JP2004358550A - レーザ加工方法およびレーザ加工装置 - Google Patents
レーザ加工方法およびレーザ加工装置 Download PDFInfo
- Publication number
- JP2004358550A JP2004358550A JP2003163297A JP2003163297A JP2004358550A JP 2004358550 A JP2004358550 A JP 2004358550A JP 2003163297 A JP2003163297 A JP 2003163297A JP 2003163297 A JP2003163297 A JP 2003163297A JP 2004358550 A JP2004358550 A JP 2004358550A
- Authority
- JP
- Japan
- Prior art keywords
- laser beam
- processing
- optical system
- scanning optical
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Laser Beam Processing (AREA)
Abstract
【課題】加工位置精度を高めたレーザ加工方法を提供する。
【解決手段】レーザ加工方法は、第1の加工対象物の表面の穴を形成すべき複数の被加工点の位置を定める情報が格納されたテーブルに基づいて、走査光学系によりレーザビームの進行方向を振りながら、該第1の加工対象物の表面にレーザビームを入射させて、該表面に穴を形成する工程と、前記第1の加工対象物の表面に形成された穴の位置と前記被加工点の位置とのずれ量を算出する工程と、前記ずれ量に基づいて、前記走査光学系がレーザビームの進行方向を振る量の補正量を算出する工程と、前記テーブルに格納された情報を前記補正量で補正した位置情報に基づいて、前記走査光学系によりレーザビームの進行方向を振りながら、第2の加工対象物の表面にレーザビームを入射させて、該第2の加工対象物の表面に穴を形成する工程とを含む。
【選択図】 図1
【解決手段】レーザ加工方法は、第1の加工対象物の表面の穴を形成すべき複数の被加工点の位置を定める情報が格納されたテーブルに基づいて、走査光学系によりレーザビームの進行方向を振りながら、該第1の加工対象物の表面にレーザビームを入射させて、該表面に穴を形成する工程と、前記第1の加工対象物の表面に形成された穴の位置と前記被加工点の位置とのずれ量を算出する工程と、前記ずれ量に基づいて、前記走査光学系がレーザビームの進行方向を振る量の補正量を算出する工程と、前記テーブルに格納された情報を前記補正量で補正した位置情報に基づいて、前記走査光学系によりレーザビームの進行方向を振りながら、第2の加工対象物の表面にレーザビームを入射させて、該第2の加工対象物の表面に穴を形成する工程とを含む。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、レーザ加工方法およびレーザ加工装置に関し、特に、レーザビームが照射される被加工面内の位置を補正することができるレーザ加工方法およびレーザ加工装置に関する。
【0002】
【従来の技術】
レーザビームを用いる穴開け加工において、ガルバノスキャナおよびfθレンズを含んで構成されるレーザ加工装置が広く用いられている。ガルバノスキャナおよびfθレンズは、それぞれ光学的な歪み特性(ディストーション)を有する。レーザ加工装置がディストーションを有することにより、被加工面上の所望の位置を狙ってレーザビームを照射しても、所望の位置から外れた位置にレーザビームが照射されるという問題が発生する。
【0003】
そこで、ディストーションを補正すること(キャリブレーション)が行われている。例えば特許文献1では、ガルバノスキャナでレーザビームの進行方向を振ってレーザを照射できる被加工面の領域を、キャリブレーション用に適当に設定される格子状のメッシュに切り、各格子点の位置にレーザビームを照射して穴を形成するテスト加工を行っている。テスト加工で形成される穴の位置は、ガルバノスキャナ等にディストーションがあるため、理想的な加工位置である格子点から外れる。次に各穴について、ディストーションがなかった場合の理想的な加工位置と、実際の加工位置とのずれ量を算出する。そしてこのずれ量に基づき、格子点ごとに、ガルバノスキャナで狙う被加工面上のレーザ照射位置の補正量を求めている。
【0004】
【特許文献1】特開平10−301052号公報
【0005】
【発明が解決しようとする課題】
特許文献1に開示されている技術では、各格子点に対して補正量が求められるため、その格子点については正確な位置に穴開けがされることになる。しかし、格子点以外のある位置に対する補正量は、その位置を含む格子の頂点となる複数の格子点に対する補正量を用いて、補間的に算出する必要がある。
【0006】
製品を加工する際には、キャリブレーション用の格子上に被加工点が存在するわけではないため、補正しきれない加工位置の誤差が残る。加工位置の精度を充分に高めることができない。
【0007】
本発明の目的は、加工位置精度を高めたレーザ加工方法およびレーザ加工装置を提供することである。
【0008】
【課題を解決するための手段】
本発明の一観点によれば、(a)第1の加工対象物の表面の穴を形成すべき複数の被加工点の位置を定める情報が格納されたテーブルに基づいて、走査光学系によりレーザビームの進行方向を振りながら、該第1の加工対象物の表面にレーザビームを入射させて、該表面に穴を形成する工程と、(b)前記第1の加工対象物の表面に形成された穴の位置と前記被加工点の位置とのずれ量を算出する工程と、(c)前記ずれ量に基づいて、前記走査光学系がレーザビームの進行方向を振る量の補正量を算出する工程と、(d)前記テーブルに格納された情報を前記工程(c)で得られた前記補正量で補正した位置情報に基づいて、前記走査光学系によりレーザビームの進行方向を振りながら、第2の加工対象物の表面にレーザビームを入射させて、該第2の加工対象物の表面に穴を形成する工程とを含むレーザ加工方法が提供される。
【0009】
本発明の他の観点によれば、加工対象物を保持する保持機構と、レーザビームを出射するレーザ光源と、外部から入力される制御信号に基づいて、前記レーザ光源から出射したレーザビームの進行方向を振り、前記保持機構に保持された加工対象物の表面にレーザビームを入射させて、該表面に穴を形成する走査光学系と、前記保持機構に保持された加工対象物の表面の穴を形成すべき複数の被加工点の位置を定める情報を格納した第1のテーブルを有し、該第1のテーブルに基づく制御信号を前記走査光学系に送出して前記走査光学系にレーザビームの進行方向を振らせ、該制御信号に基づいて進行方向を振られたレーザビームにより加工対象物の表面に形成された穴の位置と該被加工点の位置とのずれ量を算出し、前記走査光学系がレーザビームの進行方向を振る量の補正量を該ずれ量に基づいて算出し、該第1のテーブルに格納された情報を該補正量で補正した位置情報に基づく制御信号を前記走査光学系に送出して前記走査光学系にレーザビームの進行方向を振らせる加工制御装置とを有するレーザ加工装置が提供される。
【0010】
レーザビームが照射される被加工面内の位置を、穴を形成すべき被加工点の配置形状に基づいて補正することにより、加工位置精度を高められる。加工位置精度を高めたレーザ加工方法およびレーザ加工装置が提供される。
