 2003-12-08 | 2003-12-08 | POLYMER ELECTROLYTE MEMBRANE, MEMBRANE / ELECTRODE ASSEMBLY, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003408385A JP2005174565A (en) | 2003-12-08 | 2003-12-08 | POLYMER ELECTROLYTE MEMBRANE, MEMBRANE / ELECTRODE ASSEMBLY, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005174565A true JP2005174565A (en) | 2005-06-30 |
Family
ID=34730093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003408385A Pending JP2005174565A (en) | 2003-12-08 | 2003-12-08 | POLYMER ELECTROLYTE MEMBRANE, MEMBRANE / ELECTRODE ASSEMBLY, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005174565A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100728781B1 (en) | 2005-07-27 | 2007-06-19 | 삼성에스디아이 주식회사 | Membrane-electrode assembly for fuel cell and fuel cell system comprising same |
JP2007179893A (en) * | 2005-12-28 | 2007-07-12 | Dainippon Printing Co Ltd | Catalyst layer-electrolyte membrane laminate, and manufacturing method of same |
JP2007227080A (en) * | 2006-02-22 | 2007-09-06 | National Institute Of Advanced Industrial & Technology | Fuel cell |
JP2008159426A (en) * | 2006-12-25 | 2008-07-10 | Sharp Corp | Solid polymer electrolyte fuel cell and manufacturing method therefor |
JP2008270045A (en) * | 2007-04-23 | 2008-11-06 | Toyota Motor Corp | Membrane electrode assembly manufacturing method, membrane electrode assembly, membrane electrode assembly manufacturing apparatus, and fuel cell |
JP2009080974A (en) * | 2007-09-25 | 2009-04-16 | Toyota Motor Corp | Fuel cell |
JP2009527086A (en) * | 2006-02-15 | 2009-07-23 | ユン,ビュングク | Electrolyte membrane curing device for fuel cells |
WO2011096149A1 (en) * | 2010-02-04 | 2011-08-11 | Panasonic Corporation | A method for fabricating a polymer electrolyte membrane for a fuel cell |
KR101209169B1 (en) | 2010-10-04 | 2012-12-06 | 서울대학교산학협력단 | Wrinkle-patterned electrode, fuel cell comprising the same and the preparation method thereof |
JP2015220052A (en) * | 2014-05-16 | 2015-12-07 | 株式会社フジクラ | Membrane-electrode assembly for fuel cell |
CN114868286A (en) * | 2019-12-31 | 2022-08-05 | 可隆工业株式会社 | Membrane-electrode assembly, method of manufacturing the membrane-electrode assembly, and fuel cell comprising the membrane-electrode assembly |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03158486A (en) * | 1989-11-15 | 1991-07-08 | Mitsubishi Electric Corp | Electrochemical cell |
JPH03167752A (en) * | 1989-11-28 | 1991-07-19 | Mitsubishi Heavy Ind Ltd | Gas diffusion electrode and solid macromolecular electrolyte furl cell main body using it |
JPH04169069A (en) * | 1990-11-01 | 1992-06-17 | Mitsubishi Heavy Ind Ltd | Joining body of solid polyelectrolyte film and electrode |
JPH05258756A (en) * | 1992-03-02 | 1993-10-08 | Honda Motor Co Ltd | Surface treating method for fuel battery electrolyte film |
JPH07161368A (en) * | 1993-12-10 | 1995-06-23 | Yamaha Motor Co Ltd | Fuel cell |
JPH08148176A (en) * | 1994-11-24 | 1996-06-07 | Toyota Motor Corp | Reaction layer forming method for fuel cell |
JPH0963622A (en) * | 1995-08-29 | 1997-03-07 | Mitsubishi Electric Corp | Manufacture of solid polymer fuel cell and solid polymer fuel cell |
JPH1050320A (en) * | 1996-07-30 | 1998-02-20 | Aisin Seiki Co Ltd | Electrode for solid polymer electrolyte film fuel cell |
JP2000003714A (en) * | 1998-06-16 | 2000-01-07 | Matsushita Electric Ind Co Ltd | Solid high molecular fuel cell and manufacture thereof |
JP2000251905A (en) * | 1999-02-26 | 2000-09-14 | Toyota Motor Corp | Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same |
JP2001229936A (en) * | 2000-02-16 | 2001-08-24 | Toyota Central Res & Dev Lab Inc | Electrolyte membrane and method for producing the same |
JP2001283869A (en) * | 2000-01-25 | 2001-10-12 | Sanyo Electric Co Ltd | Fuel cell |
JP2003068328A (en) * | 2001-08-29 | 2003-03-07 | Toagosei Co Ltd | Method of manufacturing polymer electrolytic film with roughened surface and electrochemical device and fuel cell using same |
