[go: up one dir, main page]

JP2004353053A - Titanium based amorphous alloy - Google Patents

Titanium based amorphous alloy Download PDF

Info

Publication number
JP2004353053A
JP2004353053A JP2003153650A JP2003153650A JP2004353053A JP 2004353053 A JP2004353053 A JP 2004353053A JP 2003153650 A JP2003153650 A JP 2003153650A JP 2003153650 A JP2003153650 A JP 2003153650A JP 2004353053 A JP2004353053 A JP 2004353053A
Authority
JP
Japan
Prior art keywords
amorphous alloy
titanium
amorphous
based amorphous
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003153650A
Other languages
Japanese (ja)
Inventor
Yuichiro Shindo
裕一朗 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2003153650A priority Critical patent/JP2004353053A/en
Publication of JP2004353053A publication Critical patent/JP2004353053A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium based amorphous alloy capable of remarkably enhancing amorphous substance formability and workability, and taking advantage of its corrosion resistance and strength to be applied for industrial materials sufficiently. <P>SOLUTION: The titanium amorphous alloy has an oxygen content of ≤0.1 wt%. The content of impurities other than gas components is ≤1,000 wt ppm. The content of the gas components is ≤1 wt%. The volume fraction of amorphous materials is ≥80%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、優れた耐食性、強度及び加工性を有するチタン基非晶質合金に関する。
【0002】
【従来の技術】
一般に、アモルファス金属(金属ガラス)を製造する場合、結晶化を抑制するために溶融状態から一挙に凝固させる方法が採られている。良く知られた方法として、大きな冷却速度が得られる双ロール法、片ロール法等がある。
金属又は合金の種類によって、アモルファス化し易いものとそうでないないものがあるが、このような中で、特にチタン合金は非晶質形成能が小さいために、1mm程度の線しか作製できないという問題がある。
【0003】
一方、チタン基非晶質合金は他の非晶質材料に比べて、優れた耐食性を有し、生体への反応がなく(生体毒性がない)、高強度であるという格段に優れた特性を有している。例えばTi−Ni−Cu系非晶質合金は、30°C以上の過冷却液体領域と1000MPaを超える強度を備えている。
このような材料の特性を活かして、医用材料や化学機器等の材料に利用が検討されている。しかし、上記のように製造できる形状が著しく制限されているために、実用化できる範囲が極めて小さい。
このようなことから、チタン基非晶質合金の実用化のために、主に合金成分の組合せに力点をおいて、過冷却液体領域温度幅、製造できる形状や寸法、加工性等を向上させる工夫がなされている(例えば、特許文献1参照)。
しかし、依然として非晶質形成能が劣り、1mm程度の細線の製造しかできず、また加工性が著しく劣るという問題があった。
【0004】
【特許文献1】
国際公開番号WO99/49095号公報
【0005】
【発明が解決しようとする課題】
