[go: up one dir, main page]

JP2005147673A - Three-dimensional coordinates measuring probe and three-dimensional coordinates measuring system using the same - Google Patents

Three-dimensional coordinates measuring probe and three-dimensional coordinates measuring system using the same Download PDF

Info

Publication number
JP2005147673A
JP2005147673A JP2003380643A JP2003380643A JP2005147673A JP 2005147673 A JP2005147673 A JP 2005147673A JP 2003380643 A JP2003380643 A JP 2003380643A JP 2003380643 A JP2003380643 A JP 2003380643A JP 2005147673 A JP2005147673 A JP 2005147673A
Authority
JP
Japan
Prior art keywords
probe
dimensional coordinate
measurement
center
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003380643A
Other languages
Japanese (ja)
Inventor
Isao Ozawa
功 小澤
Kiyobumi Kawawa
清文 河輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003380643A priority Critical patent/JP2005147673A/en
Publication of JP2005147673A publication Critical patent/JP2005147673A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe proper for measuring continuous line such as ridgeline and a three-dimensional coordinates measuring system using the probe. <P>SOLUTION: A spherical probe body 10 is notched with two semicircles notching planes crossing with an angle θ(=120 degrees) on a center line passing the center G of the sphere 14 as a cross line to make nearly 2/3 of a sphere. Positions separating each notching planes of the two semicircles are made reference ridgelines 11a and 11b, which are made inclined planes 12a to 12d declining toward the direction parting from the reference ridgelines 11a and 11b. The probe body 10 is rotatable around the axis 9 and so measurement is made by manually moving the probe along the cross point of the reference ridgelines 11a and 11b attaching the edge of the outline of a panel part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は三次元座標測定に用いられるプローブとそのプローブを用いた三次元座標測定装置に関し、特に薄板状のパネル部品についてその輪郭であるパネルエッジ部の三次元座標を測定するのに好適なプローブとそのプローブを用いた三次元座標測定装置に関するものである。   The present invention relates to a probe used for three-dimensional coordinate measurement and a three-dimensional coordinate measurement apparatus using the probe, and more particularly to a probe suitable for measuring the three-dimensional coordinates of a panel edge portion which is the outline of a thin panel component. And a three-dimensional coordinate measuring apparatus using the probe.

この種の三次元座標測定装置に関するものとして特許文献1に記載のものが知られている。この特許文献1に記載の技術では、多関節型の産業用ロボットの形態に類似した多自由度(無限自由度)を持つ多関節型の三次元測定機を母体としてそのアーム先端に感圧式のプローブ(接触子)を装着し、アームの自由度を使って手動にてプローブを測定対象物に接触させ、接触させた瞬間の信号を取り込むようになっている。そして、この時のプローブの位置すなわちX,Y,Z方向の三次元位置は、各関節に設けた回転センサの回転角位置に基づいて逆行列計算により求めることができる。なお、上記プローブとしては、測定対象物の形状や作業者の使い勝手に合わせて、例えば球形、平底形、先細り形、針形等のものから任意に選択して使用することが可能となっている。
特開平8−261745号公報
The thing of patent document 1 is known as a thing regarding this kind of three-dimensional coordinate measuring apparatus. In the technique described in Patent Document 1, an articulated three-dimensional measuring machine having a multi-degree of freedom (infinite degree of freedom) similar to the form of an articulated industrial robot is used as a base, and a pressure-sensitive type is attached to the tip of the arm. A probe (contact) is attached, the probe is manually brought into contact with the measurement object using the degree of freedom of the arm, and a signal at the moment of contact is captured. Then, the position of the probe, that is, the three-dimensional position in the X, Y, and Z directions at this time can be obtained by inverse matrix calculation based on the rotation angle position of the rotation sensor provided in each joint. The probe can be arbitrarily selected from, for example, a spherical shape, a flat bottom shape, a tapered shape, and a needle shape according to the shape of the measurement object and the convenience of the operator. .
JP-A-8-261745

しかしながら、このような従来の技術では、母体となる三次元測定機の動作範囲自由度が高い故に測定者は任意の位置に自由にプローブを動かすことができる反面、例えば角や稜線等のように点で接触させる必要がある測定点の場合、球状や針状のプローブを正確に当てることが困難で、測定精度の向上に限界がある。   However, in such a conventional technique, since the degree of freedom of operation of the base CMM is high, the measurer can freely move the probe to an arbitrary position, such as a corner or a ridge line. In the case of a measurement point that needs to be contacted with a point, it is difficult to accurately apply a spherical or needle-like probe, and there is a limit to improvement in measurement accuracy.

