[go: up one dir, main page]

JP2005123203A5 - - Google Patents

Download PDF

Info

Publication number
JP2005123203A5
JP2005123203A5 JP2004330137A JP2004330137A JP2005123203A5 JP 2005123203 A5 JP2005123203 A5 JP 2005123203A5 JP 2004330137 A JP2004330137 A JP 2004330137A JP 2004330137 A JP2004330137 A JP 2004330137A JP 2005123203 A5 JP2005123203 A5 JP 2005123203A5
Authority
JP
Japan
Prior art keywords
frequency power
outputs
power source
plasma
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004330137A
Other languages
Japanese (ja)
Other versions
JP4022670B2 (en
JP2005123203A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004330137A priority Critical patent/JP4022670B2/en
Priority claimed from JP2004330137A external-priority patent/JP4022670B2/en
Publication of JP2005123203A publication Critical patent/JP2005123203A/en
Publication of JP2005123203A5 publication Critical patent/JP2005123203A5/ja
Application granted granted Critical
Publication of JP4022670B2 publication Critical patent/JP4022670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

L.Sansonnens, A.Pletzer, D.Magni, A.A.Howling,Ch.Hollenstein and J.P.M.Schmitt,:A voltage uniformity study in large-area reactors for RF plasma deposition、Plasma Source Sci. Technol. 6 (1997),p.170-178.L. Sansonnens, A. Pletzer, D. Magni, AA Howling, Ch. Hollenstein and JPMSchmitt, A voltage uniformity study in large-area reactors for RF plasma deposition, Plasma Source Sci. Technol. 6 (1997), p. 170-178. J.Kuske, U.Stephan, O.Steinkeand S.Rohleck: Power feeding in large area PECVD of amorphous silicon, Mat. Res. Soc. Symp.Proc. Vol. 377(1995),p.27-32.J. Kuske, U. Stephan, O. Steinkeand S. Rohleck: Power feeding in large area PECVD of amorphous silicon, Mat. Res. Soc. Symp. Proc. Vol. 377 (1995), p.27-32.