本発明は、チタン基非晶質合金の非晶質形成能と加工性を飛躍的に向上させると共に、その材料の保有する耐食性と強度を活かし、工業材料として十分適用できるチタン基非晶質合金を提供する。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、本発明者らは、チタン基非晶質合金の不純物が非晶質形成能と加工性に悪影響を与えていると考え、これを改善することにより、非晶質形成能と加工性を向上させ、かつ耐食性と強度を良好に活かすことができるとの知見を得た。
【0007】
本発明は、上記知見に基づき、
1.酸素含有量が0.1wt%以下であることを特徴とするチタン基非晶質合金
2.酸素含有量が0.05wt%以下であることを特徴とするチタン基非晶質合金
3.ガス成分を除く不純物含有量が1000wtppm以下であることを特徴とする上記1又は2記載のチタン基非晶質合金
4.ガス成分含有量が1wt%以下であることを特徴とする上記1〜3のいずれかに記載のチタン基非晶質合金
5.非晶質の体積分率が80%以上であることを特徴とする上記1〜4のいずれかに記載のチタン基非晶質合金
6.非晶質の体積分率が90%以上であることを特徴とする上記1〜4のいずれかに記載のチタン基非晶質合金
【0008】
【発明の実施の形態】
本発明のチタン基非晶質合金は、酸素含有量0.1wt%以下であり、好ましくは酸素含有量0.05wt%以下である。不純物の中で酸素の量は極めて重要であり、酸素が多量に存在すると非晶質化が著しく低下する。
酸素含有量0.1wt%以下とすることにより、急冷凝固によるアモルファス化の寸法(サイズ)を大型化が可能となる。すなわち、急冷凝固によって、直径10mm以上、さらには50mm以上のチタン基非晶質合金丸棒の製造が可能となり、加工性も向上する。
【0009】
さらに、ガス成分を除く不純物含有量が1000wtppm以下であることが望ましい。ガス成分を除く不純物含有量が1000wtppmを超えると非晶質化に影響を与え、過冷却液体領域温度幅を縮小させ、また組成的にも安定しない。
また、酸素を含むガス成分含有量の総量が1wt%以下であることが望ましい。ガス成分としては、O、N、H、Cl、S、P及びCが挙げられる。このガス成分の存在は酸素と同様の影響を与える。
【0010】
本発明のチタン基非晶質合金は、非晶質の体積分率が80%以上、さらには非晶質の体積分率が90%以上を達成することができる。
本発明のチタン基非晶質合金は、特に鉄、コバルト、ニッケル及び銅から成る群から選択した1種又は2種以上の元素を含有し、残余チタン及び不可避的不純物であるチタン基非晶質合金、また上記に、アルミニウム、シリコン、錫及びアンチモンから成る群から選択した1種又は2種以上の元素をさらに含有するチタン基非晶質合金に有効である。
なお、酸素を中心とする不純物を低減させることによって、非晶質形成能及び非晶質の体積成分を向上させ、過冷却液体領域温度幅を広げ、さらには加工性を向上させる効果は他のチタン基非晶質合金にも適用できるものであり、本発明はこれらの適用を制限するものではなく、これらを包含するものである。
また、本発明のチタン基非晶質合金は加工性に富むことから、自動車の圧力センサー用歪ゲージ、マイクロマシンのギア等の機能性材料に使用が可能である。
【0011】
【実施例及び比較例】
以下に実施例及び比較例を説明するが、本実施例は理解を容易にするためのものであり、本発明を制限するものではない。すなわち、本発明の技術思想の範囲内での他の変形あるいは他の実施例は、当然本発明に含まれる。
【0012】
(実施例1)
酸素含有量400ppmであるTi−Ni−Cu系合金をアルゴン雰囲気の石英管内で溶解した後、噴出圧0.5〜2.0kg/cmで銅製の金型に充填凝固させ、直径5mmの非晶質合金塊(丸棒)を得た。
本合金のその他の主な不純物はFe、Zrである。
この非晶質合金塊の非晶質の大きさは体積成分率で90%であった。また、この非晶質合金の過冷却液体領域温度幅は50°Cとなり、強度は1900MPaに達した。加工性も向上し、耐食性も優れたチタン基非晶質合金が得られた。
【0013】
(実施例2)
ガス成分(O:200wtppm、N:10wtppm、H:4wtppm、C:50wtppm、Cl:1wtppm、S:2wtppm、P:1wtppm)、総量が500ppm以下であるTi−Ni−Cu−Zr合金をアルゴン雰囲気の石英管内で溶解した後、噴出圧0.5〜2.0kg/cmで銅製の金型に充填凝固させ、直径10mmの非晶質合金塊(丸棒)を得た。
本合金のその他の主な不純物はFe、Cr等である。
この非晶質合金塊の非晶質の大きさは体積成分率で90%であった。また、この非晶質合金の過冷却液体領域温度幅は50°Cとなり、強度は2000MPaに達した。加工性も向上し、耐食性にも優れたチタン基非晶質合金が得られた。
【0014】
(実施例3)
O含有量が500wtppm、O以外のガス成分の総量が1000wtppmであり、不純物金属元素の合計量が約300ppmであるTi−Ni−Cu系合金をアルゴン雰囲気の石英管内で溶解した後、噴出圧0.5〜2.0kg/cmで銅製の金型に充填凝固させ、直径4mmの非晶質合金塊(丸棒)を得た。