また、角や稜線を正確に測定するためには、それらの角や稜線を形成する面上の点を数箇所測定した上で計算によって必要とする角や稜線の三次元位置を算出することになるため、測定ポイントが多く測定時間が長くなるとともに、計算のためのソフトウェアが必要となり、コストアップが余儀なくされる。   In addition, in order to accurately measure the corners and ridgelines, after measuring several points on the surface forming the corners and ridgelines, to calculate the required three-dimensional position of the corners and ridgelines by calculation Therefore, the number of measurement points is increased and the measurement time is increased, and software for calculation is required, resulting in an increase in cost.

その上、稜線のような連続的な線を測定する場合でも稜線を構成する一点一点を測定することを前提としていて、稜線に沿ってプローブを連続的に移動させることができないため、稜線の測定のために莫大な測定時間が必要となるほか、一度測定した測定点を再度測定してしまったり、あるいは測定すべき測定点を飛ばしてしまったりして測定ピッチが一定せず、稜線のような連続的な線を測定する場合にもその測定精度の向上に限界がある。   In addition, even when measuring a continuous line such as a ridge line, it is assumed that each point constituting the ridge line is measured, and the probe cannot be moved continuously along the ridge line. In addition to the huge measurement time required for the measurement, the measurement point once measured is measured again, or the measurement point to be measured is skipped. Even when such a continuous line is measured, there is a limit in improving the measurement accuracy.

本発明はこのような課題に着目してなされたものであり、特に稜線のような連続的な線を測定するのに好適なプローブを提供しようとするものである。   The present invention has been made paying attention to such a problem, and is intended to provide a probe suitable for measuring a continuous line such as a ridge line.

請求項1に記載の発明は、三次元座標測定装置のプローブの構造として、球状のプローブ本体を、その球の中心を通る中心線を交線として所定の角度で交差する半円状の二つの切欠面をもって切り欠いた略三分の二の球状のものとするとともに、半円状の二つの切欠面について各切欠面を二分する位置を基準稜線としてこの基準稜線から遠ざかる方向に向かって下り勾配となる傾斜平面としたことを特徴とする。   According to the first aspect of the present invention, as a probe structure of a three-dimensional coordinate measuring apparatus, a spherical probe body is divided into two semicircular shapes intersecting at a predetermined angle with a center line passing through the center of the sphere as an intersection line. It is a spherical shape with approximately two-thirds of a notch with a notch surface, and with respect to the two semicircular notch surfaces, the position that bisects each notch surface is the reference ridge line, and the slope is downward from the reference ridge line. It is characterized by being an inclined plane.

この場合、請求項2に記載のように、プローブ本体が球の中心線の延長線上に位置する軸部を回転中心としてホルダに回転可能に支持されていることが望ましく、より望ましくは、請求項3に記載のように、上記軸部は半円状の切欠面を二分しているいずれか一方の基準稜線の延長線上に設定されているものとする。   In this case, as described in claim 2, it is desirable that the probe main body be rotatably supported by the holder with a shaft portion positioned on an extension of the center line of the sphere as a rotation center. As described in 3, the shaft portion is set on an extension line of one of the reference ridge lines that bisect the semicircular cutout surface.

また、請求項4に記載の発明は、三次元座標測定装置そのものの発明であって、多関節型ロボットの形態をなすとともに各関節部に回転センサを備えた手動式の三次元測定機を母機として、その三次元測定機のアーム先端に請求項1に記載の三次元座標測定用プローブが着脱可能に装着されていることを特徴とする。   The invention according to claim 4 is the invention of the three-dimensional coordinate measuring apparatus itself, which is a multi-joint type robot, and a manual type three-dimensional measuring machine provided with a rotation sensor at each joint part. The coordinate measuring probe according to claim 1 is detachably attached to the tip of the arm of the coordinate measuring machine.

