JP2005154563A - Humidity-controllable foam and humidity-controllable packaging container using the foam - Google Patents
Humidity-controllable foam and humidity-controllable packaging container using the foam Download PDFInfo
- Publication number
- JP2005154563A JP2005154563A JP2003394622A JP2003394622A JP2005154563A JP 2005154563 A JP2005154563 A JP 2005154563A JP 2003394622 A JP2003394622 A JP 2003394622A JP 2003394622 A JP2003394622 A JP 2003394622A JP 2005154563 A JP2005154563 A JP 2005154563A
- Authority
- JP
- Japan
- Prior art keywords
- foam
- humidity
- cell
- packaging container
- humidity control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006260 foam Substances 0.000 title claims abstract description 103
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 40
- 229920003232 aliphatic polyester Polymers 0.000 claims abstract description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 22
- 239000004645 polyester resin Substances 0.000 claims abstract description 18
- 239000004088 foaming agent Substances 0.000 claims abstract description 13
- 239000002344 surface layer Substances 0.000 claims description 23
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 20
- -1 polybutylene succinate Polymers 0.000 claims description 17
- 239000001569 carbon dioxide Substances 0.000 claims description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 9
- 229920001577 copolymer Polymers 0.000 claims description 9
- 229920002961 polybutylene succinate Polymers 0.000 claims description 9
- 239000004631 polybutylene succinate Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 20
- 239000007789 gas Substances 0.000 description 19
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000005187 foaming Methods 0.000 description 12
- 239000002699 waste material Substances 0.000 description 12
- 235000012055 fruits and vegetables Nutrition 0.000 description 10
- 230000035699 permeability Effects 0.000 description 10
- 241000219315 Spinacia Species 0.000 description 8
- 235000009337 Spinacia oleracea Nutrition 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229920000747 poly(lactic acid) Polymers 0.000 description 7
- 239000004626 polylactic acid Substances 0.000 description 7
- 238000004064 recycling Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000005022 packaging material Substances 0.000 description 5
- 238000012856 packing Methods 0.000 description 5
- 239000005909 Kieselgur Chemical class 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 150000002484 inorganic compounds Chemical class 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 229920006248 expandable polystyrene Polymers 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 239000002361 compost Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 150000008442 polyphenolic compounds Chemical class 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 101000837805 Homo sapiens Testis-expressed protein 44 Proteins 0.000 description 1
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-Lactic acid Natural products C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 102100028514 Testis-expressed protein 44 Human genes 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical class O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- GSCLMSFRWBPUSK-UHFFFAOYSA-N beta-Butyrolactone Chemical compound CC1CC(=O)O1 GSCLMSFRWBPUSK-UHFFFAOYSA-N 0.000 description 1
- VEZXCJBBBCKRPI-UHFFFAOYSA-N beta-propiolactone Chemical compound O=C1CCO1 VEZXCJBBBCKRPI-UHFFFAOYSA-N 0.000 description 1
- 229920006167 biodegradable resin Polymers 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000003610 charcoal Chemical class 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000009264 composting Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000010097 foam moulding Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229910001872 inorganic gas Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 239000004571 lime Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920009537 polybutylene succinate adipate Polymers 0.000 description 1
- 239000004630 polybutylene succinate adipate Substances 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229960000380 propiolactone Drugs 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W90/00—Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
- Y02W90/10—Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
- Rigid Containers With Two Or More Constituent Elements (AREA)
- Packages (AREA)
- Wrappers (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
本発明は、調湿性発泡体及びそれを用いた調湿性梱包容器に関し、さらに詳しくは、廃棄物処理が容易で、かつ耐久性、調湿性及びガス透過性に優れる発泡体とそれを用いた梱包容器に関する。 The present invention relates to a humidity control foam and a humidity control packaging container using the same, and more particularly, a foam that is easy to dispose of waste and excellent in durability, humidity control and gas permeability, and a packaging using the same. Concerning the container.
従来、生鮮食品、青果等の梱包用断熱容器としては、ポリスチレン製容器、特に発泡ポリスチロールを用いた容器がその主流となっており、広く流通している。しかしながら、近年の環境問題から、ポリスチレン樹脂はリサイクルが容易でないので、それを用いた梱包材の廃棄処理が大きな問題となっている。ところで、発泡ポリスチロールの処理方法として、加熱減溶したのち、再度リサイクル原料として利用することも考えられているが、使用ずみ容器の洗浄処理、減溶品の処理費、及び輸送費が高コストで、リサイクル処理は効果的に機能していないのが現状である。また、青果用等には以前から段ボール梱包材が使用されているが、耐水性がないため、再使用回数も限られており、廃棄またはすぐにリサイクル処理されるケースが多い。 Conventionally, as a heat insulating container for packing fresh food, fruits and vegetables, a polystyrene container, particularly a container using foamed polystyrene, has been the mainstream and widely distributed. However, due to recent environmental problems, polystyrene resin is not easy to recycle, and the disposal of packaging materials using it has become a major problem. By the way, as a processing method of foamed polystyrene, it is also considered to use it again as a recycled material after heating and dissolving, but it is expensive to clean used containers, process the reduced solution, and transport The current situation is that the recycling process does not function effectively. Corrugated cardboard packaging has been used for fruits and vegetables, but since it is not water resistant, the number of reuses is limited, and it is often discarded or immediately recycled.
また、梱包材としての性能面では、発泡ポリスチロール梱包材は、断熱性と耐水性は優れているが、逆に気密性が高いので嫌気性の腐敗あるいは青果物から出るエチレンガス等による腐敗が進んだりすること、又は梱包容器内部に同時梱包する氷、ドライアイス等による結露が青果表面に付着し品質を損ねること等の問題がある。また、段ボール梱包材は、断熱性が弱く気密性と耐水性が全くないので、長期間の鮮度保持が困難であること、また水分による変形及び破損が多いこと等の問題がある。
以上ように、特に青果物の輸送においては、その梱包材として、断熱性とともに、水蒸気の透過性又は調湿性、及び適度なガス透過性が必要とされる。
In terms of performance as a packaging material, foamed polystyrene packaging material is excellent in heat insulation and water resistance, but on the contrary, because of its high airtightness, it is subject to anaerobic rot or rot due to ethylene gas from fruits and vegetables. There are problems such as dew condensation or condensation due to ice, dry ice, etc., which are simultaneously packed in the packing container, which adheres to the surface of the fruits and vegetables and impairs the quality. Further, the corrugated cardboard packaging material has problems such as poor heat insulation and no air-tightness and water resistance, so that it is difficult to maintain freshness for a long period of time, and there are many deformations and breakages due to moisture.
As described above, particularly in the transportation of fruits and vegetables, the packaging material requires heat permeability, moisture permeability or humidity control, and appropriate gas permeability.
