JP2005029889A - High strength low specific gravity steel plate excellent in ductility and method for producing the same - Google Patents
High strength low specific gravity steel plate excellent in ductility and method for producing the same Download PDFInfo
- Publication number
- JP2005029889A JP2005029889A JP2004074914A JP2004074914A JP2005029889A JP 2005029889 A JP2005029889 A JP 2005029889A JP 2004074914 A JP2004074914 A JP 2004074914A JP 2004074914 A JP2004074914 A JP 2004074914A JP 2005029889 A JP2005029889 A JP 2005029889A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- specific gravity
- less
- ductility
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
【課題】 延性に優れた高強度低比重鋼板およびその製造方法を提供する。
【解決手段】 質量%で、C:0.001〜0.01%、Si:3.0%以下、Mn:0.01〜3.0%、P:0.02%以下、S:0.01%以下、Al:5.0〜10.0%、N:0.001〜0.05%を含有し、必要に応じて、Ti:0.005〜0.3%、Nb:0.005〜0.3%、Cr:0.05〜3.0%、Ni:0.05〜5.0%、Mo:0.05〜3.0%、Cu:0.1〜3.0%、B:0.0003〜0.01%、V:0.01〜0.5%、Ca:0.001〜0.01%、Mg:0.0005〜0.01%、Zr:0.001〜0.05%、REM:0.001〜0.05%の1種または2種以上を含有し、残部がFeおよび不可避的不純物からなり、かつ、比重<7.2であり、引張強度が440MPa以上であり、伸びが25%以上であることを特徴とする延性に優れた高強度低比重鋼板。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide a high strength low specific gravity steel plate excellent in ductility and a method for producing the same.
SOLUTION By mass%, C: 0.001 to 0.01%, Si: 3.0% or less, Mn: 0.01 to 3.0%, P: 0.02% or less, S: 0.01% or less, Al: 5.0 to 10.0%, N: 0.001 -0.05%, Ti: 0.005-0.3%, Nb: 0.005-0.3%, Cr: 0.05-3.0%, Ni: 0.05-5.0%, Mo: 0.05-3.0%, Cu: 0.1 -3.0%, B: 0.0003-0.01%, V: 0.01-0.5%, Ca: 0.001-0.01%, Mg: 0.0005-0.01%, Zr: 0.001-0.05%, REM: 0.001-0.05% High strength with excellent ductility, characterized by containing more than seeds, the balance being Fe and inevitable impurities, specific gravity <7.2, tensile strength of 440 MPa or more, elongation of 25% or more Low specific gravity steel plate.
[Selection figure] None
Description
本発明は、自動車部品などに用いられる延性に優れた高強度低比重鋼板およびその製造方法に関するものである。 The present invention relates to a high-strength low specific gravity steel plate excellent in ductility and used for automobile parts and the like and a method for producing the same.
近年、環境問題への対応のため、炭酸ガス排出低減や燃費低減を目的に、自動車の軽量化が望まれている。自動車の軽量化のためには、鋼材の高強度化が有効な手段であるが、部材の剛性によって板厚が制限されている場合には、高強度化しても板厚を低減することができず、軽量化が困難であった。 In recent years, in order to cope with environmental problems, it has been desired to reduce the weight of automobiles for the purpose of reducing carbon dioxide emissions and reducing fuel consumption. Increasing the strength of steel is an effective means for reducing the weight of automobiles, but if the plate thickness is limited by the rigidity of the member, the plate thickness can be reduced even if the strength is increased. Therefore, it was difficult to reduce the weight.
上記の場合に軽量化を達成する手段としては、鋼材に比べて比重の低いアルミ合金板の使用が考えられるが、アルミ合金板は高価格であることに加え、鋼材に比べて加工性が劣っていることや、鋼板との溶接が困難である等の欠点があるために、自動車部材への適用は限定されたものとなっている。 As a means to achieve weight reduction in the above case, it is conceivable to use an aluminum alloy plate having a specific gravity lower than that of steel, but in addition to being expensive, aluminum alloy plate is inferior in workability compared to steel. In addition, there are drawbacks such as difficulty in welding with steel plates, and therefore, application to automobile members is limited.
そこで、鋼板とアルミ合金板の長所を兼ね備えたものとして、鉄にアルミを多量に添加した高Al含有鋼板が考えられ、例えば、特許文献1には、C:0.002〜0.1%、Al:3〜10%と、Ni、Co、Cuの1種又は2種以上を0.01〜7%、Mn:5%以下、2%以下のSiおよびTiの1種又は2種以上を0.1〜6%、O:0.0005〜0.04%、N:0.0002〜0.05%、残余Feおよび不可避的不純物からなる低比重の吸振合金が開示されている。 Then, as what has the merit of a steel plate and an aluminum alloy plate, the high Al content steel plate which added a large amount of aluminum to iron is considered, for example, in patent documents 1, C: 0.002-0.1%, Al: 3 to 10%, one or more of Ni, Co, and Cu are 0.01 to 7%, Mn: 5% or less, 2% or less of one or more of Si and Ti are 0 0.1-6%, O: 0.0005-0.04%, N: 0.0002-0.05%, low specific gravity vibration-absorbing alloy composed of residual Fe and inevitable impurities is disclosed.
しかし、このような高Al含有鋼板は、(i)製造性が劣ること(特に圧延時に割れが発生すること)、(ii)延性が低いこと、などの理由から、自動車用鋼板として適用することは困難であった。 However, such a high Al-containing steel sheet is applied as a steel sheet for automobiles because of (i) inferior productivity (particularly cracking during rolling) and (ii) low ductility. Was difficult.
また、多量のAlを含有すると延性、熱間加工性および冷間加工性が大幅に劣化し、特許文献1にあるように、比較的高温長時間の焼鈍(650〜1200℃で5〜600分加熱)により鋼板を製造する必要があり、通常の薄鋼板製造プロセス、例えば、連続焼鈍などで高Al含有鋼板を製造することや、良好な強度および延性レベルを確保することは困難であった。 In addition, when a large amount of Al is contained, ductility, hot workability and cold workability are greatly deteriorated, and as disclosed in Patent Document 1, annealing at a relatively high temperature for a long time (650 to 1200 ° C. for 5 to 600 minutes). It is necessary to produce a steel plate by heating), and it has been difficult to produce a high Al-containing steel plate by a normal thin steel plate production process, for example, continuous annealing, and to ensure a good strength and ductility level.
高Al含有鋼板の延性を向上させる技術として、例えば、特許文献2には、Al:4〜9.5%、Ti:0.5〜2.0%、Mo:0.5〜2%、Zr:0.1〜0.8%、C:0.01〜0.5%および残余Feを含有するアルミニウム含有鉄基合金の技術が提案されているが、低比重に関する言及はなく、重量元素であるMoやZrが必須となっており、低比重化に考慮しているとはいえない。 As a technique for improving the ductility of a high Al-containing steel sheet, for example, in Patent Document 2, Al: 4 to 9.5%, Ti: 0.5 to 2.0%, Mo: 0.5 to 2%, Zr : 0.1 to 0.8%, C: 0.01 to 0.5%, and the technology of an aluminum-containing iron-based alloy containing Fe is proposed, but there is no mention of low specific gravity, Certain Mo and Zr are essential, and it cannot be said that low specific gravity is considered.
また、製造性についても、鍛造することや温間圧延を行うこととしており、いわゆる、溶解から熱間圧延、冷間圧延へと至る広く工業的に行われている製造方法、製造設備を用いた製法とは異なる。また、本発明者らの試験では、大幅な延性の改善には至っていない。 In addition, for manufacturability, forging and warm rolling are carried out, so-called so-called widely industrialized manufacturing methods and manufacturing equipment from melting to hot rolling and cold rolling were used. It is different from the manufacturing method. Moreover, in the test of the present inventors, the ductility has not been improved significantly.
また、特許文献3には、C:0.05%以下、Si:0.1〜1%、Al:2〜8%、Y:0.01〜1%および残余Feを含有する耐酸化性の鉄合金が提案されているが、低比重に関する言及はなく、耐酸化性を向上させるために重量元素であるYが必須となっており、低比重化に考慮しているとはいえない。また、強度や延性に関する言及はなく、本発明者らの試験では、大幅な延性の改善には至っていない。 Patent Document 3 discloses oxidation resistance containing C: 0.05% or less, Si: 0.1 to 1%, Al: 2 to 8%, Y: 0.01 to 1%, and residual Fe. Although an iron alloy has been proposed, there is no mention of low specific gravity, and Y, which is a heavy element, is essential to improve oxidation resistance, and it cannot be said that low specific gravity is taken into consideration. In addition, there is no mention of strength and ductility, and in the tests by the present inventors, no significant improvement in ductility has been achieved.
また、特許文献4には、C:0.02〜0.1%、Si≦0.5、Mn:0.2〜2.0%、P≦0.05、S≦0.01、Al:0.5〜5%および残余Feを含有する鋼板が提案されているが、Al含有量が5%以下と小さいため、低比重化の効果が小さい。また、Alを5%を超えて添加した場合には、成形性や冷間加工性が大幅に劣化するため製造が困難であると記載されている。 In Patent Document 4, C: 0.02 to 0.1%, Si ≦ 0.5, Mn: 0.2 to 2.0%, P ≦ 0.05, S ≦ 0.01, Al: A steel sheet containing 0.5 to 5% and the remaining Fe has been proposed, but since the Al content is as small as 5% or less, the effect of reducing the specific gravity is small. Moreover, when Al is added exceeding 5%, it is described that manufacture is difficult because formability and cold workability are significantly deteriorated.
また、特許文献5には、Si<0.2%、Mn:0.03〜0.2%、Al:5〜9%、総計で1%以下のCu+Mo+W+Co+Cr+Ni、総計で0.1%以下のSc+Y+REMおよび残余Feを含有する鋼板が提案されており、特許文献6には、C:0.0036〜0.1%、Si<0.2%、Mn:0.03〜0.2%、Al:7〜9%、総計で1%以下のCu+Mo+W+Co+Cr+Ni、総計で0.1%以下のSc+Y+REMおよび残余Feを含有する鋼板が提案されているが、いずれも、成形性や製造性を改善するための製造技術はなんら提案されておらず、本発明者らの試験では、これらの成分の鋼板を通常の薄鋼板製造プロセスで製造することは困難であった。 In Patent Document 5, Si <0.2%, Mn: 0.03 to 0.2%, Al: 5 to 9%, Cu + Mo + W + Co + Cr + Ni of 1% or less in total, Sc + Y + REM of 0.1% or less in total And a steel sheet containing the remaining Fe has been proposed, and in Patent Document 6, C: 0.0036 to 0.1%, Si <0.2%, Mn: 0.03 to 0.2%, Al: Steel sheets containing 7 to 9%, Cu + Mo + W + Co + Cr + Ni of 1% or less in total, and 0.1% or less of Sc + Y + REM and residual Fe in total have been proposed, both of which are manufactured to improve formability and manufacturability No technology has been proposed, and it has been difficult to manufacture steel sheets having these components by a normal thin steel sheet manufacturing process in the tests of the present inventors.