【0011】
【発明の実施の形態】
図1は、本発明の実施例によるレーザ加工装置の概略図である。レーザ光源1が、パルスレーザビームを出射する。レーザ光源1として、例えば、紫外線領域の波長を有する高調波固体レーザ(例えば、第3〜5高調波を発振するNd:YAGレーザ)や、赤外線領域の波長を有する炭酸ガスレーザを用いることができる。
【0012】
レーザ光源1から出射したレーザビームは、折り返しミラー2で反射され、ガルバノスキャナ3に入射する。ガルバノスキャナ3は、レーザビームの進行方向を2次元方向に振る。ガルバノスキャナ3から出射したレーザビームは、fθレンズ4により収束され、加工対象物である樹脂基板5の表面に集光される。樹脂基板5の表面には、穴開け加工すべき複数の被加工点が画定されている。被加工点にレーザビームを集光させ、穴を形成する。
【0013】
樹脂基板5は、後に詳述するキャリブレーションのためのテスト加工においては、例えば、ポリイミドフィルムやアクリル等の樹脂層である。キャリブレーションの後に行う本加工においては、例えば、BGA(Ball Grid Array)用やCSP(Chip Size Package)用のガラスクロスを含むエポキシ樹脂で形成されるパッケージ基板である。樹脂基板5の大きさ、形状は、例えば、10mm〜50mm角の正方形である。
【0014】
パネル6が、複数の樹脂基板5を保持するために用いられる。ガルバノスキャナ3によりレーザビームの進行方向を振って、レーザビームを照射できるパネル6上の領域(以後、走査領域と呼ぶ)の大きさ、形状は、例えば50mm角の正方形に設定される。図は、1つの樹脂基板5が、走査領域に含まれるような大きさである場合を示している。
【0015】
パネル6は、XYステージ7上に載置されている。XYステージ7を止めたまま、ガルバノスキャナ3を動作させ、走査領域内に存在するある樹脂基板5について、全ての被加工点にレーザを照射して穴開けを終了させることができる。ある樹脂基板5の穴開けが終了したら、XYステージ7を動かし、他の樹脂基板5を走査領域内に移動させて、他の樹脂基板5に穴開けをすることができる。
【0016】
カメラ8が、樹脂基板5の被加工面の画像の撮影に用いられる。カメラ8は、例えばCCD型固体撮像素子を含んで構成される。カメラ8により撮影された被加工面の画像データは、加工制御装置9に送られる。
【0017】
加工制御装置9は、例えばパーソナルコンピュータを含んで構成される。加工制御装置9の有するメモリ9aには、レーザ照射位置情報テーブル9bが確保されている。加工制御装置9は、レーザ照射位置情報テーブル9bに基づく制御信号をガルバノスキャナ3に送信し、レーザビームの進行方向が、レーザ照射位置情報テーブル9bに基づいて振られるように、ガルバノスキャナ3を制御する。
【0018】
レーザ照射位置情報テーブル9bには、被加工面へのレーザ照射時にガルバノスキャナ3が狙う被加工面内の位置(以後、レーザ照射位置と呼ぶ)の情報が格納される。後に詳述するように、キャリブレーションのためのテスト加工を行うとき、レーザ照射位置情報テーブル9bには、被加工点の位置(穴が形成されるべき被加工面内の位置)の情報が格納される。本加工を行うとき、レーザ照射位置情報テーブル9bには、例えば、被加工点の位置およびキャリブレーションで得られた補正値の情報が格納される。
【0019】
加工制御装置9は、後に詳述するように、カメラ8で撮影された被加工面の画像データと被加工点の位置情報とに基づいて、レーザ照射位置の補正量を算出する。加工制御装置9は、また、XYステージ7の移動量を制御する。
【0020】
一般に、ガルバノスキャナおよびfθレンズは、それぞれ光学的な歪み特性(ディストーション)を有する。図5(A)に、ガルバノスキャナが通常有する糸巻型のディストーションを概略的に示す。ガルバノスキャナに入射したレーザビームを、正方形20aの辺上の点が照射されるように出射させたとしても、ディストーションのため、正方形20aの平行な一対の辺が歪んだ糸巻型の図形21aの辺上の点が照射されてしまう。
【0021】
図5(B)に、fθレンズが通常有する樽型のディストーションを概略的に示す。正方形20bは、ディストーションが存在しない理想的なfθレンズによるある正方形の像を示す。しかし、ディストーションを有するfθレンズによるこの正方形の像は、図形21bのように樽型に歪んでしまう。
【0022】
したがって、図1に示すレーザ加工装置が有するガルバノスキャナ3とfθレンズ4とを合わせた光学系は、ガルバノスキャナ3、fθレンズ4それぞれの持つディストーションが合成された歪み特性を有することとなる。ガルバノスキャナ3で被加工面内の所望の位置を狙ってレーザビームを振っても、fθレンズ4から出射したレーザビームは、所望の位置から外れた位置に照射されるという問題が生じる。加工位置の精度を高められず、製品の品質劣化を招く。
【0023】
そこで、製品の加工を行う本加工に先立ち、ディストーションの補正(キャリブレーション)を行っておくことが必要となる。本実施例では、本加工の前にテスト加工を実施して、キャリブレーションを行う。
【0024】
図2(A)、(B)を参照して、キャリブレーションの方法について説明する。図2(A)は、パネル6上に保持された樹脂基板5を、図1に示したfθレンズ4側から見た平面図である。
【0025】
走査領域17は、ガルバノスキャナでレーザビームの進行方向を振って、レーザビームを照射できるパネル6の表面上の領域を示す。走査領域17にはXY座標系が設定されている。
【0026】
表面に複数の被加工点15が画定された樹脂基板5が、走査領域17内の所定の位置に、位置合わせされている。位置合わせは、例えば、矩形の樹脂基板を加工しようとするとき、fθレンズの中心軸上に樹脂基板の中心(対角線の交点)が位置するようにし、樹脂基板のある辺をX軸に平行に、ある辺に直交する他の辺をY軸に平行にして行う。
【0027】
各被加工点15の位置は、走査領域17に設定されたXY座標を用いて示すことができる。キャリブレーションのためのテスト加工に用いるレーザ照射位置情報テーブルには、各被加工点15の位置を示すXY座標の値が格納されている。すなわち、テスト加工では、ガルバノスキャナで各被加工点15の位置を狙ってレーザビームの進行方向を振りながら、樹脂基板5にパルスレーザビームを照射する。樹脂基板5上の全ての被加工点15に対して、穴16を形成する。
【0028】
図に示すように、テスト加工で形成された各穴16の位置は、ガルバノスキャナおよびfθレンズが有するディストーションのため、穴が形成されるべき各被加工点15の位置からずれてしまう。なお図は、穴16のずれの様子を概略的に示す。ずれの方向や距離は、被加工点の配置形状や加工に用いるガルバノスキャナ、fθレンズに応じて異なると考えられる。
【0029】
次に、図1に示すカメラ8により被加工面を撮影し、被加工面の画像データを加工制御装置9に送信する。加工制御装置9は、この画像データに基づいて各穴16のXY座標を算出し、各穴16のXY座標と各穴16に対応する各被加工点15のXY座標とのずれ量を算出する。
【0030】
さらに加工制御装置9は、このずれ量に基づき、レーザ照射位置の補正量を算出する。補正量は、各被加工点15について、X座標に関する補正値ΔX、Y座標に関する補正値ΔYとして求められる。このレーザ照射位置の補正値に基づき、加工制御装置9は、本加工に用いるレーザ照射位置情報テーブルを作成する。
