[go: up one dir, main page]

JP2005070205A - 光走査装置および画像形成装置 - Google Patents

光走査装置および画像形成装置 Download PDF

Info

Publication number
JP2005070205A
JP2005070205A JP2003297191A JP2003297191A JP2005070205A JP 2005070205 A JP2005070205 A JP 2005070205A JP 2003297191 A JP2003297191 A JP 2003297191A JP 2003297191 A JP2003297191 A JP 2003297191A JP 2005070205 A JP2005070205 A JP 2005070205A
Authority
JP
Japan
Prior art keywords
deflection
light beam
deflection mirror
mirror surface
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003297191A
Other languages
English (en)
Inventor
Yujiro Nomura
雄二郎 野村
Takeshi Ikuma
健 井熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003297191A priority Critical patent/JP2005070205A/ja
Publication of JP2005070205A publication Critical patent/JP2005070205A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】 第1偏向ミラー面で偏向された光ビームを伝達光学系により第2偏向ミラー面に導き、該第2偏向ミラー面でさらに光ビームを偏向することで偏向角の増大を図る光走査装置および該装置を装備する画像形成装置において、装置の小型化を図る。
【解決手段】 第1および第2偏向ミラー面651a,651bが凹面ミラー671の反射面671a側を向いて配置されており、第1偏向ミラー面651aにより偏向された光ビームが凹面ミラー面671aにより反射されて第2偏向ミラー面651bに導光される。このように光ビームを伝達光学系67の凹面ミラー671で折り返すように構成しているため、第1偏向ミラー面、伝達光学系および第2偏向ミラー面を直線状に配置していた従来装置に比べ、装置を小型化することができる。
【選択図】 図4