また、特許文献7には、Al:6〜10%および残余Feを含有し、平均結晶粒径が300〜700μmの範囲内である制振合金材料が提案されているが、結晶粒径がこれほど大きいと、プレス加工時にオレンジピールと呼ばれる表面欠陥(肌荒れ)が生じるために、自動車部材への適用は困難である。また、成形性や製造性を改善するための製造技術は、なんら提案されていない。 Patent Document 7 proposes a vibration-damping alloy material containing Al: 6 to 10% and residual Fe and having an average crystal grain size in the range of 300 to 700 μm. If it is so large, a surface defect (rough skin) called orange peel occurs at the time of press working, so that it is difficult to apply to automobile members. In addition, no manufacturing technique for improving moldability and manufacturability has been proposed.
以上のように、従来の技術では、延性に優れた高強度低比重鋼板を工業規模で生産することは困難であった。 As described above, it has been difficult to produce a high-strength, low-specific gravity steel plate excellent in ductility on an industrial scale with the conventional technology.
本発明は、上記したような問題点を解決しようとするものであって、延性に優れた高強度低比重鋼板、および、その製造方法を提供することを目的とする。 The present invention is intended to solve the above-described problems, and an object of the present invention is to provide a high-strength low-specific gravity steel plate excellent in ductility and a method for manufacturing the same.
本発明者らは、鉄ベースで多量のAlを含有し、成分の異なる種々の素材について、延性、熱間加工性および冷間加工性を改善するための方法について、成分と製造法の両面から研究を重ねた結果、高Al含有鋼の延性、熱間加工性および冷間加工性の劣化は、粒界脆化によるものであり、Al含有量を5.0〜10.0%としたうえで、SおよびPを極低化し、さらに、極低C化により粒内に析出する炭窒化物を低減して粒界と粒内の強度差を低減し、さらに、熱延条件の適性化により熱延時にフェライトの再結晶を促進させ細粒化することにより、粒界強度を向上でき、延性、熱間加工性および冷間加工性を大幅に改善できることを知見した。 The inventors of the present invention have found a method for improving ductility, hot workability, and cold workability for various materials containing a large amount of Al on an iron base and having different components from both the component and production methods. As a result of repeated research, the deterioration of the ductility, hot workability and cold workability of the high Al content steel is due to grain boundary embrittlement, and the Al content is set to 5.0 to 10.0%. In addition, S and P are extremely reduced, and carbon nitrides precipitated in the grains are reduced by extremely low C, thereby reducing the difference in strength between the grain boundaries and the grains, and further by optimizing the hot rolling conditions. It was found that the grain boundary strength can be improved and the ductility, hot workability and cold workability can be greatly improved by promoting recrystallization of ferrite during hot rolling and making it finer.
さらに研究を進めた結果、S含有量が大きい場合でも、MnとSの添加量を、それぞれ、Mn:0.2超〜3.0%、S:0.02%以下と制限し、MnとSの添加比率(Mn/S)を20超とし、熱延条件の適性化と併せて、MnSの溶解・析出挙動を制御することにより、MnSを形成して固溶Sによる粒界脆化を抑制する効果が顕著に発揮され、延性、熱間加工性および冷間加工性を大幅に改善できることを知見した。 As a result of further research, even when the S content is large, the addition amounts of Mn and S are limited to Mn: more than 0.2 to 3.0% and S: 0.02% or less, respectively. The addition ratio of S (Mn / S) exceeds 20, and in combination with the optimization of hot rolling conditions, the dissolution / precipitation behavior of MnS is controlled, so that MnS is formed and grain boundary embrittlement due to solid solution S is caused. It was found that the inhibitory effect was remarkably exhibited and the ductility, hot workability and cold workability could be greatly improved.
一方、S含有量を極低下できる場合には、MnとSの添加量を、それぞれ、Mn:0.03%未満、S:0.005%未満と制限し、MnSを極力析出させないようにすることによって、延性、熱間加工性および冷間加工性を大幅に改善できることを知見した。 On the other hand, when the S content can be extremely reduced, the addition amounts of Mn and S are limited to Mn: less than 0.03% and S: less than 0.005%, respectively, so that MnS is not precipitated as much as possible. It has been found that the ductility, hot workability and cold workability can be greatly improved.
本発明は、このような知見に基づいて構成されたものであり、その要旨は、以下のとおりである。 This invention is comprised based on such knowledge, and the summary is as follows.
(1)質量%で、C:0.001〜0.01%、Si:3.0%以下、Mn:0.01〜3.0%、P:0.02%以下、S:0.01%以下、Al:5.0〜10.0%、N:0.001〜0.05%を含有し、残部がFeおよび不可避的不純物からなり、かつ、比重<7.2であり、引張強度が440MPa以上であり、伸びが25%以上であることを特徴とする延性に優れた高強度低比重鋼板。 (1) By mass%, C: 0.001 to 0.01%, Si: 3.0% or less, Mn: 0.01 to 3.0%, P: 0.02% or less, S: 0.01 % Or less, Al: 5.0 to 10.0%, N: 0.001 to 0.05%, the balance is made of Fe and inevitable impurities, the specific gravity is <7.2, and the tensile strength Is a high strength low specific gravity steel sheet excellent in ductility, characterized by having an elongation of 440 MPa or more and an elongation of 25% or more.
(2)前記(1)記載の成分を含有し、さらに、質量%で、Ti:0.005〜0.3%、Nb:0.005〜0.3%の1種または2種を含有することを特徴とする延性に優れた高強度低比重鋼板。 (2) Contains the component described in (1) above, and further contains one or two of Ti: 0.005 to 0.3% and Nb: 0.005 to 0.3% by mass%. A high-strength, low-specific gravity steel sheet with excellent ductility.
(3)前記(1)または(2)記載の成分を含有し、さらに、質量%で、Cr:0.05〜3.0%、Ni:0.05〜5.0%、Mo:0.05〜3.0%、Cu:0.1〜3.0%、B:0.0003〜0.01%、V:0.01〜0.5%の1種または2種以上を含有することを特徴とする延性に優れた高強度低比重鋼板。 (3) It contains the component described in the above (1) or (2), and further, in mass%, Cr: 0.05 to 3.0%, Ni: 0.05 to 5.0%, Mo: 0.00. Contains one or more of 05-3.0%, Cu: 0.1-3.0%, B: 0.0003-0.01%, V: 0.01-0.5% High strength and low specific gravity steel sheet with excellent ductility.
(4)前記(1)〜(3)のいずれかに記載の成分を含有し、さらに、質量%で、Ca:0.001〜0.01%、Mg:0.0005〜0.01%、Zr:0.001〜0.05%、REM:0.001〜0.05%の1種または2種以上を含有することを特徴とする延性に優れた高強度低比重鋼板。 (4) It contains the component according to any one of (1) to (3), and further, by mass%, Ca: 0.001 to 0.01%, Mg: 0.0005 to 0.01%, A high strength and low specific gravity steel sheet excellent in ductility, characterized by containing one or more of Zr: 0.001 to 0.05% and REM: 0.001 to 0.05%.
(5)前記Mn、Sの代わりに、質量%で、Mn:0.2超〜3.0%、S:0.02%以下を含有し、かつ、20<(Mn/S)を満足することを特徴とする前記(1)〜(4)のいずれかに記載の延性に優れた高強度低比重鋼板。 (5) Instead of Mn and S, by mass%, Mn: more than 0.2 to 3.0%, S: 0.02% or less, and 20 <(Mn / S) is satisfied The high strength low specific gravity steel sheet excellent in ductility according to any one of the above (1) to (4).
(6)前記Mn、Sの代わりに、質量%で、Mn:0.03%未満、S:0.005%未満を含有することを特徴とする前記(1)〜(4)のいずれかに記載の延性に優れた高強度低比重鋼板。 (6) In any one of the above (1) to (4), Mn: less than 0.03% and S: less than 0.005% are contained in mass% instead of Mn and S. High strength low specific gravity steel sheet with excellent ductility as described.
(7)前記Mn、Niの代わりに、質量%で、Mn:3.0超〜30.0%、Ni:5.0超〜15.0%の1種または2種を含有することを特徴とする前記(1)〜(4)のいずれかに記載の延性に優れた高強度低比重鋼板。 (7) Instead of Mn and Ni, it contains one or two of Mn: more than 3.0 to 30.0% and Ni: more than 5.0 to 15.0% by mass%. The high strength low specific gravity steel sheet excellent in ductility according to any one of (1) to (4).
(8)前記(1)〜(4)のいずれかに記載の延性に優れた高強度低比重鋼板を製造する方法であって、前記(1)〜(4)のいずれかに記載の成分からなる鋼スラブを1100℃以上の温度に加熱し、1000℃以上の温度で圧下率30%以上の大圧下を少なくとも1パス以上含みかつ800℃以上の仕上げ圧延温度で熱間圧延することを特徴とする延性に優れた高強度低比重鋼板の製造方法。 (8) A method for producing a high-strength low-specific gravity steel sheet having excellent ductility according to any one of (1) to (4), wherein the component according to any one of (1) to (4) is used. The steel slab is heated to a temperature of 1100 ° C. or higher, and is hot-rolled at a temperature of 1000 ° C. or higher, including at least one pass of large reduction with a reduction rate of 30% or higher, and a finish rolling temperature of 800 ° C. or higher. A method for producing a high-strength, low-specific gravity steel sheet with excellent ductility.
(9)鋼板を巻き取った後、700℃以上1100℃以下の温度で焼鈍することを特徴とする前記(8)記載の延性に優れた高強度低比重鋼板の製造方法。 (9) The method for producing a high strength and low specific gravity steel sheet having excellent ductility according to (8), wherein the steel sheet is rolled up and then annealed at a temperature of 700 ° C. or higher and 1100 ° C. or lower.
(10)鋼板を巻き取った後、酸洗し、冷間圧延を行い、600℃以上1100℃以下の温度で焼鈍することを特徴とする前記(8)記載の延性に優れた高強度低比重鋼板の製造方法。 (10) The steel sheet is wound, pickled, cold-rolled, and annealed at a temperature of 600 ° C. or higher and 1100 ° C. or lower. High strength and low specific gravity excellent in ductility as described in (8) above A method of manufacturing a steel sheet.
(11)前記(5)に記載の延性に優れた高強度低比重鋼板を製造する方法であって、前記(5)に記載の成分からなる鋼スラブを1100℃以上1150℃以下の温度に加熱し、1000℃以上1100℃以下の温度で圧下率30%以上の大圧下を少なくとも1パス以上含みかつ800℃以上850℃以下の仕上げ圧延温度で熱間圧延し、600℃以上700℃以下の温度で巻き取ることを特徴とする延性に優れた高強度低比重鋼板の製造方法。 (11) A method for producing a high strength and low specific gravity steel sheet having excellent ductility as described in (5) above, wherein the steel slab comprising the component as described in (5) is heated to a temperature of 1100 ° C. or higher and 1150 ° C. or lower. And hot rolling at a finish rolling temperature of 800 ° C. or higher and 850 ° C. or lower, including at least one pass at a temperature of 1000 ° C. or higher and 1100 ° C. or lower at a rolling reduction of 30% or higher, and a temperature of 600 ° C. or higher and 700 ° C. or lower. A method for producing a high-strength, low-specific gravity steel sheet excellent in ductility, characterized by being wound up by a roll.
(12)鋼板を巻き取った後、700℃以上1100℃以下の温度で焼鈍することを特徴とする前記(11)記載の延性に優れた高強度低比重鋼板の製造方法。 (12) The method for producing a high strength and low specific gravity steel sheet having excellent ductility according to (11), wherein the steel sheet is rolled up and then annealed at a temperature of 700 ° C. or higher and 1100 ° C. or lower.