この解決策として、代表的な提案としては、以下のようなものが挙げられるが、それぞれ課題がある。。
例えば、ポリ乳酸を主成分とする熱可塑性樹脂からなる青果用分解性発泡緩衝容器が提案(例えば、特許文献1参照。)されている。この提案は、生分解性の熱可塑性樹脂であるポリ乳酸を発泡させて得る発泡容器であるので、廃棄物の処理問題には貢献するが、従来のポリエチレン製又はポリスチレン製の発泡容器とまったく同様の性質を目指したものであるので、青果物の長期輸送において求められる調湿性及びガス透過性に関する課題には問題がある。
As typical solutions, there are the following as typical proposals. .
For example, a degradable foam buffer container for fruits and vegetables made of a thermoplastic resin mainly composed of polylactic acid has been proposed (see, for example, Patent Document 1). This proposal is a foam container obtained by foaming polylactic acid, which is a biodegradable thermoplastic resin, so it contributes to the waste disposal problem, but it is exactly the same as conventional polyethylene or polystyrene foam containers. Therefore, there are problems with the problems relating to humidity control and gas permeability required for long-term transportation of fruits and vegetables.
また、ゼオライト粉末を、熱可塑性樹脂、熱硬化性樹脂若しくはデンプンとポリビニールアルコールからなる発泡体に混合してシート状に成型した包装用緩衝材が提案(例えば、特許文献2参照。)されている。この提案は、調湿性と腐敗ガスの消臭及び除去に有効に作用するゼオライト粉末を用いているので、これらの課題の解決策になりうるが、その用途が梱包容器の中に入れて使用する緩衝材であり、梱包容器としての機能を考慮したものではない。例えば、前記樹脂としては、構造体用として配慮されたものではなく、また、廃棄物の処理問題のため加水崩壊性を付与するため耐水性のないポリビニルアルコール又はデンプンが多く使われているので、梱包容器としての強度と耐久性に問題がある。 Further, a packaging cushioning material in which zeolite powder is mixed with a thermoplastic resin, a thermosetting resin, or a foam made of starch and polyvinyl alcohol and molded into a sheet shape has been proposed (for example, see Patent Document 2). Yes. This proposal uses zeolite powder that works effectively in humidity control and deodorization and removal of septic gas, so it can be a solution to these problems, but its use is put in a packaging container. It is a cushioning material and does not consider the function as a packaging container. For example, as the resin, it is not considered for structural use, and polyvinyl alcohol or starch having no water resistance is often used to give hydrolytic disintegration due to waste disposal problems. There are problems with strength and durability as a packaging container.
以上の状況から、青果物用の梱包容器として、廃棄物処理が容易で、かつ耐久性と調湿性に優れ、かつガス透過性のある梱包容器が求められている。
本発明の目的は、上記の従来技術の問題点に鑑み、廃棄物処理が容易で、かつ耐久性と調湿性に優れる発泡体とそれを用いた梱包容器を提供することにある。 An object of the present invention is to provide a foam that is easy to dispose of waste and that is excellent in durability and humidity control, and a packaging container using the same, in view of the above-described problems of the prior art.
本発明者らは、上記目的を達成するために、梱包用の発泡体について、鋭意研究を重ねた結果、特定の生分解性樹脂と吸湿性化合物からなり、かつ特定の条件で発泡成形して得られた発泡体を用いたところ、廃棄物処理が容易で、かつ耐久性、調湿性及びガス透過性に優れていることを見出し、本発明を完成した。 In order to achieve the above-mentioned object, the present inventors have conducted extensive research on packaging foams. As a result, the present invention is made of a specific biodegradable resin and a hygroscopic compound, and is foam-molded under specific conditions. When the obtained foam was used, it was found that waste treatment was easy and it was excellent in durability, humidity control and gas permeability, and the present invention was completed.
すなわち、本発明の第1の発明によれば、生分解性脂肪族ポリエステル系樹脂と難水溶性の吸湿性化合物からなり、かつ発泡剤の残渣を含有しないことを特徴とする調湿性発泡体が提供される。 That is, according to the first invention of the present invention, there is provided a humidity control foam characterized by comprising a biodegradable aliphatic polyester resin and a hardly water-soluble hygroscopic compound and containing no foaming agent residue. Provided.
また、本発明の第2の発明によれば、第1の発明において、前記生分解性脂肪族ポリエステル系樹脂は、ポリブチレンサクシネート又はその共重合物であることを特徴とする調湿性発泡体が提供される。 According to a second aspect of the present invention, in the first aspect, the biodegradable aliphatic polyester-based resin is polybutylene succinate or a copolymer thereof. Is provided.
また、本発明の第3の発明によれば、第1又は2の発明において、厚み方向の連続気泡率は、10〜80%であるとともに、その気泡構造は、表層面に平行な方向の気泡セル径に対する表層面に垂直な方向の気泡セル径の比率が1.2以上である楕円形又は箱状の縦長気泡を含むことを特徴とする調湿性発泡体が提供される。 According to the third invention of the present invention, in the first or second invention, the open cell ratio in the thickness direction is 10 to 80%, and the cell structure is a cell in a direction parallel to the surface layer surface. There is provided a humidity-controlling foam characterized in that it includes elliptical or box-like vertically long cells whose ratio of the cell diameter in the direction perpendicular to the surface layer to the cell diameter is 1.2 or more.
また、本発明の第4の発明によれば、第1〜3いずれかの発明において、表層面から内部5mm未満の部分での気泡構造は、表層面に垂直な方向の気泡セル径が2mm以下であるとともに、表層面に垂直な方向の気泡セル径に対する表層面に水平な気泡セル径の比率が1〜20倍である横長気泡を含むことを特徴とする調湿性発泡体が提供される。 According to the fourth invention of the present invention, in any one of the first to third inventions, the cell structure in the portion less than 5 mm inside from the surface layer surface has a bubble cell diameter of 2 mm or less in the direction perpendicular to the surface layer surface. In addition, there is provided a humidity-adjustable foam characterized by containing horizontally long bubbles having a ratio of the bubble cell diameter horizontal to the surface layer surface to the bubble cell diameter in the direction perpendicular to the surface layer surface being 1 to 20 times.
また、本発明の第5の発明によれば、第4の発明において、その表面に直径1mm以下の複数の孔が穿孔されていることを特徴とする調湿性発泡体が提供される。 According to a fifth aspect of the present invention, there is provided the humidity control foam according to the fourth aspect, wherein a plurality of holes having a diameter of 1 mm or less are perforated on the surface.
また、本発明の第6の発明によれば、第1〜5いずれかの発明において、生分解性脂肪族ポリエステル系樹脂と難水溶性の吸湿性化合物とからなる原料組成物を炭酸ガスにより発泡成形することを特徴とする請求項1〜5のいずれかに記載の調湿性発泡体の製法が提供される。 According to the sixth aspect of the present invention, in any one of the first to fifth aspects, the raw material composition comprising the biodegradable aliphatic polyester resin and the poorly water-soluble hygroscopic compound is foamed with carbon dioxide gas. A method for producing a humidity-controlling foam according to any one of claims 1 to 5 is provided.