Description

この発明は、レーザビームプリンタ等の画像形成装置に用いられる光走査装置、特に2枚の偏向ミラー面に光ビームを順次入射させて偏向角を増大させる光走査装置および該装置を装備する画像形成装置に関するものである。
従来、レーザビームプリンタ、複写機やファクシミリ装置などの画像形成装置に用いられる光走査装置では、偏向角を増大させるために2つの偏向ミラー面を用いた構成が採用されることがあった(例えば特許文献1参照)。この特許文献1に記載の光走査装置では、第1偏向ミラー面で偏向した光ビームを伝達光学系によって第2偏向ミラー面に導き、この第2偏向ミラー面で第1偏向ミラー面からの光ビームをさらに偏向することで光ビームの偏向角を増大させている。そして、第2偏向ミラー面から射出される光ビームを走査レンズを介して被走査面上に導いている。このように第1および第2偏向ミラー面と伝達光学系とを組み合わせることによって、光ビームの走査速度の向上を図っている。
特開昭53−97447号公報(第2頁、第1図)
上記した従来装置では、第1偏向ミラー面で偏向した光ビームを第2偏向ミラー面に導くために伝達光学系を設けているが、その伝達光学系は2枚の伝達レンズで構成されている。すなわち、第1偏向ミラー面と第2偏向ミラー面とが距離(2f1+2f2)だけ離間して配置されている。ここで、符号f1、f2はそれぞれ2枚の伝達レンズ、つまり第1および第2伝達レンズの焦点距離である。また、第1および第2偏向ミラー面との間に、第1偏向ミラー面から第2偏向ミラー面側に距離f1だけ離間して第1伝達レンズが配置されるとともに、その第1伝達レンズからさらに距離(f1+f2)だけ離間して第2伝達レンズが配置されている。このようなレンズ配置を採用することで、伝達光学系はいわゆるアフォーカル光学系となっている。
このように第1偏向ミラー面、伝達光学系および第2偏向ミラー面が所定方向に、しかも直線状に配置されているため、その所定方向に装置が長くなり、2枚の偏向ミラー面を用いて偏向角を増大させる光走査装置の大型化を招いている。また、このように複数枚の伝達レンズを用いた場合には、次のような問題が発生する。すなわち、伝達光学系が複雑で、しかも光学部品の点数が多くなる。さらに、装置の周辺環境、特に環境温度が変動すると、光ビームの波長が変化し、伝達レンズを複数枚設けた装置はレンズの色収差の影響を大きく受ける。つまり、装置の周辺環境変動に伴って伝達光学系の光学特性が大きく変化してしまう。その結果、光ビームの走査特性が不安定となり、被走査面上に形成される像の品質劣化が発生することがある。
この発明は上記課題に鑑みなされたものであり、第1偏向ミラー面で偏向された光ビームを伝達光学系により第2偏向ミラー面に導き、該第2偏向ミラー面でさらに光ビームを偏向することで偏向角の増大を図る光走査装置および該装置を装備する画像形成装置において、装置の小型化を図ることを第1の目的とする。
また、この発明は、簡易な構成で、しかも光ビームを安定して走査することを第2の目的とする。
この発明にかかる光走査装置は、上記第1の目的を達成するため、それぞれが所定の主走査偏向軸回りに揺動しながら光ビームを反射して該光ビームを偏向する、第1および第2偏向ミラー面を有する偏向手段と、光ビームを被走査面に結像する結像手段とを有し、被走査面上で光ビームを主走査方向に走査する走査光学系と、少なくとも1つ以上の反射素子を有し、第1偏向ミラー面により偏向された光ビームを反射素子の反射面により第2偏向ミラー面に導く伝達光学系とを備え、第1および第2偏向ミラー面は反射素子の反射面側を向いて配置され、第2偏向ミラー面により偏向されて被走査面に向けて射出される光ビームの偏向角を第1偏向ミラー面による光ビームの偏向角より大きくすることを特徴としている。
このように構成された発明では、第1および第2偏向ミラー面が反射素子の反射面側を向いて配置されており、第1偏向ミラー面により偏向された光ビームが反射素子の反射面により反射されて第2偏向ミラー面に導光される。このように光ビームを反射素子で折り返すように構成しているため、第1偏向ミラー面、伝達光学系および第2偏向ミラー面を直線状に配置していた従来装置に比べ、装置を小型化することができる。
ここで、伝達光学系に設ける反射素子の個数は特に限定されるものではないが、その個数が奇数か、偶数かに応じて第1および第2偏向ミラー面の揺動駆動位相を設定するのが望ましい。すなわち、伝達光学系が奇数枚の反射素子を有するときには第1および第2偏向ミラー面を互いに逆位相で揺動駆動するのに対し、伝達光学系が偶数枚の反射素子を有するときには第1および第2偏向ミラー面を互いに同位相で揺動駆動するのが望ましい。
また、伝達光学系を奇数枚の反射素子で構成する一態様としては、例えばその反射面が第1および第2偏向ミラー面に対向するように配置された凹面ミラーで伝達光学系を構成することが考えられる。この伝達光学系では、第1偏向ミラー面により偏向された光ビームは凹面ミラー面で反射されて第2偏向ミラー面に導光される。このように反射素子として凹面ミラーを用いることで1枚の反射素子で伝達光学系を構成することができ、伝達光学系を構成するにあたり複数の光学部品(2枚の伝達レンズ)を必須としていた従来装置に比べ、伝達光学系を簡素で、しかも少ない光学部品点数で構成することができる。また、伝達レンズが不要となることで色収差の影響を排除することができ、優れた安定性で光ビームを走査させることができる。
また、光源からの光ビームをコリメータレンズによって平行な光ビームに整形し、さらに該平行光ビームを集束レンズにより集束させ、その集束光ビームを第1偏向ミラー面に入射させるように構成してもよい。このように構成された光走査装置では、第1偏向ミラー面に集束光ビームが入射されるため、コリメータレンズの開口数を大きく設定することができ、その結果光の利用効率を高めることができる。
また、凹面ミラー面の形状については任意のものを採用することができるが、特に第1偏向ミラー面のほぼ中心位置と、第2偏向ミラー面のほぼ中心位置とを焦点とする楕円を、2つの中心位置を通過する仮想直線を回転軸として回転させることで形成される楕円面を上記用面ミラー面として用いた場合には、次のような作用効果が得られる。すなわち、楕円面の2つの焦点に第1および第2偏向ミラー面がそれぞれ位置するため、第1偏向ミラー面により偏向された光ビームの主光線は凹面ミラー面(楕円反射面)により反射された後、第2偏向ミラー面に入射する。したがって、第1偏向ミラー面で偏向された光ビームを第2偏向ミラー面に確実に導き、光ビームを安定して走査することができる。
また、伝達光学系の配設位置としては、走査光学系により走査される光ビームの走査領域の外に配置するのが望ましい。このような構成を採用することで、光ビームと伝達光学系との干渉を防止することができる。また、伝達光学系への光ビームの入射・射出が簡単となり、装置の薄型化が可能となる。
また、第1および第2偏向ミラー面の配置関係については任意であるが、次のような配置関係を満足させることで特有の作用効果が得られる。例えば第1および第2偏向ミラー面を主走査方向と平行な方向に並べて配置すると、主走査平面に対して角度をつけて光ビームを第1および第2偏向ミラー面に入射・射出させる必要がなくなる。つまり、同一の主走査平面内に光走査装置の光学部品を配置することができる。その結果、主走査方向とほぼ直交する副走査方向における装置サイズの小型化、つまり装置の薄型化を図ることができる。また、第1および第2偏向ミラー面を主走査方向とほぼ直交する副走査方向に並べて配置すると、主走査平面において偏向手段が占める面積が最小化され、主走査平面での装置サイズを低減することができ、装置の小型化が可能となる。