【0031】
補正されたレーザ照射位置の座標は、(X+ΔX、Y+ΔY)と表わされる。補正されたレーザ照射位置(X+ΔX、Y+ΔY)を狙ってレーザを照射することにより、所望の位置(X、Y)にレーザを照射できる。
【0032】
図2(B)に、本加工に用いるレーザ照射位置情報テーブルの書式の一例を示す。各行が、1つの被加工点に対応している。被加工点の数がN個の場合を例示する。1列目が、穴が形成されるべき位置のX座標の値であり、2列目が、穴が形成されるべき位置のY座標の値である。3列目が、X座標に関する補正値であり、4列目が、Y座標に関する補正値である。なお、4〜N−1行目までの行の図示は省略している。
【0033】
このように、実際に加工すべき被加工点の配置形状に従ってキャリブレーションを行うことにより、補正後の加工位置が穴を形成すべき所望の位置となるように補正が行われるので、加工位置精度を向上できる。加工位置の誤差は、従来の方法では10μm程度残っていたが、本実施例の方法によれば5μm以下とすることができる。
【0034】
なお、本加工に用いるレーザ照射位置情報テーブルは、被加工点の位置と補正値とを格納する書式でなくてもよい。被加工点の座標と補正値とを加算した後の、補正後のレーザ照射位置座標(X+ΔX、Y+ΔY)を格納するようにしてもよい。
【0035】
レーザ照射位置は、XY座標以外を用いて表してもよい。例えば、ガルバノスキャナがレーザビームの進行方向を振る角度により表してもよい。
【0036】
次に、図3を参照して、本加工の工程について説明する。本加工では、パネル上の複数の樹脂基板に穴開けを行う。
【0037】
パネル6の表面上に、複数の樹脂基板5が行列状に配置されている。どの樹脂基板5も、大きさ、形状は、テスト加工に用いた樹脂基板5と等しい。また、どの樹脂基板5にも、テスト加工を行った樹脂基板5の被加工点の配置形状と同一の配置形状で穴を形成する。なお、説明のため2つの樹脂基板5について添え字a、bを付す。樹脂基板5aは、テスト加工のときと同一の位置に位置合わせされている。
【0038】
キャリブレーション後のレーザ照射位置情報テーブルに基づいて、ガルバノスキャナでレーザビームの進行方向を振りながら、各被加工点15aにレーザビームを照射し、樹脂基板5aの全被加工点に穴を形成する。キャリブレーション後のレーザ照射位置を狙ってレーザを照射するので、樹脂基板5aの所望の位置に穴開け加工がされる。
【0039】
樹脂基板5aの加工終了後、XYステージを動かし、樹脂基板5bを走査領域17内に移動させ、樹脂基板5aを加工したときと同一の位置に位置合わせする。キャリブレーション後のレーザ照射位置情報テーブルに基づいて、ガルバノスキャナでレーザビームの進行方向を振りながら、各被加工点15bにレーザビームを照射し、樹脂基板5bの全被加工点に穴を形成する。樹脂基板5bの所望の位置に穴開け加工がされる。
【0040】
他の樹脂基板5についても同様の工程を実施し、全ての樹脂基板に対して、所望の位置に穴開け加工を行う。
【0041】
このようにして、本加工で加工される全ての樹脂基板に、高い位置精度で穴開けができる。そして、全ての樹脂基板に、レーザ照射の条件を揃えて穴開けが行われるので、製品ごとの品質のばらつきを抑制することができる。
【0042】
なお、テスト加工および本加工において、各樹脂基板の大きさ、形状は、すべて同一でなくてもよい。被加工点の配置形状が、各樹脂基板で同一であればよい。走査領域内の同一の位置に被加工点が配置されるようにして、テスト加工と本加工を行えばよい。
【0043】
走査領域内に、各樹脂基板の全体が収まる場合を説明したが、全体が収まらなくとも、被加工点が存在する領域が走査領域内に収まっていればよい。
【0044】
テスト加工、本加工において、走査領域内に1枚の樹脂基板を収める場合を説明したが、走査領域内に複数の樹脂基板が収まる場合(例えば樹脂基板が小さい場合)であれば、その複数の樹脂基板の被加工点全体を一まとめにして(つまり、一まとまりの配置形状と捉えて)テスト加工、本加工を行っても良い。例えば走査領域内に4枚ずつ樹脂基板を収めて本加工を行うことができれば、1枚ずつ加工する場合に比べ、生産性の向上が期待される。
【0045】
走査領域内に1枚の樹脂基板が収まりきらない場合(例えば樹脂基板が大きい場合)であっても、1枚の樹脂基板を、走査領域に入る大きさの複数の領域に分割することにより、キャリブレーションを有効に行うことができる。
【0046】
例えば、1枚の樹脂基板を4分割すれば、分割した各領域は走査領域に収まる場合を考える。ここで、分割した各領域に、1〜4番目までの番号をつける。1〜4番目の領域それぞれについてテスト加工を行い、1〜4番目の各領域のレーザ照射位置情報テーブルを作成する。本加工では、どの樹脂基板についても、M番目の領域を加工する際にはM番目のレーザ照射位置情報テーブルを用いることができる(Mは1〜4)。このようにして、複数の樹脂基板に対し、レーザ照射の条件を揃えて、高い加工位置精度で穴開けを行うことができる。
【0047】
ところで、パッケージ基板には、高密度で多数の穴を形成する場合もある。一例として、BGA用のパッケージ基板において、チップ実装面の13mm角の正方形の領域に、56行56列に亘る正方格子状の配列(正方格子のピッチは0.23mm)で、3136(=56×56)個の穴を形成する例が挙げられる。
【0048】
被加工点の数が増えると、テスト加工をしてキャリブレーションをするために要する時間は長くなる。高い加工位置精度を維持しつつ、テスト加工の時間が長くなることを抑制できる方法があれば好ましい。
【0049】
被加工点が高密度に存在するときには、被加工点のうちの一部はテスト加工を行わない(被加工点を間引きしてテスト加工を行う)ことが考えられる。間引きされた被加工点のレーザ照射位置の補正量は、テスト加工がされた被加工点の補正量から補間して求める。被加工点が高密度に存在し、間引きした被加工点の近くに、テスト加工される被加工点が存在するようにできれば、補間は精度よく行うことができるであろう。
【0050】
被加工点を間引きしてテスト加工を行うことにより、キャリブレーションに要する時間の短縮化が図られる。ただし、間引きする被加工点の数をあまり増やすと、高い加工位置精度を損ねる。間引きする被加工点の数は、加工位置精度を高く維持できる程度に止める必要がある。
【0051】
図4に示すような、行列状に配置された被加工点に穴開けする場合に、被加工点を間引きしてテスト加工を行う方法の一例を示す。
【0052】
樹脂基板5上に行列状に(正方格子状に)、被加工点v11〜v35が画定されている。最近接する被加工点同士の距離(正方格子のピッチ)は、例えば0.23mmである。各行内の被加工点に、1つおきにテスト加工を行う。テスト加工がされる被加工点を実線で示し、テスト加工がされない被加工点を破線で示す。
【0053】
テスト加工がされた被加工点については、穴の位置と被加工点の位置とのずれから、レーザ照射位置の補正量を求める。テスト加工がされなかった被加工点については、その被加工点に最近接し、テスト加工がされた被加工点の補正量から補間して求める。例えば、被加工点v12の補正量は、被加工点v11、v13の補正量から補間して求める。
【0054】