(13)鋼板を巻き取った後、酸洗し、1パス目の圧下率を20%以下とする冷間圧延を行い、600℃以上1100℃以下の温度で焼鈍を行い、焼鈍後、20℃/秒以上の冷却速度で200℃以下の温度まで冷却することを特徴とする前記(11)記載の延性に優れた高強度低比重鋼板の製造方法。 (13) After winding the steel plate, pickling, cold rolling to reduce the reduction ratio of the first pass to 20% or less, annealing at a temperature of 600 ° C. to 1100 ° C., and after annealing, 20 ° C. The method for producing a high strength and low specific gravity steel sheet having excellent ductility according to the above (11), wherein the steel sheet is cooled to a temperature of 200 ° C. or less at a cooling rate of at least / sec.
(14)前記(6)に記載の延性に優れた高強度低比重鋼板を製造する方法であって、前記(6)に記載の成分からなる鋼スラブを1100℃以上1150℃以下の温度に加熱し、1000℃以上1100℃以下の温度で圧下率40%以上の大圧下を少なくとも1パス以上含みかつ700℃以上850℃以下の仕上げ圧延温度で熱間圧延し、550℃以上700℃以下の温度で巻き取ることを特徴とする延性に優れた高強度低比重鋼板の製造方法。 (14) A method for producing a high-strength, low-specific gravity steel sheet having excellent ductility as described in (6) above, wherein a steel slab composed of the component as described in (6) is heated to a temperature of 1100 ° C. or higher and 1150 ° C. or lower. And hot-rolling at a finish rolling temperature of 700 ° C. or higher and 850 ° C. or lower, including at least one pass at a temperature of 1000 ° C. or higher and 1100 ° C. or lower and a high rolling reduction of 40% or higher. A method for producing a high-strength, low-specific gravity steel sheet excellent in ductility, characterized by being wound up by a roll.
(15)鋼板を巻き取った後、700℃以上1100℃以下の温度で焼鈍することを特徴とする前記(14)記載の延性に優れた高強度低比重鋼板の製造方法。 (15) The method for producing a high strength and low specific gravity steel sheet excellent in ductility according to the above (14), wherein the steel sheet is rolled up and then annealed at a temperature of 700 ° C. or higher and 1100 ° C. or lower.
(16)鋼板を巻き取った後、酸洗し、1パス目の圧下率を30%以下とする冷間圧延を行い、600℃以上1100℃以下の温度で焼鈍を行い、焼鈍後、20℃/秒以上の冷却速度で200℃以下の温度まで冷却することを特徴とする前記(14)記載の延性に優れた高強度低比重鋼板の製造方法。 (16) After winding the steel plate, pickling, cold rolling to reduce the first-pass reduction rate to 30% or less, annealing at a temperature of 600 ° C. to 1100 ° C., and after annealing, 20 ° C. The method for producing a high strength and low specific gravity steel sheet having excellent ductility according to the above (14), wherein the steel sheet is cooled to a temperature of 200 ° C. or less at a cooling rate of at least / sec.
(17)前記(7)記載の延性に優れた高強度低比重鋼板を製造する方法であって、前記(7)記載の成分からなる鋼スラブを1050℃以上1150℃以下の温度に加熱し、1000℃以上1100℃以下の温度で圧下率25%以上の大圧下を少なくとも1パス以上含み1000℃以下での総圧下率を70%以上としかつ800℃以上850℃以下の仕上げ圧延温度で熱間圧延し、600℃以上750℃以下の温度で巻き取ることを特徴とする延性に優れた高強度低比重鋼板の製造方法。 (17) A method for producing a high-strength low specific gravity steel sheet having excellent ductility as described in (7), wherein the steel slab composed of the component as described in (7) is heated to a temperature of 1050 ° C. or higher and 1150 ° C. or lower, Hot at a finishing rolling temperature of 800 ° C. or higher and 850 ° C. or lower, including at least one pass at a temperature of 1000 ° C. or higher and 1100 ° C. or lower and a large rolling reduction of 25% or higher, and a total rolling reduction at 1000 ° C. or lower of 70% or higher. A method for producing a high strength and low specific gravity steel sheet excellent in ductility, characterized by rolling and winding at a temperature of 600 ° C. or higher and 750 ° C. or lower.
(18)鋼板を巻き取った後、700℃以上1100℃以下の温度で焼鈍することを特徴とする前記(17)記載の延性に優れた高強度低比重鋼板の製造方法。 (18) The method for producing a high strength and low specific gravity steel sheet having excellent ductility according to the above (17), wherein the steel sheet is rolled up and then annealed at a temperature of 700 ° C. or higher and 1100 ° C. or lower.
(19)鋼板を巻き取った後、酸洗し、1パス目の圧下率を15%以下とする冷間圧延を30℃以上で行い、600℃以上1100℃以下の温度で焼鈍を行い、焼鈍後、20℃/秒以上の冷却速度で200℃以下の温度まで冷却することを特徴とする前記(17)記載の延性に優れた高強度低比重鋼板の製造方法。 (19) After winding the steel plate, pickling, cold rolling to a reduction rate of 15% or less in the first pass is performed at 30 ° C. or higher, and annealing is performed at a temperature of 600 ° C. or higher and 1100 ° C. or lower. Then, it cools to the temperature of 200 degrees C or less with the cooling rate of 20 degrees C / second or more, The manufacturing method of the high strength low specific gravity steel plate excellent in ductility as described in said (17) characterized by the above-mentioned.
本発明によれば、延性に優れた高強度低比重鋼板を得ることができる。 According to the present invention, it is possible to obtain a high-strength, low-specific gravity steel plate having excellent ductility.
以下に、本発明における各要件の意義および限定理由について、具体的に説明する。 Below, the significance of each requirement in the present invention and the reason for limitation will be specifically described.
まず、本発明における延性に優れた高強度低比重鋼板の成分限定理由について、説明する。なお、%は、質量%を意味する。 First, the reasons for limiting the components of the high-strength low specific gravity steel sheet having excellent ductility in the present invention will be described. In addition,% means the mass%.
C:Cは強度を向上させるために必須の元素であるが、0.001%未満ではその効果が発現せず、一方、0.01%を超える過剰の添加は、粒内への炭化物析出により粒界と粒内の強度差が拡大するために粒界脆化を促進する。したがって、C含有量は0.001〜0.01%とした。 C: C is an essential element for improving the strength. However, if it is less than 0.001%, the effect is not expressed. On the other hand, excessive addition exceeding 0.01% is caused by precipitation of carbide in the grains. Grain boundary embrittlement is promoted because the difference in strength between the grain boundaries and the grains increases. Therefore, the C content is set to 0.001 to 0.01%.
Si:Siは固溶強化により鋼板の強度を増大させるのに有用な元素であるが、3.0%を超える過剰の添加は、熱間加工性を低下させるとともに、熱間圧延で生じるスケールの剥離性や化成処理性を著しく劣化させる。したがって、Si含有量は3.0%以下とした。 Si: Si is an element useful for increasing the strength of a steel sheet by solid solution strengthening. However, excessive addition exceeding 3.0% decreases the hot workability and reduces the scale produced by hot rolling. The peelability and chemical conversion processability are significantly degraded. Therefore, the Si content is set to 3.0% or less.
Mn:MnはMnSを形成して、固溶Sによる粒界脆化を抑制するために有効な元素である。0.01%未満ではその効果が発現されず、3.0%を超える過剰の添加は、逆に、靭性を劣化させる。したがって、Mn含有量は0.01〜3.0%とした。 Mn: Mn is an element effective for forming MnS and suppressing grain boundary embrittlement due to S. If the content is less than 0.01%, the effect is not exhibited, and excessive addition exceeding 3.0% conversely deteriorates toughness. Therefore, the Mn content is set to 0.01 to 3.0%.
S含有量が大きい場合でも、Mnの粒界脆化抑制効果を十分に発揮させるために、より望ましくは0.2%超〜3.0%とする。また、S含有量を0.005%未満まで極低下できる場合には、逆に、MnSの析出を極力抑えることによって延性や加工性を改善できるので、Mn含有量は0.03%未満とすることが望ましい。 Even when the S content is large, in order to sufficiently exhibit the effect of suppressing grain boundary embrittlement of Mn, it is more preferably more than 0.2% to 3.0%. On the other hand, when the S content can be extremely reduced to less than 0.005%, on the contrary, ductility and workability can be improved by suppressing the precipitation of MnS as much as possible, so the Mn content is less than 0.03%. It is desirable.
しかし、Mnの多量添加は、オーステナイトやマルテンサイト生成には特に有効で、Al量が比較的多い場合には、組織強化による高強度化に有効である。3.0%以下ではその効果は小さく、30.0%を超えると延性が大幅に劣化する。このため、30.0%を上限として添加できる。 However, the addition of a large amount of Mn is particularly effective for generating austenite and martensite, and is effective for increasing the strength by strengthening the structure when the amount of Al is relatively large. If it is 3.0% or less, the effect is small, and if it exceeds 30.0%, the ductility is significantly deteriorated. For this reason, 30.0% can be added as an upper limit.
P:Pは粒界に偏析して粒界強度を低下させ、靱性を劣化させる不純物元素であり、可及的低レベルが望ましいが、現状の精錬技術の到達可能レベルとコストを考慮して、上限を0.02%とした。 P: P is an impurity element that segregates at the grain boundary to lower the grain boundary strength and deteriorates toughness, and is preferably as low as possible, but considering the reachable level and cost of the current refining technology, The upper limit was made 0.02%.
S:Sは熱間加工性および靭性を劣化させる不純物元素であり、可及的低レベルが望ましいが、現状の精錬技術の到達可能レベルとコストを考慮して、上限を0.01%とした。ただし、Mn:0.2超〜3.0%を含有し、MnとSの添加比率(Mn/S)を20超とした場合には、S含有量が大きい場合でも、Mnの粒界脆化抑制効果が十分に発揮されるので、Sの含有量の上限を0.02%まで高めることができる。 S: S is an impurity element that degrades hot workability and toughness, and is preferably as low as possible, but the upper limit was set to 0.01% in consideration of the reachable level and cost of the current refining technology . However, when Mn: more than 0.2 to 3.0% is included and the addition ratio of Mn and S (Mn / S) is more than 20, even when the S content is large, the grain boundary brittleness of Mn Since the effect of suppressing crystallization is sufficiently exhibited, the upper limit of the S content can be increased to 0.02%.
また、Sの含有量を0.005%未満まで極低下できる場合には、同時に、Mn含有量を0.03%未満まで低減して、MnSの析出を極力抑えることにより、延性や加工性を改善できるので、Sの含有量の上限を0.005%未満としてもよい。 In addition, when the S content can be extremely reduced to less than 0.005%, at the same time, the Mn content is reduced to less than 0.03% to suppress the precipitation of MnS as much as possible, thereby reducing ductility and workability. Since this can be improved, the upper limit of the S content may be less than 0.005%.