また、第1および第2偏向ミラー面の少なくとも一方が主走査方向とほぼ直交する副走査平面において被走査面とほぼ共役となるように構成してもよい。このような構成を採用することで、被走査面と共役関係を有する偏向ミラー面の副走査方向への揺動の影響を防止することができる。また、副走査方向における上記偏向ミラー面のサイズを小さくして偏向手段の小型化、軽量化することができる。その結果、上記偏向ミラー面の駆動速度をさらに向上させて光ビームの走査速度をさらに高めることができる。
また、偏向手段としては、単一の偏向ミラー面を有する偏向素子(例えばガルバノミラーなど)を2つ並列配置したものを用いることができるが、以下のように構成された偏向手段を用いてもよい。すなわち、偏向手段は、第1偏向ミラー面を有する第1可動部材と、第2偏向ミラー面を有する第2可動部材と、第1および第2可動部材を主走査方向とほぼ直交する方向に伸びる主走査偏向軸回りに揺動自在に支持する支持部材と、第1および第2可動部材を主走査偏向軸回りに揺動駆動するミラー駆動部とを備え、ミラー駆動部は、主走査偏向軸回りに第1および第2偏向ミラー面を揺動させて光ビームを主走査方向に走査させている。ここで、第1可動部材、第2可動部材および支持部材については、一の基板を加工することで一体的に形成するようにしてもよい。このように一体形成することで第1および第2偏向ミラーの特性を揃えることができ、光ビームを安定して走査することができる。なお、基板加工方法についてはマイクロマシニング技術を適用することができ、該加工技術を用いるこで高精度に偏向手段を作成することができ、光ビームの走査性を向上させる上で有利となる。
また、上記基板としてシリコン単結晶基板を用いることができる。例えばシリコン単結晶の基板を支持部材として用いるとともに、この基板に対してマイクロマシニング技術を適用することで第1および第2可動部材を形成することができる。このようにシリコン単結晶を用いて偏向素子の可動部材および支持部材を構成すると、第1および第2可動部材を高精度に製造することができる。また、ステンレス鋼と同程度のバネ特性で可動部材を揺動自在に支持することができ、偏向ミラー面を安定して、しかも高速で揺動することができる。
また、ミラー駆動部により第1および第2偏向ミラー面を共振モードで主走査偏向軸回りに揺動駆動するようにしてもよい。このように構成することで少ないエネルギーで第1および第2偏向ミラー面を主走査偏向軸回りに揺動駆動することができる。また、光ビームの主走査周期を安定化することができる。
また、第1および第2偏向ミラー面を揺動駆動させるための駆動力としては、静電吸着力や電磁気力などを用いることができるが、それぞれ以下のような特性を有している。静電吸着力を用いた場合、コイルパターンを形成する必要がなく、偏向手段の小型化が可能となり、偏向走査をより高速化することができる。一方、電磁気力を用いた場合、静電吸着力を発生させる場合に比べて低い駆動電圧で偏向ミラー面を揺動駆動することができ、電圧制御が容易となり、偏向ミラー面の位置精度を高めることができる。このように互いに異なる特徴を有しているため、使用目的に応じた駆動力を採用すればよい。
<第1実施形態>
図1は本発明にかかる光走査装置の第1実施形態たる露光ユニットを装備した画像形成装置を示す図である。また、図2は図1の画像形成装置の電気的構成を示すブロック図である。この画像形成装置は、いわゆる4サイクル方式のカラープリンタである。この画像形成装置では、ユーザからの画像形成要求に応じてホストコンピュータなどの外部装置から印字指令がメインコントローラ11に与えられると、このメインコントローラ11のCPU111からの印字指令に応じてエンジンコントローラ10がエンジン部EGの各部を制御して複写紙、転写紙、用紙およびOHP用透明シートなどのシートに印字指令に対応する画像を形成する。
このエンジン部EGでは、感光体2が図1の矢印方向(副走査方向)に回転自在に設けられている。また、この感光体2の周りにその回転方向に沿って、帯電ユニット3、ロータリー現像ユニット4およびクリーニング部(図示省略)がそれぞれ配置されている。帯電ユニット3には帯電制御部103が電気的に接続されており、所定の帯電バイアスを印加している。このバイアス印加によって感光体2の外周面が所定の表面電位に均一に帯電される。また、これらの感光体2、帯電ユニット3およびクリーニング部は一体的に感光体カートリッジを構成しており、感光体カートリッジが一体として装置本体5に対し着脱自在となっている。
そして、この帯電ユニット3によって帯電された感光体2の外周面に向けて本発明の光走査装置に相当する露光ユニット6から光ビームLが照射される。この露光ユニット6は、外部装置から与えられた画像信号に応じて光ビームLを感光体2の表面(本発明の「被走査面」に相当)上に露光して画像信号に対応する静電潜像を形成する。なお、この露光ユニット6の構成および動作については後で詳述する。
こうして形成された静電潜像は現像ユニット4によってトナー現像される。すなわち、この実施形態では、現像ユニット4は、軸中心に回転自在に設けられた支持フレーム40、支持フレーム40に対して着脱自在のカートリッジとして構成されてそれぞれの色のトナーを内蔵するイエロー用の現像器4Y、マゼンタ用の現像器4M、シアン用の現像器4C、およびブラック用の現像器4Kを備えている。そして、エンジンコントローラ10の現像器制御部104からの制御指令に基づいて、現像ユニット4が回転駆動されるとともにこれらの現像器4Y、4C、4M、4Kが選択的に感光体2と当接してまたは所定のギャップを隔てて対向する所定の現像位置に位置決めされると、当該現像器に設けられて選択された色のトナーを担持する現像ローラから感光体2の表面にトナーを付与する。これによって、感光体2上の静電潜像が選択トナー色で顕像化される。
上記のようにして現像ユニット4で現像されたトナー像は、一次転写領域TR1で転写ユニット7の中間転写ベルト71上に一次転写される。転写ユニット7は、複数のローラ72、73等に掛け渡された中間転写ベルト71と、ローラ73を回転駆動することで中間転写ベルト71を所定の回転方向に回転させる駆動部(図示省略)とを備えている。
また、ローラ72の近傍には、転写ベルトクリーナ(図示省略)、濃度センサ76(図2)および垂直同期センサ77(図2)が配置されている。これらのうち、濃度センサ76は、中間転写ベルト71の表面に対向して設けられており、中間転写ベルト71の外周面に形成されるパッチ画像の光学濃度を測定する。また、垂直同期センサ77は、中間転写ベルト71の基準位置を検出するためのセンサであり、中間転写ベルト71の副走査方向への回転駆動に関連して出力される同期信号、つまり垂直同期信号Vsyncを得るための垂直同期センサとして機能する。そして、この装置では、各部の動作タイミングを揃えるとともに各色のトナー像を正確に重ね合わせるために、装置各部の動作はこの垂直同期信号Vsyncに基づいて制御される。