なお、複数軸のレーザ加工装置の各軸で、同一の配置形状の被加工点に対する穴開けを、同時に行うこともできる。キャリブレーションを、各軸のガルバノスキャナ、fθレンズのユニットについて実施すればよい。
【0055】
実施例では、ガルバノスキャナおよびfθレンズを含むレーザ加工装置のキャリブレーションを行う場合を説明したが、他の構成のレーザ加工装置、例えば、ガルバノスキャナと、ガルバノスキャナよりレーザ光源側に設置された集光レンズとを含む構成のレーザ加工装置であっても、実施例と同様な考え方でキャリブレーションを行うことができる。すなわち、形成したい穴の配置形状に従って加工対象物にレーザを照射するテスト加工を行い、テスト加工で形成された穴の位置と所望の穴の位置とのずれからレーザ照射位置の補正量を求めればよい。補正量に基づいて本加工を行うことにより、ガルバノスキャナ等からなる光学系のディストーションを補正して、高い位置精度で穴開け加工を行うことができる。
【0056】
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
【0057】
【発明の効果】
レーザビームが照射される被加工面内の位置を、穴を形成すべき被加工点の配置形状に基づいて補正することにより、加工位置精度を高められる。
【図面の簡単な説明】
【図1】本発明の実施例によるレーザ加工装置の概略図である。
【図2】(A)は樹脂基板の平面図であり、(B)はレーザ照射位置情報テーブルの書式の一例である。
【図3】パネル上に複数配置された樹脂基板の平面図である。
【図4】変形例によるテスト加工方法を説明するための、樹脂基板の平面図である。
【図5】(A)はガルバノスキャナの有するディストーションを概略的に示す図であり、(B)はfθレンズの有するディストーションを概略的に示す図である。
【符号の説明】
1 レーザ光源
2 折り返しミラー
3 ガルバノスキャナ
4 fθレンズ
5 樹脂基板
6 パネル
7 XYステージ
8 カメラ
9 加工制御装置
9a メモリ
9b レーザ照射位置情報テーブル
15 被加工点
16 穴
17 走査領域
【発明の属する技術分野】
本発明は、レーザ加工方法およびレーザ加工装置に関し、特に、レーザビームが照射される被加工面内の位置を補正することができるレーザ加工方法およびレーザ加工装置に関する。
【0002】
【従来の技術】
レーザビームを用いる穴開け加工において、ガルバノスキャナおよびfθレンズを含んで構成されるレーザ加工装置が広く用いられている。ガルバノスキャナおよびfθレンズは、それぞれ光学的な歪み特性(ディストーション)を有する。レーザ加工装置がディストーションを有することにより、被加工面上の所望の位置を狙ってレーザビームを照射しても、所望の位置から外れた位置にレーザビームが照射されるという問題が発生する。
【0003】
そこで、ディストーションを補正すること(キャリブレーション)が行われている。例えば特許文献1では、ガルバノスキャナでレーザビームの進行方向を振ってレーザを照射できる被加工面の領域を、キャリブレーション用に適当に設定される格子状のメッシュに切り、各格子点の位置にレーザビームを照射して穴を形成するテスト加工を行っている。テスト加工で形成される穴の位置は、ガルバノスキャナ等にディストーションがあるため、理想的な加工位置である格子点から外れる。次に各穴について、ディストーションがなかった場合の理想的な加工位置と、実際の加工位置とのずれ量を算出する。そしてこのずれ量に基づき、格子点ごとに、ガルバノスキャナで狙う被加工面上のレーザ照射位置の補正量を求めている。
【0004】
【特許文献1】特開平10−301052号公報
【0005】
【発明が解決しようとする課題】
特許文献1に開示されている技術では、各格子点に対して補正量が求められるため、その格子点については正確な位置に穴開けがされることになる。しかし、格子点以外のある位置に対する補正量は、その位置を含む格子の頂点となる複数の格子点に対する補正量を用いて、補間的に算出する必要がある。
【0006】
製品を加工する際には、キャリブレーション用の格子上に被加工点が存在するわけではないため、補正しきれない加工位置の誤差が残る。加工位置の精度を充分に高めることができない。
【0007】
本発明の目的は、加工位置精度を高めたレーザ加工方法およびレーザ加工装置を提供することである。
【0008】
【課題を解決するための手段】
本発明の一観点によれば、(a)第1の加工対象物の表面の穴を形成すべき複数の被加工点の位置を定める情報が格納されたテーブルに基づいて、走査光学系によりレーザビームの進行方向を振りながら、該第1の加工対象物の表面にレーザビームを入射させて、該表面に穴を形成する工程と、(b)前記第1の加工対象物の表面に形成された穴の位置と前記被加工点の位置とのずれ量を算出する工程と、(c)前記ずれ量に基づいて、前記走査光学系がレーザビームの進行方向を振る量の補正量を算出する工程と、(d)前記テーブルに格納された情報を前記工程(c)で得られた前記補正量で補正した位置情報に基づいて、前記走査光学系によりレーザビームの進行方向を振りながら、第2の加工対象物の表面にレーザビームを入射させて、該第2の加工対象物の表面に穴を形成する工程とを含むレーザ加工方法が提供される。
【0009】
本発明の他の観点によれば、加工対象物を保持する保持機構と、レーザビームを出射するレーザ光源と、外部から入力される制御信号に基づいて、前記レーザ光源から出射したレーザビームの進行方向を振り、前記保持機構に保持された加工対象物の表面にレーザビームを入射させて、該表面に穴を形成する走査光学系と、前記保持機構に保持された加工対象物の表面の穴を形成すべき複数の被加工点の位置を定める情報を格納した第1のテーブルを有し、該第1のテーブルに基づく制御信号を前記走査光学系に送出して前記走査光学系にレーザビームの進行方向を振らせ、該制御信号に基づいて進行方向を振られたレーザビームにより加工対象物の表面に形成された穴の位置と該被加工点の位置とのずれ量を算出し、前記走査光学系がレーザビームの進行方向を振る量の補正量を該ずれ量に基づいて算出し、該第1のテーブルに格納された情報を該補正量で補正した位置情報に基づく制御信号を前記走査光学系に送出して前記走査光学系にレーザビームの進行方向を振らせる加工制御装置とを有するレーザ加工装置が提供される。
【0010】
レーザビームが照射される被加工面内の位置を、穴を形成すべき被加工点の配置形状に基づいて補正することにより、加工位置精度を高められる。加工位置精度を高めたレーザ加工方法およびレーザ加工装置が提供される。
【0011】
【発明の実施の形態】
図1は、本発明の実施例によるレーザ加工装置の概略図である。レーザ光源1が、パルスレーザビームを出射する。レーザ光源1として、例えば、紫外線領域の波長を有する高調波固体レーザ(例えば、第3〜5高調波を発振するNd:YAGレーザ)や、赤外線領域の波長を有する炭酸ガスレーザを用いることができる。
【0012】
レーザ光源1から出射したレーザビームは、折り返しミラー2で反射され、ガルバノスキャナ3に入射する。ガルバノスキャナ3は、レーザビームの進行方向を2次元方向に振る。ガルバノスキャナ3から出射したレーザビームは、fθレンズ4により収束され、加工対象物である樹脂基板5の表面に集光される。樹脂基板5の表面には、穴開け加工すべき複数の被加工点が画定されている。被加工点にレーザビームを集光させ、穴を形成する。
【0013】