Al:Alは低比重化を達成するための必須の元素である。5.0%未満では低比重化の効果が少ないので、下限を5.0%とした。一方、10.0%を超えると、金属間化合物の析出が顕著となり、延性、熱間加工性および冷間加工性が劣化するので、Alの含有量を5.0〜10.0%とした。低比重化の効果をできるだけ大きくするためには、Alの含有量を9.0超〜10.0%とすることが望ましい。 Al: Al is an essential element for achieving a low specific gravity. If it is less than 5.0%, the effect of lowering the specific gravity is small, so the lower limit was made 5.0%. On the other hand, if it exceeds 10.0%, precipitation of intermetallic compounds becomes remarkable, and ductility, hot workability and cold workability deteriorate, so the Al content is set to 5.0 to 10.0%. . In order to maximize the effect of lowering the specific gravity, the Al content is desirably more than 9.0 to 10.0%.
N:Nは窒化物を形成し結晶粒粗大化を抑制する効果があるが、0.001%未満ではその効果が発現されず、一方、0.05%を超えて添加すると、靭性が劣化するため、N含有量を0.001〜0.05%とした。 N: N has the effect of forming nitrides and suppressing crystal grain coarsening, but if less than 0.001%, the effect is not expressed, while if added over 0.05%, toughness deteriorates. Therefore, the N content is set to 0.001 to 0.05%.
以上が本発明の基本成分であり、通常は、上記以外は、Feおよび不可避的不純物からなるが、所望の強度レベルやその他の必要特性に応じて、Ti、Nb、Cr、Ni、Mo、Cu、B、V、Ca、Mg、Zr、REMの1種または2種以上を添加してもよい。 The above are the basic components of the present invention, and are usually composed of Fe and unavoidable impurities other than the above, but depending on the desired strength level and other necessary characteristics, Ti, Nb, Cr, Ni, Mo, Cu , B, V, Ca, Mg, Zr, or REM may be added.
Ti:TiはTiNを形成し結晶粒粗大化を抑制する効果があるが、0.005%未満ではそれらの効果が発現されず、一方、0.3%を超えて過剰添加すると、靭性が劣化するため、Tiの含有量を0.005〜0.3%とした。 Ti: Ti has the effect of suppressing the coarsening of grains by forming TiN, but if it is less than 0.005%, those effects are not expressed. On the other hand, if over 0.3% is added, toughness deteriorates. Therefore, the Ti content is set to 0.005 to 0.3%.
Nb:Nbは微細な炭窒化物を形成し結晶粒粗大化を抑制する効果があるが、0.005%未満ではその効果が発現されず、一方、0.3%を超えて過剰添加すると、靭性が劣化するため、Nbの含有量を0.005〜0.3%とした。 Nb: Nb has the effect of forming fine carbonitrides and suppressing crystal grain coarsening, but the effect is not expressed at less than 0.005%, on the other hand, excessive addition exceeding 0.3%, Since toughness deteriorates, the Nb content is set to 0.005 to 0.3%.
Cr:Crは延性および靭性を向上させる有効な元素である。この効果は0.05%未満では発現されず、一方、3.0%を超える過剰添加は靭性を劣化させる。したがって、Crの含有量を0.05〜3.0%とした。 Cr: Cr is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.05%, while excessive addition exceeding 3.0% degrades toughness. Therefore, the Cr content is set to 0.05 to 3.0%.
Ni:Niは延性および靭性を向上させる有効な元素である。この効果は0.05%未満では発現されず、一方、5.0%を超える過剰添加は、靭性を劣化させる。したがって、Niの含有量を0.05〜5.0%とした。 Ni: Ni is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.05%, while excessive addition exceeding 5.0% degrades toughness. Therefore, the Ni content is set to 0.05 to 5.0%.
しかし、Ni添加は、オーステナイトやマルテンサイト生成には特に有効で、Mn同様、Al量が比較的多い場合には、組織強化による高強度化に有効である。5.0%以下ではその効果は小さく、一方、15.0%を超えると、延性が大幅に劣化する。このため、15.0%を上限として添加できる。 However, the addition of Ni is particularly effective for austenite and martensite generation, and, like Mn, when the amount of Al is relatively large, it is effective for increasing the strength by strengthening the structure. If the content is less than 5.0%, the effect is small. On the other hand, if it exceeds 15.0%, the ductility is significantly deteriorated. For this reason, 15.0% can be added as an upper limit.
Mo:Moは延性および靭性を向上させる有効な元素である。この効果は0.05%未満では発現されず、一方、3.0%を超える過剰添加は靭性を劣化させる。したがって、Moの含有量を0.05〜3.0%とした。 Mo: Mo is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.05%, while excessive addition exceeding 3.0% degrades toughness. Therefore, the Mo content is set to 0.05 to 3.0%.
Cu:Cuは延性および靭性を向上させる有効な元素である。この効果は0.1%未満では発現せず、一方、3.0%を超える過剰添加は靭性を劣化させる。したがって、Cuの含有量を0.1〜3.0%とした。 Cu: Cu is an effective element that improves ductility and toughness. This effect does not appear at less than 0.1%, while excessive addition exceeding 3.0% degrades toughness. Therefore, the Cu content is set to 0.1 to 3.0%.
B:Bは自ら粒界に偏析することにより、粒界結合力を向上させるとともに、PおよびSの粒界偏析を抑制し、粒界強度を高め、延性、靭性、および、熱間加工性を向上させるのに有効な元素である。これらの効果は0.0003%未満では発現されず、一方、0.01%を超えて過剰添加すると、粒界に粗大な析出物が生成し熱間加工性が劣化するため、Bの含有量を0.0003〜0.01%とした。 B: B segregates at the grain boundary by itself, thereby improving the grain boundary bonding force, suppressing the grain boundary segregation of P and S, increasing the grain boundary strength, and improving ductility, toughness, and hot workability. It is an effective element to improve. These effects are not manifested at less than 0.0003%. On the other hand, excessive addition of more than 0.01% produces coarse precipitates at the grain boundaries and deteriorates hot workability. Was 0.0003 to 0.01%.
V:Vは微細な炭窒化物を形成し結晶粒粗大化を抑制する効果があるが、0.01%未満ではその効果が発現せず、一方、0.5%を超えて過剰添加すると靭性が劣化するため、Vの含有量を0.01〜0.5%とした。 V: V has the effect of forming fine carbonitrides and suppressing coarsening of crystal grains, but if less than 0.01%, the effect is not manifested. On the other hand, if over 0.5% is added, toughness Therefore, the content of V is set to 0.01 to 0.5%.
Ca、Mg、Zr、REM:Ca、Mg、Zr、REMは、いずれもSによる熱間加工性や靭性の劣化を抑制する有効な元素である。この効果はCaは0.001%未満、Mgは0.0005%未満、Zrは0.001%未満、REMは0.001%未満では発現せず、一方、Caは0.01%、Mgは0.01%、Zrは0.05%、REMは0.05%を超える過剰添加は、靭性を劣化させる。したがって、Caの含有量を0.001〜0.01%、Mgの含有量を0.0005〜0.01%、Zrの含有量を0.001〜0.05%、REMの含有量を0.001〜0.05%とした。 Ca, Mg, Zr, and REM: Ca, Mg, Zr, and REM are all effective elements that suppress hot workability and toughness deterioration due to S. This effect is not manifested when Ca is less than 0.001%, Mg is less than 0.0005%, Zr is less than 0.001%, and REM is less than 0.001%, while Ca is 0.01%, Mg is Excess addition exceeding 0.01%, Zr 0.05% and REM 0.05% deteriorates toughness. Therefore, the Ca content is 0.001 to 0.01%, the Mg content is 0.0005 to 0.01%, the Zr content is 0.001 to 0.05%, and the REM content is 0. 0.001 to 0.05%.
次に、特性値の限定理由について述べる。比重は、7.2以上では自動車用鋼板として通常使用されている鋼板の比重(鉄の比重7.86と同程度)と比較して、軽量化効果が小さいので、7.2未満とする。強度および延性については、自動車用鋼板として必要な特性を考慮して、引張強度440MPa以上、伸び25%以上とする。 Next, the reason for limiting the characteristic value will be described. When the specific gravity is 7.2 or more, the weight reduction effect is small compared to the specific gravity of a steel plate normally used as a steel plate for automobiles (same as the specific gravity of iron of 7.86), so the specific gravity is set to less than 7.2. Regarding the strength and ductility, the tensile strength is set to 440 MPa or more and the elongation is set to 25% or more in consideration of characteristics necessary for an automobile steel plate.
次に、製造条件の限定理由について述べる。 Next, the reasons for limiting the manufacturing conditions will be described.
前記(8)に係る本発明においては、前記(1)〜(4)のいずれかに記載の成分からなる鋼スラブを1100℃以上の温度に加熱し、1000℃以上の温度で圧下率30%以上の大圧下を少なくとも1パス以上含みかつ800℃以上の仕上げ圧延温度で熱間圧延する。 In this invention which concerns on said (8), the steel slab which consists of a component in any one of said (1)-(4) is heated to the temperature of 1100 degreeC or more, and the reduction rate is 30% at the temperature of 1000 degreeC or more. Hot rolling is performed at a finish rolling temperature of 800 ° C. or more, including at least one pass of the above-described large reduction.
スラブ加熱温度が1100℃未満であると、炭窒化物が十分に固溶せずに必要な強度や延性が得られないため、スラブ加熱温度の下限は1100℃とした。加熱温度の上限は特に定めないが、結晶粒の粗大化を抑制するために、1250℃以下とすることが望ましい。 If the slab heating temperature is less than 1100 ° C., the carbonitride is not sufficiently dissolved and the required strength and ductility cannot be obtained, so the lower limit of the slab heating temperature is 1100 ° C. The upper limit of the heating temperature is not particularly defined, but is preferably 1250 ° C. or lower in order to suppress coarsening of crystal grains.
熱延時に、フェライトの再結晶を促進させ細粒化するために、1000℃以上の温度で圧下率30%以上の大圧下を少なくとも1パス以上含むことが必要である。この条件が満たされないと、フェライトの再結晶が進まず粗大なフェライト粒が残存し、良好な延性、熱間加工性および冷間加工性が得られない。 At the time of hot rolling, in order to promote recrystallization of ferrite and make it finer, it is necessary to include at least one pass of a large reduction at a reduction rate of 30% or more at a temperature of 1000 ° C. or more. If this condition is not satisfied, the ferrite recrystallization does not proceed and coarse ferrite grains remain, and good ductility, hot workability and cold workability cannot be obtained.
仕上げ圧延温度が800℃未満であると、熱間加工性が劣化し、熱延中に割れが生じるため、仕上げ圧延温度の下限は800℃にした。仕上げ温度の上限は特に定めないが、結晶粒の粗大化を抑制するために、950℃以下とすることが望ましい。 If the finish rolling temperature is less than 800 ° C., the hot workability deteriorates and cracking occurs during hot rolling, so the lower limit of the finish rolling temperature is set to 800 ° C. The upper limit of the finishing temperature is not particularly defined, but is desirably 950 ° C. or lower in order to suppress the coarsening of crystal grains.
巻き取り温度は特に制限するものではなく、仕上げ温度〜室温の温度範囲で行って問題ない。 The winding temperature is not particularly limited, and there is no problem if it is carried out in the temperature range from the finishing temperature to room temperature.
前記(9)に係る本発明において、熱延板の延性を向上させるために、再結晶や炭化物析出制御の観点から、熱延板を巻き取った後、700℃以上1100℃以下の温度で焼鈍してもよい。 In this invention which concerns on said (9), in order to improve the ductility of a hot-rolled sheet, from a viewpoint of recrystallization and carbide precipitation control, after winding a hot-rolled sheet, it anneals at the temperature of 700 to 1100 degreeC. May be.
