[go: up one dir, main page]

JP2003068328A - Method of manufacturing polymer electrolytic film with roughened surface and electrochemical device and fuel cell using same - Google Patents

Method of manufacturing polymer electrolytic film with roughened surface and electrochemical device and fuel cell using same

Info

Publication number
JP2003068328A
JP2003068328A JP2001259219A JP2001259219A JP2003068328A JP 2003068328 A JP2003068328 A JP 2003068328A JP 2001259219 A JP2001259219 A JP 2001259219A JP 2001259219 A JP2001259219 A JP 2001259219A JP 2003068328 A JP2003068328 A JP 2003068328A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte membrane
film
metal foil
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001259219A
Other languages
Japanese (ja)
Inventor
Hideki Hiraoka
秀樹 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2001259219A priority Critical patent/JP2003068328A/en
Publication of JP2003068328A publication Critical patent/JP2003068328A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing the polyelectrolyte film which has a large surface area by making its surface shape extremely complicated and sculptured for dissolving the problem, which a method of forming an unevenness surface of a conventional polyelectrolyte film has, that a pinhole is easy to make and a film is easy to break, and improving the efficiency of an electrochemical device of a fuel cell and so forth. SOLUTION: The method of manufacturing the polyelectrolyte film with roughened surface is characterized by including a step of bonding with pressure a rough surface of the metallic foil having the roughened surface on one surface or both sides of the polyelectrolyte electrolyte film and a step of dissolving and removing the metal foil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表面が粗面化され
た高分子電解質膜の製造方法に関するもので、当該膜
は、特に燃料電池等の電気化学デバイス用途として優れ
ているものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymer electrolyte membrane having a roughened surface, and the membrane is particularly excellent for use in electrochemical devices such as fuel cells.

【0002】[0002]

【従来の技術】高分子電解質膜を用いた電気化学デバイ
スの一種である燃料電池は、近年電解質膜や触媒技術の
発展により性能の向上が著しくなり、低公害自動車用電
源や高効率発電方法として注目を集めている。高分子電
解質膜を用いた電気化学デバイスとは膜の表面に酸化、
還元触媒を有する反応層を形成した構造を有している。
この場合、高分子電解質膜の表面に凹凸を形成し表面積
を増大させると、電気化学反応の効率が向上することが
知られていた。このような方法としては、特開昭56−
139974号に開示された研磨法等により膜表面に凹
凸を付ける方法、特開平3−167752号に開示され
た、表面に凹凸を有する金属板(プレス治具)を押し当
てることにより表面に凹凸を有する反応層膜を予め作成
し、この反応層膜をプレス圧着することにより高分子電
解質膜に凹凸を形成する方法等が知られていた。
2. Description of the Related Art A fuel cell, which is a type of electrochemical device using a polymer electrolyte membrane, has been remarkably improved in performance in recent years due to the development of electrolyte membrane and catalyst technology, and has been used as a low-pollution automobile power source and a highly efficient power generation method. It is getting attention. An electrochemical device using a polymer electrolyte membrane is oxidized on the surface of the membrane,
It has a structure in which a reaction layer having a reduction catalyst is formed.
In this case, it has been known that the efficiency of the electrochemical reaction is improved by forming irregularities on the surface of the polymer electrolyte membrane to increase the surface area. As such a method, JP-A-56-
A method for making unevenness on the film surface by a polishing method disclosed in No. 139974, and a method for making unevenness on the surface by pressing a metal plate (press jig) having unevenness on the surface disclosed in JP-A-3-167752. A method has been known in which a reaction layer film having the same is prepared in advance, and the reaction layer film is press-bonded to form irregularities on the polymer electrolyte membrane.

【0003】しかしながら、研磨法は表面の凹凸を制御
し難く、凹凸を膜表面に均一に形成することが困難であ
り、さらに研磨紙等で膜をこすったり、砂状の粒子を衝
突させるためピンホールが発生したり、膜が破損し易い
という問題を有している。また、高分子電解質膜を燃料
電池等の電気化学デバイスに応用する場合、膜の中心部
には触媒や電極等を形成し、膜の周辺部分はガスケット
の役割も持たせる構造が一般的である。これに対し研磨
法では膜の外周部まで凹凸ができ易いため、ガスシール
性が低下する問題があった。一方、凹凸を有する金属板
を押し当てる方法では、押し当てた後で金属板を物理的
に剥がす必要があるが、このときに凹凸を付けた面が破
損し易いという問題があった。また以上2つの方法はい
ずれも凹凸の形状が図1の左側のような山谷状にしかな
らないが、表面積をさらに増加させた右側のようなより
複雑な形状を形成させることが望まれていた。
However, the polishing method is difficult to control the surface irregularities, and it is difficult to uniformly form the irregularities on the surface of the film. Further, the film is rubbed with a polishing paper or the like or the sandy particles are collided with the pin, so There are problems that holes are generated and the film is easily damaged. In addition, when the polymer electrolyte membrane is applied to an electrochemical device such as a fuel cell, it is common to form a catalyst or an electrode in the center of the membrane and to have a gasket function in the peripheral portion of the membrane. . On the other hand, the polishing method has a problem in that the gas sealing property is deteriorated because irregularities are easily formed even on the outer peripheral portion of the film. On the other hand, in the method of pressing a metal plate having unevenness, it is necessary to physically peel off the metal plate after pressing, but there is a problem that the surface having unevenness is easily damaged at this time. Further, in both of the above two methods, the shape of the concavo-convex shape is only a mountain-valley shape as shown in the left side of FIG. 1, but it has been desired to form a more complicated shape such as the right side in which the surface area is further increased.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
な高分子電解質膜の凹凸面形成法が有する、ピンホール
ができ易い、膜が破損し易い等の問題点を解消し、かつ
燃料電池等の電気化学デバイスの効率を向上させるため
の表面形状が極めて複雑で立体的となり表面積が多い高
分子電解質膜を、歩留まり良く提供すべく検討を行なっ
たものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems of the method for forming a rough surface of a polymer electrolyte membrane, such as easy formation of pinholes and easy breakage of the membrane, and fuel consumption. In order to improve the efficiency of electrochemical devices such as batteries, the present inventors have conducted studies to provide a polymer electrolyte membrane having an extremely complicated surface shape, a three-dimensional shape, and a large surface area with a high yield.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意検討した結果、表面が粗面化された
金属箔を高分子電解質膜に圧着し、その後金属箔を溶解
除去することで上記問題が解決され、膜の破損が全く無
く、かつ複雑な表面形状を有する高分子電解質膜が容易
に得られることを見出して本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have pressure-bonded a metal foil having a roughened surface to a polymer electrolyte membrane, and then melted the metal foil. The present invention has been completed by finding that the above problems can be solved by removing them, that the membrane is not damaged at all and that a polymer electrolyte membrane having a complicated surface shape can be easily obtained.

【0006】[0006]

【発明の実施の形態】本発明において高分子電解質膜と
は、高分子骨格中にイオン交換能を有する基を持つ重合
体を成膜したもの、あるいは高分子膜中にイオン交換能
を有する物質を含ませてなるものの総称であり、陽イオ
ン交換膜と陰イオン交換膜に大別される。なお、両交換
膜を接合した膜も存在する。陽イオン交換膜としては例
えば、スルホン酸基、カルボン酸基、リン酸基を膜中の
高分子鎖に有するイオン交換膜、高分子膜中に硫酸、ス
ルホン酸類、リン酸類、カルボン酸類や固体酸の微粒子
等の酸性物質を含ませたもの等が挙げられる。また陰イ
オン交換膜としては例えば、アミノ基、水酸化第四アン
モニウム、グアニジン基等の塩基性基を有する高分子
膜、膜中に固体塩基を分散させた膜等が挙げられる。ま
た、膜中の酸または塩基部分を塩にしたものや、塩を含
浸させたものもある。燃料電池用イオン交換膜として最
も典型的なものはポリパーフルオロスルホン酸を成膜し
たものが知られており、例えば米国デュポン社製:商品
名ナフィオン、旭硝子(株)製:商品名フレミオン、旭
化成工業(株)製:商品名アシプレックス等が挙げられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the polymer electrolyte membrane is a polymer film having a polymer having a group having ion-exchange ability in the polymer skeleton, or a substance having ion-exchange ability in the polymer membrane. Is a general term for what is included, and is roughly classified into a cation exchange membrane and an anion exchange membrane. There is also a membrane in which both exchange membranes are joined. Examples of the cation exchange membrane include an ion exchange membrane having a sulfonic acid group, a carboxylic acid group and a phosphoric acid group in the polymer chain in the membrane, sulfuric acid, sulfonic acids, phosphoric acids, carboxylic acids and solid acid in the polymer membrane. Examples thereof include those containing an acidic substance such as the above fine particles. Examples of the anion exchange membrane include polymer membranes having a basic group such as amino group, quaternary ammonium hydroxide and guanidine group, and membranes in which a solid base is dispersed. In addition, there are those in which the acid or base moiety in the film is salted, and those in which the salt is impregnated. The most typical ion exchange membranes for fuel cells are known to have polyperfluorosulfonic acid formed into a film, for example, DuPont USA: Nafion, trade name; Asahi Glass Co., Ltd .: Flemion, Asahi Kasei. Industrial Co., Ltd .: trade name Aciplex and the like can be mentioned.

【0007】本発明において用いる金属箔は、めっきも
しくは圧延等の方法により作成した金属箔の少なくとも
片面に微細な凹凸の粗面を有するものである。金属の種
類は特に限定しないが代表的な例として銅、ニッケル、
アルミニウム、亜鉛、錫、鉄あるいはこれらの合金から
形成される金属箔が挙げられる。表面の凹凸形成方法は
特に限定しないが、好ましい例としてはプリント配線板
用金属箔張り積層板等の用途に用いられている、表面に
電解めっきもしくは金属腐食剤によって凹凸面が形成さ
れた金属箔が挙げられる。プリント配線板用金属箔張り
積層板用の金属箔は絶縁体となる樹脂との接着力を高め
るために、電解めっきを重ねて極めて複雑な凹凸を金属
箔の片面もしくは両面に均一に形成されたものであり、
容易に入手が可能である。また金属箔表面を腐食させて
複雑な凹凸を形成する方法も知られており、金属腐食剤
として例えばメック(株)製:商品名メックエッチボン
ドCZ8100、同CZ5480、または硫酸、過酸化
水素混合物系の金属腐食剤等が挙げられる。
The metal foil used in the present invention is a metal foil prepared by a method such as plating or rolling, which has a rough surface with fine irregularities on at least one surface. The type of metal is not particularly limited, but typical examples are copper, nickel,
Examples of the metal foil include aluminum, zinc, tin, iron or alloys thereof. The method for forming unevenness on the surface is not particularly limited, but a preferred example is used for applications such as a metal foil-clad laminate for printed wiring boards, a metal foil having an uneven surface formed by electrolytic plating or a metal corrosive agent on the surface. Is mentioned. The metal foil for laminated metal foils for printed wiring boards has been subjected to electrolytic plating to form extremely complicated irregularities evenly on one or both sides of the metal foil in order to increase the adhesive strength with the resin that serves as an insulator. Is something
It is easily available. A method of corroding the surface of a metal foil to form complex irregularities is also known, and as a metal corrosive agent, for example, MEC Co., Ltd .: trade name MEC Etch Bond CZ8100, CZ5480, or a mixture of sulfuric acid and hydrogen peroxide. Metal corrosion agents of

【0008】上述の表面に粗面を有する金属箔の粗さ
は、特に規定しないが凸部の頂点と凹部の底との高さの
差を粗さと規定する場合、その粗さが0.5μm〜10
0μmの範囲が好ましく、さらに好ましくは1μm〜5
0μmである。また上記の好ましい範囲の内で、使用さ
れる高分子電解質膜の厚さや圧着する面が片面あるいは
両面の場合で使用可能な範囲が異なり、両面に圧着する
場合は高分子電解質膜の厚さに対し1/2以下の粗さの
金属箔が好ましく使用でき、片面に圧着する場合は高分
子電解質膜の厚さに対し4/5以下の粗さの金属箔が好
ましく使用できる。これよりも粗い金属箔を使用した場
合は膜が部分的に薄くなり過ぎて、膜の両側の物質が透
過し易くなるため好ましくない。
The roughness of the metal foil having a rough surface as described above is not particularly specified, but when the difference in height between the apex of the convex portion and the bottom of the concave portion is defined as the roughness, the roughness is 0.5 μm. -10
The range is preferably 0 μm, more preferably 1 μm to 5
It is 0 μm. Further, within the above preferred range, the usable range is different depending on whether the thickness or pressure-bonding surface of the polymer electrolyte membrane to be used is one side or both sides. On the other hand, a metal foil having a roughness of 1/2 or less can be preferably used, and when pressure-bonded on one side, a metal foil having a roughness of 4/5 or less with respect to the thickness of the polymer electrolyte membrane can be preferably used. If a metal foil rougher than this is used, the film is partially thinned too much, and substances on both sides of the film are likely to permeate, which is not preferable.

【0009】また、高分子電解質膜上の所望の場所に合
わせて形状を加工した粗面を有する金属箔、または当該
所望の場所に合せて表面の一部を粗面化した金属箔を形
成し、これら金属箔の当該粗面を高分子電解質膜に圧着
し、当該金属箔を溶解することにより、粗面を有する金
属箔が付着していた部分、または金属箔の粗面化部分が
付着していた部分のみを粗面化させることができる。高
分子電解質膜を燃料電池等の電気化学デバイスに応用す
る場合、膜の中心部には触媒や電極等を形成し、膜の周
辺部分はガスケットの役割も持たせる構造が一般的であ
る。本発明の製造方法では、膜の外周部を除いて表面を
粗面化することができるため、周辺部に凹凸がなくな
り、ガスシール性低下を防止することができる。
Further, a metal foil having a rough surface whose shape is processed according to a desired place on the polymer electrolyte membrane or a metal foil having a part of the surface roughened according to the desired place is formed. By pressing the rough surface of these metal foils onto the polymer electrolyte membrane and melting the metal foil, the metal foil having the rough surface is adhered, or the roughened metal foil is adhered. It is possible to roughen only the part that was left. When the polymer electrolyte membrane is applied to an electrochemical device such as a fuel cell, it is common that a catalyst, an electrode and the like are formed in the central portion of the membrane and a peripheral portion of the membrane also serves as a gasket. According to the manufacturing method of the present invention, the surface can be roughened except for the outer peripheral portion of the film, so that the peripheral portion has no irregularities, and the deterioration of the gas sealing property can be prevented.

【0010】本発明において高分子電解質膜に金属箔を
圧着する工程は、プレス、ロールラミネート等の方法が
あり、高分子電解質膜が柔軟になる温度に加熱して圧着
するのが好ましい。加熱の際に好ましい温度は膜の材質
により異なるが、圧着時に膜材質が、軟化、半溶融また
は溶融状態となり、かつ分解温度より低い温度が好まし
い。但し、分解温度以上であっても圧着工程が極めて短
時間である場合は差し支えない。例えばパーフルオロス
ルホン酸系の高分子電解質膜では50℃〜200℃で行
なうのが好ましい。圧着の際は膜を乾燥状態で用いても
水、溶剤等により膨潤させた状態で行なっても良い。さ
らに、電気化学デバイスとして使用する際に水等により
膜が膨潤し、寸法が変化する場合は予め膜を膨潤させて
から圧着したり、膜の寸法変化を予め計算しておき、金
属箔の大きさを決めても良い。また、金属、セラミック
等の硬質ロールを用いて熱圧着すると金属箔上の凹凸が
むらなく転写でき、連続生産が容易にできる点で好まし
い。
In the present invention, the step of pressure-bonding the metal foil to the polymer electrolyte membrane includes a method such as pressing and roll laminating, and it is preferable to heat and pressure-bond the polymer foil to a temperature at which the polymer electrolyte membrane becomes flexible. The preferable temperature for heating varies depending on the material of the film, but it is preferable that the film material is in a softened, semi-molten or molten state at the time of pressure bonding and lower than the decomposition temperature. However, even if the temperature is higher than the decomposition temperature, there is no problem if the pressure bonding step is extremely short. For example, for a perfluorosulfonic acid-based polymer electrolyte membrane, it is preferable to carry out at 50 ° C to 200 ° C. The pressure bonding may be performed in a dry state of the film or in a state of being swollen with water, a solvent or the like. Furthermore, when the film swells due to water etc. when used as an electrochemical device and the size changes, the film is swollen in advance and then pressure is applied, or the dimensional change of the film is calculated in advance, and the size of the metal foil is calculated. You may decide the size. Further, thermocompression bonding using a hard roll made of metal, ceramic or the like is preferable in that irregularities on the metal foil can be transferred evenly and continuous production can be facilitated.

【0011】本発明においては、金属箔を溶解除去する
工程が必須である。圧着工程で膜内部に立体的に食い込
んだ金属箔を引き剥がすと膜が変形したり破損する頻度
が極めて高く、多くの場合は金属箔の断片が膜中に残る
等の不具合が生ずるが、本工程において金属箔を溶解除
去することにより、膜を破損したり金属の不純物が混入
すること無く、金属箔の立体形状をそのまま転写するこ
とができる。本工程において使用することができる溶解
液は金属を溶解できるものであれば特に限定しないが、
酸、アルカリ、塩化第2鉄、塩化第2銅、硫酸と過酸化
水素との混合溶液等の溶解液が使用可能である。但し、
一般に広く知られているように金属の種類によって使用
できる液が限定される場合がある。例えば銅箔は塩化第
2鉄水溶液や硫酸と過酸化水素との混合液には溶解し、
アルカリや常温の硫酸に溶解しない。またアルミニウム
箔は酸、アルカリの何れにも溶解する。
In the present invention, the step of dissolving and removing the metal foil is essential. When the metal foil that three-dimensionally digs into the film in the crimping process is peeled off, the film is very often deformed or damaged, and in many cases, problems such as metal foil fragments remaining in the film occur. By dissolving and removing the metal foil in the process, the three-dimensional shape of the metal foil can be transferred as it is without damaging the film or mixing metal impurities. The solution that can be used in this step is not particularly limited as long as it can dissolve the metal,
A solution such as an acid, an alkali, ferric chloride, cupric chloride, or a mixed solution of sulfuric acid and hydrogen peroxide can be used. However,
As is generally known, the type of metal may limit the usable liquid. For example, copper foil is soluble in ferric chloride aqueous solution and mixed solution of sulfuric acid and hydrogen peroxide,
Does not dissolve in alkali or sulfuric acid at room temperature. The aluminum foil is soluble in both acid and alkali.

【0012】上記の工程で金属箔を溶解すると、金属イ
オン等の不純物が膜中に残り、電気化学デバイスに用い
た時にイオンの輸送を妨げたり、電気化学デバイスとし
て動作させる内に膜中に金属が析出して短絡する場合が
ある。本発明においてはこれを防ぐために、酸による膜
洗浄工程を入れることが好ましく、これによりイオン性
不純物を除去することができる。さらに酸を洗浄するた
め純水等で膜を洗浄する工程を追加しても良い。
When the metal foil is melted in the above steps, impurities such as metal ions remain in the film, impeding the transport of ions when used in an electrochemical device, or causing metal in the film during operation as an electrochemical device. May be deposited and short-circuited. In the present invention, in order to prevent this, it is preferable to include a film washing step with an acid, which can remove ionic impurities. Further, in order to wash the acid, a step of washing the film with pure water or the like may be added.

【0013】上記の金属溶解工程および酸洗浄の工程は
液中に膜を浸漬させて行なうこともできるが、コンベア
式スプレー噴霧器等を用いれば、金属箔のロール圧着工
程と組み合わせて連続的生産ラインを形成でき、高い生
産性が得られるのでより好ましい。
The above-mentioned metal dissolving step and acid cleaning step can be carried out by immersing the film in a liquid, but if a conveyor type spray atomizer is used, it can be combined with the roll-bonding step of the metal foil in a continuous production line. Are more preferable because high productivity can be obtained.

【0014】[0014]

【作用】本発明により製造された表面が粗面化された高
分子電解質膜を、燃料電池等の電気化学デバイスに用い
ると反応効率が向上し、その結果電池出力等性能が向上
する。この理由としては、膜の表面に極めて複雑な凹凸
形状が形成でき、膜表面積が大きく増加し、その結果、
膜表面における電気化学的反応により生成したイオンを
効率良く溶かし込む事ができるためと考えられる。
When the polymer electrolyte membrane having a roughened surface produced by the present invention is used in an electrochemical device such as a fuel cell, the reaction efficiency is improved and, as a result, the performance such as battery output is improved. The reason for this is that an extremely complicated uneven shape can be formed on the surface of the film, and the film surface area is greatly increased.
This is probably because the ions generated by the electrochemical reaction on the film surface can be efficiently dissolved.

【0015】[0015]

【実施例】実施例1 (表面が粗面化された高分子電解質膜の製造方法)高分
子電解質膜として10cm角に切り出した米国デュポン
社製:ナフィオン115を用い、その両面の中央部に5
cm角に切り出した片面が粗面化された銅箔(福田金属
箔粉工業(株)製:CF−T9、厚さ35μm)を粗面
が電解質膜側になるように重ねあわせ、金属製熱ロール
を用いて130℃でロールラミネートして金属箔を圧着
させた。次に、塩化第2鉄水溶液を噴霧できるコンベア
式エッチング装置を通して銅箔を完全に溶解除去した。
この膜を、1N塩酸水溶液を噴霧できるコンベア式噴霧
器に通してから、同様のコンベア式噴霧器で蒸留水を吹
き付けて洗浄し、中心部の5cm角の範囲で表面に凹凸
を形成した高分子電解質膜を得た。粗面化された高分子
電解質膜表面を30度傾けて写した電子顕微鏡写真を図
2に示す。使用した銅箔の粗面を同じく30度傾けて写
した電子顕微鏡写真(図3)と比較すると、銅箔上の複
雑な凹凸が高分子電解質膜上へ完全に転写されているこ
とが分かった。
Example 1 (Method for producing a polymer electrolyte membrane having a roughened surface) Nafion 115 manufactured by DuPont, USA, cut out into 10 cm square was used as a polymer electrolyte membrane, and 5 were provided at the center portions on both sides thereof.
A copper foil (cm-square, CF-T9, thickness: 35 μm) with one side roughened cut into cm squares was overlaid so that the rough side was on the electrolyte membrane side, and the metal heat was applied. Roll lamination was performed at 130 ° C. using a roll, and the metal foil was pressure bonded. Next, the copper foil was completely dissolved and removed through a conveyor-type etching device capable of spraying a ferric chloride aqueous solution.
This membrane was passed through a conveyor type atomizer capable of spraying a 1N hydrochloric acid aqueous solution, then sprayed with distilled water using the same conveyor type atomizer to wash it, and a polymer electrolyte membrane having irregularities formed on the surface within a 5 cm square area of the central portion. Got An electron micrograph of the roughened surface of the polymer electrolyte membrane tilted by 30 degrees is shown in FIG. Comparing with the electron micrograph (FIG. 3) in which the rough surface of the copper foil used was also tilted by 30 degrees, it was found that the complex irregularities on the copper foil were completely transferred onto the polymer electrolyte membrane. .

【0016】実施例2 (燃料電池)触媒として白金を坦持したカーボンブラッ
ク(田中貴金属工業(株)製)とポリテトラフルオロエ
チレン懸濁液と高分子電解質溶液(米国デュポン社製:
ナフィオン(商品名)5%溶液)を固形分で6:2:2
の割合で混合し、作成したインキをポリテトラフルオロ
エチレンで撥水処理したカーボンペーパー2枚のそれぞ
れ片面に白金量で0.5mg/cm2になるように塗布
し乾燥した。次に実施例1により作成した表面が粗面化
された高分子電解質膜の両面に、このカーボンペーパー
2枚をインキ印刷面が内側になるように重ね、120℃
1分の条件で加熱プレスして燃料電池用膜電極接合体
(MEA)を作成した。これを燃料電池単セルに組み込
み、後述の条件で運転し、電流密度−電圧曲線を作成し
たところ、図4のように後述の比較例1に対し高電流密
度側で高い電圧が得られ、比較例1より高性能であるこ
とがわかった。
Example 2 (Fuel Cell) Carbon black supporting platinum as a catalyst (manufactured by Tanaka Kikinzoku Kogyo KK), polytetrafluoroethylene suspension and polymer electrolyte solution (manufactured by DuPont, USA:
Nafion (trade name) 5% solution) in solid content of 6: 2: 2
The ink prepared above was mixed at a ratio of 1 to each of two sheets of carbon paper water-repellent treated with polytetrafluoroethylene so that the platinum amount was 0.5 mg / cm 2 and dried. Next, two sheets of this carbon paper were superposed on both sides of the surface-roughened polymer electrolyte membrane prepared in Example 1 so that the ink-printed surface was on the inside, and the temperature was 120 ° C.
A membrane electrode assembly (MEA) for a fuel cell was prepared by hot pressing under the condition of 1 minute. When this was incorporated into a fuel cell single cell and operated under the conditions described below to create a current density-voltage curve, a higher voltage was obtained on the high current density side compared to Comparative Example 1 described below as shown in FIG. It was found that the performance was higher than that of Example 1.

【0017】比較例1 高分子電解質膜として米国デュポン社製:ナフィオン1
15をそのまま用いた以外は実施例2と同じ方法で燃料
電池用膜電極接合体(MEA)を作成した。これを燃料
電池単セルに組み込み、後述の条件で運転し、電流密度
−電圧曲線を作成した。その結果、図4のようになり、
実施例2に対し高電流密度側における電圧が低く性能が
劣っていた。
Comparative Example 1 Nafion 1 manufactured by DuPont, USA as a polymer electrolyte membrane
A fuel cell membrane electrode assembly (MEA) was produced in the same manner as in Example 2 except that 15 was used as it was. This was incorporated into a fuel cell single cell and operated under the conditions described below to prepare a current density-voltage curve. As a result, it looks like Figure 4.
Compared with Example 2, the voltage on the high current density side was low and the performance was inferior.

【0018】(燃料電池の性能評価方法)実施例2およ
び比較例1で作成したMEAの燃料電池単セルに組み込
んだ際の運転条件は次のとおり。燃料ガスと酸化剤ガス
をそれぞれ純水素、純酸素とし各ガスは60℃で90%
以上の湿度に保持した。セル温度は60℃とした。電子
負荷器により負荷を変化させながら、電流と電圧を測定
した。この値を基にそれぞれ電流密度−電圧曲線を作成
した。
(Fuel Cell Performance Evaluation Method) The operating conditions when the MEA prepared in Example 2 and Comparative Example 1 were incorporated into the fuel cell single cell were as follows. The fuel gas and oxidant gas are pure hydrogen and pure oxygen, respectively, and each gas is 90% at 60 ° C.
The above humidity was maintained. The cell temperature was 60 ° C. Current and voltage were measured while changing the load with an electronic loader. A current density-voltage curve was created based on this value.

【0019】[0019]

【発明の効果】本発明による高分子電解質膜の粗面化方
法は高分子電解質膜表面に極めて複雑な凹凸形状を均一
に形成することができ、かつ、ピンホール、破れ等の不
具合を生じることがないという特長を有する。また必要
な部分のみを粗面化することができるため、燃料電池等
に組み込んで用いる際、従来の粗面化方法で問題となっ
ていたガスシール性低下や膜強度低下がない。さらに金
属箔を熱ロールにより圧着することにより連続生産が可
能である。本発明により得られる表面が粗面化された高
分子電解質膜は燃料電池等の電気化学デバイス用途とし
て極めて有用である。
EFFECTS OF THE INVENTION The method of roughening a polymer electrolyte membrane according to the present invention can form extremely complicated uneven shapes uniformly on the surface of the polymer electrolyte membrane and causes problems such as pinholes and tears. It has the feature that there is no Further, since only a necessary portion can be roughened, when used by incorporating it into a fuel cell or the like, the gas sealing property and the film strength which are problems in the conventional roughening method are not reduced. Further, continuous production is possible by pressing the metal foil with a hot roll. The surface-roughened polymer electrolyte membrane obtained by the present invention is extremely useful as an electrochemical device such as a fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術および望ましい高分子電解質膜の表面
の状態を示した模式図である。
FIG. 1 is a schematic diagram showing the state of the surface of a conventional polymer electrolyte membrane and a desirable polymer electrolyte membrane.

【図2】粗面化された高分子電解質膜表面の電子顕微鏡
写真である。
FIG. 2 is an electron micrograph of a roughened surface of a polymer electrolyte membrane.

【図3】使用した銅箔の粗化面の電子顕微鏡写真であ
る。
FIG. 3 is an electron micrograph of a roughened surface of a copper foil used.

【図4】実施例2および比較例1の電流密度−電圧曲線
のグラフである。
FIG. 4 is a graph of current density-voltage curves of Example 2 and Comparative Example 1.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】高分子電解質膜の片面もしくは両面に、粗
面を有する金属箔の当該粗面を圧着する工程、並びに当
該金属箔を溶解除去する工程を含むことを特徴とする表
面が粗面化された高分子電解質膜の製造方法。
1. A rough surface comprising a step of pressure-bonding the rough surface of a metal foil having a rough surface to one or both surfaces of a polymer electrolyte membrane, and a step of dissolving and removing the metal foil. Of producing a polymerized polymer electrolyte membrane.
【請求項2】高分子電解質膜の片面もしくは両面に、粗
面を有する金属箔の当該粗面を圧着する工程、並びに当
該金属箔を溶解除去する工程の後、酸性溶液に当該膜を
接触させる工程を含むことを特徴とする表面が粗面化さ
れた高分子電解質膜の製造方法。
2. A membrane is contacted with an acidic solution after a step of pressure-bonding the rough surface of a metal foil having a rough surface to one or both sides of the polymer electrolyte membrane and a step of dissolving and removing the metal foil. A method for producing a polymer electrolyte membrane having a roughened surface, comprising the steps of:
【請求項3】粗面を有する金属箔が、高分子電解質膜上
の所望の場所に合わせて形状を加工したものか、または
当該所望の場所に合せて表面の一部を粗面化したもので
あることを特徴とする請求項1および請求項2に記載の
表面が粗面化された高分子電解質膜の製造方法。
3. A metal foil having a rough surface, the shape of which is processed according to a desired location on the polymer electrolyte membrane, or the surface of which is partially roughened according to the desired location. The method for producing a polymer electrolyte membrane having a roughened surface according to claim 1 or 2, wherein
【請求項4】請求項1ないし3の方法で製造された表面
が粗面化された高分子電解質膜を用いた電気化学デバイ
ス。
4. An electrochemical device using a polymer electrolyte membrane having a roughened surface produced by the method according to any one of claims 1 to 3.
【請求項5】請求項1ないし3の方法で製造された表面
が粗面化された高分子電解質膜を用いた燃料電池。
5. A fuel cell using the polymer electrolyte membrane having a roughened surface produced by the method according to any one of claims 1 to 3.
JP2001259219A 2001-08-29 2001-08-29 Method of manufacturing polymer electrolytic film with roughened surface and electrochemical device and fuel cell using same Pending JP2003068328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259219A JP2003068328A (en) 2001-08-29 2001-08-29 Method of manufacturing polymer electrolytic film with roughened surface and electrochemical device and fuel cell using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259219A JP2003068328A (en) 2001-08-29 2001-08-29 Method of manufacturing polymer electrolytic film with roughened surface and electrochemical device and fuel cell using same

Publications (1)

Publication Number Publication Date
JP2003068328A true JP2003068328A (en) 2003-03-07

Family

ID=19086623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259219A Pending JP2003068328A (en) 2001-08-29 2001-08-29 Method of manufacturing polymer electrolytic film with roughened surface and electrochemical device and fuel cell using same

Country Status (1)

Country Link
JP (1) JP2003068328A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108822A (en) * 2003-09-12 2005-04-21 Hitachi Ltd Electrolyte film for fuel cell, its forming method, and fuel cell using it
JP2005174565A (en) * 2003-12-08 2005-06-30 Hitachi Ltd POLYMER ELECTROLYTE MEMBRANE, MEMBRANE / ELECTRODE ASSEMBLY, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME
CN100466355C (en) * 2003-11-03 2009-03-04 康宁股份有限公司 Electrolyte sheet and separation method of the electrolyte sheet and its carrier
JP2009170271A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Manufacturing method of membrane electrode assembly
US8309265B2 (en) 2003-09-12 2012-11-13 Hitachi, Ltd. Electrolyte membrane for fuel cells, its production and fuel cell using the same
WO2014020849A1 (en) * 2012-08-02 2014-02-06 パナソニック株式会社 Method for producing molecularly oriented perfluorosulfone electrolyte membrane
WO2023095203A1 (en) * 2021-11-24 2023-06-01 日本電信電話株式会社 Method for producing porous electrode–supporting electrolyte membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108822A (en) * 2003-09-12 2005-04-21 Hitachi Ltd Electrolyte film for fuel cell, its forming method, and fuel cell using it
US8309265B2 (en) 2003-09-12 2012-11-13 Hitachi, Ltd. Electrolyte membrane for fuel cells, its production and fuel cell using the same
CN100466355C (en) * 2003-11-03 2009-03-04 康宁股份有限公司 Electrolyte sheet and separation method of the electrolyte sheet and its carrier
JP2005174565A (en) * 2003-12-08 2005-06-30 Hitachi Ltd POLYMER ELECTROLYTE MEMBRANE, MEMBRANE / ELECTRODE ASSEMBLY, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME
JP2009170271A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Manufacturing method of membrane electrode assembly
WO2014020849A1 (en) * 2012-08-02 2014-02-06 パナソニック株式会社 Method for producing molecularly oriented perfluorosulfone electrolyte membrane
JP5588087B2 (en) * 2012-08-02 2014-09-10 パナソニック株式会社 Process for producing perfluorosulfone electrolyte membrane with molecular orientation
WO2023095203A1 (en) * 2021-11-24 2023-06-01 日本電信電話株式会社 Method for producing porous electrode–supporting electrolyte membrane

Similar Documents

Publication Publication Date Title
Srivastava et al. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles
KR100964131B1 (en) Bipolar plate for fuel cell and manufacturing method thereof
JP2002231267A (en) Electrode-membrane assembly and method for producing the same
JP2015525675A (en) Method for preparing a catalyst material
CN103827355A (en) Gas-diffusion electrode
JP2010505222A (en) Structure for gas diffusion electrode
JP5437651B2 (en) Ion exchange membrane electrolytic cell and method for producing the same
US4568441A (en) Solid polymer electrolyte membranes carrying gas-release particulates
JP2001351642A (en) Fuel cell separator
JP2003068328A (en) Method of manufacturing polymer electrolytic film with roughened surface and electrochemical device and fuel cell using same
WO2005057698A1 (en) Fuel cell
JP2003082488A (en) Membrane electrode assembly and manufacturing method thereof
CN114622238B (en) Preparation and application of transition metal-based hydrogen and oxygen evolution dual-functional electrode
JPS59133384A (en) electrolytic cell
JP2004502284A (en) Electrochemical battery
JP4824946B2 (en) Electrolyte membrane with protective film and production method thereof.
JP4870328B2 (en) Method for manufacturing membrane-electrode assembly
JP5220599B2 (en) Gas diffusion electrode, membrane-electrode assembly and method of manufacturing the same
JP2010056004A (en) Method for manufacturing membrane-electrode assembly
JP4329346B2 (en) Method for producing catalyst-carrying electrode, and electrochemical device and fuel cell using the same
JP2006012694A (en) Manufacturing method of membrane/electrode assembly for solid polymer fuel cell
JP3127991B2 (en) Method for producing electrode assembly of laminated ion exchange membrane having porous membrane on surface
JP2005063832A (en) Catalyst layer-electrolyte membrane laminate and method for producing the same
JP2007048701A (en) Transfer sheet, laminate of catalyst layer and electrolyte membrane, electrode electrolyte membrane assembly, and method of manufacturing them
CN103361660A (en) Method for pre-treating stainless steel bipolar plate of proton exchange membrane fuel cell