樹脂基板5は、後に詳述するキャリブレーションのためのテスト加工においては、例えば、ポリイミドフィルムやアクリル等の樹脂層である。キャリブレーションの後に行う本加工においては、例えば、BGA(Ball Grid Array)用やCSP(Chip Size Package)用のガラスクロスを含むエポキシ樹脂で形成されるパッケージ基板である。樹脂基板5の大きさ、形状は、例えば、10mm〜50mm角の正方形である。
【0014】
パネル6が、複数の樹脂基板5を保持するために用いられる。ガルバノスキャナ3によりレーザビームの進行方向を振って、レーザビームを照射できるパネル6上の領域(以後、走査領域と呼ぶ)の大きさ、形状は、例えば50mm角の正方形に設定される。図は、1つの樹脂基板5が、走査領域に含まれるような大きさである場合を示している。
【0015】
パネル6は、XYステージ7上に載置されている。XYステージ7を止めたまま、ガルバノスキャナ3を動作させ、走査領域内に存在するある樹脂基板5について、全ての被加工点にレーザを照射して穴開けを終了させることができる。ある樹脂基板5の穴開けが終了したら、XYステージ7を動かし、他の樹脂基板5を走査領域内に移動させて、他の樹脂基板5に穴開けをすることができる。
【0016】
カメラ8が、樹脂基板5の被加工面の画像の撮影に用いられる。カメラ8は、例えばCCD型固体撮像素子を含んで構成される。カメラ8により撮影された被加工面の画像データは、加工制御装置9に送られる。
【0017】
加工制御装置9は、例えばパーソナルコンピュータを含んで構成される。加工制御装置9の有するメモリ9aには、レーザ照射位置情報テーブル9bが確保されている。加工制御装置9は、レーザ照射位置情報テーブル9bに基づく制御信号をガルバノスキャナ3に送信し、レーザビームの進行方向が、レーザ照射位置情報テーブル9bに基づいて振られるように、ガルバノスキャナ3を制御する。
【0018】
レーザ照射位置情報テーブル9bには、被加工面へのレーザ照射時にガルバノスキャナ3が狙う被加工面内の位置(以後、レーザ照射位置と呼ぶ)の情報が格納される。後に詳述するように、キャリブレーションのためのテスト加工を行うとき、レーザ照射位置情報テーブル9bには、被加工点の位置(穴が形成されるべき被加工面内の位置)の情報が格納される。本加工を行うとき、レーザ照射位置情報テーブル9bには、例えば、被加工点の位置およびキャリブレーションで得られた補正値の情報が格納される。
【0019】
加工制御装置9は、後に詳述するように、カメラ8で撮影された被加工面の画像データと被加工点の位置情報とに基づいて、レーザ照射位置の補正量を算出する。加工制御装置9は、また、XYステージ7の移動量を制御する。
【0020】
一般に、ガルバノスキャナおよびfθレンズは、それぞれ光学的な歪み特性(ディストーション)を有する。図5(A)に、ガルバノスキャナが通常有する糸巻型のディストーションを概略的に示す。ガルバノスキャナに入射したレーザビームを、正方形20aの辺上の点が照射されるように出射させたとしても、ディストーションのため、正方形20aの平行な一対の辺が歪んだ糸巻型の図形21aの辺上の点が照射されてしまう。
【0021】
図5(B)に、fθレンズが通常有する樽型のディストーションを概略的に示す。正方形20bは、ディストーションが存在しない理想的なfθレンズによるある正方形の像を示す。しかし、ディストーションを有するfθレンズによるこの正方形の像は、図形21bのように樽型に歪んでしまう。
【0022】
したがって、図1に示すレーザ加工装置が有するガルバノスキャナ3とfθレンズ4とを合わせた光学系は、ガルバノスキャナ3、fθレンズ4それぞれの持つディストーションが合成された歪み特性を有することとなる。ガルバノスキャナ3で被加工面内の所望の位置を狙ってレーザビームを振っても、fθレンズ4から出射したレーザビームは、所望の位置から外れた位置に照射されるという問題が生じる。加工位置の精度を高められず、製品の品質劣化を招く。
【0023】
そこで、製品の加工を行う本加工に先立ち、ディストーションの補正(キャリブレーション)を行っておくことが必要となる。本実施例では、本加工の前にテスト加工を実施して、キャリブレーションを行う。
【0024】
図2(A)、(B)を参照して、キャリブレーションの方法について説明する。図2(A)は、パネル6上に保持された樹脂基板5を、図1に示したfθレンズ4側から見た平面図である。
【0025】
走査領域17は、ガルバノスキャナでレーザビームの進行方向を振って、レーザビームを照射できるパネル6の表面上の領域を示す。走査領域17にはXY座標系が設定されている。
【0026】
表面に複数の被加工点15が画定された樹脂基板5が、走査領域17内の所定の位置に、位置合わせされている。位置合わせは、例えば、矩形の樹脂基板を加工しようとするとき、fθレンズの中心軸上に樹脂基板の中心(対角線の交点)が位置するようにし、樹脂基板のある辺をX軸に平行に、ある辺に直交する他の辺をY軸に平行にして行う。
【0027】
各被加工点15の位置は、走査領域17に設定されたXY座標を用いて示すことができる。キャリブレーションのためのテスト加工に用いるレーザ照射位置情報テーブルには、各被加工点15の位置を示すXY座標の値が格納されている。すなわち、テスト加工では、ガルバノスキャナで各被加工点15の位置を狙ってレーザビームの進行方向を振りながら、樹脂基板5にパルスレーザビームを照射する。樹脂基板5上の全ての被加工点15に対して、穴16を形成する。
【0028】
図に示すように、テスト加工で形成された各穴16の位置は、ガルバノスキャナおよびfθレンズが有するディストーションのため、穴が形成されるべき各被加工点15の位置からずれてしまう。なお図は、穴16のずれの様子を概略的に示す。ずれの方向や距離は、被加工点の配置形状や加工に用いるガルバノスキャナ、fθレンズに応じて異なると考えられる。
【0029】
次に、図1に示すカメラ8により被加工面を撮影し、被加工面の画像データを加工制御装置9に送信する。加工制御装置9は、この画像データに基づいて各穴16のXY座標を算出し、各穴16のXY座標と各穴16に対応する各被加工点15のXY座標とのずれ量を算出する。
【0030】
さらに加工制御装置9は、このずれ量に基づき、レーザ照射位置の補正量を算出する。補正量は、各被加工点15について、X座標に関する補正値ΔX、Y座標に関する補正値ΔYとして求められる。このレーザ照射位置の補正値に基づき、加工制御装置9は、本加工に用いるレーザ照射位置情報テーブルを作成する。
【0031】
補正されたレーザ照射位置の座標は、(X+ΔX、Y+ΔY)と表わされる。補正されたレーザ照射位置(X+ΔX、Y+ΔY)を狙ってレーザを照射することにより、所望の位置(X、Y)にレーザを照射できる。
【0032】
図2(B)に、本加工に用いるレーザ照射位置情報テーブルの書式の一例を示す。各行が、1つの被加工点に対応している。被加工点の数がN個の場合を例示する。1列目が、穴が形成されるべき位置のX座標の値であり、2列目が、穴が形成されるべき位置のY座標の値である。3列目が、X座標に関する補正値であり、4列目が、Y座標に関する補正値である。なお、4〜N−1行目までの行の図示は省略している。
【0033】