そして、カラー画像をシートに転写する場合には、感光体2上に形成される各色のトナー像を中間転写ベルト71上に重ね合わせてカラー画像を形成するとともに、カセット8から1枚ずつ取り出され搬送経路Fに沿って二次転写領域TR2まで搬送されてくるシート上にカラー画像を二次転写する。
このとき、中間転写ベルト71上の画像をシート上の所定位置に正しく転写するため、二次転写領域TR2にシートを送り込むタイミングが管理されている。具体的には、搬送経路F上において二次転写領域TR2の手前側にゲートローラ81が設けられており、中間転写ベルト71の周回移動のタイミングに合わせてゲートローラ81が回転することにより、シートが所定のタイミングで二次転写領域TR2に送り込まれる。
また、こうしてカラー画像が形成されたシートは定着ユニット9および排出ローラ82を経由して装置本体5の上面部に設けられた排出トレイ部51に搬送される。また、シートの両面に画像を形成する場合には、上記のようにして片面に画像を形成されたシートを排出ローラ82によりスイッチバック移動させる。これによってシートは反転搬送経路FRに沿って搬送される。そして、ゲートローラ81の手前で再び搬送経路Fに乗せられるが、このとき、二次転写領域TR2において中間転写ベルト71と当接し画像を転写されるシートの面は、先に画像が転写された面とは反対の面である。このようにして、シートの両面に画像を形成することができる。
なお、図2において、符号113はホストコンピュータなどの外部装置よりインターフェース112を介して与えられた画像データを記憶するためにメインコントローラ11に設けられた画像メモリであり、符号106はCPU101が実行する演算プログラムやエンジン部EGを制御するための制御データなどを記憶するためのROM、また符号107はCPU101における演算結果やその他のデータを一時的に記憶するRAMである。
図3および図4は図1の画像形成装置に装備された露光ユニット(光走査装置)の構成を示す主走査断面図である。また、図5は図1の画像形成装置に装備された露光ユニット(光走査装置)の構成を示す副走査断面図である。また、図6および図7は露光ユニットの一構成要素たる偏向素子(偏向手段)を示す図である。以下、これらの図面を参照しつつ、露光ユニットの構成および動作について詳述する。
この露光ユニット6は露光筐体61を有している。そして、露光筐体61に単一のレーザー光源62が固着されており、レーザー光源62から光ビームを射出可能となっている。このレーザー光源62は、露光制御部102の光源駆動部(図示省略)と電気的に接続されている。このため、画像データに応じて光源駆動部がレーザー光源62をON/OFF制御してレーザー光源62から画像データに対応して変調された光ビームが射出される。
また、この露光筐体61の内部には、レーザー光源62からの光ビームを感光体2の表面に走査露光するために、コリメータレンズ631、シリンドリカルレンズ632、折り返しミラー641、集束レンズ64、偏向素子65、本発明の「結像手段」に相当する走査レンズ66、伝達光学系67および折り返しミラー68が設けられている。すなわち、レーザー光源62からの光ビームは、コリメータレンズ631により適当な大きさのコリメート光にビーム整形された後、図5に示すように副走査方向Yにのみパワーを有するシリンドリカルレンズ632に入射される。また、シリンドリカルレンズ632を通過した光ビームは折り返しミラー641により折り返された後、図4に示すように主走査方向Xにのみパワーを有する集束レンズ64に入射される。そして、シリンドリカルレンズ632を調整することでコリメート光は副走査方向Yにおいて偏向素子65の偏向ミラー面651a付近で結像される。このように、この実施形態では、コリメータレンズ631およびシリンドリカルレンズ632がレーザー光源62からの光ビームを整形するビーム整形系63として機能している。一方、集束レンズ64の焦点距離は該レンズ64と第1偏向ミラー面651aとの面間距離よりも長くなっている。このため、偏向素子65の偏向ミラー面651a付近では主走査方向Xに伸びる線像が形成される。
この偏向素子65は半導体製造技術を応用して微小機械を半導体基板上に一体形成するマイクロマシニング技術を用いて形成されるものであり、偏向ミラー面651a,651bで反射した光ビームを主走査方向Xに光ビームを偏向可能となっている。より具体的には、偏向素子65は次のように構成されている。
この偏向素子65では、図6に示すように、シリコンの単結晶基板(以下「シリコン基板」という)652が本発明の「支持部材」として機能し、さらに該シリコン基板652の一部を加工することで2つの可動板656a,656bが主走査方向Xに所定間隔だけ離隔して設けられている。この可動板656aは平板状に形成され、ねじりバネ657によってシリコン基板652に弾性支持されており、副走査方向Yとほぼ平行に伸びる第1軸AX1a回りに揺動自在となっている。また、この可動板656aの上面中央部には、アルミニューム膜などが第1偏向ミラー面651aとして成膜されている。また、可動板656bも可動板656aと同様に構成されている。すなわち、平板状に形成された可動板656bは第1軸AX1b回りにシリコン基板652に対して揺動自在に設けられるとともに、この可動板656aの上面中央部にアルミニューム膜などが第2偏向ミラー面651bとして成膜されている。
また、シリコン基板652の凹部652aの内底面のうち可動板656a,656bの各々について、可動板の両端部に対向する位置に電極658a,658bがそれぞれ固着されている。これら2つの電極658a,658bは可動板656a,656bを第1軸AX1a、AX1b回りに揺動駆動するための電極として機能するものである。すなわち、これらの電極658a,658bは露光制御部102の駆動部(図示省略)と電気的に接続されており、電極への電圧印加によって該電極と偏向ミラー面651a,651bとの間に静電吸着力が作用して偏向ミラー面651a,651bの一方端部を該電極側に引き寄せる。したがって、駆動部から所定の電圧を電極658a,658bに交互に印加すると、ねじりバネ657を第1軸AX1a,AX1bとして偏向ミラー面651a,651bをそれぞれ往復振動させることができる。そして、この往復振動の駆動周波数を偏向ミラー面651a,651bの共振周波数に設定すると、偏向ミラー面651a,651bの振れ幅は大きくなり、電極658a,658bに近接する位置まで偏向ミラー面651a,651bの端部を変位させることができる。また、偏向ミラー面651a,651bの端部が共振で電極658a,658bと近接位置に達することで、電極658a,658bも偏向ミラー面651a,651bの駆動に寄与し、端部と平面部の両電極により振動維持をより安定させることができる。なお、この実施形態では、次に説明する伝達光学系67が有する反射素子の個数は「1」であるため、偏向ミラー面651a,651bとで電極658a,658bを対称関係に配置して互いに逆位相で揺動するように構成している。
このように偏向素子(偏向手段)65では、露光制御部102の駆動部が本発明の「ミラー駆動部」として機能し、該駆動部を制御することによって偏向ミラー面651a,651bを第1軸AX1a、AX1b回りに逆位相で揺動させることで光ビームを偏向して主走査方向Xに走査させている。すなわち、第1軸AX1a、AX1bを主走査偏向軸として機能させる。