ここで、焼鈍温度が700℃未満ではその効果が小さく、1100℃を超えると結晶粒が粗大化し粒界脆化が助長されるため、熱延板の焼鈍温度は700℃以上1100℃以下の温度範囲とした。 Here, if the annealing temperature is less than 700 ° C, the effect is small, and if it exceeds 1100 ° C, the crystal grains become coarse and grain boundary embrittlement is promoted, so the annealing temperature of the hot-rolled sheet is a temperature of 700 ° C to 1100 ° C. The range.
前記(10)に係る本発明において、冷延鋼板を製造する場合には、鋼板を巻き取った後、酸洗し、冷間圧延を行い、600℃以上1100℃以下の温度で焼鈍する。 In this invention which concerns on said (10), when manufacturing a cold-rolled steel plate, after winding up a steel plate, it pickles, cold-rolls, and anneals at the temperature of 600 to 1100 degreeC.
焼鈍温度が600℃未満では、未再結晶・未回復となり十分な効果が得られず、一方、1100℃を超えると、結晶粒が粗大化し粒界脆化が助長されるため、冷延板の焼鈍温度は600℃以上1100℃以下の温度範囲とした。 When the annealing temperature is less than 600 ° C., sufficient effects cannot be obtained because it is not recrystallized / recovered. On the other hand, when it exceeds 1100 ° C., the crystal grains become coarse and grain boundary embrittlement is promoted. The annealing temperature was set to a temperature range of 600 ° C. to 1100 ° C.
一方、Mn、S、Alなどの含有量をさらに限定し、その成分に応じた最適条件で製造することにより、延性、熱間加工性および冷間加工性をさらに向上させることができる。このような場合には、以下の製造条件にて製造する〔前記(11)〜(19)に係る本発明〕。 On the other hand, ductility, hot workability, and cold workability can be further improved by further limiting the contents of Mn, S, Al, and the like and producing them under optimum conditions according to the components. In such a case, it manufactures on the following manufacturing conditions [this invention which concerns on said (11)-(19)].
前記(11)に係る本発明においては、前記(5)に記載の成分からなる鋼スラブを1100℃以上1150℃以下の温度に加熱し、1000℃以上1100℃以下の温度で圧下率30%以上の大圧下を少なくとも1パス以上含みかつ800℃以上850℃以下の仕上げ圧延温度で熱間圧延し、600℃以上700℃以下の温度で巻き取る。 In this invention which concerns on said (11), the steel slab which consists of a component as described in said (5) is heated to the temperature of 1100 degreeC or more and 1150 degrees C or less, and the reduction rate is 30% or more at the temperature of 1000 degreeC or more and 1100 degrees C or less. And hot rolling at a finish rolling temperature of 800 ° C. or higher and 850 ° C. or lower, and winding at a temperature of 600 ° C. or higher and 700 ° C. or lower.
前記(5)に記載の成分においては、MnとSの含有量をそれぞれMn:0.2超〜3.0%、S:0.02%以下と制限し、MnとSの添加比率(Mn/S)を20超としているので、熱延条件を適性化することにより、MnSを形成して、固溶Sによる粒界脆化を抑制することができる。 In the component described in (5), the contents of Mn and S are limited to Mn: more than 0.2 to 3.0% and S: 0.02% or less, respectively, and the addition ratio of Mn and S (Mn Since / S) is more than 20, MnS can be formed by optimizing the hot rolling conditions, and grain boundary embrittlement due to the solid solution S can be suppressed.
スラブ加熱温度が1100℃未満であると、炭窒化物が十分に固溶せずに必要な強度や延性が得られないため、スラブ加熱温度の下限は1100℃とした。加熱温度が1150℃を超えると、MnSが再固溶し、固溶Sによる粒界脆化が生じるので、スラブ加熱温度の上限は1150℃とした。スラブ加熱温度の上限を1150℃とすることで、結晶粒の粗大化も防止できる。 If the slab heating temperature is less than 1100 ° C., the carbonitride is not sufficiently dissolved and the required strength and ductility cannot be obtained, so the lower limit of the slab heating temperature is 1100 ° C. When the heating temperature exceeds 1150 ° C., MnS re-dissolves and grain boundary embrittlement occurs due to the solid solution S, so the upper limit of the slab heating temperature is 1150 ° C. By setting the upper limit of the slab heating temperature to 1150 ° C., coarsening of crystal grains can be prevented.
熱延時に、フェライトの再結晶を促進させ細粒化するために、1000℃以上1100℃以下の温度で圧下率30%以上の大圧下を少なくとも1パス以上含むことが必要である。大圧下時の圧延温度が1000℃未満であるか、圧下率が30%未満であれば、フェライトの再結晶が進まず粗大なフェライト粒が残存し、良好な延性、熱間加工性および冷間加工性が得られない。また、大圧下時の圧延温度が1100℃を超えると、再結晶したフェライトの結晶粒が粗大化するため、良好な延性、熱間加工性および冷間加工性が得られない。 At the time of hot rolling, in order to promote recrystallization of ferrite and make it finer, it is necessary to include at least one pass of a large reduction with a reduction ratio of 30% or more at a temperature of 1000 ° C. or more and 1100 ° C. or less. If the rolling temperature at the time of large reduction is less than 1000 ° C. or the reduction ratio is less than 30%, the ferrite recrystallization does not proceed and coarse ferrite grains remain, and good ductility, hot workability and cold Workability cannot be obtained. On the other hand, when the rolling temperature under large pressure exceeds 1100 ° C., the recrystallized ferrite crystal grains are coarsened, so that good ductility, hot workability and cold workability cannot be obtained.
仕上げ圧延温度が800℃未満であると、熱間加工性が劣化し熱延中に割れが生じるため、仕上げ圧延温度の下限は800℃にした。仕上げ温度が850℃を超えると、圧延時の歪の蓄積が十分ではなく、後続の巻取りでの回復・再結晶が抑制されるため、仕上げ温度の上限を850℃にした。 If the finish rolling temperature is less than 800 ° C., the hot workability deteriorates and cracking occurs during hot rolling, so the lower limit of the finish rolling temperature is set to 800 ° C. When the finishing temperature exceeds 850 ° C., the accumulation of strain during rolling is not sufficient, and recovery / recrystallization in subsequent winding is suppressed, so the upper limit of the finishing temperature was set to 850 ° C.
巻き取り温度が600℃未満であると、フェライトの回復・再結晶が進まないので、巻き取り温度の下限は600℃とした。巻き取り温度が700℃を超えると、再結晶したフェライトの結晶粒が粗大化して、良好な延性、熱間加工性および冷間加工性が得られないので、巻き取り温度の上限は700℃とした。 If the winding temperature is less than 600 ° C., ferrite recovery / recrystallization does not proceed, so the lower limit of the winding temperature was set to 600 ° C. When the coiling temperature exceeds 700 ° C., the recrystallized ferrite crystal grains become coarse, and good ductility, hot workability and cold workability cannot be obtained. Therefore, the upper limit of the coiling temperature is 700 ° C. did.
前記(12)に係る本発明において、熱延板の延性を向上させるために、再結晶や炭化物析出制御の観点から、熱延板を巻き取った後、700℃以上1100℃以下の温度で焼鈍してもよい。 In this invention which concerns on said (12), in order to improve the ductility of a hot-rolled sheet, from a viewpoint of recrystallization and carbide precipitation control, after winding a hot-rolled sheet, it anneals at the temperature of 700 to 1100 degreeC. May be.
ここで、焼鈍温度が700℃未満ではその効果が小さく、1100℃を超えると、結晶粒が粗大化し粒界脆化が助長されるため、熱延板の焼鈍温度は700℃以上1100℃以下の温度範囲とした。 Here, if the annealing temperature is less than 700 ° C., the effect is small, and if it exceeds 1100 ° C., the crystal grains are coarsened and grain boundary embrittlement is promoted, so the annealing temperature of the hot-rolled sheet is 700 ° C. or more and 1100 ° C. or less. The temperature range.
前記(13)に係る本発明において、冷延鋼板を製造する場合には、鋼板を巻き取った後、酸洗し、1パス目の圧下率を20%以下とする冷間圧延を行い、600℃以上1100℃以下の温度で焼鈍を行い、焼鈍後、20℃/秒以上の冷却速度で200℃以下の温度まで冷却する。 In this invention which concerns on said (13), when manufacturing a cold-rolled steel plate, after winding up a steel plate, it pickles and performs cold rolling which makes the rolling reduction of the 1st pass 20% or less, 600 Annealing is performed at a temperature of not lower than 1 ° C. and not higher than 1100 ° C., and after annealing, it is cooled to a temperature of not higher than 200 ° C. at a cooling rate of 20 ° C./second or higher.
冷間圧延時の割れを防止するため、1パス目の圧下率を20%以下とした。 In order to prevent cracking during cold rolling, the rolling reduction in the first pass was set to 20% or less.
焼鈍温度が600℃未満では、未再結晶・未回復となり十分な効果が得られず、一方、1100℃を超えると、結晶粒が粗大化し粒界脆化が助長されるため、冷延板の焼鈍温度は、600℃以上1100℃以下の温度範囲とした。 When the annealing temperature is less than 600 ° C., sufficient effects cannot be obtained because it is not recrystallized / recovered. On the other hand, when it exceeds 1100 ° C., the crystal grains become coarse and grain boundary embrittlement is promoted. The annealing temperature was set to a temperature range of 600 ° C. or higher and 1100 ° C. or lower.
焼鈍後の冷却速度が20℃/秒未満であるか、冷却停止温度が200℃超であれば、冷却中に粒成長が起こって結晶粒が粗大化するとともに、粒界へPなどの不純物元素が偏析して粒界脆化が起こり、延性が劣化するため、焼鈍後は、20℃/秒以上の冷却速度で200℃以下の温度まで冷却することにした。 If the cooling rate after annealing is less than 20 ° C./second or the cooling stop temperature is higher than 200 ° C., grain growth occurs during cooling and the crystal grains become coarse, and impurity elements such as P enter the grain boundary. Segregates, grain boundary embrittlement occurs, and ductility deteriorates. Therefore, after annealing, it was decided to cool to 200 ° C. or lower at a cooling rate of 20 ° C./second or higher.
前記(14)に係る本発明においては、前記(6)に記載の成分からなる鋼スラブを1100℃以上1150℃以下の温度に加熱し、1000℃以上1100℃以下の温度で圧下率40%以上の大圧下を少なくとも1パス以上含みかつ700℃以上850℃以下の仕上げ圧延温度で熱間圧延し、550℃以上700℃以下の温度で巻き取る。 In this invention which concerns on said (14), the steel slab which consists of a component as described in said (6) is heated to the temperature of 1100 degreeC or more and 1150 degrees C or less, and the reduction rate is 40% or more at the temperature of 1000 degreeC or more and 1100 degrees C or less. Is rolled at a finish rolling temperature of 700 ° C. or higher and 850 ° C. or lower, and wound at a temperature of 550 ° C. or higher and 700 ° C. or lower.
前記(6)に記載の成分においては、MnとSの含有量をそれぞれMn:0.03%未満、S:0.005%未満と極低下し、MnSを極力析出させないようにしているので、熱間加工性および冷間加工性に優れており、製造条件を緩和することができる。 In the component described in (6), the contents of Mn and S are extremely reduced to Mn: less than 0.03% and S: less than 0.005%, respectively, and MnS is prevented from being precipitated as much as possible. It is excellent in hot workability and cold workability, and the manufacturing conditions can be relaxed.