JP2003317735A (en) * | 2002-04-18 | 2003-11-07 | Nec Corp | Solid high polymer electrolyte fuel cell, method for manufacturing solid high polymer electrolyte film for fuel cell and fuel cell |
JP2003331865A (en) * | 2002-05-14 | 2003-11-21 | Seiko Epson Corp | Small fuel cell and method of manufacturing the same |
JP2005108822A (en) * | 2003-09-12 | 2005-04-21 | Hitachi Ltd | Electrolyte film for fuel cell, its forming method, and fuel cell using it |
-
2003
- 2003-12-08 JP JP2003408385A patent/JP2005174565A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03158486A (en) * | 1989-11-15 | 1991-07-08 | Mitsubishi Electric Corp | Electrochemical cell |
JPH03167752A (en) * | 1989-11-28 | 1991-07-19 | Mitsubishi Heavy Ind Ltd | Gas diffusion electrode and solid macromolecular electrolyte furl cell main body using it |
JPH04169069A (en) * | 1990-11-01 | 1992-06-17 | Mitsubishi Heavy Ind Ltd | Joining body of solid polyelectrolyte film and electrode |
JPH05258756A (en) * | 1992-03-02 | 1993-10-08 | Honda Motor Co Ltd | Surface treating method for fuel battery electrolyte film |
JPH07161368A (en) * | 1993-12-10 | 1995-06-23 | Yamaha Motor Co Ltd | Fuel cell |
JPH08148176A (en) * | 1994-11-24 | 1996-06-07 | Toyota Motor Corp | Reaction layer forming method for fuel cell |
JPH0963622A (en) * | 1995-08-29 | 1997-03-07 | Mitsubishi Electric Corp | Manufacture of solid polymer fuel cell and solid polymer fuel cell |
JPH1050320A (en) * | 1996-07-30 | 1998-02-20 | Aisin Seiki Co Ltd | Electrode for solid polymer electrolyte film fuel cell |
JP2000003714A (en) * | 1998-06-16 | 2000-01-07 | Matsushita Electric Ind Co Ltd | Solid high molecular fuel cell and manufacture thereof |
JP2000251905A (en) * | 1999-02-26 | 2000-09-14 | Toyota Motor Corp | Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same |
JP2001283869A (en) * | 2000-01-25 | 2001-10-12 | Sanyo Electric Co Ltd | Fuel cell |
JP2001229936A (en) * | 2000-02-16 | 2001-08-24 | Toyota Central Res & Dev Lab Inc | Electrolyte membrane and method for producing the same |
JP2003068328A (en) * | 2001-08-29 | 2003-03-07 | Toagosei Co Ltd | Method of manufacturing polymer electrolytic film with roughened surface and electrochemical device and fuel cell using same |
JP2003317735A (en) * | 2002-04-18 | 2003-11-07 | Nec Corp | Solid high polymer electrolyte fuel cell, method for manufacturing solid high polymer electrolyte film for fuel cell and fuel cell |
JP2003331865A (en) * | 2002-05-14 | 2003-11-21 | Seiko Epson Corp | Small fuel cell and method of manufacturing the same |
JP2005108822A (en) * | 2003-09-12 | 2005-04-21 | Hitachi Ltd | Electrolyte film for fuel cell, its forming method, and fuel cell using it |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100728781B1 (en) | 2005-07-27 | 2007-06-19 | 삼성에스디아이 주식회사 | Membrane-electrode assembly for fuel cell and fuel cell system comprising same |
JP2007179893A (en) * | 2005-12-28 | 2007-07-12 | Dainippon Printing Co Ltd | Catalyst layer-electrolyte membrane laminate, and manufacturing method of same |
JP2009527086A (en) * | 2006-02-15 | 2009-07-23 | ユン,ビュングク | Electrolyte membrane curing device for fuel cells |
JP2007227080A (en) * | 2006-02-22 | 2007-09-06 | National Institute Of Advanced Industrial & Technology | Fuel cell |
JP2008159426A (en) * | 2006-12-25 | 2008-07-10 | Sharp Corp | Solid polymer electrolyte fuel cell and manufacturing method therefor |
JP4550798B2 (en) * | 2006-12-25 | 2010-09-22 | シャープ株式会社 | Solid polymer electrolyte fuel cell and method for producing the same |
JP2008270045A (en) * | 2007-04-23 | 2008-11-06 | Toyota Motor Corp | Membrane electrode assembly manufacturing method, membrane electrode assembly, membrane electrode assembly manufacturing apparatus, and fuel cell |
WO2008133255A1 (en) * | 2007-04-23 | 2008-11-06 | Toyota Jidosha Kabushiki Kaisha | Process for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell |
CN101663784B (en) * | 2007-04-23 | 2012-11-28 | 丰田自动车株式会社 | Process for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell |
US8546043B2 (en) | 2007-04-23 | 2013-10-01 | Toyota Jidosha Kabushiki Kaisha | Method for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell |
JP2009080974A (en) * | 2007-09-25 | 2009-04-16 | Toyota Motor Corp | Fuel cell |
WO2011096149A1 (en) * | 2010-02-04 | 2011-08-11 | Panasonic Corporation | A method for fabricating a polymer electrolyte membrane for a fuel cell |
US8337732B2 (en) | 2010-02-04 | 2012-12-25 | Panasonic Corporation | Method for fabricating a polymer electrolyte membrane for a fuel cell |
KR101209169B1 (en) | 2010-10-04 | 2012-12-06 | 서울대학교산학협력단 | Wrinkle-patterned electrode, fuel cell comprising the same and the preparation method thereof |
JP2015220052A (en) * | 2014-05-16 | 2015-12-07 | 株式会社フジクラ | Membrane-electrode assembly for fuel cell |
CN114868286A (en) * | 2019-12-31 | 2022-08-05 | 可隆工业株式会社 | Membrane-electrode assembly, method of manufacturing the membrane-electrode assembly, and fuel cell comprising the membrane-electrode assembly |
JP2023501791A (en) * | 2019-12-31 | 2023-01-19 | コーロン インダストリーズ インク | MEMBRANE-ELECTRODE ASSEMBLY, MANUFACTURING METHOD THEREOF, AND FUEL CELL CONTAINING THE SAME |
JP7387894B2 (en) | 2019-12-31 | 2023-11-28 | コーロン インダストリーズ インク | Membrane-electrode assembly, method of manufacturing the same, and fuel cell including the same |
US12148963B2 (en) | 2019-12-31 | 2024-11-19 | Kolon Industries, Inc. | Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6529982B2 (en) | Method of manufacturing catalyst coated membrane seal assembly | |
CN1864290B (en) | Method of making membrane electrode assemblies | |
US20070269698A1 (en) | Membrane electrode assembly and its manufacturing method | |
US20100015490A1 (en) | Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell | |
AU2009246798A1 (en) | Permselective membrane-free direct fuel cell and components thereof | |
JP2005174565A (en) | POLYMER ELECTROLYTE MEMBRANE, MEMBRANE / ELECTRODE ASSEMBLY, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME | |
US8309265B2 (en) | Electrolyte membrane for fuel cells, its production and fuel cell using the same | |
JP2013543222A (en) | Hot pressed direct deposition catalyst layer | |
JP2010505222A (en) | Structure for gas diffusion electrode | |
JP2015525675A (en) | Method for preparing a catalyst material | |
WO2007074934A1 (en) | Method for producing diffusion layer for fuel cell and diffusion layer for fuel cell | |
JP2009117248A (en) | Fuel cell | |
JP2001068119A (en) | Polymer electrolyte fuel cell and method of manufacturing its electrode | |
KR20210064638A (en) | Catalyst slurry for fuel cell and manufacturing method thereof | |
CA2677291C (en) | Method for generating a catalyst layer | |
JP2005174620A (en) | Membrane electrode assembly and fuel cell using the same | |
JP4826075B2 (en) | ELECTROLYTE MEMBRANE FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME AND FUEL CELL USING THE SAME | |
JP4824946B2 (en) | Electrolyte membrane with protective film and production method thereof. | |
GB2487836A (en) | Fuel Cell Assembly | |
US12009525B2 (en) | Coaxial nanowire electrode | |
JP5283826B2 (en) | Membrane electrode assembly and polymer electrolyte fuel cell | |
JP4400212B2 (en) | Manufacturing method of membrane / electrode assembly for fuel cell | |
KR101823901B1 (en) | Production Method of Electrode Applied Spray Coating on Porous Release Paper | |
JP2007234473A (en) | Catalyst electrode layer for fuel cell and method for producing the same | |
JP2006313706A (en) | Electrode and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051111 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060424 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080108 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080507 |