この非晶質合金塊の非晶質の大きさは体積成分率で80%であった。また、この非晶質合金の過冷却液体領域温度幅は30°Cとなり、強度は1800MPaに達した。加工性も向上し、耐食性にも優れたチタン基非晶質合金が得られた。
【0015】
(実施例4)
O含有量が900wtppm、O以外のガス成分の総量が1000wtppmであり、不純物金属元素の合計量が約300ppmであるTi−Ni−Cu系合金をアルゴン雰囲気の石英管内で溶解した後、噴出圧0.5〜2.0kg/cmで銅製の金型に充填凝固させ、直径3mmの非晶質合金塊(丸棒)を得た。
この非晶質合金塊の非晶質の大きさは体積成分率で75%であった。また、この非晶質合金の過冷却液体領域温度幅は30°Cとなり、強度は1850MPaに達した。加工性も向上し、耐食性にも優れたチタン基非晶質合金が得られた。
【0016】
(比較例1)
ガス成分(O:8000wtppm、N:2000wtppm、H:10wtppm、C:400wtppm、Cl:1000wtppm、S:30wtppm、P:100wtppm)、総量が1wt%以上であるTi−Ni−Cu系合金をアルゴン雰囲気の石英管内で溶解した後、噴出圧0.5〜2.0kg/cmで銅製の金型に充填凝固させ、直径0.1mmの非晶質合金塊(丸棒)を得た。
この非晶質合金塊の非晶質の大きさは体積成分率で50%であった。また、この非晶質合金の過冷却液体領域温度幅は10°Cとなり、強度は300MPaであった。
【0017】
(比較例2)
O含有量が1500wtppm、O以外のガス成分の総量が1000wtppmであり、不純物金属元素の合計量が約300ppmであるTi−Ni−Cu系合金をアルゴン雰囲気の石英管内で溶解した後、噴出圧0.5〜2.0kg/cmで銅製の金型に充填凝固させた。この場合、直径0.3mmの非晶質合金塊(丸棒)しか得られなかった。
この非晶質合金塊の非晶質の大きさは体積成分率で60%であった。また、この非晶質合金の過冷却液体領域温度幅は15°Cとなり、強度は800MPaであり、強度的にも満足できるチタン基非晶質合金が得られなかった。
【0018】
【発明の効果】
本発明のチタン基非晶質合金は、該チタン基非晶質合金の非晶質形成能と加工性を飛躍的に向上させると共に、その材料の保有する耐食性と強度を活かし、工業材料として十分適用できるチタン基非晶質合金を提供することができるという優れた効果を有する。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a titanium-based amorphous alloy having excellent corrosion resistance, strength, and workability.
[0002]
[Prior art]
In general, when an amorphous metal (metallic glass) is produced, a method of solidifying at once from a molten state is employed to suppress crystallization. As well-known methods, there are a twin-roll method, a single-roll method, and the like that can obtain a large cooling rate.
Depending on the type of metal or alloy, some are likely to be amorphous and others are not. Among them, titanium alloy has a problem that only about 1 mm wire can be produced because titanium alloy has low ability to form amorphous. is there.
[0003]
Titanium-based amorphous alloys, on the other hand, have superior corrosion resistance, have no reaction to living organisms (no biotoxicity), and have remarkably excellent properties of high strength compared to other amorphous materials. Have. For example, a Ti—Ni—Cu amorphous alloy has a supercooled liquid region of 30 ° C. or higher and a strength exceeding 1000 MPa.
Utilization of such materials as materials for medical materials, chemical devices, and the like is being studied. However, the range that can be practically used is extremely small because the shape that can be manufactured is extremely limited as described above.
For this reason, for practical use of a titanium-based amorphous alloy, the emphasis is mainly placed on the combination of alloy components, and the temperature width of the supercooled liquid region, the shape and dimensions that can be manufactured, and the workability are improved. A device has been devised (for example, see Patent Document 1).
However, there was a problem that the ability to form an amorphous phase was still poor, and only a thin wire of about 1 mm could be manufactured, and the workability was extremely poor.
[0004]
[Patent Document 1]
International Publication No. WO 99/49095
[Problems to be solved by the invention]
The present invention dramatically improves the amorphous forming ability and workability of a titanium-based amorphous alloy, and makes use of the corrosion resistance and strength possessed by the material to make it sufficiently applicable as an industrial material. I will provide a.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors consider that impurities in a titanium-based amorphous alloy have an adverse effect on amorphous forming ability and workability, and by improving this, amorphous It has been found that it is possible to improve the quality forming ability and workability, and to make good use of corrosion resistance and strength.
[0007]
The present invention is based on the above findings,
1. 1. A titanium-based amorphous alloy having an oxygen content of 0.1% by weight or less. 2. A titanium-based amorphous alloy having an oxygen content of 0.05 wt% or less. 3. The titanium-based amorphous alloy according to the above 1 or 2, wherein the content of impurities other than gas components is 1000 wtppm or less. 4. The titanium-based amorphous alloy according to any one of the above 1 to 3, wherein the content of the gas component is 1 wt% or less. 5. The titanium-based amorphous alloy according to any one of 1 to 4, wherein the amorphous has a volume fraction of 80% or more. The titanium-based amorphous alloy according to any one of the above items 1 to 4, wherein the amorphous has a volume fraction of 90% or more.
BEST MODE FOR CARRYING OUT THE INVENTION
The titanium-based amorphous alloy of the present invention has an oxygen content of 0.1 wt% or less, and preferably has an oxygen content of 0.05 wt% or less. Among the impurities, the amount of oxygen is extremely important, and the presence of a large amount of oxygen significantly reduces amorphization.
By setting the oxygen content to 0.1 wt% or less, it is possible to increase the size (size) of the amorphous state by rapid solidification. That is, rapid solidification enables the production of a titanium-based amorphous alloy round bar having a diameter of 10 mm or more, and more preferably 50 mm or more, and also improves workability.
[0009]
Furthermore, it is desirable that the content of impurities excluding gas components is 1000 wtppm or less. If the content of impurities other than the gas components exceeds 1000 wtppm, it affects the amorphization, reduces the temperature width of the supercooled liquid region, and is not stable in composition.
Further, it is desirable that the total content of the gas components including oxygen is 1 wt% or less. Examples of gas components include O, N, H, Cl, S, P, and C. The presence of this gas component has a similar effect as oxygen.
[0010]
The titanium-based amorphous alloy of the present invention can achieve an amorphous volume fraction of 80% or more, and further, an amorphous volume fraction of 90% or more.
The titanium-based amorphous alloy of the present invention contains, in particular, one or more elements selected from the group consisting of iron, cobalt, nickel, and copper, and contains titanium as a residual titanium and unavoidable impurities. The alloy is effective for a titanium-based amorphous alloy further containing one or more elements selected from the group consisting of aluminum, silicon, tin and antimony.
In addition, by reducing impurities centering on oxygen, the amorphous forming ability and the volume component of the amorphous are improved, the temperature range of the supercooled liquid region is widened, and the effect of further improving the processability is another effect. The present invention is also applicable to titanium-based amorphous alloys, and the present invention does not limit these applications but encompasses them.
Further, since the titanium-based amorphous alloy of the present invention has excellent workability, it can be used for functional materials such as strain gauges for automobile pressure sensors and gears of micromachines.