本発明の高周波プラズマ発生用電極は、内部に基板がセットされる、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、プラズマを生成する第1及び第2の電極から成る一対の電極と、任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第1の高周波電源及び該第1の高周波電源の2つの出力端子に接続された第1及び第2のインピーダンス整合器及び該第1の高周波電源のパルス変調信号に同期した任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第2の高周波電源及び該第2の高周波電源の2つの出力端子に接続された第3及び第4のインピーダンス整合器から成る電力供給系とを具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられる超高周波プラズマ発生用電極であって、前記第1の電極に配置された第1の給電点に、前記第1のインピーダンス整合器の出力端子と、前記第3のインピーダンス整合器の出力端子が接続され、かつ、前記第1の給電点に対して高周波電力波の伝播上での対向点となる関係にある位置に配置された第2の給電点に、前記第2のインピーダンス整合器の出力端子と、前記第4のインピーダンス整合器の出力端子が接続されるという構成を有することを特徴としているので、該一対の電極間の電力の強さの分布をVHF固有の定在波に影響されることなく、一様な分布にする応用が可能である。即ち、該一対の電極間の電力の強さの分布は、時間的に分離された、すなわち互いに独立である2つの定在波の重ね合わせとなり、均一化が可能である。即ち、該一対の電極間に生成される電力の強さの分布は、正弦波状の分布ではなく一定の強さとなり、プラズマの均一化が可能である。このことは、従来のVHFプラズマ表面処理装置及び方法では不可能視される波長λの二分の一を越えるサイズの基板を対象にした応用において、均一で高品質の超高周波プラズマ処理が可能である。
また、本発明高周波プラズマ発生用電極は、前記第2の電極を平板型の形状とし、前記第1の電極を、該第2の電極に平行な面内に含まれるように配置された棒状あるいは板状の形状を有することを特徴とするので、前記一対の電極間の電力の強さの分布をVHF固有の定在波に影響されることなく、一様な分布にすることが確実に実現可能である。
また、本発明の高周波プラズマ発生用電極は、前記第2の電極を平板型の形状とし、前記第1の電極は1本の棒状導体を前記第2の電極に平行な面内に含まれるように折り返して形成されるU字型あるいははW字型の形状を有することを特徴とするので、前記一対の電極間の電力の強さの分布をVHF固有の定在波に影響されることなく、一様な分布にすることが確実に実現可能である。本発明には、一対の電極の一つの側面側からのVHF電力の供給が可能な手段を実現可能というメリットがある。
また、本発明の高周波プラズマ発生用電極は、前記第2の電極を円筒型の形状とし、前記第1の電極は該第2の電極を外套状に取り囲む円筒の面内に含まれるように配置された棒状あるいはU字型形状あるいはW字型あるいは方形型の形状を有することを特徴とするので、前記基板の形状が円筒形の場合においても応用が可能で、かつ、前記一対の電極間の電力の強さの分布をVHF固有の定在波に影響されることなく、一様な分布にすることが可能である
また、本発明の高周波プラズマ発生用電極は、前記第1及び第2の電極を複数の開口を有する板状の導電体とし、かつ、前記基板が該一対の電極間の外に配置されるという構成を有することを特徴とするので、基板の厚みや材料の影響を受けず、また、該一対の電極間の距離を狭く設定できるので、高圧力条件でのプラズマ処理への応用が可能である。
また、本発明の高周波プラズマ発生用電極は、前記第1の電極をU字状あるいはW字状あるいはジグザグ状の形を有するスリットで2分割された方形平板の導体の一方とし、該2分割された方形平板の導体の他方を第2の電極とするという構成を有することを特徴とするので、前記一対の電極間の電力の強さの分布をVHF固有の定在波に影響されることなく、一様な分布にすることが確実に可能である。本発明には、一対の電極の一つの側面側からのVHF電力の供給が可能な手段を実現可能というメリットがある。
また、本発明の高周波プラズマ発生用電極は、前記第1の電極を複数の電極とし、該複数の電極は前記第2の電極に平行な面内に含まれるように配置されるということを特徴とするので、基板の面積が1mx1mを超える大面積基板の場合にも対応可能であり、かつ、前記一対の電極間の電力の強さの分布をVHF固有の定在波に影響されることなく、一様な分布にすることが可能である。
また、本発明の高周波プラズマ発生用電極は、前記第1の電極の一部あるいは全部の表面は誘電体で覆われているという構成を有することを特徴とするので、前記第1の電極が例えばU字型あるいはW字型の場合において、該電極の曲がり部分での電力損失を抑制可能である。その結果、一対の電極の一つの側面側からのVHF電力の供給が可能である。このことは、インライン型やマルチチャンバー形やロール・ツー・ロール型のプラズマ表面処理装置の高生産性化のためのプラズマ発生装置の改善において求められている従来技術では不可能な装置断面での1側面からのVHF電力の供給を可能とし、応用価値は著しく高いものがある。
また、本発明の高周波プラズマ発生用電極は、前記給電点と前記インピーダンス整合器の接続部に平衡不平衡変換装置が挿入されることを特徴とするので、前記電力供給系の構成部材の同軸ケーブル端部の芯線と給電点の接合部近傍で発生の漏洩電流による電力損失及び異常放電の抑制が可能である。このことは、製品の低コスト化を担う量産装置としてのプラズマ表面処理装置への応用において、その効果は著しく大きい。
また、本発明の高周波プラズマ発生用電極は、前記第1及び第2の高周波電源の出力の周波数が30MHzから300MHzのVHF帯に属していることを特徴とするので、VHFプラズマの長所であるプラズマの高密度化が容易に実現可能である。
また、本発明の高周波プラズマ発生用電極は、前記第1及び前記第2の高周波電源の出力のパルス変調のデユーテイ比即ちパルス幅Hwと周期T0の比Hw/H0を50%以下にすることを特徴とするので、上記した本発明のいずれかの超高周波プラズマ発生用電極によって生成されるプラズマの強さの分布は、時間的に分離された、すなわち互いに独立である2つの定在波の重ね合わせとなり、均一化が可能である。即ち、該一対の電極間に生成される電力の強さの分布は、正弦波状の分布ではなく一定の強さとなり、プラズマの均一化が可能である。
An electrode for high-frequency plasma generation according to the present invention includes a vacuum vessel provided with an exhaust system in which a substrate is set, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and a first gas generating plasma. A first high-frequency power source capable of arbitrarily pulse-modulating a pair of electrodes composed of a first electrode and a second electrode, and capable of arbitrarily setting a phase difference between two outputs and the voltage of the two outputs; The first and second impedance matchers connected to the two output terminals of the high frequency power source of the first and second pulse matching signals synchronized with the pulse modulation signal of the first high frequency power source are possible, A second high frequency power supply capable of arbitrarily setting a phase difference between two output voltages, and a power supply system comprising third and fourth impedance matching units connected to two output terminals of the second high frequency power supply. Equipped with the generated plasma An electrode for generating an ultra-high-frequency plasma used in a plasma surface treatment apparatus for treating a surface of a substrate by using a first feeding point disposed on the first electrode. The output terminal and the output terminal of the third impedance matching device are connected, and the first terminal is disposed at a position that is in a relationship that is an opposing point on the propagation of a high-frequency power wave with respect to the first feeding point. Since the output terminal of the second impedance matching device and the output terminal of the fourth impedance matching device are connected to the two feeding points, the power between the pair of electrodes It is possible to apply a uniform distribution to the distribution of the intensity without being influenced by the standing wave inherent to VHF. That is, the distribution of power intensity between the pair of electrodes is a superposition of two standing waves that are separated in time, that is, independent of each other, and can be made uniform. That is, the distribution of the intensity of the electric power generated between the pair of electrodes is not a sinusoidal distribution but a constant intensity, and plasma can be made uniform. This means that uniform and high-quality ultrahigh-frequency plasma treatment is possible in applications targeting substrates with a size exceeding one-half of the wavelength λ, which is impossible with conventional VHF plasma surface treatment apparatuses and methods. .