スラブ加熱温度が1100℃未満であると、炭窒化物が十分に固溶せずに必要な強度や延性が得られないため、スラブ加熱温度の下限は1100℃とした。加熱温度が1150℃を超えると、結晶粒が粗大化するので、スラブ加熱温度の上限を1150℃とした。 If the slab heating temperature is less than 1100 ° C., the carbonitride is not sufficiently dissolved and the required strength and ductility cannot be obtained, so the lower limit of the slab heating temperature is 1100 ° C. When the heating temperature exceeds 1150 ° C., the crystal grains become coarse, so the upper limit of the slab heating temperature is set to 1150 ° C.
熱延時に、フェライトの再結晶を促進させ細粒化するために、1000℃以上1100℃以下の温度で圧下率40%以上の大圧下を少なくとも1パス以上含むことが必要である。 At the time of hot rolling, in order to promote recrystallization of the ferrite and make it finer, it is necessary to include at least one pass of a large reduction with a reduction ratio of 40% or more at a temperature of 1000 ° C. or more and 1100 ° C. or less.
大圧下時の圧延温度が1000℃未満であるか、圧下率が40%未満であれば、フェライトの再結晶が進まず、粗大なフェライト粒が残存し、良好な延性、熱間加工性および冷間加工性が得られない。該鋼は熱間加工性に優れているので、圧下率40%以上の大圧下を行っても割れを防止することができ、再結晶の促進に非常に有効である。 If the rolling temperature at the time of large reduction is less than 1000 ° C. or the reduction ratio is less than 40%, ferrite recrystallization does not proceed and coarse ferrite grains remain, and good ductility, hot workability, and cold Interworkability is not obtained. Since the steel is excellent in hot workability, cracking can be prevented even when a large reduction of 40% or more is performed, and it is very effective in promoting recrystallization.
また、大圧下時の圧延温度が1100℃を超えると、再結晶したフェライトの結晶粒が粗大化するため、良好な延性、熱間加工性および冷間加工性が得られない。 On the other hand, when the rolling temperature under large pressure exceeds 1100 ° C., the recrystallized ferrite crystal grains are coarsened, so that good ductility, hot workability and cold workability cannot be obtained.
上記鋼は熱間加工性に優れるため、仕上げ温度を700℃まで下げても割れを防止することができるが、仕上げ圧延温度が700℃未満であると、熱間加工性が劣化し、熱延中に割れが生じるため、仕上げ圧延温度の下限は700℃にした。仕上げ温度が850℃を超えると、圧延時の歪の蓄積が十分ではなく、後続の巻取りでの回復・再結晶が抑制されるため、仕上げ温度の上限を850℃にした。 Since the above steel is excellent in hot workability, cracking can be prevented even if the finishing temperature is lowered to 700 ° C. However, if the finishing rolling temperature is less than 700 ° C, the hot workability deteriorates and hot rolling Since cracks occurred inside, the lower limit of the finish rolling temperature was set to 700 ° C. When the finishing temperature exceeds 850 ° C., the accumulation of strain during rolling is not sufficient, and recovery / recrystallization in subsequent winding is suppressed, so the upper limit of the finishing temperature was set to 850 ° C.
上記鋼は熱間加工性が良好であり、比較的低温大圧下が可能であるため、巻き取り温度を550℃まで下げても、フェライトの回復・再結晶を促進できるが、巻き取り温度が550℃未満であると、フェライトの回復・再結晶が進まないので、巻き取り温度の下限は550℃とした。巻き取り温度が700℃を超えると、再結晶したフェライトの結晶粒が粗大化するため、良好な延性、熱間加工性および冷間加工性が得られないので、巻き取り温度の上限は700℃とした。 Since the above steel has good hot workability and can be subjected to relatively low temperature and large pressure, recovery and recrystallization of ferrite can be promoted even if the coiling temperature is lowered to 550 ° C., but the coiling temperature is 550. If the temperature is less than ℃, ferrite recovery / recrystallization does not proceed, so the lower limit of the coiling temperature is 550 ℃. When the coiling temperature exceeds 700 ° C., the recrystallized ferrite crystal grains become coarse, so that good ductility, hot workability and cold workability cannot be obtained. Therefore, the upper limit of the coiling temperature is 700 ° C. It was.
前記(15)に係る本発明において、熱延板の延性を向上させるために、再結晶や炭化物析出制御の観点から、熱延板を巻き取った後、700℃以上1100℃以下の温度で焼鈍してもよい。 In this invention which concerns on said (15), in order to improve the ductility of a hot-rolled sheet, from a viewpoint of recrystallization and carbide precipitation control, after winding a hot-rolled sheet, it anneals at the temperature of 700 to 1100 degreeC. May be.
ここで、焼鈍温度が700℃未満ではその効果が小さく、1100℃を超えると、結晶粒が粗大化し粒界脆化が助長されるため、熱延板の焼鈍温度は700℃以上1100℃以下の温度範囲とした。 Here, if the annealing temperature is less than 700 ° C., the effect is small, and if it exceeds 1100 ° C., the crystal grains are coarsened and grain boundary embrittlement is promoted, so the annealing temperature of the hot-rolled sheet is 700 ° C. or more and 1100 ° C. or less. The temperature range.
前記(16)に係る本発明において、冷延鋼板を製造する場合には、鋼板を巻き取った後、酸洗し、1パス目の圧下率を30%以下とする冷間圧延を行い、600℃以上1100℃以下の温度で焼鈍を行い、焼鈍後、20℃/秒以上の冷却速度で200℃以下の温度まで冷却する。 In this invention which concerns on said (16), when manufacturing a cold-rolled steel plate, after winding up a steel plate, it pickles and performs cold rolling which makes the rolling reduction of the 1st pass 30% or less, 600 Annealing is performed at a temperature of not lower than 1 ° C. and not higher than 1100 ° C. After the annealing, cooling is performed to a temperature of not higher than 200 ° C. at a cooling rate of 20 ° C./second or higher.
冷間圧延時の割れを防止するため、1パス目の圧下率を30%以下とした。 In order to prevent cracking during cold rolling, the rolling reduction in the first pass was set to 30% or less.
焼鈍温度が600℃未満では、未再結晶・未回復となり十分な効果が得られず、一方、1100℃を超えると、結晶粒が粗大化し粒界脆化が助長されるため、冷延板の焼鈍温度は600℃以上1100℃以下の温度範囲とした。 When the annealing temperature is less than 600 ° C., sufficient effects cannot be obtained because it is not recrystallized / recovered. On the other hand, when it exceeds 1100 ° C., the crystal grains become coarse and grain boundary embrittlement is promoted. The annealing temperature was set to a temperature range of 600 ° C. to 1100 ° C.
焼鈍後の冷却速度が20℃/秒未満であるか、冷却停止温度が200℃超であれば、冷却中に粒成長が起こって、結晶粒が粗大化するとともに、粒界へPなどの不純物元素が偏析するために粒界脆化が起こり延性が劣化するので、焼鈍後は、20℃/秒以上の冷却速度で200℃以下の温度まで冷却することにした。 If the cooling rate after annealing is less than 20 ° C./second or the cooling stop temperature exceeds 200 ° C., grain growth occurs during cooling, the crystal grains become coarse, and impurities such as P enter the grain boundary. Since element segregation causes grain boundary embrittlement and ductility deteriorates, after annealing, it was decided to cool to a temperature of 200 ° C. or lower at a cooling rate of 20 ° C./second or higher.
前記(17)に係る本発明においては、前記(7)記載の成分からなる鋼スラブを1050℃以上1150℃以下の温度に加熱し、1000℃以上1100℃以下の温度で圧下率25%以上の大圧下を少なくとも1パス以上含み1000℃以下での総圧下率を70%以上としかつ800℃以上850℃以下の仕上げ圧延温度で熱間圧延し、600℃以上750℃以下の温度で巻き取る。 In this invention which concerns on said (17), the steel slab which consists of a component of said (7) is heated to the temperature of 1050 degreeC or more and 1150 degrees C or less, and the reduction rate is 25% or more at the temperature of 1000 degreeC or more and 1100 degrees C or less. Hot rolling is carried out at a finish rolling temperature of 800 ° C. or higher and 850 ° C. or lower, and wound at a temperature of 600 ° C. or higher and 750 ° C. or lower.
前記(7)に記載の成分においては、MnとNiの含有量を、それぞれ、3.0超〜30.0%、5.0超〜15.0%と高くしており、いずれも合金含有量が非常に高いために合金自体が脆弱であり、熱間加工時に過度な低温大圧下を行ったり、低温で冷間圧延すると割れが発生する場合があるので、適切な製造条件を規定する必要がある。 In the component described in (7), the contents of Mn and Ni are increased to more than 3.0 to 30.0% and more than 5.0 to 15.0%, respectively. Because the amount is very high, the alloy itself is fragile, and cracks may occur when excessively cold and hot rolling during hot working or cold rolling at low temperatures, so it is necessary to specify appropriate manufacturing conditions There is.
スラブ加熱温度は、結晶粒粗大化防止の観点から、できる限り低いほうが望ましいが、スラブ加熱温度が1050℃未満であると、炭窒化物が十分に固溶せずに必要な強度や延性が得られないため、スラブ加熱温度の下限は1050℃とした。加熱温度が1150℃を超えると、結晶粒が粗大化するので、スラブ加熱温度の上限は1150℃とした。 The slab heating temperature is desirably as low as possible from the viewpoint of preventing crystal grain coarsening. However, if the slab heating temperature is less than 1050 ° C., the required strength and ductility can be obtained without sufficiently dissolving the carbonitride. Therefore, the lower limit of the slab heating temperature was 1050 ° C. When the heating temperature exceeds 1150 ° C., the crystal grains become coarse, so the upper limit of the slab heating temperature is 1150 ° C.
熱延時に、フェライトの再結晶を促進させ細粒化するために、1000℃以上1100℃以下の温度で圧下率25%以上の大圧下を少なくとも1パス以上含み1000℃以下での総圧下率を70%以上とすることが必要である。 At the time of hot rolling, in order to promote recrystallization of ferrite and refine the grain size, the total rolling reduction at 1000 ° C. or less including at least one pass of large rolling at a rolling reduction of 25% or more at a temperature of 1000 ° C. or more and 1100 ° C. or less. It is necessary to make it 70% or more.
大圧下時の圧延温度が1000℃未満であるか、圧下率が25%未満であれば、フェライトの再結晶が進まず、粗大なフェライト粒が残存し、良好な延性、熱間加工性および冷間加工性が得られない。 If the rolling temperature at the time of large reduction is less than 1000 ° C. or the reduction ratio is less than 25%, ferrite recrystallization does not proceed and coarse ferrite grains remain, and good ductility, hot workability, and cold Interworkability is not obtained.
また、大圧下時の圧延温度が1100℃を超えると、再結晶したフェライトの結晶粒が粗大化するため、良好な延性、熱間加工性および冷間加工性が得られない。1000℃以下での総圧下率が70%未満であれば、圧延時の歪の蓄積が十分ではなく、後続の巻取りでの回復・再結晶が抑制される。 On the other hand, when the rolling temperature under large pressure exceeds 1100 ° C., the recrystallized ferrite crystal grains are coarsened, so that good ductility, hot workability and cold workability cannot be obtained. If the total rolling reduction at 1000 ° C. or lower is less than 70%, accumulation of strain during rolling is not sufficient, and recovery / recrystallization in subsequent winding is suppressed.