したがって、請求項1に記載の発明では、そのプローブを請求項4に記載のように手動式の三次元測定機のアーム先端に着脱可能に装着して使用するものとする。この場合、先に述べたように半円状の二つの切欠面同士のなす角度が120度であって、しかも二つの切欠面はその切欠面を二分する位置を基準稜線としてこの基準稜線から遠ざかる方向に向かって下り勾配となる傾斜平面となっていることから、各切欠面ともに基準稜線を有していて、それらの双方の基準稜線同士がプローブの基本形状である球の中心で交差していることになる。   Therefore, in the invention described in claim 1, as described in claim 4, the probe is detachably mounted on the arm tip of a manual CMM. In this case, as described above, the angle formed by the two semicircular cutout surfaces is 120 degrees, and the two cutout surfaces are separated from the reference ridgeline with the position that bisects the cutout surface as the reference ridgeline. Since it is an inclined plane that is inclined downward in the direction, each notch surface has a reference ridgeline, and both of these reference ridgelines intersect at the center of the sphere that is the basic shape of the probe Will be.

それ故に、稜線のような連続的な線を測定する場合には、測定者がプローブのうち基準稜線同士のなすコーナー部を測定対象となる稜線に当てがうだけで簡単に点接触させることができるから、その点接触部の三次元座標を直接的に且つ瞬時に測定することが可能となる。   Therefore, when measuring a continuous line such as a ridgeline, the measurer can easily make point contact by simply placing the corner portion of the probes between the reference ridgelines on the ridgeline to be measured. Therefore, the three-dimensional coordinates of the point contact portion can be measured directly and instantaneously.

そして、例えばプローブを測定すべき稜線に当てがったならば、その稜線に沿っていわゆる倣い測定の形態でプローブを連続的に移動させる一方、測定用ソフトの併用により、予め設定した測定ピッチ分だけプローブを移動したならば、その都度その測定ポイントの三次元座標値の自動取り込みを行うようにする。もしくは、例えばプローブの近傍に取り込み指示のための押釦スイッチを設けておき、測定者による押釦スイッチの押圧操作のタイミングでその都度その測定ポイントの三次元座標値を取り込むようにする。   For example, when the probe is placed on the ridge line to be measured, the probe is continuously moved along the ridge line in the form of so-called scanning measurement, while the measurement software is used together with the measurement pitch set in advance. If the probe is moved only by that time, the three-dimensional coordinate value of the measurement point is automatically taken in each time. Alternatively, for example, a push button switch for instructing the acquisition is provided in the vicinity of the probe, and the three-dimensional coordinate value of the measurement point is acquired every time when the operator presses the push button switch.

また、必要に応じてプローブ本体の球面を使用すれば、従来から広く使用されているいわゆる球状のプローブとして稜線以外の三次元測定にも対応することができる。   Further, if the spherical surface of the probe body is used as necessary, a so-called spherical probe that has been widely used can be used for three-dimensional measurement other than the ridge line.

請求項1,4に記載の発明によれば、例えば三次元形状のパネル部品の輪郭であるエッジ部を測定する場合、すなわち稜線のような連続的な線を測定する場合に、測定者がプローブのうち基準稜線同士のなすコーナー部を測定対象となる稜線に当てがうだけで簡単に点接触させることができるから、その点接触部の三次元座標を直接的に且つ瞬時に測定することが可能となり、測定時間の大幅な短縮化とともに測定精度も向上する。   According to the first and fourth aspects of the invention, for example, when measuring an edge portion that is an outline of a panel component having a three-dimensional shape, that is, when measuring a continuous line such as a ridgeline, Can be made to make point contact simply by placing the corner part between the reference ridge lines on the ridge line to be measured, so that the three-dimensional coordinates of the point contact part can be measured directly and instantaneously. This makes it possible to significantly reduce the measurement time and improve the measurement accuracy.

図1は本発明に係る三次元座標測定用プローブを含む三次元座標測定装置の概略構成を示す図である。   FIG. 1 is a diagram showing a schematic configuration of a three-dimensional coordinate measuring apparatus including a three-dimensional coordinate measuring probe according to the present invention.