このように、実際に加工すべき被加工点の配置形状に従ってキャリブレーションを行うことにより、補正後の加工位置が穴を形成すべき所望の位置となるように補正が行われるので、加工位置精度を向上できる。加工位置の誤差は、従来の方法では10μm程度残っていたが、本実施例の方法によれば5μm以下とすることができる。
【0034】
なお、本加工に用いるレーザ照射位置情報テーブルは、被加工点の位置と補正値とを格納する書式でなくてもよい。被加工点の座標と補正値とを加算した後の、補正後のレーザ照射位置座標(X+ΔX、Y+ΔY)を格納するようにしてもよい。
【0035】
レーザ照射位置は、XY座標以外を用いて表してもよい。例えば、ガルバノスキャナがレーザビームの進行方向を振る角度により表してもよい。
【0036】
次に、図3を参照して、本加工の工程について説明する。本加工では、パネル上の複数の樹脂基板に穴開けを行う。
【0037】
パネル6の表面上に、複数の樹脂基板5が行列状に配置されている。どの樹脂基板5も、大きさ、形状は、テスト加工に用いた樹脂基板5と等しい。また、どの樹脂基板5にも、テスト加工を行った樹脂基板5の被加工点の配置形状と同一の配置形状で穴を形成する。なお、説明のため2つの樹脂基板5について添え字a、bを付す。樹脂基板5aは、テスト加工のときと同一の位置に位置合わせされている。
【0038】
キャリブレーション後のレーザ照射位置情報テーブルに基づいて、ガルバノスキャナでレーザビームの進行方向を振りながら、各被加工点15aにレーザビームを照射し、樹脂基板5aの全被加工点に穴を形成する。キャリブレーション後のレーザ照射位置を狙ってレーザを照射するので、樹脂基板5aの所望の位置に穴開け加工がされる。
【0039】
樹脂基板5aの加工終了後、XYステージを動かし、樹脂基板5bを走査領域17内に移動させ、樹脂基板5aを加工したときと同一の位置に位置合わせする。キャリブレーション後のレーザ照射位置情報テーブルに基づいて、ガルバノスキャナでレーザビームの進行方向を振りながら、各被加工点15bにレーザビームを照射し、樹脂基板5bの全被加工点に穴を形成する。樹脂基板5bの所望の位置に穴開け加工がされる。
【0040】
他の樹脂基板5についても同様の工程を実施し、全ての樹脂基板に対して、所望の位置に穴開け加工を行う。
【0041】
このようにして、本加工で加工される全ての樹脂基板に、高い位置精度で穴開けができる。そして、全ての樹脂基板に、レーザ照射の条件を揃えて穴開けが行われるので、製品ごとの品質のばらつきを抑制することができる。
【0042】
なお、テスト加工および本加工において、各樹脂基板の大きさ、形状は、すべて同一でなくてもよい。被加工点の配置形状が、各樹脂基板で同一であればよい。走査領域内の同一の位置に被加工点が配置されるようにして、テスト加工と本加工を行えばよい。
【0043】
走査領域内に、各樹脂基板の全体が収まる場合を説明したが、全体が収まらなくとも、被加工点が存在する領域が走査領域内に収まっていればよい。
【0044】
テスト加工、本加工において、走査領域内に1枚の樹脂基板を収める場合を説明したが、走査領域内に複数の樹脂基板が収まる場合(例えば樹脂基板が小さい場合)であれば、その複数の樹脂基板の被加工点全体を一まとめにして(つまり、一まとまりの配置形状と捉えて)テスト加工、本加工を行っても良い。例えば走査領域内に4枚ずつ樹脂基板を収めて本加工を行うことができれば、1枚ずつ加工する場合に比べ、生産性の向上が期待される。
【0045】
走査領域内に1枚の樹脂基板が収まりきらない場合(例えば樹脂基板が大きい場合)であっても、1枚の樹脂基板を、走査領域に入る大きさの複数の領域に分割することにより、キャリブレーションを有効に行うことができる。
【0046】
例えば、1枚の樹脂基板を4分割すれば、分割した各領域は走査領域に収まる場合を考える。ここで、分割した各領域に、1〜4番目までの番号をつける。1〜4番目の領域それぞれについてテスト加工を行い、1〜4番目の各領域のレーザ照射位置情報テーブルを作成する。本加工では、どの樹脂基板についても、M番目の領域を加工する際にはM番目のレーザ照射位置情報テーブルを用いることができる(Mは1〜4)。このようにして、複数の樹脂基板に対し、レーザ照射の条件を揃えて、高い加工位置精度で穴開けを行うことができる。
【0047】
ところで、パッケージ基板には、高密度で多数の穴を形成する場合もある。一例として、BGA用のパッケージ基板において、チップ実装面の13mm角の正方形の領域に、56行56列に亘る正方格子状の配列(正方格子のピッチは0.23mm)で、3136(=56×56)個の穴を形成する例が挙げられる。
【0048】
被加工点の数が増えると、テスト加工をしてキャリブレーションをするために要する時間は長くなる。高い加工位置精度を維持しつつ、テスト加工の時間が長くなることを抑制できる方法があれば好ましい。
【0049】
被加工点が高密度に存在するときには、被加工点のうちの一部はテスト加工を行わない(被加工点を間引きしてテスト加工を行う)ことが考えられる。間引きされた被加工点のレーザ照射位置の補正量は、テスト加工がされた被加工点の補正量から補間して求める。被加工点が高密度に存在し、間引きした被加工点の近くに、テスト加工される被加工点が存在するようにできれば、補間は精度よく行うことができるであろう。
【0050】
被加工点を間引きしてテスト加工を行うことにより、キャリブレーションに要する時間の短縮化が図られる。ただし、間引きする被加工点の数をあまり増やすと、高い加工位置精度を損ねる。間引きする被加工点の数は、加工位置精度を高く維持できる程度に止める必要がある。
【0051】
図4に示すような、行列状に配置された被加工点に穴開けする場合に、被加工点を間引きしてテスト加工を行う方法の一例を示す。
【0052】
樹脂基板5上に行列状に(正方格子状に)、被加工点v11〜v35が画定されている。最近接する被加工点同士の距離(正方格子のピッチ)は、例えば0.23mmである。各行内の被加工点に、1つおきにテスト加工を行う。テスト加工がされる被加工点を実線で示し、テスト加工がされない被加工点を破線で示す。
【0053】
テスト加工がされた被加工点については、穴の位置と被加工点の位置とのずれから、レーザ照射位置の補正量を求める。テスト加工がされなかった被加工点については、その被加工点に最近接し、テスト加工がされた被加工点の補正量から補間して求める。例えば、被加工点v12の補正量は、被加工点v11、v13の補正量から補間して求める。
【0054】
なお、複数軸のレーザ加工装置の各軸で、同一の配置形状の被加工点に対する穴開けを、同時に行うこともできる。キャリブレーションを、各軸のガルバノスキャナ、fθレンズのユニットについて実施すればよい。
【0055】
実施例では、ガルバノスキャナおよびfθレンズを含むレーザ加工装置のキャリブレーションを行う場合を説明したが、他の構成のレーザ加工装置、例えば、ガルバノスキャナと、ガルバノスキャナよりレーザ光源側に設置された集光レンズとを含む構成のレーザ加工装置であっても、実施例と同様な考え方でキャリブレーションを行うことができる。すなわち、形成したい穴の配置形状に従って加工対象物にレーザを照射するテスト加工を行い、テスト加工で形成された穴の位置と所望の穴の位置とのずれからレーザ照射位置の補正量を求めればよい。補正量に基づいて本加工を行うことにより、ガルバノスキャナ等からなる光学系のディストーションを補正して、高い位置精度で穴開け加工を行うことができる。
【0056】