上記のように構成された偏向素子65の第1偏向ミラー面651aで反射された光ビームは伝達光学系67に入射された後、この伝達光学系67によって偏向素子65の第2偏向ミラー面651bに戻される。そのため、偏向素子65により例えば第1偏向角に偏向された光ビームは第1偏向角よりも大きな第2偏向角で走査レンズ66に向けて射出される。この実施形態では、伝達光学系67は次にように構成されている。
この伝達光学系67は、図4に示すように、1枚の凹面ミラー(反射素子)671で構成されており、凹面ミラー671の反射面671aと、第1および第2偏向ミラー面651a,651bとが互いに対向するように配置されている。そして、第1偏向ミラー面651aにより偏向された光ビームを凹面ミラー671の反射面671aにより反射して第2偏向ミラー面651bに導光している。この実施形態では、凹面ミラー671として反射面671aを楕円面に形成した楕円面鏡を用いている。より詳しくは、第1偏向ミラー面651aのほぼ中心位置P1aと、第2偏向ミラー面651bのほぼ中心位置P1bとを焦点とする楕円を、2つの中心位置P1a,P1bを通過する仮想直線VLを回転軸として回転させることで形成される楕円面の一部を反射面671aとして用いている。そのため、次のような作用効果が得られる。すなわち、2つの焦点に第1および第2偏向ミラー面651bがそれぞれ位置するため、第1偏向ミラー面651aにより偏向された光ビームの主光線は凹面ミラー面(楕円反射面)671aにより反射された後、第2偏向ミラー面651bに入射する。したがって、第1偏向ミラー面651aで偏向された光ビームを第2偏向ミラー面651bに確実に導くことができる。そして、この光ビームは第2偏向ミラー面651bにより反射され、第1偏向角よりも大きな第2偏向角で光ビームが走査レンズ66に向けて射出される。その結果、光ビームを安定して走査することができる。
こうして偏向素子65により偏向された光ビームは走査レンズ66および折り返しミラー68を介して感光体2の表面(被走査面)に照射される。これにより、光ビームが主走査方向Xと平行に走査して主走査方向Xに伸びるライン状の潜像が感光体2の表面上に形成される。
なお、この実施形態では、図3に示すように、偏向素子65からの走査光ビームの開始または終端を折り返しミラー69a〜69cにより同期センサ60に導いている。すなわち、この実施形態では、同期センサ60を、主走査方向Xにおける同期信号、つまり水平同期信号HSYNCを得るための水平同期用読取センサとして機能させている。
以上のように、この実施形態によれば、第1および第2偏向ミラー面651a,651bが凹面ミラー671の反射面671a側を向いて配置されており、第1偏向ミラー面651aにより偏向された光ビームが凹面ミラー面671aにより反射されて第2偏向ミラー面651bに導光される。このように光ビームを伝達光学系67の凹面ミラー671で折り返すように構成しているため、第1偏向ミラー面、伝達光学系および第2偏向ミラー面を直線状に配置していた従来装置に比べ、装置を小型化することができる。
また、本発明の反射素子として凹面ミラー671を用いることで1枚の反射素子で伝達光学系67を構成しているので、伝達光学系を構成するにあたり複数の光学部品(2枚の伝達レンズ)を必須としていた従来装置に比べ、伝達光学系を簡素で、しかも少ない光学部品点数で構成することができる。また、伝達レンズが不要となることで色収差の影響を排除することができ、優れた安定性で光ビームを走査させることができる。
また、集束レンズ64を設けることで第1偏向ミラー面651aに集束光ビームを入射させるように構成しているので、コリメータレンズの開口数を大きく設定することができ、その結果光の利用効率を高めることができる。
また、この実施形態では、図4に示すように、伝達光学系67が走査光学系(偏向素子65および走査レンズ66)により走査される光ビームの走査領域の外に配置されている。このため、光ビームと伝達光学系67との干渉を防止することができる。また、伝達光学系67への光ビームの入射・射出が簡単となり、装置の薄型化が可能となる。また、装置の薄型化の観点から言うと、第1および第2偏向ミラー面651a,651bを主走査方向Xと平行な方向に並べて配置したことが装置の薄型に大きく寄与している。すなわち、かかる配置構成を採用した場合には、主走査平面に対して角度をつけて光ビームを第1および第2偏向ミラー面651a,651bに入射・射出させる必要がなくなる。つまり、同一の主走査平面内に光走査装置の光学部品を配置することができる。その結果、副走査方向Yにおける装置サイズの小型化、つまり装置の薄型化を図ることができる。
また、この実施形態では、第1および第2偏向ミラー面651a,651bの両方が主走査方向Xとほぼ直交する副走査平面において感光体2の表面(被走査面)とほぼ共役となるように構成してもよい。このような構成を採用することで、両偏向ミラー面651a,651bの副走査方向Yへの揺動の影響を防止することができる。また、副走査方向Yにおける上記偏向ミラー面651a,651bのサイズを小さくして偏向素子(偏向手段)の小型化、軽量化することができる。その結果、上記偏向ミラー面651a,651bの駆動速度をさらに向上させて光ビームの走査速度をさらに高めることができる。
さらに、この実施形態では、一のシリコン基板652をマイクロマシニング加工技術を用いて第1偏向ミラー面651a,651bおよび支持部材を一体的に形成しているので、高精度に偏向素子(偏向手段)65を作成することができ、光ビームの走査性を向上させる上で有利となる。また、ステンレス鋼と同程度のバネ特性で可動板656a,656bを揺動自在に支持することができ、第1および第2偏向ミラー面651a,651bを安定して、しかも高速で揺動することができる。
<第2実施形態>
図8および図9は本発明にかかる光走査装置の第2実施形態を示す主走査断面図である。また、図10は図8の光走査装置の副走査断面図である。この第2実施形態にかかる光走査装置たる露光ユニット6が第1実施形態と大きく相違する点は、偏向素子65の構成である。すなわち、第2実施形態では、図10に示すように、第1および第2偏向ミラー面651a,651bが副走査方向Yに並べて配置されている点である。このように構成された露光ユニット6では、レーザー光源62からの光ビームは、コリメータレンズ631により適当な大きさのコリメート光にビーム整形された後、同図に示すように副走査方向Yにのみパワーを有するシリンドリカルレンズ632に入射される。また、シリンドリカルレンズ632を通過した光ビームは折り返しミラー641により折り返された後、図9に示すように主走査方向Xにのみパワーを有する集束レンズ64に入射される。そして、シリンドリカルレンズ632を調整することでコリメート光は副走査方向Yにおいて下方位置の偏向ミラー面651a付近で結像される。また、この偏向ミラー面651aで偏向された光ビームは伝達光学系67の凹面ミラー面671aにより反射されて上方位置の偏向ミラー面651bに導光され、該偏向ミラー面651bにより走査レンズ66に向けて偏向される。