同図に示すように、三次元座標測定装置は多関節型ロボット(多関節型マニプレータ)の形態をなす手動式の三次元測定機1を母機として形成されていて、その母機として機能する三次元測定機1のアーム2の先端にはプローブ3が着脱可能に装着されているとともに、三次元測定機1の各関節部4a,4b,4c,4dにはその関節部4a〜4dをもって回転運動する各アームの回転位置を検出するための図示外の回転センサが内蔵されている。また、三次元測定機1にはパーソナルコンピュータをもって構成されたデータ処理装置5がコントローラ6を介して接続されていて、そのデータ処理装置5には測定データの自動記録モードおよびマニュアル記録モードのいずれにも対応可能な測定用のソフトウェアが予め組み込まれている。そして、後述するようにプローブ3を当接させた測定ポイントの測定データが、各回転センサの現在位置データで特定されるX,Y,Z方向の三次元の座標値としてデータ処理装置5に取り込まれることになる。   As shown in the figure, the three-dimensional coordinate measuring device is formed with a manual three-dimensional measuring machine 1 in the form of an articulated robot (articulated manipulator) as a mother machine, and functions as the mother machine. A probe 3 is detachably attached to the tip of the arm 2 of the measuring machine 1 and the joints 4a, 4b, 4c, and 4d of the three-dimensional measuring machine 1 are rotated with the joints 4a to 4d. A rotation sensor (not shown) for detecting the rotation position of each arm is incorporated. The coordinate measuring machine 1 is connected with a data processing device 5 configured with a personal computer via a controller 6, and the data processing device 5 is in either an automatic recording mode or a manual recording mode of measurement data. Measurement software that can be used is also pre-installed. As will be described later, the measurement data at the measurement point with which the probe 3 is brought into contact is taken into the data processing device 5 as three-dimensional coordinate values in the X, Y, and Z directions specified by the current position data of each rotation sensor. Will be.

なお、プローブ3には、上記マニュアル記録モードのデータ記録に際してそのデータ記録の指示を与える押釦スイッチ7が付設されている。   The probe 3 is provided with a push button switch 7 for giving a data recording instruction when recording data in the manual recording mode.

図2は上記プローブ3の詳細を示しており、このプローブ3は、三次元測定機1のアーム2に直接的且つ着脱可能に装着される円筒状のホルダ8と、このホルダ8に対し軸部9を介して回転可能に装着される変形球状のプローブ本体10とから構成されている。なお、ホルダ8と軸部9との間には図示しない高精度ベアリング等の精密回転機構が介装されていて、軸部9の軸線を回転中心としてプローブ本体10が滑らかに回転できるように考慮されている。   FIG. 2 shows details of the probe 3. The probe 3 includes a cylindrical holder 8 that is directly and detachably attached to the arm 2 of the coordinate measuring machine 1, and a shaft portion with respect to the holder 8. 9 and a deformed spherical probe main body 10 that is rotatably mounted via 9. Note that a precision rotation mechanism such as a high-precision bearing (not shown) is interposed between the holder 8 and the shaft portion 9 so that the probe body 10 can smoothly rotate about the axis of the shaft portion 9 as the rotation center. Has been.

プローブ本体10は、図2のほか図3,4に示すように、真球状のプローブ本体10を、その球の中心を通る中心線を交線として所定角度、この例では約120度の開先角度(内角)θで交差する半円状の二つの切欠面をもって切り欠くことにより、実質的に略三分の二の中実球状のものとして形成してある。そして、半円状の二つの切欠面について各切欠面を二分する位置を凸状の基準稜線11a,11bとしてこの基準稜線11a,11bから遠ざかる方向に向かって下り勾配となる傾斜平面12a〜12dとしてあり、その結果としてプローブ本体10は球面14以外の部分に四分円状の四つの傾斜平面12a〜12dとそれら四分円状の四つの傾斜平面12a〜12dに区切っている凸状の稜線11a,11bと凹状の稜線13a,13bとを備えていることになる。なお、凸状の二つの基準稜線11a,11bはいずれも球面14の中心Gを通る中心線と一致しているとともに、それら凸状の稜線11a,11bと凹状の13a,13bとの交点は球面14の中心Gと一致している。   As shown in FIGS. 3 and 4 in addition to FIG. 2, the probe body 10 has a spherical shape of the probe body 10 at a predetermined angle with a center line passing through the center of the sphere as an intersecting line, in this example, about 120 degrees. By being cut out with two semicircular cutout surfaces intersecting at an angle (inner angle) θ, it is formed as a substantially spherical solid sphere. Then, as the two half-circular cutout surfaces, the positions dividing the cutout surfaces into two are the convex reference ridgelines 11a and 11b, and inclined planes 12a to 12d that are inclined downward in the direction away from the reference ridgelines 11a and 11b. As a result, the probe main body 10 has a quadrant-shaped four inclined planes 12a to 12d and a convex ridge line 11a that is divided into the quadrant-shaped four inclined planes 12a to 12d in a portion other than the spherical surface 14. 11b and concave ridgelines 13a and 13b. The two convex reference ridgelines 11a and 11b coincide with the center line passing through the center G of the spherical surface 14, and the intersection of the convex ridgelines 11a and 11b and the concave shapes 13a and 13b is a spherical surface. 14 coincides with the center G.