In the high-frequency plasma generating electrode of the present invention , the second electrode has a flat plate shape, and the first electrode is disposed in a bar shape that is disposed in a plane parallel to the second electrode. Alternatively, since it has a plate-like shape, it is ensured that the distribution of power intensity between the pair of electrodes is made uniform without being affected by the standing wave unique to VHF. It is feasible.
In the high-frequency plasma generating electrode of the present invention, the second electrode has a flat plate shape, and the first electrode includes a single rod-shaped conductor in a plane parallel to the second electrode. The power intensity distribution between the pair of electrodes is not influenced by the standing wave unique to VHF. A uniform distribution can be reliably realized. The present invention has an advantage that it is possible to realize means capable of supplying VHF power from one side surface of a pair of electrodes.
In the high-frequency plasma generating electrode of the present invention, the second electrode is formed in a cylindrical shape, and the first electrode is disposed within a cylindrical surface surrounding the second electrode. Since the substrate has a cylindrical shape, a U-shape, a W-shape, or a rectangular shape, it can be applied even when the shape of the substrate is cylindrical, and between the pair of electrodes. The distribution of power intensity can be made uniform without being affected by the standing wave unique to VHF. The high-frequency plasma generation electrode of the present invention can be configured as described above. Since the electrode is a plate-like conductor having a plurality of openings, and the substrate is disposed outside the pair of electrodes, it is affected by the thickness of the substrate and the material. In addition, the distance between the pair of electrodes is set narrow. Since it, is applicable to the plasma treatment at a high pressure condition.
In the high-frequency plasma generating electrode of the present invention, the first electrode is one of rectangular flat conductors divided into two by a slit having a U-shape, a W-shape or a zigzag shape. Since the other electrode of the rectangular flat plate is used as the second electrode, the power intensity distribution between the pair of electrodes is not affected by the standing wave unique to VHF. It is possible to ensure a uniform distribution. The present invention has an advantage that it is possible to realize means capable of supplying VHF power from one side surface of a pair of electrodes.
In the high-frequency plasma generating electrode according to the present invention, the first electrode may be a plurality of electrodes, and the plurality of electrodes may be disposed in a plane parallel to the second electrode. Therefore, it is possible to cope with the case of a large-area substrate having a substrate area exceeding 1 mx 1 m, and the distribution of power intensity between the pair of electrodes is not affected by the standing wave unique to VHF. It is possible to obtain a uniform distribution.
The high-frequency plasma generating electrode of the present invention is characterized in that a part or all of the surface of the first electrode is covered with a dielectric, so that the first electrode is, for example, In the case of a U-shape or W-shape, power loss at the bent portion of the electrode can be suppressed. As a result, VHF power can be supplied from one side of the pair of electrodes. This is due to the cross-section of the equipment that is impossible in the prior art, which is required in the improvement of the plasma generator for high productivity of the plasma surface treatment equipment of in-line type, multi-chamber type and roll-to-roll type. It enables supply of VHF power from one side, and its application value is extremely high.
In the high-frequency plasma generating electrode according to the present invention, a balance-unbalance conversion device is inserted into a connection portion between the feeding point and the impedance matching unit. Therefore, the coaxial cable as a constituent member of the power supply system It is possible to suppress power loss and abnormal discharge due to leakage current generated in the vicinity of the junction between the core wire at the end and the feeding point. This has a significant effect in application to a plasma surface treatment apparatus as a mass production apparatus responsible for cost reduction of products.
The electrode for high frequency plasma generation according to the present invention is characterized in that the output frequency of the first and second high frequency power supplies belongs to the VHF band of 30 MHz to 300 MHz. Can be easily realized.
In the high-frequency plasma generating electrode of the present invention, the duty ratio of pulse modulation of the outputs of the first and second high-frequency power sources, that is, the ratio Hw / H0 of the pulse width Hw to the period T0 should be 50% or less. As a characteristic, the distribution of the intensity of the plasma generated by any of the above-described electrodes for generating an ultrahigh-frequency plasma of the present invention is a superposition of two standing waves that are separated in time, that is, independent of each other. Together, it can be made uniform. That is, the distribution of the intensity of the electric power generated between the pair of electrodes is not a sinusoidal distribution but a constant intensity, and plasma can be made uniform.