この第2実施形態においても、光ビームを伝達光学系67の凹面ミラー671で折り返すように構成しているため、第1実施形態と同様の作用効果を奏する。また、第1および第2偏向ミラー面651a,651bを副走査方向Yに並べて配置しているので、図8や図9に示すように主走査平面において偏向素子(偏向手段)65が占める面積が最小化され、主走査平面での装置サイズを低減することができ、装置の小型化が可能となる。
<その他>
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、1個の凹面ミラー671により伝達光学系67を構成しているが、伝達光学系67の構成はこれに限定されるものではない。すなわち、少なくとも1つ以上の反射素子を有し、第1偏向ミラー面により偏向された光ビームを反射素子の反射面により第2偏向ミラー面に導く伝達光学系を用いることで、装置のコンパクト化を図ることができる。例えば、図11に示すように1枚の平面ミラー673を本発明の「反射素子」として設け、第1および第2偏向ミラー面651a,651bが平面ミラー673の反射面673a側を向くように配置してもよい(第3実施形態)。そして、偏向ミラー面651a,651bと平面ミラー673との間に、伝達レンズ672、674がそれぞれ配置されている。このため、第1偏向ミラー面651aで偏向された光ビームは伝達レンズ672を介して平面ミラー673の反射面673aに入射する。そして、反射面673aで折り返された光ビームは伝達レンズ674を介して第2偏向ミラー面651bに導光される。そして、光ビームは第2偏向ミラー面651bにより偏向されて被走査面に向けて射出される。なお、この第3実施形態では、第1および第2偏向ミラー面651a,651bは逆位相で揺動駆動することで、第2偏向ミラー面651bにより偏向される光ビームの偏向角が第1偏向ミラー面651aによる光ビームの偏向角より大きくなっている。
また、反射素子の個数は「1」に限定されるものではなく、例えば図12に示すように2枚の平面ミラー676,677を本発明の「反射素子」として設け、第1偏向ミラー面651aが平面ミラー676の反射面676a側を向くように配置するとともに、第2偏向ミラー面651bが平面ミラー677の反射面677a側を向くように配置してもよい(第4実施形態)。そして、偏向ミラー面651a,651bと平面ミラー676,677との間に、伝達レンズ675、678がそれぞれ配置されている。このため、第1偏向ミラー面651aで偏向された光ビームは伝達レンズ675を介して平面ミラー676の反射面676aに入射する。そして、反射面673aで折り返された光ビームは平面ミラー677の反射面677aで折り返された後、伝達レンズ678を介して第2偏向ミラー面651bに導光される。そして、光ビームは第2偏向ミラー面651bにより偏向されて被走査面に向けて射出される。なお、この第4実施形態では、第1および第2偏向ミラー面651a,651bは同位相で揺動駆動することで、第2偏向ミラー面651bにより偏向される光ビームの偏向角が第1偏向ミラー面651aによる光ビームの偏向角より大きくなっている。
また、伝達光学系67に含まれる反射素子の個数を「3」以上に設定してもよいが、伝達光学系67が奇数枚の反射素子を有するときには第1および第2偏向ミラー面651a,651bを互いに逆位相で揺動駆動するのに対し、伝達光学系67が偶数枚の反射素子を有するときには第1および第2偏向ミラー面651a,651bを互いに同位相で揺動駆動するのが望ましい。
また、上記実施形態では、第1および第2偏向ミラー面651a,651bの両方が副走査平面において感光体2の表面(被走査面)とほぼ共役となっているが、第1および第2偏向ミラー面651a,651bの一方のみを感光体2の表面(被走査面)とほぼ共役としてもよく、このような構成を採用することで、被走査面と共役関係を有する偏向ミラー面の副走査方向への揺動の影響を防止することができる。
また、上記実施形態では、静電吸着力を用いて偏向ミラー面651a,651bを揺動させているが、他の駆動力を用いて揺動させるようにしてもよい。ここで、他の駆動力として例えば電磁気力を利用することができる。なお、電磁気力を利用する点については、例えば特開2002−48998号公報に記載されている。このように、偏向ミラー面651a,651bを揺動させるために、電磁気力および静電気力のいずれを用いてもよいことは言うまでもない。ただし、駆動方式ごとに以下のような特徴を有しているため、それらを考慮した上で適宜採用するのが望ましい。すなわち、偏向ミラー面651を揺動駆動させるための駆動力として電磁気力を用いた場合、静電吸着力を発生させる場合に比べて低い駆動電圧で偏向ミラー面651を揺動駆動することができ、電圧制御が容易となり、走査光ビームの位置精度を高めることができる。これに対し、上記駆動力として静電吸着力を用いた場合、コイルパターンを形成する必要がなく、偏向素子65のさらなる小型化が可能となり、偏向走査をより高速化することができるからである。また、偏向ミラー面651を揺動駆動するのにあたり、偏向ミラー面651を共振モードで主走査偏向軸回りに揺動駆動するように構成してもよい。このように構成することで少ないエネルギーで偏向ミラー面651を主走査偏向軸回りに揺動駆動することができる。また、走査光ビームの主走査周期を安定化することができる。
上記実施形態では、この発明にかかる光走査装置をカラー画像形成装置の露光ユニットとして用いているが、本発明の適用対象はこれに限定されるものではない。すなわち、感光体などの潜像担持体上に光ビームを走査して静電潜像を形成するとともに、該静電潜像をトナーにより現像してトナー像を形成する画像形成装置の露光手段として用いることができる。もちろん、光走査装置の適用対象は画像形成装置に装備される露光手段に限定されるものではなく、光ビームを被走査面上に走査させる光走査装置全般に適用することができる。
本発明にかかる光走査装置の第1実施形態たる露光ユニットを装備した画像形成装置を示す図である。 図1の画像形成装置の電気的構成を示すブロック図である。 図1の画像形成装置に装備された露光ユニット(光走査装置)の構成を示す主走査断面図である。 図1の画像形成装置に装備された露光ユニット(光走査装置)の構成を示す主走査断面図である。 図1の画像形成装置に装備された露光ユニット(光走査装置)の構成を示す副走査断面図である。 露光ユニットの一構成要素たる偏向素子を示す図である。 露光ユニットの一構成要素たる偏向素子を示す図である。 本発明にかかる光走査装置の第2実施形態を示す主走査断面図である。 本発明にかかる光走査装置の第2実施形態を示す主走査断面図である。 図8の光走査装置の副走査断面図である。 本発明にかかる光走査装置の第3実施形態を示す主走査断面図である。 本発明にかかる光走査装置の第4実施形態を示す主走査断面図である。
符号の説明
2…感光体(潜像担持体)、 4…現像ユニット(現像手段)、 6…露光ユニット(光走査装置)、 65…偏向素子(偏向手段)、 66…走査レンズ(結像手段)、 67…伝達光学系、 651a,651b…偏向ミラー面、 652…シリコン基板(支持部材)、 656a,656b…可動板、 671…凹面ミラー(反射素子)、 671a…凹面ミラー面(反射面)、 672,674,675,678…伝達レンズ、 673,676,677…平面ミラー(反射素子)、 673a,676a,677a…反射面、 L…光ビーム、 P1a,P1b…反射位置、 X…主走査方向、 Y…副走査方向