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
【0057】
【発明の効果】
レーザビームが照射される被加工面内の位置を、穴を形成すべき被加工点の配置形状に基づいて補正することにより、加工位置精度を高められる。
【図面の簡単な説明】
【図1】本発明の実施例によるレーザ加工装置の概略図である。
【図2】(A)は樹脂基板の平面図であり、(B)はレーザ照射位置情報テーブルの書式の一例である。
【図3】パネル上に複数配置された樹脂基板の平面図である。
【図4】変形例によるテスト加工方法を説明するための、樹脂基板の平面図である。
【図5】(A)はガルバノスキャナの有するディストーションを概略的に示す図であり、(B)はfθレンズの有するディストーションを概略的に示す図である。
【符号の説明】
1 レーザ光源
2 折り返しミラー
3 ガルバノスキャナ
4 fθレンズ
5 樹脂基板
6 パネル
7 XYステージ
8 カメラ
9 加工制御装置
9a メモリ
9b レーザ照射位置情報テーブル
15 被加工点
16 穴
17 走査領域
Claims (4)
- (a)第1の加工対象物の表面の穴を形成すべき複数の被加工点の位置を定める情報が格納されたテーブルに基づいて、走査光学系によりレーザビームの進行方向を振りながら、該第1の加工対象物の表面にレーザビームを入射させて、該表面に穴を形成する工程と、
(b)前記第1の加工対象物の表面に形成された穴の位置と前記被加工点の位置とのずれ量を算出する工程と、
(c)前記ずれ量に基づいて、前記走査光学系がレーザビームの進行方向を振る量の補正量を算出する工程と、
(d)前記テーブルに格納された情報を前記工程(c)で得られた前記補正量で補正した位置情報に基づいて、前記走査光学系によりレーザビームの進行方向を振りながら、第2の加工対象物の表面にレーザビームを入射させて、該第2の加工対象物の表面に穴を形成する工程と
を含むレーザ加工方法。 - 前記工程(d)の後に、
前記テーブルに格納された情報を前記工程(c)で得られた前記補正量で補正した位置情報に基づいて、前記走査光学系によりレーザビームの進行方向を振りながら、加工対象物の表面にレーザビームを入射させて、該加工対象物の表面に穴を形成する工程を、1回または複数回繰り返す請求項1に記載のレーザ加工方法。 - 加工対象物を保持する保持機構と、
レーザビームを出射するレーザ光源と、
外部から入力される制御信号に基づいて、前記レーザ光源から出射したレーザビームの進行方向を振り、前記保持機構に保持された加工対象物の表面にレーザビームを入射させて、該表面に穴を形成する走査光学系と、
前記保持機構に保持された加工対象物の表面の穴を形成すべき複数の被加工点の位置を定める情報を格納した第1のテーブルを有し、該第1のテーブルに基づく制御信号を前記走査光学系に送出して前記走査光学系にレーザビームの進行方向を振らせ、該制御信号に基づいて進行方向を振られたレーザビームにより加工対象物の表面に形成された穴の位置と該被加工点の位置とのずれ量を算出し、前記走査光学系がレーザビームの進行方向を振る量の補正量を該ずれ量に基づいて算出し、該第1のテーブルに格納された情報を該補正量で補正した位置情報に基づく制御信号を前記走査光学系に送出して前記走査光学系にレーザビームの進行方向を振らせる加工制御装置と
を有するレーザ加工装置。 - 前記加工制御装置が、前記第1のテーブルに格納された情報を前記補正量で補正した位置情報を格納した第2のテーブルを有し、該第2のテーブルに基づく制御信号を前記走査光学系に送出して前記走査光学系にレーザビームの進行方向を振らせる請求項3に記載のレーザ加工装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003163297A JP2004358550A (ja) | 2003-06-09 | 2003-06-09 | レーザ加工方法およびレーザ加工装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003163297A JP2004358550A (ja) | 2003-06-09 | 2003-06-09 | レーザ加工方法およびレーザ加工装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004358550A true JP2004358550A (ja) | 2004-12-24 |
Family
ID=34055155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003163297A Pending JP2004358550A (ja) | 2003-06-09 | 2003-06-09 | レーザ加工方法およびレーザ加工装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004358550A (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006247674A (ja) * | 2005-03-09 | 2006-09-21 | Disco Abrasive Syst Ltd | レーザー加工装置 |
JP2006263763A (ja) * | 2005-03-23 | 2006-10-05 | Disco Abrasive Syst Ltd | レーザー加工装置 |
JP2006297468A (ja) * | 2005-04-22 | 2006-11-02 | Canon Inc | イオンビーム照射方法及び装置 |
JP2008046079A (ja) * | 2006-08-21 | 2008-02-28 | Disco Abrasive Syst Ltd | 表面位置検出装置およびレーザー加工機 |
JP2008132514A (ja) * | 2006-11-28 | 2008-06-12 | Matsushita Electric Ind Co Ltd | レーザ加工方法及びその方法を用いて製造されるマイクロセル |
JP2009241148A (ja) * | 2008-03-31 | 2009-10-22 | Sunx Ltd | レーザ加工装置 |
JP2010099674A (ja) * | 2008-10-21 | 2010-05-06 | Mitsubishi Electric Corp | レーザ加工装置 |
KR101181204B1 (ko) | 2009-03-31 | 2012-09-18 | 미쓰비시덴키 가부시키가이샤 | 레이저 가공장치 및 레이저 가공방법 |
JP2013111629A (ja) * | 2011-11-30 | 2013-06-10 | Panasonic Corp | レーザ照射位置の補正方法、及び、レーザ加工装置 |
WO2015129106A1 (ja) * | 2014-02-28 | 2015-09-03 | シャープ株式会社 | カメラモジュールおよび撮像装置 |
CN109693035A (zh) * | 2017-10-24 | 2019-04-30 | 住友重机械工业株式会社 | 激光加工机的控制装置、激光加工方法及激光加工机 |
CN115087512A (zh) * | 2020-02-10 | 2022-09-20 | 三菱电机株式会社 | 激光加工方法及激光加工装置 |