仕上げ圧延温度が800℃未満であると、熱間加工性が劣化し、熱延中に割れが生じるため、仕上げ圧延温度の下限は800℃にした。仕上げ温度が850℃を超えると、圧延時の歪の蓄積が十分ではなく、後続の巻取りでの回復・再結晶が抑制されるため、仕上げ温度の上限を850℃にした。 If the finish rolling temperature is less than 800 ° C., the hot workability deteriorates and cracking occurs during hot rolling, so the lower limit of the finish rolling temperature is set to 800 ° C. When the finishing temperature exceeds 850 ° C., the accumulation of strain during rolling is not sufficient, and recovery / recrystallization in subsequent winding is suppressed, so the upper limit of the finishing temperature was set to 850 ° C.
巻き取り温度が600℃未満であると、フェライトの回復・再結晶が進まないので、巻き取り温度の下限は600℃とした。巻き取り温度が750℃を超えると、再結晶したフェライトの結晶粒が粗大化して、良好な延性、熱間加工性および冷間加工性が得られないので、巻き取り温度の上限は750℃とした。 If the winding temperature is less than 600 ° C., ferrite recovery / recrystallization does not proceed, so the lower limit of the winding temperature was set to 600 ° C. When the coiling temperature exceeds 750 ° C., the recrystallized ferrite crystal grains become coarse, and good ductility, hot workability and cold workability cannot be obtained. Therefore, the upper limit of the coiling temperature is 750 ° C. did.
前記(18)に係る本発明において、熱延板の延性を向上させるために、再結晶や炭化物析出制御の観点から、熱延板を巻き取った後、700℃以上1100℃以下の温度で焼鈍してもよい。 In this invention which concerns on said (18), in order to improve the ductility of a hot-rolled sheet, from a viewpoint of recrystallization and carbide precipitation control, after winding a hot-rolled sheet, it anneals at the temperature of 700 to 1100 degreeC. May be.
ここで、焼鈍温度が700℃未満ではその効果が小さく、1100℃を超えると、結晶粒が粗大化し粒界脆化が助長されるため、熱延板の焼鈍温度は700℃以上1100℃以下の温度範囲とした。 Here, if the annealing temperature is less than 700 ° C., the effect is small, and if it exceeds 1100 ° C., the crystal grains are coarsened and grain boundary embrittlement is promoted, so the annealing temperature of the hot-rolled sheet is 700 ° C. or more and 1100 ° C. or less. The temperature range.
前記(19)に係る本発明において、冷延鋼板を製造する場合には、鋼板を巻き取った後、酸洗し、1パス目の圧下率を15%以下とする冷間圧延を30℃以上で行い、600℃以上1100℃以下の温度で焼鈍を行い、焼鈍後、20℃/秒以上の冷却速度で200℃以下の温度まで冷却する。 In this invention which concerns on said (19), when manufacturing a cold-rolled steel plate, after rolling up a steel plate, it pickles and cold rolling which makes the rolling reduction of the 1st pass 15% or less is 30 degreeC or more It anneals at the temperature of 600 degreeC or more and 1100 degrees C or less, and it cools to the temperature of 200 degrees C or less at a cooling rate of 20 degrees C / sec or more after annealing.
冷間圧延時の割れを防止するため、1パス目の圧下率を15%以下とし、冷間圧延温度を30℃以上とした。 In order to prevent cracking during cold rolling, the rolling reduction in the first pass was set to 15% or less, and the cold rolling temperature was set to 30 ° C. or higher.
焼鈍温度が600℃未満では、未再結晶・未回復となり十分な効果が得られず、一方、1100℃を超えると、結晶粒が粗大化し粒界脆化が助長されるため、冷延板の焼鈍温度は600℃以上1100℃以下の温度範囲とした。 When the annealing temperature is less than 600 ° C., sufficient effects cannot be obtained because it is not recrystallized / recovered. On the other hand, when it exceeds 1100 ° C., the crystal grains become coarse and grain boundary embrittlement is promoted. The annealing temperature was set to a temperature range of 600 ° C. to 1100 ° C.
焼鈍後の冷却速度が20℃/秒未満であるか、冷却停止温度が200℃超であれば、冷却中に粒成長が起こって結晶粒が粗大化するとともに、粒界へPなどの不純物元素が偏析するために粒界脆化が起こり延性が劣化するので、焼鈍後は、20℃/秒以上の冷却速度で200℃以下の温度まで冷却することにした。 If the cooling rate after annealing is less than 20 ° C./second or the cooling stop temperature is higher than 200 ° C., grain growth occurs during cooling and the crystal grains become coarse, and impurity elements such as P enter the grain boundary. Since segregation occurs, grain boundary embrittlement occurs and ductility deteriorates. Therefore, after annealing, it was decided to cool to 200 ° C. or lower at a cooling rate of 20 ° C./second or higher.
以下、実施例により本発明とその効果を、さらに具体的に説明する。 Hereinafter, the present invention and its effects will be described more specifically by way of examples.
表1に示す組成を有する鋼を、表2に示す条件で熱間圧延し、冷間圧延した後、表2に示す条件で焼鈍した。 Steel having the composition shown in Table 1 was hot-rolled under the conditions shown in Table 2, cold-rolled, and then annealed under the conditions shown in Table 2.
熱間圧延後および冷間圧延後に、それぞれ、熱延板および冷延板における割れ発生状況を観察した。結果を表2に併せて示す。 After hot rolling and after cold rolling, the occurrence of cracks in the hot rolled sheet and cold rolled sheet was observed, respectively. The results are also shown in Table 2.
焼鈍後の板の比重および機械的特性を評価した。比重の測定はピクノメータを用いて行った。比重、降伏応力、引張強度および伸びを、表2に併せて示す。 The specific gravity and mechanical properties of the plate after annealing were evaluated. The specific gravity was measured using a pycnometer. Specific gravity, yield stress, tensile strength and elongation are also shown in Table 2.
本発明例(No.1〜5、No.12〜14)では、比重<7.2を満たしており、引張強度は440MPa以上であり、延性に関しては30%以上の高い伸びが得られており、熱延板および冷延板の割れも発生していない。 In the present invention examples (No. 1 to 5, No. 12 to 14), the specific gravity <7.2 is satisfied, the tensile strength is 440 MPa or more, and a high elongation of 30% or more is obtained with respect to ductility. In addition, cracks in the hot rolled sheet and the cold rolled sheet have not occurred.
一方、成分のいずれか一つ以上が本発明の成分限定範囲から逸脱している比較例(No.6、7、8)では、いずれも、伸びが20%以下であり、延性に劣ることがわかる。また、これらの比較例では、熱延板および冷延板の割れも発生しており、熱間加工性や冷間加工性にも劣ることがわかる。 On the other hand, in the comparative examples (No. 6, 7, 8) in which any one or more of the components deviate from the component-limited range of the present invention, the elongation is 20% or less and the ductility is inferior. Recognize. Moreover, in these comparative examples, the hot-rolled plate and the cold-rolled plate are also cracked, indicating that the hot workability and the cold workability are inferior.
また、製造条件が本発明の限定範囲から逸脱している比較例(No.9、10、11)では、いずれも、伸びが20%以下であり、かつ、熱延板および冷延板に割れが発生しており、延性や熱間加工性および冷間加工性に劣ることがわかる。 Further, in the comparative examples (Nos. 9, 10, and 11) in which the manufacturing conditions deviate from the limited range of the present invention, the elongation is 20% or less, and the hot rolled sheet and the cold rolled sheet are cracked. It can be seen that ductility, hot workability and cold workability are poor.
また、表1に示す組成を有する鋼を、表2に示す条件で熱間圧延した熱延板についても比重および機械的特性を評価した。熱延板の比重、降伏応力、引張強度および伸びを、表3に示す。さらに、この熱延板について、表4に示す条件で熱延板焼鈍を行い熱延板焼鈍材についても、比重および機械的特性を評価した。熱延板焼鈍材の比重、降伏応力、引張強度および伸びを、表4に示す。 In addition, the specific gravity and mechanical properties of a hot-rolled sheet obtained by hot rolling steel having the composition shown in Table 1 under the conditions shown in Table 2 were also evaluated. Table 3 shows the specific gravity, yield stress, tensile strength and elongation of the hot-rolled sheet. Furthermore, this hot-rolled sheet was subjected to hot-rolled sheet annealing under the conditions shown in Table 4, and the specific gravity and mechanical properties of the hot-rolled sheet annealed material were also evaluated. Table 4 shows the specific gravity, yield stress, tensile strength and elongation of the hot-rolled sheet annealed material.
本発明例(No.1〜5、No.12〜14)では、熱延板および熱延板焼鈍材のいずれも、比重<7.2を満たしており、引張強度は440MPa以上であり、延性に関しては30%以上の高い伸びが得られている。 In the present invention examples (No. 1-5, No. 12-14), both the hot-rolled sheet and the hot-rolled sheet annealed material satisfy the specific gravity <7.2, the tensile strength is 440 MPa or more, and the ductility With regard to, high elongation of 30% or more is obtained.
一方、成分のいずれか一つ以上が本発明の成分限定範囲から逸脱している比較例(No.6、7、8)では、いずれも、伸びが20%以下であり、延性に劣ることがわかる。また、熱延条件が本発明の限定範囲から逸脱している比較例(No.9、10、11)では、いずれも、伸びが20%以下であり、延性に劣ることがわかる。 On the other hand, in the comparative examples (No. 6, 7, 8) in which any one or more of the components deviate from the component-limited range of the present invention, the elongation is 20% or less and the ductility is inferior. Recognize. Moreover, in the comparative examples (No. 9, 10, 11) in which the hot rolling conditions deviate from the limited range of the present invention, it is understood that the elongation is 20% or less and the ductility is inferior.
以上より、鋼成分を本発明で示した範囲に特定し、本発明で示した条件で製造することにより、延性に優れた高強度低比重鋼板が得られることが明らかである。 From the above, it is clear that a high strength low specific gravity steel plate excellent in ductility can be obtained by specifying the steel components in the range shown in the present invention and producing them under the conditions shown in the present invention.
前述したように、本発明によれば延性に優れた高強度低比重鋼板を提供することができる。したがって、本発明は、鋼板利用産業上、利用可能性の高いものである。 As described above, according to the present invention, it is possible to provide a high strength and low specific gravity steel plate having excellent ductility. Therefore, the present invention has high applicability in the steel plate utilization industry.
Claims (19)
C:0.001〜0.01%、
Si:3.0%以下、
Mn:0.01〜3.0%、
P :0.02%以下、
S :0.01%以下、
Al:5.0〜10.0%、
N:0.001〜0.05%
を含有し、残部がFeおよび不可避的不純物からなり、かつ、比重<7.2であり、引張強度が440MPa以上であり、伸びが25%以上であることを特徴とする延性に優れた高強度低比重鋼板。 % By mass
C: 0.001 to 0.01%,
Si: 3.0% or less,
Mn: 0.01 to 3.0%,
P: 0.02% or less,
S: 0.01% or less,
Al: 5.0 to 10.0%,
N: 0.001 to 0.05%
And the balance is Fe and inevitable impurities, the specific gravity <7.2, the tensile strength is 440 MPa or more, and the elongation is 25% or more. Low specific gravity steel plate.