Claims (17)

  1. それぞれが所定の主走査偏向軸回りに揺動しながら光ビームを反射して該光ビームを偏向する、第1および第2偏向ミラー面を有する偏向手段と、光ビームを被走査面に結像する結像手段とを有し、前記被走査面上で光ビームを主走査方向に走査する走査光学系と、
    少なくとも1つ以上の反射素子を有し、前記第1偏向ミラー面により偏向された光ビームを前記反射素子の反射面により前記第2偏向ミラー面に導く伝達光学系とを備え、
    前記第1および第2偏向ミラー面は前記反射素子の反射面側を向いて配置され、前記第2偏向ミラー面により偏向されて前記被走査面に向けて射出される光ビームの偏向角を前記第1偏向ミラー面による光ビームの偏向角より大きくすることを特徴とする光走査装置。
  2. 前記伝達光学系が奇数枚の反射素子を有するときには、前記第1および第2偏向ミラー面は互いに逆位相で揺動駆動される請求項1記載の光走査装置。
  3. 前記伝達光学系は、その反射面が前記第1および第2偏向ミラー面に対向するように配置された凹面ミラーを前記反射素子として備え、前記凹面ミラー面が前記第1偏向ミラー面により偏向された光ビームを前記第2偏向ミラー面に反射する請求項2記載の光走査装置。
  4. 光ビームを発生する光源と、
    前記光源からの光ビームを平行な光ビームに整形するコリメータレンズと、
    前記コリメータレンズから射出される平行光ビームを集束させ、その集束光ビームを前記第1偏向ミラー面に導く集束レンズと
    をさらに備える請求項3記載の光走査装置。
  5. 前記凹面ミラー面は、前記第1偏向ミラー面のほぼ中心位置と、前記第2偏向ミラー面のほぼ中心位置とを焦点とする楕円を、前記2つの中心位置を通過する仮想直線を回転軸として回転させることで形成される楕円面となっている請求項3または4記載の光走査装置。
  6. 前記伝達光学系が偶数枚の反射素子を有するときには、前記第1および第2偏向ミラー面は互いに同位相で揺動駆動される請求項1記載の光走査装置。
  7. 前記伝達光学系は、前記走査光学系により走査される光ビームの走査領域の外に配置されている請求項1ないし6のいずれかに記載の光走査装置。
  8. 前記第1および第2偏向ミラー面は前記主走査方向と平行な方向に並べて配置されている請求項1ないし7のいずれかに記載の光走査装置。
  9. 前記第1および第2偏向ミラー面は前記主走査方向とほぼ直交する副走査方向に並べて配置されている請求項1ないし7のいずれかに記載の光走査装置。
  10. 前記第1および第2偏向ミラー面の少なくとも一方が前記主走査方向とほぼ直交する副走査平面において前記被走査面とほぼ共役となっている請求項1ないし9のいずれかに記載の光走査装置。
  11. 前記偏向手段は、
    前記第1偏向ミラー面を有する第1可動部材と、
    前記第2偏向ミラー面を有する第2可動部材と、
    前記第1および第2可動部材を前記主走査方向とほぼ直交する方向に伸びる主走査偏向軸回りに揺動自在に支持する支持部材と、
    前記第1および第2可動部材を前記主走査偏向軸回りに揺動駆動するミラー駆動部とを備え、
    前記ミラー駆動部は、前記主走査偏向軸回りに前記第1および第2偏向ミラー面を揺動させて光ビームを前記主走査方向に走査させる請求項1ないし10のいずれかに記載の光走査装置。
  12. 一の基板を加工することで前記第1可動部材、前記第2可動部材および前記支持部材が一体的に形成された請求項11記載の光走査装置。
  13. 前記基板はシリコン単結晶基板である請求項12記載の光走査装置。
  14. 前記ミラー駆動部は、前記第1および第2偏向ミラー面を共振モードで前記主走査偏向軸回りに揺動駆動する請求項11ないし13のいずれかに記載の光走査装置。
  15. 前記ミラー駆動部は、電磁気力により前記偏向ミラー面を前記主走査偏向軸回りに揺動駆動する請求項11ないし14のいずれかに記載の光走査装置。
  16. 前記ミラー駆動部は、静電吸着力により前記偏向ミラー面を前記主走査偏向軸回りに揺動駆動する請求項11ないし14のいずれかに記載の光走査装置。
  17. 潜像担持体と、
    請求項1ないし16のいずれかに記載の光走査装置と同一構成を有し、前記潜像担持体の表面を前記被走査面として光ビームを走査して前記潜像担持体上に静電潜像を形成する露光手段と、
    前記静電潜像をトナーにより現像してトナー像を形成する現像手段と
    を備えたことを特徴とする画像形成装置。
JP2003297191A 2003-08-21 2003-08-21 光走査装置および画像形成装置 Withdrawn JP2005070205A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297191A JP2005070205A (ja) 2003-08-21 2003-08-21 光走査装置および画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297191A JP2005070205A (ja) 2003-08-21 2003-08-21 光走査装置および画像形成装置