また、本発明の高周波プラズマ発生方法は、上記した本発明のいずれかの超高周波プラズマ発生用電極を用いて、該一対の電極間にプラズマを発生させるようにしたので、該一対の電極間の電力の強さの分布は、時間的に分離された、すなわち互いに独立である2つの定在波の重ね合わせとなり、均一化が可能である。即ち、該一対の電極間に生成される電力の強さの分布は、正弦波状の分布ではなく一定の強さとなり、プラズマの均一化が可能である。その結果、従来のVHFプラズマ表面処理装置及び方法では不可能視される波長λの二分の一を越えるサイズの基板を対象にした場合において、均一で高品質のプラズマ処理への応用が可能である。 In the high frequency plasma generation method of the present invention, the plasma is generated between the pair of electrodes by using any of the above-described electrodes for generating a super high frequency plasma of the present invention. The distribution of power intensity is a superposition of two standing waves that are separated in time, that is, independent of each other, and can be made uniform. That is, the distribution of the intensity of the electric power generated between the pair of electrodes is not a sinusoidal distribution but a constant intensity, and plasma can be made uniform. As a result, it is possible to apply to uniform and high-quality plasma processing when a substrate having a size exceeding one-half of the wavelength λ, which is impossible with the conventional VHF plasma surface processing apparatus and method, is targeted. .