Ti:0.005〜0.3%、
Nb:0.005〜0.3%
の1種または2種を含有することを特徴とする請求項1記載の延性に優れた高強度低比重鋼板。 Furthermore, in mass%,
Ti: 0.005 to 0.3%,
Nb: 0.005-0.3%
The high strength low specific gravity steel plate excellent in ductility according to claim 1, comprising one or two of the following.
Cr:0.05〜3.0%、
Ni:0.05〜5.0%、
Mo:0.05〜3.0%、
Cu:0.1〜3.0%、
B :0.0003〜0.01%、
V :0.01〜0.5%
の1種または2種以上を含有することを特徴とする請求項1または2記載の延性に優れた高強度低比重鋼板。 Furthermore, in mass%,
Cr: 0.05-3.0%,
Ni: 0.05-5.0%,
Mo: 0.05-3.0%
Cu: 0.1 to 3.0%,
B: 0.0003 to 0.01%
V: 0.01 to 0.5%
The high strength low specific gravity steel sheet excellent in ductility according to claim 1 or 2, characterized by containing one or more of the following.
Ca:0.001〜0.01%、
Mg:0.0005〜0.01%、
Zr:0.001〜0.05%、
REM:0.001〜0.05%
の1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の延性に優れた高強度低比重鋼板。 Furthermore, in mass%,
Ca: 0.001 to 0.01%,
Mg: 0.0005 to 0.01%,
Zr: 0.001 to 0.05%,
REM: 0.001 to 0.05%
The high strength low specific gravity steel plate excellent in ductility according to any one of claims 1 to 3, wherein one or more of the above are contained.
Mn:0.2超〜3.0%、
S :0.02%以下
を含有し、かつ、
20<(Mn/S)
を満足することを特徴とする請求項1〜4のいずれか1項に記載の延性に優れた高強度低比重鋼板。 In mass%, instead of Mn and S,
Mn: more than 0.2 to 3.0%,
S: 0.02% or less, and
20 <(Mn / S)
The high-strength, low-specific gravity steel sheet excellent in ductility according to any one of claims 1 to 4, wherein:
Mn:0.03%未満、
S :0.005%未満
を含有することを特徴とする請求項1〜4のいずれか1項に記載の延性に優れた高強度低比重鋼板。 In mass%, instead of Mn and S,
Mn: less than 0.03%,
S: Less than 0.005% is contained, The high strength low specific gravity steel plate excellent in ductility of any one of Claims 1-4 characterized by the above-mentioned.
Mn:3.0超〜30.0%、
Ni:5.0超〜15.0%
の1種または2種を含有することを特徴とする請求項1〜4のいずれか1項に記載の延性に優れた高強度低比重鋼板。 In mass%, instead of Mn and Ni,
Mn: more than 3.0 to 30.0%,
Ni: more than 5.0 to 15.0%
1 type or 2 types of these are included, The high strength low specific gravity steel plate excellent in ductility of any one of Claims 1-4 characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004074914A JP4471688B2 (en) | 2003-06-18 | 2004-03-16 | High strength low specific gravity steel plate excellent in ductility and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003173251 | 2003-06-18 | ||
JP2004074914A JP4471688B2 (en) | 2003-06-18 | 2004-03-16 | High strength low specific gravity steel plate excellent in ductility and method for producing the same |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009026773A Division JP4472015B2 (en) | 2003-06-18 | 2009-02-06 | High strength low specific gravity steel plate excellent in ductility and method for producing the same |
JP2010003233A Division JP5094887B2 (en) | 2003-06-18 | 2010-01-08 | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility |
JP2010003244A Division JP5094888B2 (en) | 2003-06-18 | 2010-01-08 | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005029889A true JP2005029889A (en) | 2005-02-03 |
JP4471688B2 JP4471688B2 (en) | 2010-06-02 |
Family
ID=34219956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004074914A Expired - Fee Related JP4471688B2 (en) | 2003-06-18 | 2004-03-16 | High strength low specific gravity steel plate excellent in ductility and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4471688B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006085609A1 (en) * | 2005-02-10 | 2006-08-17 | Yoshihira Okanda | NOVEL Fe-Al ALLOY AND METHOD FOR PRODUCING SAME |
JP2011043111A (en) * | 2009-08-21 | 2011-03-03 | Keihin Corp | Electromagnetic actuating device and electromagnetic fuel injection valve |
JP2013001978A (en) * | 2011-06-20 | 2013-01-07 | Okanda Yoriko | METHOD OF PRODUCING Fe-Al ALLOY MATERIAL AND ROD OR LINEAR PRODUCT OF Fe-Al ALLOY MATERIAL |
WO2014178358A1 (en) | 2013-05-01 | 2014-11-06 | 新日鐵住金株式会社 | Galvanized steel sheet and production method therefor |
WO2014178359A1 (en) | 2013-05-01 | 2014-11-06 | 新日鐵住金株式会社 | High-strength, low-specific gravity steel plate having excellent spot welding properties |
JP2015515547A (en) * | 2012-04-11 | 2015-05-28 | タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップTata Steel Nederland Technology Bv | High strength IF low density steel and method for producing the steel |
KR101560913B1 (en) | 2013-12-13 | 2015-10-15 | 주식회사 포스코 | Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same |
KR101560911B1 (en) | 2013-12-13 | 2015-10-15 | 주식회사 포스코 | Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same |
EP2817428B1 (en) | 2012-02-20 | 2016-04-20 | Tata Steel Nederland Technology B.V. | High strength bake-hardenable low density steel and method for producing said steel |
JP2019019382A (en) * | 2017-07-18 | 2019-02-07 | 新日鐵住金株式会社 | Low alloy steel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103691741A (en) * | 2012-09-27 | 2014-04-02 | 日立金属株式会社 | Manufacturing method of making fe-a1 alloy strip steel |
-
2004
- 2004-03-16 JP JP2004074914A patent/JP4471688B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1847624A4 (en) * | 2005-02-10 | 2008-05-28 | Yoshihira Okanda | NOVEL Fe-Al ALLOY AND METHOD FOR PRODUCING SAME |
JP5185613B2 (en) * | 2005-02-10 | 2013-04-17 | 佳平 大神田 | Novel Fe-Al alloy and method for producing the same |
WO2006085609A1 (en) * | 2005-02-10 | 2006-08-17 | Yoshihira Okanda | NOVEL Fe-Al ALLOY AND METHOD FOR PRODUCING SAME |
JP2011043111A (en) * | 2009-08-21 | 2011-03-03 | Keihin Corp | Electromagnetic actuating device and electromagnetic fuel injection valve |
JP2013001978A (en) * | 2011-06-20 | 2013-01-07 | Okanda Yoriko | METHOD OF PRODUCING Fe-Al ALLOY MATERIAL AND ROD OR LINEAR PRODUCT OF Fe-Al ALLOY MATERIAL |
EP2817428B1 (en) | 2012-02-20 | 2016-04-20 | Tata Steel Nederland Technology B.V. | High strength bake-hardenable low density steel and method for producing said steel |
EP2817428B2 (en) † | 2012-02-20 | 2019-06-19 | Tata Steel Nederland Technology B.V. | High strength bake-hardenable low density steel and method for producing said steel |
US9777350B2 (en) | 2012-04-11 | 2017-10-03 | Tata Steel Nederland Technology B.V. | High strength interstitial free low density steel and method for producing said steel |
JP2015515547A (en) * | 2012-04-11 | 2015-05-28 | タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップTata Steel Nederland Technology Bv | High strength IF low density steel and method for producing the steel |
WO2014178359A1 (en) | 2013-05-01 | 2014-11-06 | 新日鐵住金株式会社 | High-strength, low-specific gravity steel plate having excellent spot welding properties |
US10336037B2 (en) | 2013-05-01 | 2019-07-02 | Nippon Steel & Sumitomo Metal Corporation | Galvanized steel sheet and method for producing the same |
US10294551B2 (en) | 2013-05-01 | 2019-05-21 | Nippon Steel & Sumitomo Metal Corporation | High-strength low-specific-gravity steel sheet having superior spot weldability |
WO2014178358A1 (en) | 2013-05-01 | 2014-11-06 | 新日鐵住金株式会社 | Galvanized steel sheet and production method therefor |
KR101560913B1 (en) | 2013-12-13 | 2015-10-15 | 주식회사 포스코 | Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same |
KR101560911B1 (en) | 2013-12-13 | 2015-10-15 | 주식회사 포스코 | Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same |
JP2019019382A (en) * | 2017-07-18 | 2019-02-07 | 新日鐵住金株式会社 | Low alloy steel |
Also Published As
Publication number | Publication date |
---|---|
JP4471688B2 (en) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4464811B2 (en) | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility | |
JP4084733B2 (en) | High strength low specific gravity steel plate excellent in ductility and method for producing the same | |
JP4235077B2 (en) | High strength low specific gravity steel plate for automobile and its manufacturing method | |
JP6588440B2 (en) | High strength low specific gravity steel plate and method for producing the same | |
EP2554699B1 (en) | Steel sheet with high tensile strength and superior ductility and method for producing same | |
JP6043801B2 (en) | Steel plate for warm press forming, warm press forming member, and manufacturing method thereof | |
JP5393459B2 (en) | High manganese type high strength steel plate with excellent impact characteristics | |
JP4324072B2 (en) | Lightweight high strength steel with excellent ductility and its manufacturing method | |
US20080035249A1 (en) | Method for Producing Austenitic Iron-Carbon-Manganese Metal Sheets, and Sheets Produced Thereby | |
JP5094888B2 (en) | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility | |
JP2010047786A (en) | Steel sheet for hot pressing and method for producing the same, and method for producing hot-pressed steel sheet member | |
JP5042694B2 (en) | High strength low specific gravity steel plate excellent in ductility and workability and method for producing the same | |
JP4248430B2 (en) | High strength low specific gravity steel plate excellent in ductility and method for producing the same | |
JP4471688B2 (en) | High strength low specific gravity steel plate excellent in ductility and method for producing the same | |
JP4299774B2 (en) | High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same | |
JP5257239B2 (en) | High strength low specific gravity steel plate excellent in ductility, workability and toughness, and method for producing the same | |
JP4430502B2 (en) | Method for producing low specific gravity steel sheet with excellent ductility | |
CN111527228B (en) | Cold-rolled steel sheet having excellent high-temperature characteristics and room-temperature workability, and method for producing same | |
CN114040990B (en) | Austenitic stainless steel having improved strength and method for manufacturing the same | |
JP3280692B2 (en) | Manufacturing method of high strength cold rolled steel sheet for deep drawing | |
KR101403215B1 (en) | Ultra high strength high manganese steel sheet with excellent ductility and method of manufacturing the same | |
JP4133003B2 (en) | High-strength steel sheet with excellent formability and its manufacturing method | |
EP4397781A1 (en) | Hot-rolled ferritic stainless steel sheet having excellent formability and method for manufacturing same | |
JP5332894B2 (en) | Low specific gravity steel sheet excellent in ductility, fatigue characteristics and toughness and method for producing the same | |
JP2023507803A (en) | Structural cold-rolled steel sheet with excellent hardness and workability and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040929 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100302 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4471688 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140312 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |