[go: up one dir, main page]

JP2005026717A - Solid imaging device - Google Patents

Solid imaging device Download PDF

Info

Publication number
JP2005026717A
JP2005026717A JP2004291744A JP2004291744A JP2005026717A JP 2005026717 A JP2005026717 A JP 2005026717A JP 2004291744 A JP2004291744 A JP 2004291744A JP 2004291744 A JP2004291744 A JP 2004291744A JP 2005026717 A JP2005026717 A JP 2005026717A
Authority
JP
Japan
Prior art keywords
conductivity type
type semiconductor
region
imaging device
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004291744A
Other languages
Japanese (ja)
Inventor
Koichi Harada
耕一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004291744A priority Critical patent/JP2005026717A/en
Publication of JP2005026717A publication Critical patent/JP2005026717A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid imaging device with good property, in which an over flow barrier is formed deeply and which is also sensitive to near infrared ray region. <P>SOLUTION: An imaging device 1 of vertical type over flow drain system has a first conductivity type semiconductor substrate 2, a first conductivity type semiconductor layer 3 which is formed on the first conductivity type semiconductor substrate 2 and has lower concentration than that of the first conductivity type semiconductor substrate 2, a second conductivity type semiconductor region 4 which is formed on the first conductivity type semiconductor layer 3, a semiconductor region 5 of a first conductivity type, second conductivity type or intrinsic semiconductor, which is formed on the second conductivity type semiconductor region 4 and has lower concentration than that of the second conductivity type semiconductor region 4 and a thickness of two micrometers or more so that infrared ray may be absorbed sufficiently. A light receiving portion 11 is formed on the surface of the semiconductor region of the first conductivity type, second conductivity type, or intrinsic semiconductor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えばCCDセンサーに適用する固体撮像素子に係わる。   The present invention relates to a solid-state imaging device applied to, for example, a CCD sensor.

固体撮像素子として、受光部での余剰の電荷を基板側に排出するようにした、いわゆる縦型オーバーフロードレイン方式の固体撮像素子が知られている。   As a solid-state imaging device, a so-called vertical overflow drain type solid-state imaging device is known in which surplus charges at the light receiving portion are discharged to the substrate side.

この縦型オーバーフロードレイン方式固体撮像素子において、例えば基板としてn型半導体基板を用いて作製したCCD(charged couple device)型固体撮像素子では、いわゆるオーバーフローバリアをなるべく基板のシリコン中に深く形成して感度を向上させるために、高エネルギーのイオン注入でオーバーフローバリア領域を形成する方法が用いられる。   In this vertical overflow drain type solid-state imaging device, for example, in a CCD (charged couple device) type solid-state imaging device manufactured using an n-type semiconductor substrate as a substrate, a so-called overflow barrier is formed as deeply as possible in the silicon of the substrate, and the sensitivity In order to improve this, a method of forming an overflow barrier region by high energy ion implantation is used.

しかしながら、上述の方法では、オーバーフローバリアを最大でも5μm程度の深さまでしか形成できなかった。   However, in the above method, the overflow barrier can be formed only to a depth of about 5 μm at the maximum.

その他の方法としては、イオン注入を行った後に熱を加えて、拡散させてオーバーフローバリア領域を形成する方法もあるが、この場合には製造に長時間を要し、また拡散中の汚染等の影響が大きく、固体撮像素子の特性の劣化につながってしまう。   As another method, there is a method in which heat is applied after ion implantation and diffusion is performed to form an overflow barrier region. In this case, however, a long time is required for manufacturing, and contamination during diffusion is also caused. The influence is large, leading to deterioration of the characteristics of the solid-state imaging device.

一方、基板としてp型半導体基板を目的として作製したCCD型固体撮像素子では、近赤外線領域に感度を有することが知られている。
しかしながら、受光部の光電変換領域が全て空乏化されてはいないため、近赤外線領域でのMTF(モジュレーション・トランスファー・ファンクション;解像度を表す)が悪く、スミアや暗電流による残像等、n型半導体基板にCCD型固体撮像素子を形成した場合に比較して特性が劣るという問題があった。
On the other hand, it is known that a CCD solid-state imaging device manufactured for the purpose of a p-type semiconductor substrate as a substrate has sensitivity in the near infrared region.
However, since the photoelectric conversion region of the light receiving unit is not completely depleted, the MTF (Modulation Transfer Function; indicating resolution) in the near infrared region is poor, and an n-type semiconductor substrate such as a smear or an afterimage due to dark current There is a problem that the characteristics are inferior to the case where a CCD type solid-state imaging device is formed.

上述した問題の解決のために、本発明においては、オーバーフローバリアが深く形成され、特性の良好な固体撮像素子を提供するものである。   In order to solve the above-described problem, the present invention provides a solid-state imaging device having a deep overflow barrier and good characteristics.

本発明の固体撮像素子は、第1導電型半導体基板上に、第1導電型半導体基板よりも低濃度の第1導電型半導体層、第2導電型半導体領域、及びその上の第2導電型半導体領域より低濃度で赤外線が十分吸収されうるべく2μm以上の厚さを有する第1導電型、第2導電型又は真性導電型の半導体領域を形成し、この半導体領域の表面に受光部を形成した構成とする。   The solid-state imaging device according to the present invention includes a first conductivity type semiconductor layer, a second conductivity type semiconductor region having a lower concentration than the first conductivity type semiconductor substrate, and a second conductivity type on the first conductivity type semiconductor substrate. A first conductivity type, second conductivity type or intrinsic conductivity type semiconductor region having a thickness of 2 μm or more is formed so that infrared rays can be sufficiently absorbed at a lower concentration than the semiconductor region, and a light receiving portion is formed on the surface of the semiconductor region The configuration is as follows.

上述の本発明の構成によれば、第2導電型半導体領域上に第2導電型半導体領域より低濃度で赤外線が十分吸収されうるべく2μm以上の厚さを有する半導体領域を形成することにより、第2導電型半導体領域がいわゆるオーバーフローバリア領域となり、オーバーフローバリアを赤外線が十分吸収されうる深さまで形成することができる。よって、高感度化が図られる。   According to the configuration of the present invention described above, by forming a semiconductor region having a thickness of 2 μm or more so that infrared rays can be sufficiently absorbed at a lower concentration than the second conductivity type semiconductor region on the second conductivity type semiconductor region, The second conductivity type semiconductor region becomes a so-called overflow barrier region, and the overflow barrier can be formed to a depth at which infrared rays can be sufficiently absorbed. Therefore, high sensitivity is achieved.

上述の本発明の固体撮像素子によれば、第2導電型の半導体領域とこれの上に赤外線が十分吸収されるべく2μm以上の厚さを有する高抵抗の半導体領域を形成して、この表面に受光部を形成することにより、第2導電型の半導体領域がオーバーフローバリアとなり、オーバーフローバリアの深さを赤外線が十分吸収されうる深さまで形成することができ、近赤外線領域にも感度を有する固体撮像素子を構成できる。
また、受光部での空乏層の幅を従来より長くすることができるので、可視光の感度も向上させることができる。
According to the solid-state imaging device of the present invention described above, the surface of the second conductive type semiconductor region and the high resistance semiconductor region having a thickness of 2 μm or more are formed on the second conductive type semiconductor region. By forming the light receiving portion in the second region, the second conductivity type semiconductor region becomes an overflow barrier, and the overflow barrier can be formed to a depth at which infrared rays can be sufficiently absorbed. An image sensor can be configured.
Further, since the width of the depletion layer in the light receiving portion can be made longer than before, the sensitivity of visible light can be improved.

また、本発明の固体撮像素子により、基板に電荷を逃がす電子シャッターを形成することができる。   Moreover, the solid-state imaging device of the present invention can form an electronic shutter that releases charges on the substrate.

高抵抗の半導体領域をエピタキシャル層で形成するときは、第2導電型の半導体領域を赤外線が十分吸収されうる深さに形成することが容易にできる。   When the high resistance semiconductor region is formed of an epitaxial layer, the second conductivity type semiconductor region can be easily formed to a depth at which infrared rays can be sufficiently absorbed.

第2導電型の半導体領域をイオン注入により形成するときは、第1導電型半導体の基板に対して低エネルギーの打ち込みで作ることができる。   When the second conductivity type semiconductor region is formed by ion implantation, the second conductivity type semiconductor region can be formed by low energy implantation into the first conductivity type semiconductor substrate.

第2導電型の半導体領域を1014〜1016cm−3の濃度とするときは、ここに充分なオーバーフローバリアを形成することができる。 When the second conductivity type semiconductor region has a concentration of 10 14 to 10 16 cm −3 , a sufficient overflow barrier can be formed here.

本発明の固体撮像素子は、縦型オーバーフロードレイン方式の固体撮像素子において、第1導電型半導体基板と、第1導電型半導体基板上に形成された第1導電型半導体基板よりも低濃度の第1導電型半導体層と、第1導電型半導体層上に形成された第2導電型半導体領域と、第2導電型半導体領域上に形成された第2導電型半導体領域より低濃度で赤外線が十分吸収されうるべく2μm以上の厚さを有する第1導電型、第2導電型又は真性導電型の半導体領域を有し、そしてこの第1導電型、第2導電型又は真性の半導体領域の表面に受光部が形成されてなる構成とする。   The solid-state imaging device according to the present invention is a vertical overflow drain type solid-state imaging device having a first conductivity type semiconductor substrate and a first concentration lower than that of the first conductivity type semiconductor substrate formed on the first conductivity type semiconductor substrate. 1 conductivity type semiconductor layer, 2nd conductivity type semiconductor region formed on the 1st conductivity type semiconductor layer, and sufficient infrared rays at a lower concentration than the 2nd conductivity type semiconductor region formed on the 2nd conductivity type semiconductor region A first conductivity type, second conductivity type or intrinsic conductivity type semiconductor region having a thickness of 2 μm or more to be absorbed; and on the surface of the first conductivity type, second conductivity type or intrinsic semiconductor region It is assumed that a light receiving part is formed.

また本発明は、上記固体撮像素子において、第1導電型、第2導電型又は真性の半導体領域がエピタキシャル層で形成されてなる構成とする。   According to the present invention, in the solid-state imaging device, the first conductive type, the second conductive type, or the intrinsic semiconductor region is formed of an epitaxial layer.

また本発明は、上記固体撮像素子において、第1導電型半導体層上に形成された第2導電型半導体領域がイオン注入により形成されてなる構成とする。   According to the present invention, in the solid-state imaging device, the second conductive semiconductor region formed on the first conductive semiconductor layer is formed by ion implantation.

また本発明は、上記固体撮像素子において、第1導電型半導体層上に形成された第2導電型半導体領域は1014〜1016cm−3の濃度である構成とする。 In the solid-state imaging device according to the present invention, the second conductive semiconductor region formed on the first conductive semiconductor layer has a concentration of 10 14 to 10 16 cm −3 .

以下、図面を参照して本発明の固体撮像素子の実施例を説明する。
図1は、本実施例に係る縦型オーバーフロードレイン方式のCCD型固体撮像素子を示す。
この固体撮像素子1は、第1導電型の、本例ではn型のシリコンからなる半導体基板2上に、第1導電型の低不純物濃度の即ちn型のエピタキシャル層3が形成され、このエピタキシャル層3内にイオン注入による第2導電型の半導体領域、本例では第1のp型の半導体ウエル領域4が形成され、この第1のp型の半導体ウエル領域4上にエピタキシャル成長により、第1のp型半導体ウエル領域4より低不純物濃度である高抵抗の半導体領域5が形成される。この高抵抗の半導体領域5の表面に受光部11を構成するための、n型の不純物拡散領域6及びこの上のp型の正電荷蓄積領域7が形成される。また、受光部11から離れた位置の高抵抗の半導体領域5に第2のp型半導体ウェル領域8及びn型の転送チャネル領域9が形成され、さらにp型のチャネルストップ領域14が形成される。
Hereinafter, embodiments of the solid-state imaging device of the present invention will be described with reference to the drawings.
FIG. 1 shows a vertical overflow drain type CCD solid-state imaging device according to the present embodiment.
In this solid-state imaging device 1, a first conductivity type low impurity concentration, ie, n type epitaxial layer 3 is formed on a semiconductor substrate 2 of the first conductivity type, in this example, n-type silicon. A second conductivity type semiconductor region by ion implantation, in this example, a first p-type semiconductor well region 4 is formed in the epitaxial layer 3, and the first p-type semiconductor well region 4 is epitaxially grown on the first p-type semiconductor well region 4. A high-resistance semiconductor region 5 having a lower impurity concentration than that of one p-type semiconductor well region 4 is formed. An n + -type impurity diffusion region 6 and a p + -type positive charge accumulation region 7 thereon are formed on the surface of the high-resistance semiconductor region 5 to form the light receiving unit 11. In addition, a second p-type semiconductor well region 8 and an n-type transfer channel region 9 are formed in the high-resistance semiconductor region 5 at a position away from the light receiving portion 11, and a p-type channel stop region 14 is further formed. .

ここで、第1のp型の半導体ウエル領域4は、いわゆるオーバーフローバリア領域となる。受光部11は画素となるもので、複数の受光部11がマトリックス状に配列されている。   Here, the first p-type semiconductor well region 4 becomes a so-called overflow barrier region. The light receiving unit 11 is a pixel, and a plurality of light receiving units 11 are arranged in a matrix.

受光部11と後述する垂直転送レジスタ12の間に読み出しゲート部13が形成される。
転送チャネル領域9、チャネルストップ領域14及び読み出しゲート部13上にゲート絶縁膜15を介して、例えば多結晶シリコンからなる転送電極16が形成され、転送チャネル領域9、ゲート絶縁膜15及び転送電極16によりCCD構造の垂直転送レジスタ12が構成される。
A reading gate unit 13 is formed between the light receiving unit 11 and a vertical transfer register 12 described later.
A transfer electrode 16 made of, for example, polycrystalline silicon is formed on the transfer channel region 9, the channel stop region 14, and the readout gate portion 13 via a gate insulating film 15, and the transfer channel region 9, the gate insulating film 15, and the transfer electrode 16 are formed. Thus, a vertical transfer register 12 having a CCD structure is formed.

さらに、転送電極16上を被覆する層間絶縁膜18を介して受光部11の開口を除く他所全面に遮光膜17が形成される。   Further, a light shielding film 17 is formed on the entire surface other than the opening of the light receiving portion 11 via an interlayer insulating film 18 covering the transfer electrode 16.

第1導電型の低不純物濃度のエピタキシャル層3は、いわゆるシャッタ電圧を調整するために設けるもので、このエピタキシャル層3を形成することにより、基板電圧Vsubによるシャッタ電圧の調節が容易になる。   The first conductivity type low impurity concentration epitaxial layer 3 is provided to adjust the so-called shutter voltage. By forming this epitaxial layer 3, the shutter voltage can be easily adjusted by the substrate voltage Vsub.

第2導電型の第1の半導体ウエル領域4は、第1導電型の低不純物濃度のエピタキシャル層3へのイオン注入により形成され、好ましくは不純物の濃度が1014〜1016cm−3の範囲内とされる。 The second conductivity type first semiconductor well region 4 is formed by ion implantation into the first conductivity type low impurity concentration epitaxial layer 3, and preferably the impurity concentration is in the range of 10 14 to 10 16 cm −3 . It is assumed to be inside.

高抵抗の半導体領域5の厚さは2μm以上、好ましくは5μm以上とし、不純物の濃度は第1のp型半導体ウエル領域4より低濃度で、導電型は第1のp型半導体ウエル領域4と同一のp型でもよく、反対のn型でもよく、またノンドープ(真性半導体)であってもよい。   The thickness of the high-resistance semiconductor region 5 is 2 μm or more, preferably 5 μm or more, the impurity concentration is lower than that of the first p-type semiconductor well region 4, and the conductivity type is the same as that of the first p-type semiconductor well region 4. The same p-type, the opposite n-type, or non-doped (intrinsic semiconductor) may be used.

このようにして、受光部11と、オーバーフローバリアとなる第1のp型の半導体ウエル領域3と、オーバーフロードレインとなる基板2が垂直方向に形成されてなる、いわゆる縦型オーバーフロードレイン方式のCCD型の固体撮像素子1が構成される。   In this way, a so-called vertical overflow drain type CCD type in which the light receiving portion 11, the first p-type semiconductor well region 3 serving as an overflow barrier, and the substrate 2 serving as an overflow drain are formed in the vertical direction. The solid-state imaging device 1 is configured.

この固体撮像素子1の不純物プロファイルと、これに対応したポテンシャルの変化を図2に示す。
図2より、P型の正電荷蓄積領域7の先端では0Vで、そのP型の正電荷蓄積領域7の途中からポテンシャルが上昇し、pn接合付近でピークになった後、ポテンシャルが下がり、第1のp型半導体ウェル領域4でポテンシャルが極小となる。即ち、この第1のp型半導体ウエル領域4でオーバーフローバリアが形成される。そして、さらに深くなる程ポテンシャルが上昇し、n型のエピタキシャル層3内でポテンシャルが飽和する。
FIG. 2 shows the impurity profile of the solid-state imaging device 1 and the potential change corresponding thereto.
From FIG. 2, the potential rises from the middle of the P + type positive charge accumulation region 7 at 0 V at the tip of the P + type positive charge accumulation region 7, reaches a peak near the pn junction, and then decreases. The potential becomes minimum in the first p-type semiconductor well region 4. That is, an overflow barrier is formed in the first p-type semiconductor well region 4. The potential increases as the depth further increases, and the potential is saturated in the n -type epitaxial layer 3.

このポテンシャルが飽和する位置まで空乏化されている。
このように、赤外線が進入する深さに形成された高抵抗の半導体領域5より充分に深い位置まで空乏化されることから、本実施例の固体撮像素子1によれば、赤外線の検出を行うことが容易にできる。
It is depleted to the position where this potential is saturated.
As described above, since the depletion is performed to a position sufficiently deeper than the high-resistance semiconductor region 5 formed at a depth at which infrared rays enter, the solid-state imaging device 1 of the present embodiment detects infrared rays. Can be easily done.

上述の実施例の固体撮像素子の入射光の波長と相対感度との関係を調べた。
従来の固体撮像素子と比較して、図3A及び図3Bに示す。
図3Aは従来のp型基板のCCD固体撮像素子と比較した場合で、図3Bは従来のn型基板のCCD固体撮像素子と比較した場合の図である。
The relationship between the wavelength of incident light and the relative sensitivity of the solid-state imaging device of the above-described embodiment was examined.
Compared to a conventional solid-state image sensor, FIG. 3A and FIG. 3B show.
FIG. 3A shows a comparison with a conventional p-type substrate CCD solid-state imaging device, and FIG. 3B shows a comparison with a conventional n-type substrate CCD solid-state imaging device.

図3Aより、本実施例の固体撮像素子(曲線I)は、可視光線領域に高い感度を有するだけでなく、700nm以上の赤外線領域にも感度を有することがわかる。
p型基板の従来例(曲線II)でも赤外線領域に感度を有しているが、可視光線領域の感度が狭い範囲の波長に偏っている。
FIG. 3A shows that the solid-state imaging device (curve I) of the present example has not only high sensitivity in the visible light region but also sensitivity in the infrared region of 700 nm or more.
The conventional example of the p-type substrate (curve II) also has sensitivity in the infrared region, but the sensitivity in the visible light region is biased to a narrow range of wavelengths.

図3Bより、同じn基板を用いた従来例(曲線III )と比較すると、本実施例の固体撮像素子(曲線I)は、可視光線の波長が長い赤色の感度が向上し、さらに赤外線領域の感度が大幅に上がっていることがわかる。   From FIG. 3B, compared with the conventional example using the same n substrate (curve III), the solid-state imaging device (curve I) of this example has improved sensitivity of red having a long wavelength of visible light, and further, in the infrared region. It can be seen that the sensitivity has increased significantly.

このように、本実施例の固体撮像素子1により、実際に赤外線の感度が向上することがわかる。   Thus, it can be seen that the solid-state imaging device 1 of this embodiment actually improves the sensitivity of infrared rays.

即ち、本実施例によれば、他の特性に影響を与えずに、可視光のみならず近赤外線領域にも感度をもつ固体撮像素子が得られる。また、受光部の空乏層幅が従来よりも長くなるので、可視光の感度も向上する。本例のn型基板のCCD固体撮像素子では、感度以外の特性は従来のn型基板のCCD固体撮像素子と同等となる。さらに、電荷を基板側に逃がす電子シャッタ動作も可能になる。   That is, according to the present embodiment, a solid-state imaging device having sensitivity not only in the visible light but also in the near infrared region without affecting other characteristics can be obtained. In addition, since the width of the depletion layer of the light receiving portion is longer than before, the sensitivity of visible light is improved. In the n-type substrate CCD solid-state imaging device of this example, characteristics other than sensitivity are equivalent to those of the conventional n-type substrate CCD solid-state imaging device. Furthermore, an electronic shutter operation that releases charges to the substrate side is also possible.

この固体撮像素子1は、例えば次のように製造する。
図4Aに示すように、第1導電型例えばn型の半導体基板2を用意する。
次に、図4Bに示すように、第1導電型の半導体基板2上に、エピタキシャル成長により第1導電型で低不純物濃度のすなわちn型のエピタキシャル層3を、例えば10μmの厚さに形成する。
For example, the solid-state imaging device 1 is manufactured as follows.
As shown in FIG. 4A, a first conductivity type, for example, an n-type semiconductor substrate 2 is prepared.
Next, as shown in FIG. 4B, on the first conductivity type semiconductor substrate 2, the first conductivity type and low impurity concentration, ie, n type epitaxial layer 3 is formed to a thickness of, for example, 10 μm by epitaxial growth. .

次に、図5Cに示すように、エピタキシャル層3の一部に、低エネルギーの不純物のイオン注入により、第2導電型すなわちp型の第1の半導体ウエル領域4を形成する。この第1のp型の半導体ウエル層4は、いわゆる撮像領域の全域にわたって形成する。   Next, as shown in FIG. 5C, a second conductivity type, that is, a p-type first semiconductor well region 4 is formed in a part of the epitaxial layer 3 by ion implantation of low-energy impurities. The first p-type semiconductor well layer 4 is formed over the entire so-called imaging region.

次に、図5Dに示すように、エピタキシャル層3と第1のp型半導体ウエル領域4上に、これらを覆って高抵抗の半導体領域5をエピタキシャル成長により、例えば10μmの厚さに形成する。   Next, as shown in FIG. 5D, a high-resistance semiconductor region 5 is formed on the epitaxial layer 3 and the first p-type semiconductor well region 4 so as to cover them, for example, to a thickness of 10 μm.

次に、図6Eに示すように(但し、図6E以後は1画素に対応する領域のみを示す)、高抵抗の半導体領域5にイオン注入を行って、受光部を構成するn型の不純物拡散領域6及びp型の正電荷蓄積領域7、第2のp型半導体ウェル領域8、n型の転送チャネル領域9及びp型のチャネルストップ領域14をそれぞれ形成する。 Next, as shown in FIG. 6E (however, only the region corresponding to one pixel is shown in FIG. 6E and thereafter), ion implantation is performed on the high-resistance semiconductor region 5 to form an n + -type impurity constituting the light receiving portion. A diffusion region 6, a p + -type positive charge storage region 7, a second p-type semiconductor well region 8, an n-type transfer channel region 9 and a p-type channel stop region 14 are formed.

次に、図6Fに示すように、表面を覆って全面的にゲート絶縁膜15を形成し、これの上に選択的にポリシリコン層による転送電極16を形成する。   Next, as shown in FIG. 6F, a gate insulating film 15 is formed over the entire surface, and a transfer electrode 16 made of a polysilicon layer is selectively formed thereon.

この後は、転送電極16を絶縁膜15で覆い、これの上に例えばAl等遮光金属からなる遮光膜17を形成する。遮光膜17には、受光部11に対応する部分に開口を形成する。
このようにして、図1に示す固体撮像素子1を形成することができる。
Thereafter, the transfer electrode 16 is covered with an insulating film 15, and a light shielding film 17 made of a light shielding metal such as Al is formed thereon. An opening is formed in the light shielding film 17 at a portion corresponding to the light receiving portion 11.
In this way, the solid-state imaging device 1 shown in FIG. 1 can be formed.

上述の実施例では、半導体基板1上にn型のエピタキシャル層2を形成したが、エピタキシャル層2を形成せず、n型の半導体基板1に、直接イオン注入により反対導電型の第1のp型の半導体ウエル領域4を形成する構成としてもよく、同様に第1のp型の半導体ウエル領域4を覆って高抵抗の半導体領域5を形成し、深く空乏化することができる。 In the above-described embodiment, the n type epitaxial layer 2 is formed on the semiconductor substrate 1, but the epitaxial layer 2 is not formed, and the first electrode having the opposite conductivity type is directly implanted into the n type semiconductor substrate 1. The p-type semiconductor well region 4 may be formed. Similarly, the high-resistance semiconductor region 5 is formed so as to cover the first p-type semiconductor well region 4 and can be deeply depleted.

本発明の固体撮像素子は、上述の例に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。   The solid-state imaging device of the present invention is not limited to the above-described example, and various other configurations can be taken without departing from the gist of the present invention.

本発明の固体撮像素子の実施例の概略構成図(断面図)である。It is a schematic block diagram (sectional drawing) of the Example of the solid-state image sensor of this invention. 図1の固体撮像素子の不純物プロファイルである。It is an impurity profile of the solid-state image sensor of FIG. 図1の固体撮像素子の分光感度特性を比較例の固体撮像素子と比較した図である。 A p型基板を用いた固体撮像素子と比較した図である。 B 従来のn型基板を用いた固体撮像素子と比較した図である。It is the figure which compared the spectral sensitivity characteristic of the solid-state image sensor of FIG. 1 with the solid-state image sensor of a comparative example. It is the figure compared with the solid-state image sensor using an Ap type | mold board | substrate. B is a diagram compared with a solid-state imaging device using a conventional n-type substrate. A、B 図1の固体撮像素子の製造工程の一工程図である。A and B are process diagrams of the manufacturing process of the solid-state imaging device of FIG. C、D 図1の固体撮像素子の製造工程の一工程図である。C and D are process diagrams of the manufacturing process of the solid-state imaging device of FIG. E、F 図1の固体撮像素子の製造工程の一工程図である。E and F are process diagrams of the manufacturing process of the solid-state imaging device of FIG.

符号の説明Explanation of symbols

1 固体撮像素子、2 半導体基板、3 エピタキシャル層、4 第1のp型の半導体ウエル領域、5 高抵抗の半導体領域、6 n型の不純物拡散領域、7 正電荷蓄積領域領域、8 第2のp型の半導体ウエル領域、9 転送チャネル領域、11 受光部、12 垂直転送レジスタ、13、 読み出しゲート部、14 チャネルストップ領域、15 ゲート絶縁膜、16 転送電極、17 遮光膜、18 層間絶縁膜
DESCRIPTION OF SYMBOLS 1 Solid-state image pick-up element, 2 Semiconductor substrate, 3 Epitaxial layer, 1st p-type semiconductor well area | region, 5 High resistance semiconductor area | region, 6 n + type impurity diffusion area | region, 7 Positive charge storage area area | region, 8 2nd P-type semiconductor well region, 9 transfer channel region, 11 light receiving portion, 12 vertical transfer register, 13, readout gate portion, 14 channel stop region, 15 gate insulating film, 16 transfer electrode, 17 light shielding film, 18 interlayer insulating film

Claims (4)

縦型オーバーフロードレイン方式の固体撮像素子において、
第1導電型半導体基板と、
該第1導電型半導体基板上に形成された該第1導電型半導体基板よりも低濃度の第1導電型半導体層と、
該第1導電型半導体層上に形成された第2導電型半導体領域と、
該第2導電型半導体領域上に形成され、第2導電型半導体領域より低濃度で赤外線が十分吸収されうるべく2μm以上の厚さを有する第1導電型、第2導電型又は真性の半導体領域を有し、
該第1導電型、第2導電型又は真性の半導体領域の表面に受光部が形成されてなる
ことを特徴とする固体撮像素子。
In the vertical overflow drain type solid-state image sensor,
A first conductivity type semiconductor substrate;
A first conductivity type semiconductor layer having a lower concentration than the first conductivity type semiconductor substrate formed on the first conductivity type semiconductor substrate;
A second conductivity type semiconductor region formed on the first conductivity type semiconductor layer;
A first conductive type, a second conductive type or an intrinsic semiconductor region formed on the second conductive type semiconductor region and having a thickness of 2 μm or more so that infrared rays can be sufficiently absorbed at a lower concentration than the second conductive type semiconductor region. Have
A light-receiving portion is formed on the surface of the first conductivity type, second conductivity type, or intrinsic semiconductor region.
上記第1導電型、第2導電型又は真性の半導体領域がエピタキシャル層で形成されてなることを特徴とする請求項1に記載の固体撮像素子。   2. The solid-state imaging device according to claim 1, wherein the first conductive type, the second conductive type, or the intrinsic semiconductor region is formed of an epitaxial layer. 上記第1導電型半導体層上に形成された上記第2導電型半導体領域がイオン注入により形成されてなることを特徴とする請求項1に記載の固体撮像素子。   2. The solid-state imaging device according to claim 1, wherein the second conductive type semiconductor region formed on the first conductive type semiconductor layer is formed by ion implantation. 上記第1導電型半導体層上に形成された上記第2導電型半導体領域は1014〜1016cm−3の濃度であることを特徴とする請求項1に記載の固体撮像素子。
2. The solid-state imaging device according to claim 1, wherein the second conductive type semiconductor region formed on the first conductive type semiconductor layer has a concentration of 10 14 to 10 16 cm −3 .
JP2004291744A 2004-10-04 2004-10-04 Solid imaging device Pending JP2005026717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291744A JP2005026717A (en) 2004-10-04 2004-10-04 Solid imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291744A JP2005026717A (en) 2004-10-04 2004-10-04 Solid imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8152494A Division JPH09331058A (en) 1996-06-13 1996-06-13 Solid-state imaging device