-
2003
- 2003-06-09 JP JP2003163297A patent/JP2004358550A/ja active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4664710B2 (ja) * | 2005-03-09 | 2011-04-06 | 株式会社ディスコ | レーザー加工装置 |
JP2006247674A (ja) * | 2005-03-09 | 2006-09-21 | Disco Abrasive Syst Ltd | レーザー加工装置 |
JP2006263763A (ja) * | 2005-03-23 | 2006-10-05 | Disco Abrasive Syst Ltd | レーザー加工装置 |
JP2006297468A (ja) * | 2005-04-22 | 2006-11-02 | Canon Inc | イオンビーム照射方法及び装置 |
JP4689333B2 (ja) * | 2005-04-22 | 2011-05-25 | キヤノン株式会社 | イオンビーム照射方法及び装置 |
JP2008046079A (ja) * | 2006-08-21 | 2008-02-28 | Disco Abrasive Syst Ltd | 表面位置検出装置およびレーザー加工機 |
JP2008132514A (ja) * | 2006-11-28 | 2008-06-12 | Matsushita Electric Ind Co Ltd | レーザ加工方法及びその方法を用いて製造されるマイクロセル |
JP2009241148A (ja) * | 2008-03-31 | 2009-10-22 | Sunx Ltd | レーザ加工装置 |
JP2010099674A (ja) * | 2008-10-21 | 2010-05-06 | Mitsubishi Electric Corp | レーザ加工装置 |
KR101181204B1 (ko) | 2009-03-31 | 2012-09-18 | 미쓰비시덴키 가부시키가이샤 | 레이저 가공장치 및 레이저 가공방법 |
JP2013111629A (ja) * | 2011-11-30 | 2013-06-10 | Panasonic Corp | レーザ照射位置の補正方法、及び、レーザ加工装置 |
WO2015129106A1 (ja) * | 2014-02-28 | 2015-09-03 | シャープ株式会社 | カメラモジュールおよび撮像装置 |
JPWO2015129106A1 (ja) * | 2014-02-28 | 2017-03-30 | シャープ株式会社 | カメラモジュールおよび撮像装置 |
US9888181B2 (en) | 2014-02-28 | 2018-02-06 | Sharp Kabushiki Kaisha | Camera module and image capturing apparatus with shake correction of image capturing lens or image sensor |
CN109693035A (zh) * | 2017-10-24 | 2019-04-30 | 住友重机械工业株式会社 | 激光加工机的控制装置、激光加工方法及激光加工机 |
JP2019076919A (ja) * | 2017-10-24 | 2019-05-23 | 住友重機械工業株式会社 | レーザ加工機の制御装置、レーザ加工方法、及びレーザ加工機 |
JP7066368B2 (ja) | 2017-10-24 | 2022-05-13 | 住友重機械工業株式会社 | レーザ加工機の制御装置、レーザ加工方法、及びレーザ加工機 |
CN109693035B (zh) * | 2017-10-24 | 2022-06-14 | 住友重机械工业株式会社 | 激光加工机的控制装置、激光加工方法及激光加工机 |
CN115087512A (zh) * | 2020-02-10 | 2022-09-20 | 三菱电机株式会社 | 激光加工方法及激光加工装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100914053B1 (ko) | 반도체 웨이퍼와 같은 워크피이스를 마킹하는 방법 및 장치와 이에 이용하는 레이저마커 | |
TWI742247B (zh) | 雷射加工裝置 | |
US6462306B1 (en) | System and method for material processing using multiple laser beams | |
US7829439B2 (en) | Laser beam processing method for making a semiconductor device | |
TWI670131B (zh) | 雷射加工裝置 | |
TWI546146B (zh) | Laser processing device and laser processing method | |
JP2010162559A (ja) | レーザ加工方法および加工装置並びに被加工物 | |
JP2004358550A (ja) | レーザ加工方法およびレーザ加工装置 | |
TWI228816B (en) | Chip scale marker and marking method | |
US20040112879A1 (en) | Identification-code laser marking method and apparatus | |
CN108701678B (zh) | 一种标记位置校正装置及方法 | |
JP2004148379A (ja) | レーザマーキングシステム及びレーザマーキング方法 | |
JPH10328873A (ja) | レーザ加工装置 | |
JPH10301052A (ja) | レーザ加工装置の加工位置ずれ補正方式 | |
JP4048873B2 (ja) | 位置決め加工方法 | |
JP4351955B2 (ja) | 基準点の位置決定方法 | |
JP4801634B2 (ja) | レーザ加工装置、及び、レーザ加工方法 | |
KR20040090643A (ko) | 인쇄제판용 판재의 자동 절단장치 및 그 방법 | |
JP3378242B1 (ja) | レーザ加工方法及び加工装置 | |
JP2010051983A (ja) | 立体回路基板の製造装置及びその製造方法 | |
JP3643104B2 (ja) | レーザ加工装置における加工位置ずれ補正方法 | |
KR101511645B1 (ko) | 레이저빔의 조사위치 보정방법 | |
JP2002120079A (ja) | レーザ加工装置およびレーザ加工方法 | |
TW201032936A (en) | System and method for laser processing | |
JP7451049B2 (ja) | レーザ加工装置及びレーザ加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050823 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060418 |