また、本発明の高周波プラズマ表面処理装置は、前記一対の電極が上記した本発明のいずれかの超高周波プラズマ発生用電極により構成されているので、該一対の電極間の電力の強さの分布は、時間的に分離された、すなわち互いに独立である2つの定在波の重ね合わせとなり、均一化が可能である。即ち、該一対の電極間に生成される電力の強さの分布は、正弦波状の分布ではなく一定の強さとなり、プラズマの均一化が可能である。その結果、従来のVHFプラズマ表面処理装置では不可能視される波長の二分の一を越えるサイズの基板を対象にした応用において、均一で高品質のプラズマ処理が可能である。このことは、プラズマ表面処理技術分野における画期的ブレークスルーが実現されるという意味があり、産業上の効果は著しく大きい。 In the high-frequency plasma surface treatment apparatus of the present invention, since the pair of electrodes is constituted by any one of the above-described ultrahigh-frequency plasma generation electrodes of the present invention, the distribution of power intensity between the pair of electrodes. Is a superposition of two standing waves that are separated in time, that is, independent of each other, and can be made uniform. That is, the distribution of the intensity of the electric power generated between the pair of electrodes is not a sinusoidal distribution but a constant intensity, and plasma can be made uniform. As a result, it is possible to perform uniform and high-quality plasma processing in an application intended for a substrate having a size exceeding one-half of a wavelength that cannot be seen with a conventional VHF plasma surface processing apparatus. This means that an epoch-making breakthrough in the plasma surface treatment technology field is realized, and the industrial effect is remarkably large.

また、本発明の高周波プラズマ表面処理方法は、前記一対の電極が上記した本発明のいずれかの超高周波プラズマ発生用電極により構成し、プラズマ表面処理をすることを特徴としているので、該一対の電極間の電力の強さの分布は、時間的に分離された、すなわち互いに独立である2つの定在波の重ね合わせとなり、均一化が可能である。即ち、該一対の電極間に生成される電力の強さの分布は、正弦波状の分布ではなく一定の強さとなり、プラズマの均一化が可能である。その結果、従来のVHFプラズマ表面処理方法では不可能視される波長λの二分の一を越えるサイズの基板を対象にした応用において、均一で高品質のプラズマ処理が可能である。このことは、プラズマ表面処理技術分野における画期的ブレークスルーが実現されるという意味があり、産業上の効果は著しく大きい。
また、本発明の高周波プラズマ表面処理方法は、第1の高周波電源の2つの出力により該一対の電極間に生成される第1の定在波の腹の位置と前記第2の高周波電源の2つの出力により該一対の電極間に生成される第2の定在波の腹の位置の距離を使用電力の波長λの四分の一、即ちλ/4に設定することを特徴とするので、該一対の電極間の電力の強さの分布は、時間的に分離された、すなわち互いに独立である2つの定在波の重ね合わせとなり、均一化が可能である。即ち、該一対の電極間に生成される電力の強さの分布は、正弦波状の分布ではなく一定の強さとなり、プラズマの均一化が可能である。このことは、VHF固有の定在波に影響されることなく、確実に均一な分布にすることが可能ということである。
また、本発明高周波プラズマ表面処理方法は、内部に基板がセットされる、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、プラズマを生成する第1及び第2の電極から成る一対の電極と、任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第1の高周波電源及び該第1の高周波電源の2つの出力端子に接続された第1及び第2のインピーダンス整合器及び該第1の高周波電源のパルス変調信号に同期した任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第2の高周波電源及び該第2の高周波電源の2つの出力端子に接続された第3及び第4のインピーダンス整合器から成る電力供給系とを具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理方法であって、前記第1の高周波電源の2つの出力の位相差と前記基板表面に製膜される正弦的な膜厚分布を有するSi系膜の膜厚が最大になる位置との関係を把握する第1の工程と、前記第2の高周波電源の2つの出力の位相差と前記基板表面に製膜される正弦的な膜厚分布を有するSi系膜の膜厚が最大になる位置との関係を把握する第2の工程と、該第1及び第2の工程でそれぞれに把握された第1及び第2の高周波電源の2つの出力の位相差と該膜厚が最大になる位置との関係より該第1及び第2の高周波電源の2つの出力の位相差を設定することにより、該基板に目的のSi系膜を製膜する第3の工程から成ることを特徴とするので、該一対の電極間の電力の強さの分布は、時間的に分離された、すなわち互いに独立である2つの定在波の重ね合わせとなり、均一化が可能である。即ち、該一対の電極間に生成される電力の強さの分布は、正弦波状の分布ではなく一定の強さとなり、プラズマの均一化が可能である。このことは、VHF固有の定在波に影響されることなく、確実に均一な分布にすることが可能ということである。その結果、従来のVHFプラズマ表面処理方法では不可能視される波長λの二分の一を越えるサイズの基板を対象にした応用において、均一で高品質の確実なプラズマ処理が可能である。このことは、プラズマ表面処理技術分野における画期的ブレークスルーが実現されるという意味があり、産業上の効果は著しく大きい。
また、本発明の超高周波プラズマ表面処理方法は、前記基板の表面に、アモルファスSi系材料、微結晶Si系材料、多結晶Si系材料及び結晶Si系材料のいずれかを形成するようにしたことを特徴とするので、太陽電池及びTFT業界のみならず、LSI及び複写機用感光体の産業における生産性向上および製品コストの低減に関する超高周波プラズマの大面積・高速・均一な製品製造への応用が確実に実現可能であり、貢献度が著しく大きい。
Further, the high-frequency plasma surface treatment method of the present invention is characterized in that the pair of electrodes is constituted by any of the above-described ultrahigh-frequency plasma generation electrodes of the present invention, and the plasma surface treatment is performed. The distribution of power intensity between the electrodes is a superposition of two standing waves that are separated in time, that is, independent of each other, and can be made uniform. That is, the distribution of the intensity of the electric power generated between the pair of electrodes is not a sinusoidal distribution but a constant intensity, and plasma can be made uniform. As a result, uniform and high-quality plasma processing is possible in applications targeting a substrate having a size exceeding one-half of the wavelength λ, which is impossible with the conventional VHF plasma surface treatment method. This means that an epoch-making breakthrough in the plasma surface treatment technology field is realized, and the industrial effect is remarkably large.
In addition, the high-frequency plasma surface treatment method of the present invention provides the position of the antinode of the first standing wave generated between the pair of electrodes by the two outputs of the first high-frequency power source and the second high-frequency power source 2. Since the distance of the antinode position of the second standing wave generated between the pair of electrodes by one output is set to a quarter of the wavelength λ of the power used, that is, λ / 4, The power intensity distribution between the pair of electrodes is a superposition of two standing waves that are separated in time, that is, independent of each other, and can be made uniform. That is, the distribution of the intensity of the electric power generated between the pair of electrodes is not a sinusoidal distribution but a constant intensity, and plasma can be made uniform. This means that a uniform distribution can be ensured without being affected by the standing wave inherent to VHF.
In addition, the high-frequency plasma surface treatment method of the present invention includes a vacuum vessel having an exhaust system in which a substrate is set, a discharge gas supply system that supplies a discharge gas into the vacuum vessel, and generates plasma. A first high-frequency power source capable of arbitrary pulse modulation and having two outputs and a phase difference between the voltages of the two outputs can be arbitrarily set; The first and second impedance matching units connected to the two output terminals of the first high-frequency power source and arbitrary pulse modulation synchronized with the pulse modulation signal of the first high-frequency power source are possible, and two outputs And a power supply system comprising a second high-frequency power source capable of arbitrarily setting the phase difference between the voltages of the two outputs and third and fourth impedance matching units connected to two output terminals of the second high-frequency power source. And the generated program A plasma surface processing method for processing a surface of a substrate using a zuma, comprising: a phase difference between two outputs of the first high-frequency power source; and a sinusoidal film thickness distribution formed on the substrate surface. A first step of grasping a relationship with a position where the film thickness of the system film becomes maximum, a phase difference between two outputs of the second high-frequency power source, and a sinusoidal film thickness distribution formed on the substrate surface The second step of grasping the relationship with the position where the film thickness of the Si-based film having the maximum value is two, and the first and second high-frequency power sources respectively grasped in the first and second steps The target Si-based film is formed on the substrate by setting the phase difference between the two outputs of the first and second high-frequency power sources based on the relationship between the phase difference of the output and the position where the film thickness is maximized. The distribution of power intensity between the pair of electrodes is as follows. Temporally separated, i.e. becomes two superposition of standing waves to be independent of each other, it is possible to uniform. That is, the distribution of the intensity of the electric power generated between the pair of electrodes is not a sinusoidal distribution but a constant intensity, and plasma can be made uniform. This means that a uniform distribution can be ensured without being affected by the standing wave inherent to VHF. As a result, uniform and high-quality plasma processing can be performed in an application for a substrate having a size exceeding one-half of the wavelength λ, which is impossible with the conventional VHF plasma surface treatment method. This means that an epoch-making breakthrough in the plasma surface treatment technology field is realized, and the industrial effect is remarkably large.
In the ultrahigh frequency plasma surface treatment method of the present invention, any one of an amorphous Si-based material, a microcrystalline Si-based material, a polycrystalline Si-based material, and a crystalline Si-based material is formed on the surface of the substrate. As a feature, the application of ultra-high-frequency plasma to large-area, high-speed, and uniform products for improving productivity and reducing product costs not only in the solar cell and TFT industries but also in the photoreceptor industry for LSIs and copiers. Is certainly feasible and has a significant contribution.