このようにプローブ本体10が球状を基本としつつも特殊形状であるがために、図3,4に示すように薄板からなるパネル部品Pの輪郭である上面側のエッジ部Eを測定する際には、凸状の基準稜線11a,11b同士のなすコーナー部でパネル部品Pのエッジ部Eを受容するようにプローブ本体10をエッジ部Eに当てがえば、球面14の中心Gにて両者を点接触させることが可能となっている。言い換えれば、上記基準稜線11a,11bと稜線12a,12bとのなす交点はプローブ本体10の球面14の中心Gにほかならず、しかも球面14の直径が既知であるから、凸状の基準稜線11a,11b同士のなす交点にパネル部品Pのエッジ部Eを当てた状態で、その状態を保ちつつプローブ本体10とパネル部品Pとを相対移動させ、それに併せて球面14の中心座標値を連続的もしくは所定間隔ごとに取り込むことにより、上記エッジ部Eの三次元形状を計測して特定することができる。   Since the probe body 10 has a spherical shape and a special shape as described above, as shown in FIGS. 3 and 4, when measuring the edge E on the upper surface side which is the outline of the panel component P made of a thin plate. If the probe body 10 is applied to the edge portion E so as to receive the edge portion E of the panel part P at the corner portion formed by the convex reference ridge lines 11a and 11b, the two points at the center G of the spherical surface 14. It is possible to contact. In other words, the intersection between the reference ridgelines 11a and 11b and the ridgelines 12a and 12b is not only the center G of the spherical surface 14 of the probe body 10, and the diameter of the spherical surface 14 is known, so that the convex reference ridgeline 11a, In a state where the edge E of the panel part P is applied to the intersection formed by 11b, the probe body 10 and the panel part P are relatively moved while maintaining the state, and the central coordinate value of the spherical surface 14 is continuously or By capturing at predetermined intervals, the three-dimensional shape of the edge E can be measured and specified.

ここで、変形球状のプローブ本体10と軸部9とは予め一体に形成されているものであるが、軸部9の軸心は一方の基準稜線11aと同一軸線上に位置するように、すなわち一方の基準稜線11aの延長線上に軸部9の軸心が位置するように設定されている。なお、プローブ本体10の開先角度θは、エッジ部Eが90度であることから90度以上あればよいが、エッジ部Eを球面14の中心Gに迅速に当接させるように作業性を考慮して約120度とした。   Here, the deformed spherical probe body 10 and the shaft portion 9 are integrally formed in advance, but the shaft center of the shaft portion 9 is positioned on the same axis as the one reference ridge line 11a, that is, It is set so that the shaft center of the shaft portion 9 is positioned on the extension line of one reference ridge line 11a. The groove angle θ of the probe body 10 may be 90 degrees or more since the edge portion E is 90 degrees. However, the workability is improved so that the edge section E is brought into contact with the center G of the spherical surface 14 quickly. Considering this, the angle is set to about 120 degrees.

このように構成された三次元座標測定装置によれば、例えば図5に示すように薄板状のパネル部品Pの輪郭であるパネル周縁のエッジ部Eの三次元形状を測定するにあたっては、図6に示すように測定点のピッチ(隣接する測定点同士のピッチ)Pを任意の値として入力して設定するとともに(図6のステップS1)、データ記録モードとして自動記録モードおよびマニュアル記録モードのうちのいずれかを選択した上で(ステップS2)、測定者がエッジ部Eに当てたプローブ3をそのエッジ部Eに沿っていわゆる倣い方式にて手動で動かしながら計測を行う(ステップS3,S8)。   According to the three-dimensional coordinate measuring apparatus configured as described above, for example, as shown in FIG. 5, when measuring the three-dimensional shape of the edge E of the peripheral edge of the panel, which is the outline of the thin panel component P, FIG. As shown in FIG. 6, the pitch of measurement points (pitch between adjacent measurement points) P is input and set as an arbitrary value (step S1 in FIG. 6), and the automatic recording mode and the manual recording mode are used as the data recording mode. 1 is selected (step S2), and the measurement is performed while the probe 3 touched to the edge E is manually moved along the edge E by the so-called scanning method (steps S3 and S8). .