また、本発明の第7の発明によれば、第1〜5いずれかの発明の調湿性発泡体を用いてなることを特徴とする調湿性梱包容器が提供される。 Moreover, according to 7th invention of this invention, the humidity control packaging container characterized by using the humidity control foam of any one of 1st-5th invention is provided.
また、本発明の第8の発明によれば、第7の発明において、梱包容器の内面の発泡体表面のみに、直径1mm以下の複数の孔が穿孔されていることを特徴とする調湿性梱包容器が提供される。 Further, according to the eighth invention of the present invention, in the seventh invention, a humidity control packaging characterized in that a plurality of holes having a diameter of 1 mm or less are perforated only on the foam surface on the inner surface of the packaging container. A container is provided.
また、本発明の第9の発明によれば、第7又は8の発明において、前記梱包容器の側面と底面との接合部及び/又は側面同士の接合部が、井桁状に組み合わされることを特徴とする調湿性梱包容器が提供される。 According to the ninth invention of the present invention, in the seventh or eighth invention, the joint portion between the side surface and the bottom surface of the packing container and / or the joint portion between the side surfaces is combined in a cross-beam shape. A humidity control packaging container is provided.
本発明の調湿性発泡体及びそれを用いた調湿性梱包容器は、さまざまな方法による廃棄物処理を容易に行なうことができ、かつ耐久性、調湿性及びガス透過性に優れたものであり、その工業的価値は極めて大きい。 The humidity control foam of the present invention and the humidity control packaging container using the same can be easily disposed of by various methods, and are excellent in durability, humidity control and gas permeability. Its industrial value is extremely large.
以下、本発明の調湿性発泡体及びそれを用いた調湿性梱包容器を詳細に説明する。
本発明の調湿性発泡体及びそれを用いた調湿性梱包容器は、生分解性脂肪族ポリエステル系樹脂と難水溶性の吸湿性化合物からなり、かつ発泡剤の残渣を含有しない。
Hereinafter, the humidity control foam of the present invention and the humidity control packaging container using the same will be described in detail.
The humidity control foam of the present invention and the humidity control packaging container using the same are composed of a biodegradable aliphatic polyester resin and a slightly water-soluble hygroscopic compound, and do not contain a foaming agent residue.
本発明において、発泡体の構成成分として生分解性の脂肪族ポリエステル系樹脂と難水溶性の吸湿性化合物が用いられることが重要である。これによって、廃棄物処理を容易に行なうことができるとともに、優れた耐久性、調湿性及びガス透過性を有する発泡体が得られる。すなわち、生分解性の脂肪族ポリエステル系樹脂を用いることによって、焼却処理によるサーマルリサイクル、コンポストによる分解、減容、加水分解後の嫌気発酵によるバイオガス回収、ケミカルリサイクル等さまざまな方法による廃棄物処理を容易にするとともに、発泡体からなる梱包容器としての強度と耐久性を付与することができる。また、難水溶性の吸湿性化合物を用いることで、耐水性とともに、調湿性及びガス透過性を付与することができる。すなわち、調湿作用は、前記吸湿性化合物が発泡体内の湿気を吸着するとともに、吸着された湿気水分が保水され、近傍の乾燥にともない放湿がなされるため、梱包容器内部の湿度がほぼ一定に保持されることによる。 In the present invention, it is important that a biodegradable aliphatic polyester resin and a slightly water-soluble hygroscopic compound are used as constituents of the foam. As a result, waste can be easily treated, and a foam having excellent durability, humidity control and gas permeability can be obtained. In other words, by using biodegradable aliphatic polyester resin, waste recycling by various methods such as thermal recycling by incineration, decomposition by compost, volume reduction, biogas recovery by anaerobic fermentation after hydrolysis, chemical recycling, etc. The strength and durability of a packaging container made of a foam can be imparted. Moreover, humidity control and gas permeability can be provided with water resistance by using a slightly water-soluble hygroscopic compound. That is, the humidity control action is that the hygroscopic compound adsorbs moisture in the foam, and the adsorbed moisture is retained, and the moisture is released as the neighborhood dries, so the humidity inside the packaging container is almost constant. By being held in.
本発明に用いる生分解性脂肪族ポリエステル系樹脂としては、特に限定されるものではなく、ポリグリコール酸、ポリ乳酸若しくは乳酸と、他のヒドロキシルカルボン酸とのコポリマーとこれらコポリマーの混合物、ポリ(ε−カプロラクトン)、ポリエチレンサクシネート、ポリテトラメチレンサクシネート、ポリ−β−プロピオラクトン、ポリ−β−ブチロラクトン、ポリ−γ−ブチロラクトン、ポリブチレンサクシネート(PBS)、他のジカルボン酸との共重合物等の脂肪族ポリエステル樹脂、又はこれら脂肪族ポリエステル樹脂のイシソアネート架橋物とそれら化合物の混合物を用いることができる。ここで、他のジカルボン酸との共重合物としては、L乳酸共重合物(PBSL)、カプロン酸共重合物(PBSCL)、ポリブチレンサクシネート−カーボネート、ポリブチレンサクシネート−アジペート等が挙げられる。また、上記脂肪族ポリエステルは、多官能モノマーの共重合物又はグラフト処理による分岐構造の付与により歪み硬化性を付与したものを使用してもよい。 The biodegradable aliphatic polyester-based resin used in the present invention is not particularly limited, and polyglycolic acid, polylactic acid or a copolymer of lactic acid and other hydroxyl carboxylic acid and a mixture of these copolymers, poly (ε -Caprolactone), polyethylene succinate, polytetramethylene succinate, poly-β-propiolactone, poly-β-butyrolactone, poly-γ-butyrolactone, polybutylene succinate (PBS), copolymerization with other dicarboxylic acids Aliphatic polyester resins such as products, or isocyanatoate cross-linked products of these aliphatic polyester resins and a mixture of these compounds can be used. Here, examples of the copolymer with other dicarboxylic acid include L-lactic acid copolymer (PBSL), caproic acid copolymer (PBSCL), polybutylene succinate-carbonate, polybutylene succinate-adipate, and the like. . The aliphatic polyester may be a polyfunctional monomer copolymer or a polyester imparted with strain hardening by providing a branched structure by grafting.
この中で、特に、最も発泡に適する樹脂であり、130℃及び剪断速度周波数1rad/sでの貯蔵粘性率(J”)が0.00008〜0.0003Pa−1である脂肪族ポリエステル系樹脂が好ましく、ポリブチレンサクシネートとその共重合物がより好ましい。すなわち、前記貯蔵粘性率が0.00008Pa−1未満では、粘度が低すぎて気泡を形成することができない。一方、0.0003Pa−1を超えると、粘度が高すぎて気泡が十分に成長しないか、あるいは成長しても硬化前に収縮してしまう。 Among them, an aliphatic polyester resin that is most suitable for foaming and has a storage viscosity (J ″) of 0.00008 to 0.0003 Pa −1 at 130 ° C. and a shear rate frequency of 1 rad / s. Polybutylene succinate and copolymers thereof are more preferable, that is, when the storage viscosity is less than 0.00008 Pa −1 , the viscosity is too low to form bubbles, whereas 0.0003 Pa −1. If it exceeds 1, the viscosity is too high and bubbles do not grow sufficiently, or even if they grow, they shrink before curing.
上記脂肪族ポリエステル系樹脂に、さらに、ポリ乳酸を40重量%以下の範囲でブレンドして用いることができる。これによって、発泡体の耐久性と曲げ強度を向上させることができる。すなわち、ポリ乳酸の添加割合が40重量%を超えると、発泡体の成形が困難となる。また、ここで用いるポリ乳酸としては、200℃及び剪断速度周波数1rad/sでの貯蔵粘性率(J”)が0.00008〜0.0003Pa−1であることが好ましい。 Polylactic acid can be further blended with the aliphatic polyester resin in a range of 40% by weight or less. Thereby, durability and bending strength of the foam can be improved. That is, when the addition ratio of polylactic acid exceeds 40% by weight, it becomes difficult to mold the foam. The polylactic acid used here preferably has a storage viscosity (J ″) of 0.00008 to 0.0003 Pa −1 at 200 ° C. and a shear rate frequency of 1 rad / s.
上記脂肪族ポリエステル系樹脂に、さらに、架橋剤を添加することができる。ここで、架橋剤の添加割合は5重量%以下が好ましい。これによって、溶融張力の増加及び/又は歪み硬化性の付与を実現することができる。すなわち、添加割合が5重量%を超えると、生分解性が低下するとともに、発泡に際して気泡成長を妨げる。また、用いる架橋剤としては、特に限定されるものではなく、他価カルボン酸、イソシアネート化合物、有機過酸化物、エポキシ化合物、シランカップリング剤、金属錯体等が好ましい。 A crosslinking agent can be further added to the aliphatic polyester resin. Here, the addition ratio of the crosslinking agent is preferably 5% by weight or less. Thereby, increase in melt tension and / or impartment of strain hardening can be realized. That is, when the addition ratio exceeds 5% by weight, biodegradability is lowered and bubble growth is hindered during foaming. Moreover, it does not specifically limit as a crosslinking agent to be used, Other value carboxylic acid, an isocyanate compound, an organic peroxide, an epoxy compound, a silane coupling agent, a metal complex etc. are preferable.
本発明に用いる難水溶性の吸湿性化合物としては、特に限定されるものではなく、吸湿性を有する無機化合物のほか、有機樹脂、植物性および動物性繊維等の有機系化合物が用いられる。ここで上記吸湿性無機化合物としては、粘土鉱物、層状珪酸塩化合物、粒状シリカ化合物、酸化チタン、炭、ゼオライト化合物、珪藻土、石灰化合物、貝殻等の吸湿性無機化合物、又はこれらを界面活性剤あるいはシランカップリング剤で表面処理して分散性を向上させたもの等が挙げられるが、この中で、特に、分散性と調湿性に優れる珪藻土及びゼオライト化合物が好ましい。 The poorly water-soluble hygroscopic compound used in the present invention is not particularly limited, and organic compounds such as organic resins, vegetable and animal fibers are used in addition to hygroscopic inorganic compounds. Here, as the hygroscopic inorganic compound, clay minerals, layered silicate compounds, granular silica compounds, titanium oxide, charcoal, zeolite compounds, diatomaceous earth, lime compounds, shells and other hygroscopic inorganic compounds, or surfactants or Examples thereof include those whose surface is treated with a silane coupling agent to improve dispersibility, among which diatomaceous earth and zeolite compounds which are excellent in dispersibility and humidity control are preferred.
上記吸湿性無機化合物の粒子径としては、特に限定されるものではないが、1〜200μmが好ましい。なお、粒子径の測定方法は、顕微鏡写真を画像処理装置により処理して個数平均を求めたものである。すなわち、粒子径が1μm未満では、発泡体中での分散が不十分でありそのため気泡が崩れる。また、分散不良を起こさなくとも、発泡セルの表面張力を低下させるので、発泡を阻害する。一方、粒子径が200μmを超えると、粒子が気泡間を連通して破泡させたり、気泡をふさいだりするので好ましくない。 Although it does not specifically limit as a particle diameter of the said hygroscopic inorganic compound, 1-200 micrometers is preferable. In addition, the measuring method of a particle diameter calculates | requires a number average by processing a micrograph with an image processing apparatus. That is, when the particle diameter is less than 1 μm, the dispersion in the foam is insufficient and the bubbles collapse. Moreover, even if it does not raise | generate dispersion | distribution failure, since the surface tension of a foaming cell is reduced, foaming is inhibited. On the other hand, when the particle diameter exceeds 200 μm, it is not preferable because the particles communicate with each other to break the bubbles or block the bubbles.
また、吸湿性有機系化合物としては、酢酸ビニル系樹脂の低ケン化品、又はポリビニルアルコールの高ケン化品、ポリアクリル酸系樹脂、ポリグルタミン酸系樹脂、ポリアミノ酸系樹脂、酢酸セルロース系樹脂、ポリフェノール系樹脂等の吸湿性ポリマーで水に難溶である分子量が1万以上のものが用いられる。また、パルプ、綿、麻、葦、竹、ケナフ、ジュート等の植物性繊維、絹、羊毛等の動物性繊維とそれらの変成物、キチンキトサン、ポリフェノール類等の動植物からの抽出物、ハーブ葉、茶葉等の植物葉の粉砕物等が用いられる。この中で、特に、パルプ、綿及び絹が分散性及び吸収性が良く好ましい。 Further, as the hygroscopic organic compound, a low saponification product of vinyl acetate resin, or a high saponification product of polyvinyl alcohol, polyacrylic acid resin, polyglutamic acid resin, polyamino acid resin, cellulose acetate resin, A hygroscopic polymer such as a polyphenol-based resin having a molecular weight of 10,000 or more which is hardly soluble in water is used. Also, plant fibers such as pulp, cotton, hemp, straw, bamboo, kenaf, jute, etc., animal fibers such as silk, wool and their modified products, extracts from animals and plants such as chitin chitosan, polyphenols, herb leaves A pulverized product of plant leaves such as tea leaves is used. Of these, pulp, cotton and silk are particularly preferred because of their good dispersibility and absorbability.
上記吸湿性化合物の吸湿性能としては、特に限定されるものではないが、乾燥重量に対する吸水量が0.5〜20重量%であるものが好ましい。これによって、発泡体の調湿性を付与することができる。 The hygroscopic performance of the hygroscopic compound is not particularly limited, but preferably has a water absorption amount of 0.5 to 20% by weight relative to the dry weight. Thereby, the humidity control property of a foam can be provided.