Claims (10)

内部に基板がセットされる、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、プラズマを生成する第1及び第2の電極から成る一対の電極と、任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第1の高周波電源及び該第1の高周波電源の2つの出力端子に接続された第1及び第2のインピーダンス整合器及び該第1の高周波電源のパルス変調信号に同期した任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第2の高周波電源及び該第2の高周波電源の2つの出力端子に接続された第3及び第4のインピーダンス整合器から成る電力供給系とを具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられる超高周波プラズマ発生用電極であって、前記第1の電極に配置された第1の給電点に、前記第1のインピーダンス整合器の出力端子と、前記第3のインピーダンス整合器の出力端子が接続され、かつ、前記第1の給電点に対して高周波電力波の伝播上での対向点となる関係にある位置に配置された第2の給電点に、前記第2のインピーダンス整合器の出力端子と、前記第4のインピーダンス整合器の出力端子が接続されるという構成を有することを特徴とする超高周波プラズマ発生用電極。   A pair of a vacuum vessel having an exhaust system in which a substrate is set, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and first and second electrodes for generating plasma Connected to two output terminals of the first high-frequency power source and the first high-frequency power source capable of arbitrarily setting the phase difference between the electrodes and the two outputs and the voltage of the two outputs. Any pulse modulation synchronized with the pulse modulation signals of the first and second impedance matching units and the first high-frequency power source is possible, and the phase difference between the two outputs and the voltage of the two outputs is arbitrarily set A settable second high-frequency power source and a power supply system composed of third and fourth impedance matching units connected to two output terminals of the second high-frequency power source, and using the generated plasma Plasma processing the surface of the substrate An electrode for generating an ultra-high-frequency plasma used in a surface processing apparatus, wherein an output terminal of the first impedance matching device and a third impedance matching are provided at a first feeding point arranged on the first electrode. The second feed point disposed at a position where the output terminal of the device is connected and which is in a relationship of being an opposing point on the propagation of a high-frequency power wave with respect to the first feed point, the second feed point An electrode for generating an ultrahigh frequency plasma, characterized in that an output terminal of an impedance matching device and an output terminal of the fourth impedance matching device are connected. 前記第2の電極は平板型の形状を有し、前記第1の電極は、該第2の電極に平行な面内に含まれるように配置された棒状あるいは板状の形状を有することを特徴とする請求項1記載の超高周波プラズマ発生用電極。   The second electrode has a flat plate shape, and the first electrode has a bar shape or a plate shape arranged so as to be included in a plane parallel to the second electrode. The electrode for generating an ultrahigh frequency plasma according to claim 1. 前記第1及び第2の電極は複数の開口を有する板状の導電体で、かつ、前記基板が該一対の電極間の外に配置されるという構成を有することを特徴とする請求項1記載の超高周波プラズマ発生用電極。   2. The first and second electrodes are plate-like conductors having a plurality of openings, and the substrate is arranged outside the pair of electrodes. Electrode for ultra-high frequency plasma generation. 前記第1の電極は複数の電極から成り、該複数の電極は前記第2の電極に平行な面内に含まれるように配置されるということを特徴とする請求項1〜3のいずれか1項に記載の超高周波プラズマ発生用電極。   The first electrode includes a plurality of electrodes, and the plurality of electrodes are arranged so as to be included in a plane parallel to the second electrode. The electrode for generating an ultrahigh-frequency plasma according to Item. 前記第1及び第2の高周波電源の出力の周波数は、30MHzから300MHzのVHF帯に属していることを特徴とする請求項1〜4のいずれか1項に記載の超高周波プラズマ発生用電極。   5. The ultrahigh frequency plasma generating electrode according to claim 1, wherein the output frequencies of the first and second high frequency power sources belong to a VHF band of 30 MHz to 300 MHz. 前記第1及び第2の高周波電源の出力のパルス変調のデユーテイ比即ちパルス幅Hwと周期T0の比Hw/H0を50%以下にすることを特徴とする請求項1〜5のいずれか1項に記載の超高周波プラズマ発生用電極。   6. The pulse modulation duty ratio of the outputs of the first and second high-frequency power sources, that is, the ratio Hw / H0 of the pulse width Hw to the period T0 is set to 50% or less. An electrode for generating an ultra-high frequency plasma as described in 1. 内部に基板がセットされる、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、プラズマを生成する第1及び第2の電極から成る一対の電極と、任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第1の高周波電源及び該第1の高周波電源の2つの出力端子に接続された第1及び第2のインピーダンス整合器及び該第1の高周波電源のパルス変調信号に同期した任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第2の高周波電源及び該第2の高周波電源の2つの出力端子に接続された第3及び第4のインピーダンス整合器から成る電力供給系とを具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置であって、前記一対の電極が請求項1〜6のいずれか1項に記載の超高周波プラズマ発生用電極により構成されていることを特徴とするプラズマ表面処理装置。   A pair of a vacuum vessel having an exhaust system in which a substrate is set, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and first and second electrodes for generating plasma Connected to two output terminals of the first high-frequency power source and the first high-frequency power source capable of arbitrarily setting the phase difference between the electrodes and the two outputs and the voltage of the two outputs. Any pulse modulation synchronized with the pulse modulation signals of the first and second impedance matching units and the first high-frequency power source is possible, and the phase difference between the two outputs and the voltage of the two outputs is arbitrarily set A settable second high-frequency power source and a power supply system composed of third and fourth impedance matching units connected to two output terminals of the second high-frequency power source, and using the generated plasma Plasma processing the surface of the substrate A surface treatment apparatus, a plasma surface treatment apparatus, wherein the pair of electrodes is formed by microwave plasma generation electrode according to any one of claims 1-6. 内部に基板がセットされる、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、プラズマを生成する第1及び第2の電極から成る一対の電極と、任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第1の高周波電源及び該第1の高周波電源の2つの出力端子に接続された第1及び第2のインピーダンス整合器及び該第1の高周波電源のパルス変調信号に同期した任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第2の高周波電源及び該第2の高周波電源の2つの出力端子に接続された第3及び第4のインピーダンス整合器から成る電力供給系とを具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理方法であって、前記一対の電極を請求項1〜6のいずれか1項に記載の超高周波プラズマ発生用電極により構成し、前記基板のプラズマ表面処理をすることを特徴とするプラズマ表面処理方法。   A pair of a vacuum vessel having an exhaust system in which a substrate is set, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and first and second electrodes for generating plasma Connected to two output terminals of the first high-frequency power source and the first high-frequency power source capable of arbitrarily setting the phase difference between the electrodes and the two outputs and the voltage of the two outputs. Any pulse modulation synchronized with the pulse modulation signals of the first and second impedance matching units and the first high-frequency power source is possible, and the phase difference between the two outputs and the voltage of the two outputs is arbitrarily set A settable second high-frequency power source and a power supply system composed of third and fourth impedance matching units connected to two output terminals of the second high-frequency power source, and using the generated plasma Plasma processing the surface of the substrate A surface treatment method, wherein the pair of electrodes comprises the electrode for generating an ultrahigh frequency plasma according to any one of claims 1 to 6, and the substrate is subjected to a plasma surface treatment. Processing method. 内部に基板がセットされる、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、プラズマを生成する第1及び第2の電極から成る一対の電極と、任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第1の高周波電源及び該第1の高周波電源の2つの出力端子に接続された第1及び第2のインピーダンス整合器及び該第1の高周波電源のパルス変調信号に同期した任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第2の高周波電源及び該第2の高周波電源の2つの出力端子に接続された第3及び第4のインピーダンス整合器から成る電力供給系とを具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理方法であって、前記第1の高周波電源の2つの出力により該一対の電極間に生成される第1の定在波の腹の位置と前記第2の高周波電源の2つの出力により該一対の電極間に生成される第2の定在波の腹の位置の距離を使用電力の波長λの四分の一、即ちλ/4に設定することを特徴とする請求項8に記載のプラズマ表面処理方法。   A pair of a vacuum vessel having an exhaust system in which a substrate is set, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and first and second electrodes for generating plasma Connected to two output terminals of the first high-frequency power source and the first high-frequency power source capable of arbitrarily setting the phase difference between the electrodes and the two outputs and the voltage of the two outputs. Any pulse modulation synchronized with the pulse modulation signals of the first and second impedance matching units and the first high-frequency power source is possible, and the phase difference between the two outputs and the voltage of the two outputs is arbitrarily set A settable second high-frequency power source and a power supply system composed of third and fourth impedance matching units connected to two output terminals of the second high-frequency power source, and using the generated plasma Plasma processing the surface of the substrate A surface treatment method comprising: a position of an antinode of a first standing wave generated between the pair of electrodes by two outputs of the first high-frequency power source; and two outputs of the second high-frequency power source. The distance between the positions of the antinodes of the second standing wave generated between the pair of electrodes is set to a quarter of the wavelength λ of the power used, that is, λ / 4. Plasma surface treatment method. 内部に基板がセットされる、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、プラズマを生成する第1及び第2の電極から成る一対の電極と、任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第1の高周波電源及び該第1の高周波電源の2つの出力端子に接続された第1及び第2のインピーダンス整合器及び該第1の高周波電源のパルス変調信号に同期した任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第2の高周波電源及び該第2の高周波電源の2つの出力端子に接続された第3及び第4のインピーダンス整合器から成る電力供給系とを具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理方法であって、前記第1の高周波電源の2つの出力の位相差と前記基板表面に製膜される正弦的な膜厚分布を有するSi系膜の膜厚が最大になる位置との関係を把握する第1の工程と、前記第2の高周波電源の2つの出力の位相差と前記基板表面に製膜される正弦的な膜厚分布を有するSi系膜の膜厚が最大になる位置との関係を把握する第2の工程と、該第1及び第2の工程でそれぞれに把握された第1及び第2の高周波電源の2つの出力の位相差と該膜厚が最大になる位置との関係より該第1及び第2の高周波電源の2つの出力の位相差を設定することにより、該基板に目的のSi系膜を製膜する第3の工程から成ることを特徴とする請求項8あるいは9のいずれか1項に記載のプラズマ表面処理方法。   A pair of a vacuum vessel having an exhaust system in which a substrate is set, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and first and second electrodes for generating plasma Connected to two output terminals of the first high-frequency power source and the first high-frequency power source capable of arbitrarily setting the phase difference between the electrodes and the two outputs and the voltage of the two outputs. Any pulse modulation synchronized with the pulse modulation signals of the first and second impedance matching units and the first high-frequency power source is possible, and the phase difference between the two outputs and the voltage of the two outputs is arbitrarily set A settable second high-frequency power source and a power supply system composed of third and fourth impedance matching units connected to two output terminals of the second high-frequency power source, and using the generated plasma Plasma processing the surface of the substrate A surface processing method, comprising: a phase difference between two outputs of the first high-frequency power source; and a position where a film thickness of a Si-based film having a sinusoidal film thickness distribution formed on the substrate surface is maximized. The first step of grasping the relationship, the phase difference between the two outputs of the second high-frequency power supply, and the thickness of the Si-based film having a sinusoidal thickness distribution formed on the substrate surface are maximized. The second step of grasping the relationship with the position, the phase difference between the two outputs of the first and second high-frequency power sources grasped in the first and second steps, respectively, and the film thickness are maximized. The method comprises a third step of forming a target Si-based film on the substrate by setting a phase difference between the two outputs of the first and second high-frequency power sources from the relationship with the position. The plasma surface treatment method according to claim 8.
JP2004330137A 2004-11-15 2004-11-15 Electrode for generating ultrahigh frequency plasma, plasma surface treatment apparatus and plasma surface treatment method comprising the electrode Expired - Fee Related JP4022670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004330137A JP4022670B2 (en) 2004-11-15 2004-11-15 Electrode for generating ultrahigh frequency plasma, plasma surface treatment apparatus and plasma surface treatment method comprising the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004330137A JP4022670B2 (en) 2004-11-15 2004-11-15 Electrode for generating ultrahigh frequency plasma, plasma surface treatment apparatus and plasma surface treatment method comprising the electrode

Publications (3)

Publication Number Publication Date
JP2005123203A JP2005123203A (en) 2005-05-12
JP2005123203A5 true JP2005123203A5 (en) 2007-08-16
JP4022670B2 JP4022670B2 (en) 2007-12-19

Family

ID=34617046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004330137A Expired - Fee Related JP4022670B2 (en) 2004-11-15 2004-11-15 Electrode for generating ultrahigh frequency plasma, plasma surface treatment apparatus and plasma surface treatment method comprising the electrode

Country Status (1)

Country Link
JP (1) JP4022670B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707403B2 (en) * 2005-02-02 2011-06-22 株式会社アルバック Plasma processing method and apparatus by pulse division supply and plasma CVD method
JP2008047938A (en) 2007-10-17 2008-02-28 Masayoshi Murata Method and device of high frequency plasma cvd, and manufacturing method of semiconductor thin film
JP4547711B2 (en) * 2008-10-10 2010-09-22 村田 正義 High frequency plasma CVD apparatus and high frequency plasma CVD method
WO2012035842A1 (en) * 2010-09-15 2012-03-22 三菱電機株式会社 High-frequency power supply device, plasma processing device and method for producing thin film
JP5484375B2 (en) * 2011-02-17 2014-05-07 三菱電機株式会社 Plasma film forming apparatus and plasma film forming method
JP6666599B2 (en) * 2018-03-28 2020-03-18 Sppテクノロジーズ株式会社 Substrate processing equipment

Similar Documents

Publication Publication Date Title
KR20010042269A (en) Parellel-antenna transformer-coupled plasma generation systems
TW201041456A (en) Plasma generation device, plasma control method, and substrate manufacturing method
JP2008047938A (en) Method and device of high frequency plasma cvd, and manufacturing method of semiconductor thin film
WO2010024128A1 (en) Plasma surface processing method and plasma surface processing apparatus
JP2008294465A (en) Current inlet terminal, plasma surface treatment device with current inlet terminal and plasma surface treatment method
JP2000235900A (en) Plasma treatment device
JP2005123203A5 (en)
EP2396804B1 (en) Apparatus for large area plasma processing
KR100994502B1 (en) Plasma treatment apparatus and method
JP2002110649A (en) Plasma treatment apparatus
JP4022670B2 (en) Electrode for generating ultrahigh frequency plasma, plasma surface treatment apparatus and plasma surface treatment method comprising the electrode
JP4264962B2 (en) High-frequency plasma generator, and surface treatment apparatus and surface treatment method constituted by the high-frequency plasma generator
JP2022136227A (en) Plasma cvd apparatus
JP2004193462A (en) Plasma processing method
JP2005123199A5 (en)
JP4207131B2 (en) High frequency plasma generator and surface treatment method
CN113035677A (en) Plasma processing apparatus and plasma processing method
JP4120831B2 (en) High frequency power supply apparatus, plasma surface treatment apparatus and plasma surface treatment method constituted by the high frequency power supply apparatus
JP2006228933A (en) High frequency plasma generator, surface treatment apparatus constituted thereof and surface treatment method
KR100994501B1 (en) Plasma processing equipment
KR101111062B1 (en) Apparatus for plasma processing
JP2023129476A (en) High frequency plasma generation device
JP3575013B1 (en) High frequency power supply coaxial cable, plasma surface treatment apparatus and plasma surface treatment method constituted by the coaxial cable
JP2006221887A (en) High-frequency plasma generator, surface treatment apparatus comprising the same, and surface treatment method
TW201621968A (en) Large-area plasma processing device and homogeneous plasma generation method