なお、この場合のプローブ本体10とエッジ部Eとの当て方は図3,4に示したとおりであって、その時点における現在のプローブ本体10の球面14の中心Gの座標値(X,Y,Z方向の各座標値)が三次元測定機1の各関節部4a〜4d(図1参照)に設けた回転センサの現在位置データに基づきリアルタイムで算出される。この現在のプローブ本体10の球面14の中心Gの座標値は該当するエッジ部Eの三次元座標値を示していることにほかならず、その三次元座標値が常時図1のデータ処理装置5に取り込まれれている。   In this case, the method of applying the probe body 10 and the edge portion E is as shown in FIGS. 3 and 4, and the coordinate value (X, Y) of the center G of the spherical surface 14 of the current probe body 10 at that time. , Each coordinate value in the Z direction) is calculated in real time based on the current position data of the rotation sensors provided in the joint portions 4a to 4d (see FIG. 1) of the coordinate measuring machine 1. The current coordinate value of the center G of the spherical surface 14 of the probe body 10 represents the three-dimensional coordinate value of the corresponding edge portion E, and the three-dimensional coordinate value is always in the data processing device 5 of FIG. It has been captured.

上記の自動記録モードとは、原則としてプローブ3に付設された押釦スイッチ7の操作の有無にかかわらずデータ処理装置5に取り込まれたデータを時系列で全て記録可能なモードではあるものの、上記のように予め測定点のピッチPを予め設定しておくことで、その測定点のピッチP分だけプローブ3が移動する毎にその時点での現在のエッジ部Eの三次元座標値すなわち現在のプローブ本体10の球面14の中心Gの座標値(X,Y,Z方向の各座標値)が保存(記録)される(ステップS6,S7)。ただし、特定の測定点である最終取り込み位置から次の測定点である次の取り込み位置までの間のデータは一旦は取り込んだとしても保存されない。すなわち、図6のステップS4に示すように、直前のデータ取り込み位置からの現在位置までの距離Lを常時把握していて、L=Pであることを条件にその時点での現在位置データが保存される。したがって、この自動記録モードでの保存データは図5に示すように常に等ピッチでの点列データとなる。ただし、上記の測定ピッチPの値を小さく設定することで、当然のことながら点列データのスパンを密にすることは可能である。   The above-mentioned automatic recording mode is a mode in which all data taken in the data processing device 5 can be recorded in time series regardless of whether or not the push button switch 7 attached to the probe 3 is operated in principle. In this way, by setting the pitch P of the measurement point in advance, every time the probe 3 moves by the pitch P of the measurement point, the current three-dimensional coordinate value of the edge E, that is, the current probe The coordinate values (coordinate values in the X, Y, and Z directions) of the center G of the spherical surface 14 of the main body 10 are stored (recorded) (steps S6 and S7). However, even if the data between the last acquisition position that is a specific measurement point and the next acquisition position that is the next measurement point is acquired, it is not saved. That is, as shown in step S4 of FIG. 6, the distance L from the previous data capture position to the current position is always known, and the current position data at that time is stored on the condition that L = P. Is done. Therefore, the stored data in this automatic recording mode is always point sequence data at an equal pitch as shown in FIG. However, as a matter of course, it is possible to make the span of the point sequence data dense by setting the value of the measurement pitch P small.

一方、マニュアル記録モードでは、測定者がプローブ3を移動しながらそのプローブ3を付設されている押釦スイッチ7を押圧操作した時にのみ(図6のステップS9)、その時点での現在位置データが保存される(ステップS10,S7)。つまり、このマニュアル記録モードでは、図5のような点列データのスパンを測定者の意志で大きくしたり小さくしながら計測することが可能となる。これは、比較的形状変化の少ない部分では点列データのスパンを大きくする一方、比較的形状変化の大きい部分では点列データのスパンを小さくすることによって、極端な点列データ数の増加を招くことなく、比較的形状変化の大きい部分ではより緻密に且つ正確に計測することが可能となる。   On the other hand, in the manual recording mode, only when the measurer moves the probe 3 and presses the push button switch 7 attached to the probe 3 (step S9 in FIG. 6), the current position data at that time is stored. (Steps S10 and S7). That is, in this manual recording mode, it is possible to measure while increasing or decreasing the span of the point sequence data as shown in FIG. This increases the number of point sequence data by increasing the span of the point sequence data in a portion where the shape change is relatively small, while decreasing the span of the point sequence data in a portion where the shape change is relatively large. Therefore, it becomes possible to measure more precisely and accurately in a portion where the shape change is relatively large.

このように本実施の形態によれば、稜線のごとき連続的な線の三次元座標値をきわめて容易に且つ正確に測定することができる。もちろん、必要に応じてプローブ本体10の球面14を使用して稜線以外の三次元形状を測定することも可能である。   As described above, according to the present embodiment, the three-dimensional coordinate value of a continuous line such as a ridge line can be measured very easily and accurately. Of course, it is also possible to measure a three-dimensional shape other than the ridgeline using the spherical surface 14 of the probe body 10 as necessary.

本発明に係る三次元座標測定用プローブを含む三次元座標測定装置の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the three-dimensional coordinate measuring apparatus containing the probe for three-dimensional coordinate measurement which concerns on this invention. 図1に示す三次元座標測定用プローブの要部拡大斜視図。The principal part expansion perspective view of the probe for a three-dimensional coordinate measurement shown in FIG. 図2に示した三次元座標測定用プローブでの測定状態を示す斜視図。The perspective view which shows the measurement state with the probe for three-dimensional coordinate measurement shown in FIG. (A)は図3のa方向矢視図、(b)は同じく図3のb方向矢視図。(A) is a view in the direction of arrow a in FIG. 3, and (b) is a view in the direction of arrow b in FIG. 図2に示した三次元座標測定用プローブでの測定状態とそれによって得られた点列データとの関係を示す説明図。Explanatory drawing which shows the relationship between the measurement state in the probe for three-dimensional coordinate measurement shown in FIG. 2, and the point sequence data obtained by it. 図1に示した三次元座標測定装置での測定処理手順を示すフローチャート。The flowchart which shows the measurement process sequence in the three-dimensional coordinate measuring apparatus shown in FIG.

符号の説明Explanation of symbols

1…三次元座標測定装置
2…アーム
3…プローブ
4a〜4d…関節部
5…データ処理装置
7…押釦スイッチ
8…ホルダ
9…軸部
10…プローブ本体
11a,11b…基準稜線
12a〜12d…傾斜平面
13a,13b…稜線
14…球面
G…球面の中心
DESCRIPTION OF SYMBOLS 1 ... Three-dimensional coordinate measuring device 2 ... Arm 3 ... Probe 4a-4d ... Joint part 5 ... Data processing device 7 ... Pushbutton switch 8 ... Holder 9 ... Shaft part 10 ... Probe body 11a, 11b ... Reference ridgeline 12a-12d ... Inclination Plane 13a, 13b ... Ridge line 14 ... Spherical surface G ... Center of spherical surface

Claims (4)

球状のプローブ本体を、その球の中心を通る中心線を交線として所定の角度で交差する半円状の二つの切欠面をもって切り欠いた略三分の二の球状のものとするとともに、
半円状の二つの切欠面について各切欠面を二分する位置を基準稜線としてこの基準稜線から遠ざかる方向に向かって下り勾配となる傾斜平面としたことを特徴とする三次元座標測定用プローブ。
The spherical probe body is approximately two-thirds spherical with two semicircular cutout surfaces intersecting at a predetermined angle with the center line passing through the center of the sphere as an intersection line,
A probe for measuring a three-dimensional coordinate system, characterized in that, with respect to two semicircular cutout surfaces, a position that bisects each cutout surface is defined as a reference ridgeline, and an inclined plane that is inclined downward in a direction away from the reference ridgeline.
プローブ本体が球の中心線の延長線上に位置する軸部を回転中心としてホルダに回転可能に支持されていることを特徴とする請求項1に記載の三次元座標測定用プローブ。   The probe for three-dimensional coordinate measurement according to claim 1, wherein the probe body is rotatably supported by the holder with a shaft portion positioned on an extension of the center line of the sphere as a rotation center. 上記軸部は半円状の切欠面を二分しているいずれか一方の基準稜線の延長線上に設定されていることを特徴とする請求項2に記載の三次元座標測定用プローブ。   The probe for three-dimensional coordinate measurement according to claim 2, wherein the shaft portion is set on an extension line of any one of the reference ridge lines that bisect the semicircular cutout surface. 多関節型ロボットの形態をなすとともに各関節部に回転センサを備えた手動式の三次元測定機を母機として、その三次元測定機のアーム先端に請求項1に記載の三次元座標測定用プローブが着脱可能に装着されていることを特徴とする三次元座標測定装置。   The three-dimensional coordinate measuring probe according to claim 1, wherein the probe is a multi-joint type robot and a manual three-dimensional measuring machine provided with a rotation sensor at each joint is used as a mother machine. A three-dimensional coordinate measuring device, wherein the is detachably mounted.
JP2003380643A 2003-11-11 2003-11-11 Three-dimensional coordinates measuring probe and three-dimensional coordinates measuring system using the same Pending JP2005147673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380643A JP2005147673A (en) 2003-11-11 2003-11-11 Three-dimensional coordinates measuring probe and three-dimensional coordinates measuring system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380643A JP2005147673A (en) 2003-11-11 2003-11-11 Three-dimensional coordinates measuring probe and three-dimensional coordinates measuring system using the same

Publications (1)

Publication Number Publication Date
JP2005147673A true JP2005147673A (en) 2005-06-09

Family

ID=34690260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380643A Pending JP2005147673A (en) 2003-11-11 2003-11-11 Three-dimensional coordinates measuring probe and three-dimensional coordinates measuring system using the same

Country Status (1)

Country Link
JP (1) JP2005147673A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953495A2 (en) 2007-02-05 2008-08-06 Mitutoyo Corporation Coordinate measuring auxiliary tool and coordinate measuring probe
WO2010109975A1 (en) * 2009-03-24 2010-09-30 コニカミノルタオプト株式会社 Shape measuring device
JP2011220786A (en) * 2010-04-08 2011-11-04 Mitsutoyo Corp Three-dimensional measuring apparatus
JP7471485B1 (en) 2023-03-01 2024-04-19 株式会社牧野フライス製作所 Touch probe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953495A2 (en) 2007-02-05 2008-08-06 Mitutoyo Corporation Coordinate measuring auxiliary tool and coordinate measuring probe
WO2010109975A1 (en) * 2009-03-24 2010-09-30 コニカミノルタオプト株式会社 Shape measuring device
JP4748287B2 (en) * 2009-03-24 2011-08-17 コニカミノルタオプト株式会社 Shape measuring device
CN102362143A (en) * 2009-03-24 2012-02-22 柯尼卡美能达精密光学株式会社 Shape measuring device
TWI473967B (en) * 2009-03-24 2015-02-21 Konica Minolta Opto Inc Shape measuring device
EP2413090A4 (en) * 2009-03-24 2015-04-15 Konica Minolta Opto Inc Shape measuring device
JP2011220786A (en) * 2010-04-08 2011-11-04 Mitsutoyo Corp Three-dimensional measuring apparatus
JP7471485B1 (en) 2023-03-01 2024-04-19 株式会社牧野フライス製作所 Touch probe
WO2024181237A1 (en) * 2023-03-01 2024-09-06 株式会社牧野フライス製作所 Touch probe

Similar Documents

Publication Publication Date Title
US10480923B2 (en) Sensor apparatus and robot system having the sensor apparatus
JP6964989B2 (en) Control methods, robot systems, article manufacturing methods, programs, and recording media
US10551821B2 (en) Robot, robot control apparatus and robot system
CN102015221B (en) A method and a system for determining the relation between a robot coordinate system and a local coordinate system located in the working range of the robot
US9903698B2 (en) Object posture calculation system
JP6025386B2 (en) Image measuring apparatus, image measuring method, and image measuring program
CN104758066A (en) Equipment for surgical navigation and surgical robot
JP2005201824A (en) Measuring device
CN104972361A (en) Measurement system
EP1998137A2 (en) Abnormality detecting method for form measuring mechanism and form measuring mechanism
JP6670974B1 (en) Robot coordinate system alignment method, alignment system, and alignment device
JP2017052015A (en) Control device, robot and robot system
TW202212081A (en) Calibration apparatus and calibration method for coordinate system of robotic arm
JP2018031701A (en) Calibration method and calibration device
US20230328372A1 (en) Image processing system and image processing method
JP2005147673A (en) Three-dimensional coordinates measuring probe and three-dimensional coordinates measuring system using the same
JP2008190994A (en) Auxiliary implement and probe for coordinate measurement and coordinate measuring machine
JP2006030200A (en) Freely orientational probe
JP2005201864A (en) Method for determining coordinate system for object to be measured, and coordinate-measuring machine
JP2009262241A (en) Alignment method, alignment support apparatus, and alignment support program
JP3064184B2 (en) Shape measuring instruments
JP2006297559A (en) Calibration system and robot&#39;s calibration method
JPH06341826A (en) Screw-hole-center measuring method
JP5233046B2 (en) Shape measuring device
JP6726566B2 (en) Drive unit tilt adjusting method and drive unit tilt adjusting program

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060925

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090205

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A02 Decision of refusal

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A02