Publications (1)

Publication Number Publication Date
JP2005070205A true JP2005070205A (ja) 2005-03-17

Family

ID=34403125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297191A Withdrawn JP2005070205A (ja) 2003-08-21 2003-08-21 光走査装置および画像形成装置

Country Status (1)

Country Link
JP (1) JP2005070205A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006293235A (ja) * 2005-04-14 2006-10-26 Konica Minolta Holdings Inc 光偏向器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006293235A (ja) * 2005-04-14 2006-10-26 Konica Minolta Holdings Inc 光偏向器

Similar Documents

Publication Publication Date Title
CN100405124C (zh) 图像形成装置
JP4370905B2 (ja) 光走査装置および画像形成装置
CN101308343B (zh) 可调整光束扫描位置的装置
JP2005221749A (ja) 光走査装置および画像形成装置
JP4496747B2 (ja) 光走査装置および画像形成装置
JP2005227327A (ja) 光走査装置および画像形成装置
JP4496789B2 (ja) 光走査装置および画像形成装置
JP4701593B2 (ja) 光走査装置および画像形成装置
JP2005195869A (ja) 光走査装置および画像形成装置
JP2004279655A (ja) 画像形成装置
JP4453313B2 (ja) 光走査装置および画像形成装置
JP4576816B2 (ja) 光走査装置および画像形成装置
JP2005070205A (ja) 光走査装置および画像形成装置
JP4572540B2 (ja) 光走査装置および画像形成装置
JP4465970B2 (ja) 画像形成装置
JP4506087B2 (ja) 画像形成装置
JP4453317B2 (ja) 光走査装置および画像形成装置
JP4483300B2 (ja) 光走査装置および画像形成装置
JP2004287214A (ja) 露光装置および画像形成装置
JP2005062358A (ja) 光走査装置および画像形成装置
JP2005115211A (ja) 光走査装置および画像形成装置
JP4792960B2 (ja) 光走査装置
JP4465967B2 (ja) 画像形成装置
JP2009205175A (ja) 画像形成装置
JP4483301B2 (ja) 光走査装置および画像形成装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107