Publications (1)

Publication Number Publication Date
JP2005026717A true JP2005026717A (en) 2005-01-27

Family

ID=34191861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291744A Pending JP2005026717A (en) 2004-10-04 2004-10-04 Solid imaging device

Country Status (1)

Country Link
JP (1) JP2005026717A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327858A (en) * 2004-05-13 2005-11-24 Matsushita Electric Ind Co Ltd Solid-state imaging device
JP2008103554A (en) * 2006-09-20 2008-05-01 Fujifilm Corp Back-illuminated image sensor and semiconductor substrate
JP2011009466A (en) * 2009-06-25 2011-01-13 Sony Corp Solid-state image pickup device, and electronic apparatus
JP2017054932A (en) * 2015-09-09 2017-03-16 株式会社東芝 Solid state imaging apparatus and method of manufacturing image state imaging apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327858A (en) * 2004-05-13 2005-11-24 Matsushita Electric Ind Co Ltd Solid-state imaging device
JP2008103554A (en) * 2006-09-20 2008-05-01 Fujifilm Corp Back-illuminated image sensor and semiconductor substrate
JP2011009466A (en) * 2009-06-25 2011-01-13 Sony Corp Solid-state image pickup device, and electronic apparatus
JP2017054932A (en) * 2015-09-09 2017-03-16 株式会社東芝 Solid state imaging apparatus and method of manufacturing image state imaging apparatus

Similar Documents

Publication Publication Date Title
TWI225304B (en) Solid-state image sensing device and camera system using the same
JP3645585B2 (en) Charge coupled device type solid-state imaging device having overflow drain structure
US7557397B2 (en) Pixel with asymmetric transfer gate channel doping
JP3702854B2 (en) Solid-state image sensor
US5898195A (en) Solid-state imaging device of a vertical overflow drain system
US6169318B1 (en) CMOS imager with improved sensitivity
US7154137B2 (en) Image sensor and pixel having a non-convex photodiode
JP4649441B2 (en) Back-illuminated imaging device and imaging device provided with the same
RU2589519C2 (en) Solid-state imaging device, method of making said device and imaging system
US8581307B1 (en) Large CMOS image sensor pixel with improved performance
CN113013187B (en) Negative Bias Isolation Structure for Pixel Devices
JP2001185711A (en) Solid-state imaging device
JP2001291858A (en) Solid-state imaging device and method of manufacturing the same
JP2006054263A (en) Solid-state imaging device and manufacturing method thereof
US20050230720A1 (en) Solid-state image sensor
TWI690073B (en) Floating diffusion of image sensor with low leakage current
TWI451564B (en) Image sensor with two epitaxial layers and manufacturing method thereof
US20080017893A1 (en) Back-lit image sensor
JP2009111118A (en) Back-illuminated solid-state imaging device and manufacturing method thereof
JP4751803B2 (en) Back-illuminated image sensor
JP2005026717A (en) Solid imaging device
JP2003037262A (en) Solid-state imaging device, method of manufacturing the same, and method of driving
CN114078895B (en) Image sensor with through silicon fin transfer gate
JP5136524B2 (en) Solid-state imaging device and manufacturing method thereof
JP2004342784A (en) Solid-state imaging element and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819