上記吸湿性化合物の上記脂肪族ポリエステル系樹脂に対する添加割合は、特に限定されるものではないが、0.1〜20重量%が好ましく、0.5〜10重量%がより好ましい。すなわち、0.1重量%未満では、調湿性の効果がほとんどあらわれない。一方、20重量%を超えると、発泡体としての成形が困難となる。 The addition ratio of the hygroscopic compound to the aliphatic polyester resin is not particularly limited, but is preferably 0.1 to 20% by weight, and more preferably 0.5 to 10% by weight. That is, if it is less than 0.1% by weight, the effect of humidity control is hardly exhibited. On the other hand, when it exceeds 20% by weight, molding as a foam becomes difficult.
本発明の発泡体は、発泡剤の残渣を含有しないものである。これによって、環境に優しい発泡体を得ることができる。一般に、発泡体の形成には、有機系分解性発泡剤、無機系分解性発泡剤等の化学発泡剤と炭化水素ガス、炭酸ガス、窒素ガス、不活性ガス等の物理発泡剤が用いられるが、化学発泡剤及び有機系ガスではその残渣が発泡体中に残留することが多い。したがって、発泡剤の残渣を含有しない発泡体を得るためには、発泡剤として、炭酸ガス、窒素ガス、不活性ガス等の無機系ガスが用いられるが、この中で、炭酸ガスを注入ガスとして用いてその圧入によって発泡成形される方法が好ましい。これによって、低温で発泡できるとともに、均一微細な発泡体を得ることができる。 The foam of the present invention does not contain a foaming agent residue. Thereby, an environmentally friendly foam can be obtained. In general, chemical foaming agents such as organic decomposable foaming agents and inorganic degradable foaming agents and physical foaming agents such as hydrocarbon gas, carbon dioxide gas, nitrogen gas, and inert gas are used to form the foam. In the case of chemical foaming agents and organic gases, the residues often remain in the foam. Therefore, in order to obtain a foam containing no foaming agent residue, an inorganic gas such as carbon dioxide, nitrogen gas, or inert gas is used as the foaming agent. Among these, carbon dioxide is used as an injection gas. A method in which foam molding is performed by press-fitting is preferable. This makes it possible to obtain a uniform and fine foam as well as foaming at a low temperature.
本発明の発泡体は、その厚み方向の連続気泡率は、特に限定されるものではないが、10〜80%であることが好ましい。すなわち、連続気泡が10%未満では、発泡体の気泡が調湿性能を発揮することができないので、発泡体の調湿性があまり発現しない。一方、80%を越えると、発泡体の調湿性の保持時間が短くなる。 In the foam of the present invention, the open cell ratio in the thickness direction is not particularly limited, but is preferably 10 to 80%. That is, if the open cells are less than 10%, the bubbles in the foam cannot exhibit the humidity control performance, so that the humidity control property of the foam does not appear so much. On the other hand, if it exceeds 80%, the moisture conditioning holding time of the foam is shortened.
また、上記発泡体は、その気泡構造は、特に限定されるものではないが、その表層面に平行な方向の気泡セル径に対する表層面に垂直な方向の気泡セル径の比率が1.2以上である楕円形又は箱状の縦長気泡を含むことが好ましい。すなわち、両気泡セル径の比率が1.2以上の縦長気泡とすることで、発泡体の圧縮強度を向上することができる。例えば、発泡体の厚み7〜15mmで、求められる実用強度を確保することができる。 Further, the foam structure of the foam is not particularly limited, but the ratio of the bubble cell diameter in the direction perpendicular to the surface layer to the bubble cell diameter in the direction parallel to the surface layer is 1.2 or more. It is preferable to include the elliptical or box-like vertically long bubbles. That is, the compression strength of a foam can be improved by making it a vertically long cell with a ratio of both cell diameters of 1.2 or more. For example, the required practical strength can be ensured with a foam thickness of 7 to 15 mm.
本発明の発泡体は、その表層面から内部5mm未満の部分での気泡構造が、特に限定されるものではないが、表層面に垂直な方向の気泡セル径が2mm以下であるとともに、表層面に垂直な方向の気泡セル径に対する表層面に水平な気泡セル径の比率が1〜20倍である横長気泡を含むことが好ましい。すなわち、表層面の気泡セル径を2mm以下とすることで、発泡体表面の平滑性と外観を向上することができ、さらに外圧による部分的な変形の発生を抑えることができる。また、両気泡セル径の比率が1〜20倍である表面層に対して水平に長い横長気泡とすることで、発泡体の曲げ強度をさらに向上することができる。 In the foam of the present invention, the cell structure in the portion less than 5 mm inside from the surface layer surface is not particularly limited, but the cell diameter in the direction perpendicular to the surface layer surface is 2 mm or less, and the surface layer surface It is preferable to include horizontally long bubbles having a ratio of the bubble cell diameter horizontal to the surface layer to the bubble cell diameter in the direction perpendicular to the surface is 1 to 20 times. That is, by setting the cell diameter of the surface layer to 2 mm or less, the smoothness and appearance of the foam surface can be improved, and the occurrence of partial deformation due to external pressure can be suppressed. Moreover, the bending strength of a foam can further be improved by making it a horizontally long long bubble with respect to the surface layer whose ratio of both cell diameters is 1 to 20 times.
本発明の発泡体は、特に限定されるものではないが、発泡体の表面に直径1mm以下の複数の孔が穿孔されていることを含むことができる。これによって、調湿速度を上げて、調湿に要する時間をさらに短くすることができる。なお、用いる孔の直径と単位面積個数は、求められる調湿速度に応じて選ばれる。上記穿孔の方法は、特に限定されず、例えば、多数の針がついたものを押し当てて穿孔する方法、レーザー光により穿孔する方法、揮発性溶剤液滴により穿孔する方法等が挙げられる。 The foam of the present invention is not particularly limited, but may include a plurality of holes having a diameter of 1 mm or less perforated on the surface of the foam. Thereby, the humidity control speed can be increased and the time required for humidity control can be further shortened. In addition, the diameter of the hole to be used and the number of unit areas are selected according to the required humidity control speed. The method for perforation is not particularly limited, and examples thereof include a method for perforating by pressing a plurality of needles, a method for perforating with laser light, a method for perforating with volatile solvent droplets, and the like.
本発明の調湿性発泡体を製造する方法としては、特に限定されるものではなく、上記生分解性脂肪族ポリエステル系樹脂と難水溶性の吸湿性化合物とからなる原料組成物を炭酸ガスにより発泡成形する各種の方法が用いられるが、この中で、押出発泡方法が好ましい。上記押出発泡方法で用いる押出発泡装置としては、単軸押出機、2軸押出機また押出機2台の連結型のいずれでも用いられるが、バレル先端にT型ダイを取り付けて行なう。また、必要に応じて、バレルとT型ダイの間にギヤポンプ及びスタティックミキサーを配置することもできる。 The method for producing the humidity-controlling foam of the present invention is not particularly limited, and the raw material composition comprising the biodegradable aliphatic polyester resin and the hardly water-soluble hygroscopic compound is foamed with carbon dioxide gas. Various methods for molding are used, and among them, the extrusion foaming method is preferable. As the extrusion foaming apparatus used in the above extrusion foaming method, any of a single-screw extruder, a twin-screw extruder, and a connection type of two extruders can be used, but a T-die is attached to the barrel tip. Moreover, a gear pump and a static mixer can also be arrange | positioned between a barrel and T type | mold as needed.
上記方法で本発明の望ましい気泡構造を形成する方法としては、例えば、上記生分解性脂肪族ポリエステル系樹脂と難水溶性の吸湿性化合物の混合物に、熔融ゾーンで、好ましくは5MPa以上の注入圧力で炭酸ガスを圧入し、Tダイのスリット部で常圧に解放して発泡成形する。また、炭酸ガス量としては、前記樹脂に対して0.5〜5重量%が好ましく、少なくても多すぎても望ましい気泡構造を形成することができない。 Examples of a method for forming a desirable cell structure of the present invention by the above method include, for example, a mixture of the biodegradable aliphatic polyester resin and a hardly water-soluble hygroscopic compound, and an injection pressure of preferably 5 MPa or more in a melting zone. Then, carbon dioxide gas is press-fitted and released to normal pressure at the slit portion of the T-die and foamed. Further, the amount of carbon dioxide gas is preferably 0.5 to 5% by weight with respect to the resin, and a desired cell structure cannot be formed if the amount is too small or too large.
本発明の調湿性梱包容器は、上記調湿性発泡体を用いてなるものである。
上記梱包容器の形状及びサイズは、特に限定されない。また、上記梱包容器の作製方法は、特に限定されるものではなく、調湿発泡体を接着剤よる接合方法、又は熱、例えば誘電加熱、レーザー加熱等による接合方法が用いられる。ここで、接合部の形状は、特に限定されるものではないが、梱包容器の側面と底面との接合部及び/又は側面同士の接合部が、井桁状に組み合わされることが好ましい。これによって、容器の機械的耐久性が向上する。その具体例を図で表す。図1と図2は、それぞれ梱包容器の接合部の一例を表す。
The humidity control packaging container of the present invention is formed using the humidity control foam.
The shape and size of the packaging container are not particularly limited. Moreover, the preparation method of the said packaging container is not specifically limited, The joining method by a moisture-control foam with an adhesive agent, or the joining method by heat, for example, dielectric heating, laser heating etc., is used. Here, the shape of the joint portion is not particularly limited, but it is preferable that the joint portion between the side surface and the bottom surface of the packaging container and / or the joint portion between the side surfaces is combined in a cross-beam shape. This improves the mechanical durability of the container. A specific example is shown in the figure. 1 and 2 each show an example of a joint portion of a packaging container.
上記梱包容器は、さらに、該容器の内面の発泡体表面のみに、直径1mm以下の複数の孔が穿孔されているものを含むことができる。これによって、調湿に要する時間をさらに短くすることができる。 The packaging container may further include a container in which a plurality of holes having a diameter of 1 mm or less are perforated only on the foam surface on the inner surface of the container. Thereby, the time required for humidity control can be further shortened.
以上から明らかなように、本発明の調湿性発泡体及びそれを用いた調湿性梱包容器は、生分解性脂肪族ポリエステルを原料としているために、焼却処理によるサーマルリサイクル、コンポストによる分解、減容、加水分解後の嫌気発酵によるバイオガス回収、ケミカルリサイクル等の様々な方法による廃棄物処理が容易であり、現在問題となっているポリスチレン製、ポリエチレン製およびポリウレタン等の梱包容器のゴミ処理問題を解決することができる環境に非常に優しく、かつ調湿性を兼ね備えた機能的な発泡体及び梱包容器といえる。 As is clear from the above, the humidity control foam of the present invention and the humidity control packaging container using the same are made from biodegradable aliphatic polyester, so thermal recycling by incineration, decomposition by compost, volume reduction It is easy to dispose of waste by various methods such as biogas recovery by anaerobic fermentation after hydrolysis, chemical recycling, etc., and the problem of garbage disposal of packing containers such as polystyrene, polyethylene and polyurethane, which are currently problematic It can be said to be a functional foam and a packaging container that is extremely gentle to the environment that can be solved and also has humidity control.
以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた発泡体水分率、及びほうれん草水分率と外観の評価方法は以下の通りである。
(1)発泡体水分率の測定:発泡体を長さ150mm及び幅150mmの板状にカットして、水10gを発泡体表面に散布した。これを、温度30℃、湿度30%に制御した恒温恒湿器にいれて、24時間保持した。保持前後の発泡体の水分率を測定した。
(2)ほうれん草水分率の測定と外観の評価:発泡体から構成される高さ150mm、幅150mm、長さ300mmの梱包容器にほうれん草を入れ、水50gを噴霧し、ドライアイス5gを入れ密閉した後、温度30℃、湿度30%に制御した恒温恒湿器にいれ、24時間保持した。保持前後の葉っぱの水分率を測定した。また、保持後の葉っぱの外観を観察し、乾燥具合を見た。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the foam moisture content used in the Example and the comparative example, and the spinach moisture content and the evaluation method of an external appearance are as follows.
(1) Measurement of foam moisture content: The foam was cut into a plate having a length of 150 mm and a width of 150 mm, and 10 g of water was sprayed on the surface of the foam. This was placed in a thermo-hygrostat controlled at a temperature of 30 ° C. and a humidity of 30% and held for 24 hours. The moisture content of the foam before and after holding was measured.
(2) Measurement of spinach moisture content and evaluation of appearance: Spinach was put into a packing container of 150 mm in height, 150 mm in width and 300 mm in length composed of foam, sprayed with 50 g of water, sealed with 5 g of dry ice. Then, it was placed in a thermo-hygrostat controlled at a temperature of 30 ° C. and a humidity of 30% and kept for 24 hours. The moisture content of the leaves before and after holding was measured. In addition, the appearance of the leaves after holding was observed to see how dry they were.
(実施例1)
生分解性脂肪族ポリエステル系樹脂と難水溶性の吸湿性化合物を用いて、発泡体を得て、その後評価を行なった。
生分解性脂肪族ポリエステル系樹脂として、MIが4のポリブチレンサクシネート(Ire Chemical社製、エンポルG5300)を、難水溶性の吸湿性化合物として、前記樹脂に対して5重量%の珪藻土(昭和化学工業製、品番K301、個数平均粒子径20μm)を用いた。また、発泡成形の押出機として、2軸押出機(TEX44,日本製鋼所製)を用いた。
(Example 1)
A foam was obtained using a biodegradable aliphatic polyester resin and a slightly water-soluble hygroscopic compound, and then evaluated.
As a biodegradable aliphatic polyester-based resin, polybutylene succinate having MI of 4 (Ire Chemical Co., Empol G5300) is used as a slightly water-soluble hygroscopic compound, and 5% by weight of diatomaceous earth (Showa) Chemical Industries, product number K301, number average particle size 20 μm) was used. In addition, a twin-screw extruder (TEX44, manufactured by Nippon Steel Works) was used as the foaming extruder.
まず、前記2軸押出機に前記ポリブチレンサクシネートを導入し、該樹脂の溶融ゾーンの前にバレルより前記珪藻土を導入した。次に、バレルの途中より該樹脂に対して2重量%の炭酸ガスを圧入した。ここで温度条件は、溶融ゾーンを130℃とし、Tダイ部分は120℃に設定した。次に、Tダイよりでてきた発泡樹脂を冷却して、厚み12mm、幅200mmの発泡体を得て、発泡体の断面形状、連続気泡率及び気泡セル径を評価した。
なお、連続気泡率の測定は、下記の式1により求めた。
式1 連続気泡率FO(%)=((Va−Vx)/Va)×100
(ただし、Vxは実容積で、空気比較式比重計(東京サイエンス株式会社、型式1000型)により測定した。また、Vaは見かけの容積で、発泡体の表面をテープでシールして水中に投入したときの水の重量増加量から算出した。)
First, the polybutylene succinate was introduced into the twin-screw extruder, and the diatomaceous earth was introduced from the barrel before the resin melting zone. Next, 2% by weight of carbon dioxide gas was injected into the resin from the middle of the barrel. Here, the temperature conditions were set such that the melting zone was 130 ° C. and the T die portion was 120 ° C. Next, the foamed resin coming out of the T-die was cooled to obtain a foam having a thickness of 12 mm and a width of 200 mm, and the cross-sectional shape, open cell ratio, and cell diameter of the foam were evaluated.
In addition, the measurement of the open cell rate was calculated | required by the following formula 1.
Formula 1 Open cell ratio FO (%) = ((V a −V x ) / V a ) × 100
(However, V x is a real volume, an air comparison type densimeter (Tokyo Science Co., was measured by Model 1000 type). Also, V a is the apparent volume, the surface of the foam were sealed with tape water Calculated from the weight increase of water when it was added to
得られた発泡体の断面形状の概略を図3に示す。図3より、発泡体の表層面近傍は気泡セル径の小さな気泡あるいは横長気泡からなり、発泡体中心部では縦長気泡からなることが分かる。なお、発泡体の連続気泡率は53%であった。また、発泡体中心部の気泡20個の表層面に平行な方向の気泡セル径に対して表層面に垂直な方向の気泡セル径の比率は5.5であった。また、表層部から1mmの気泡20個の平均粒径は1.2mmであり、表層面に垂直な方向の気泡セル径に対して表層面に平行な方向の気泡セル径の比率は1.5であった。これによって、得られた発泡体は、圧縮強度、曲げ強度等が大きくなり、高い機械的耐久性が得られる。 The outline of the cross-sectional shape of the obtained foam is shown in FIG. From FIG. 3, it can be seen that the vicinity of the surface layer of the foam is composed of bubbles having a small bubble cell diameter or horizontally long bubbles, and the center of the foam is composed of vertically long bubbles. The open cell ratio of the foam was 53%. The ratio of the cell diameter in the direction perpendicular to the surface layer to the cell diameter in the direction parallel to the surface layer of 20 cells in the center of the foam was 5.5. The average particle diameter of 20 bubbles of 1 mm from the surface layer is 1.2 mm, and the ratio of the cell diameter in the direction parallel to the surface layer to the cell diameter in the direction perpendicular to the surface is 1.5. Met. As a result, the obtained foam has high compressive strength, bending strength, etc., and high mechanical durability can be obtained.
ついで、上記測定方法にしたがって、発泡体水分率及びほうれん草水分率と外観の評価を行なった。発泡体水分率及びほうれん草水分率と乾燥具合の結果を表1に示す。
また、発泡体の分解試験として、得られた発泡体の3gを36℃に設定した標準コンポスト装置を用いて分解率を求めたところ、1ヶ月で55%と十分な分解率が得られた。なお、同様の測定方法で、未発泡のポリブチレンサクシネートの分解率は40%、またポリ乳酸樹脂はまったく分解しておらず、得られた発泡体は十分な分解速度で分解することが分かる。すなわち、得られた発泡体は、廃棄物処理を容易に行なうことができる。
Next, the foam moisture content, spinach moisture content, and appearance were evaluated according to the above measurement method. Table 1 shows the results of the moisture content of the foam, the moisture content of spinach, and the dryness.
Further, as a decomposition test of the foam, when a decomposition rate was determined using a standard composting apparatus in which 3 g of the obtained foam was set at 36 ° C., a sufficient decomposition rate of 55% was obtained in one month. In the same measurement method, the decomposition rate of unfoamed polybutylene succinate is 40%, and the polylactic acid resin is not decomposed at all, and it can be seen that the obtained foam decomposes at a sufficient decomposition rate. . That is, the obtained foam can be easily subjected to waste treatment.
(実施例2)
発泡体の作製において難水溶性の吸湿性化合物として、繊維長が100μm及び繊維径が25μmの紙パルプ5重量%を用いた以外は実施例1と同様に行ない、得られた発泡体を用いて発泡体水分率及びほうれん草水分率と外観の評価を行なった。結果を表1に示す。なお、発泡体表面に水滴の付着が無く、発泡体中の水分の保持量が多かった。
(Example 2)
The same procedure as in Example 1 was performed except that 5% by weight of paper pulp having a fiber length of 100 μm and a fiber diameter of 25 μm was used as the poorly water-soluble hygroscopic compound in the production of the foam, and the obtained foam was used. The foam moisture content, spinach moisture content and appearance were evaluated. The results are shown in Table 1. In addition, there was no adhesion of water droplets on the foam surface, and the amount of moisture retained in the foam was large.
(比較例1)
市販の発泡スチロール板(発泡倍率15倍、連続気泡率35%)を用いて、上記測定方法にしたがって、発泡体水分率及びほうれん草水分率と外観の評価を行なった。結果を表1に示す。なお、発泡体の表面に水滴が付着しており、発泡体にはほとんど水分保持されていなかった。
(Comparative Example 1)
Using a commercially available polystyrene plate (foaming ratio 15 times, open cell rate 35%), the foam moisture content, spinach moisture content and appearance were evaluated according to the measurement method. The results are shown in Table 1. In addition, water droplets adhered to the surface of the foam, and the moisture was hardly retained in the foam.
(比較例2)
市販の発泡ポリエチレン板(発泡倍率10倍、連続気泡率70%)を用いて、上記測定方法にしたがって、発泡体水分率及びほうれん草水分率と外観の評価を行なった。結果を表1に示す。
(Comparative Example 2)
Using a commercially available foamed polyethylene plate (foaming ratio 10 times, open cell rate 70%), the foam moisture content, spinach moisture content and appearance were evaluated according to the above measurement method. The results are shown in Table 1.
表1より、実施例1又は2では、用いた樹脂と吸湿性化合物が本発明にしたがっているので、青果梱包用に十分な調湿性を保持してことが分かる。これに対して、比較例1又は2では、これらの条件に合わないので、調湿性に満足すべき結果が得られないことが分かる。
以上より、本発明の調湿性発泡体及びそれを用いた調湿性梱包容器は、廃棄物処理を容易に行なうことができ、かつ耐久性と調湿性に優れていることが分かる。
From Table 1, it can be seen that in Example 1 or 2, the used resin and the hygroscopic compound are in accordance with the present invention, so that the moisture conditioning sufficient for fruit and vegetable packaging is maintained. On the other hand, in Comparative Example 1 or 2, since these conditions are not met, it can be seen that a satisfactory result for the humidity control property cannot be obtained.
As mentioned above, it turns out that the humidity control foam of this invention and a humidity control packaging container using the same can perform waste disposal easily, and are excellent in durability and humidity control.
以上より明らかなように、本発明の調湿性発泡体は、生分解性であり、また化学発泡剤を用いずに成形されしかも架橋剤及び安定剤を添加しないで十分な耐久性が得られるので、環境に優しい発泡体であり、それを用いた調湿性梱包容器は青果物分野の輸送用コンテナとして利用され、現在問題となっているポリスチレン、ポリエチレン、ポリウレタン等の梱包容器のゴミ処理問題を解決する方法として有用である。 As is clear from the above, the humidity-controlling foam of the present invention is biodegradable, and can be molded without using a chemical foaming agent, and sufficient durability can be obtained without adding a crosslinking agent and a stabilizer. It is an environmentally friendly foam, and the humidity-control packaging container using it is used as a transportation container in the field of fruits and vegetables, and solves the problem of waste disposal of packaging containers such as polystyrene, polyethylene, and polyurethane, which are currently a problem. Useful as a method.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003394622A JP2005154563A (en) | 2003-11-25 | 2003-11-25 | Humidity-controllable foam and humidity-controllable packaging container using the foam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003394622A JP2005154563A (en) | 2003-11-25 | 2003-11-25 | Humidity-controllable foam and humidity-controllable packaging container using the foam |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005154563A true JP2005154563A (en) | 2005-06-16 |
Family
ID=34720634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003394622A Pending JP2005154563A (en) | 2003-11-25 | 2003-11-25 | Humidity-controllable foam and humidity-controllable packaging container using the foam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005154563A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005154604A (en) * | 2003-11-26 | 2005-06-16 | Sekisui Chem Co Ltd | Aliphatic polyester-based foamed body, manufacturing method thereof, and its laminate |
JP2007332203A (en) * | 2006-06-13 | 2007-12-27 | Achilles Corp | Foamed resin heat-insulating material |
JP2009036463A (en) * | 2007-08-02 | 2009-02-19 | Kurimoto Ltd | Sheet material assembly duct |
US7901764B2 (en) * | 2004-10-04 | 2011-03-08 | Jsp Corporation | Multi-layered polylactic acid resin foamed body and multi-layered polylactic acid resin foamed molded article |
JP2018162075A (en) * | 2017-03-24 | 2018-10-18 | 日清食品ホールディングス株式会社 | Biodegradable heat insulating container |
CN110844340A (en) * | 2018-08-21 | 2020-02-28 | 天津益美包装制品有限公司 | Novel furniture packing carton |
-
2003
- 2003-11-25 JP JP2003394622A patent/JP2005154563A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005154604A (en) * | 2003-11-26 | 2005-06-16 | Sekisui Chem Co Ltd | Aliphatic polyester-based foamed body, manufacturing method thereof, and its laminate |
US7901764B2 (en) * | 2004-10-04 | 2011-03-08 | Jsp Corporation | Multi-layered polylactic acid resin foamed body and multi-layered polylactic acid resin foamed molded article |
JP2007332203A (en) * | 2006-06-13 | 2007-12-27 | Achilles Corp | Foamed resin heat-insulating material |
JP2009036463A (en) * | 2007-08-02 | 2009-02-19 | Kurimoto Ltd | Sheet material assembly duct |
JP2018162075A (en) * | 2017-03-24 | 2018-10-18 | 日清食品ホールディングス株式会社 | Biodegradable heat insulating container |
CN110844340A (en) * | 2018-08-21 | 2020-02-28 | 天津益美包装制品有限公司 | Novel furniture packing carton |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10745542B2 (en) | Biodegradable pellets foamed by irradiation | |
EP1265957B1 (en) | Thermoplastic starch compositions incorporating a particulate filler component | |
JP5609887B2 (en) | Open-cell porous body and method for producing the same | |
EP2770815B1 (en) | Growth substrate for plants | |
KR20030061675A (en) | Biodegradable or compostable containers | |
US20220324625A1 (en) | Sustainable biodegradable protective packaging systems produced from agricultural products | |
CN101827884B (en) | Method for producing foam heat insulation material using paper and starch | |
JP4263337B2 (en) | Biodegradable foam and method for producing the same | |
US20240124659A1 (en) | Method for producing resin composite material, and resin composite material | |
JPH11302424A (en) | Biodegradable foamed sheet | |
JP2022539869A (en) | Polymer Articles Containing Blends of PBAT, PLA, and Carbohydrate Based Polymer Materials | |
JP2005154563A (en) | Humidity-controllable foam and humidity-controllable packaging container using the foam | |
WO1999065977A1 (en) | Foamed thermoplastic film made from biodegradable materials | |
MX2014001315A (en) | Compostable and biodegradable materials and articles formed from them. | |
KR101005108B1 (en) | Manufacturing method of high strength disposable paper molding | |
JP4064747B2 (en) | Biodegradable resin foam and cushioning material comprising the same | |
CN109762283B (en) | A kind of recyclable water-soluble degradable foam material and preparation method thereof | |
JP2001103845A (en) | Biodegradable foamed pot for raising seedling and method for producing the same | |
JPH06172624A (en) | Polyester resin composition | |
WO2014136746A1 (en) | Aliphatic polyester foam and production method therefor | |
JPH04356538A (en) | Biodegradable foamed polyolefin resin molding | |
CN114907680A (en) | Recyclable water-soluble degradable foam material and preparation method thereof | |
JPH1148436A (en) | Agricultural biodegradation sheet | |
Kashytskyi et al. | Properties and Formation Technology of Glutinous Biocomposite Materials | |
JPH11279311A (en) | Degradable resin foam |