[0011]
[Examples and Comparative Examples]
EXAMPLES Hereinafter, Examples and Comparative Examples will be described. However, the present Examples are intended to facilitate understanding, and do not limit the present invention. That is, other modifications or other embodiments within the technical idea of the present invention are naturally included in the present invention.
[0012]
(Example 1)
After dissolving a Ti-Ni-Cu alloy having an oxygen content of 400 ppm in a quartz tube in an argon atmosphere, it is filled and solidified in a copper mold at an ejection pressure of 0.5 to 2.0 kg / cm 2 to form a solid having a diameter of 5 mm. A crystalline alloy lump (round bar) was obtained.
Other main impurities of the present alloy are Fe and Zr.
The amorphous size of this amorphous alloy ingot was 90% by volume component ratio. The temperature width of the supercooled liquid region of the amorphous alloy was 50 ° C., and the strength reached 1900 MPa. A titanium-based amorphous alloy having improved workability and excellent corrosion resistance was obtained.
[0013]
(Example 2)
A gas component (O: 200 wtppm, N: 10 wtppm, H: 4 wtppm, C: 50 wtppm, Cl: 1 wtppm, S: 2 wtppm, P: 1 wtppm), and a Ti—Ni—Cu—Zr alloy having a total amount of 500 ppm or less in an argon atmosphere After being melted in a quartz tube, it was filled and solidified in a copper mold at an ejection pressure of 0.5 to 2.0 kg / cm 2 to obtain an amorphous alloy lump (round bar) having a diameter of 10 mm.
Other main impurities of the present alloy are Fe, Cr and the like.
The amorphous size of this amorphous alloy ingot was 90% by volume component ratio. The temperature width of the supercooled liquid region of this amorphous alloy was 50 ° C., and the strength reached 2000 MPa. Workability was also improved, and a titanium-based amorphous alloy having excellent corrosion resistance was obtained.
[0014]
(Example 3)
After dissolving a Ti-Ni-Cu-based alloy in which the O content is 500 wtppm, the total amount of gas components other than O is 1000 wtppm, and the total amount of impurity metal elements is about 300 ppm in a quartz tube in an argon atmosphere, the jet pressure is 0 A copper mold was filled and solidified at a pressure of 0.5 to 2.0 kg / cm 2 to obtain an amorphous alloy lump (round bar) having a diameter of 4 mm.
The amorphous size of the amorphous alloy ingot was 80% by volume component ratio. The temperature width of the supercooled liquid region of the amorphous alloy was 30 ° C., and the strength reached 1800 MPa. Workability was also improved, and a titanium-based amorphous alloy having excellent corrosion resistance was obtained.
[0015]
(Example 4)
After dissolving a Ti-Ni-Cu-based alloy in which the O content is 900 wtppm, the total amount of gas components other than O is 1000 wtppm, and the total amount of impurity metal elements is about 300 ppm in a quartz tube in an argon atmosphere, the ejection pressure is 0 A copper mold was filled and solidified at a pressure of 0.5 to 2.0 kg / cm 2 to obtain an amorphous alloy lump (round bar) having a diameter of 3 mm.
The amorphous size of this amorphous alloy ingot was 75% by volume component ratio. Further, the temperature width of the supercooled liquid region of this amorphous alloy was 30 ° C., and the strength reached 1850 MPa. Workability was also improved, and a titanium-based amorphous alloy having excellent corrosion resistance was obtained.
[0016]
(Comparative Example 1)
The gas components (O: 8000 wtppm, N: 2000 wtppm, H: 10 wtppm, C: 400 wtppm, Cl: 1000 wtppm, S: 30 wtppm, P: 100 wtppm), and a Ti-Ni-Cu alloy having a total amount of 1 wt% or more were placed in an argon atmosphere. After being melted in a quartz tube, it was filled and solidified in a copper mold at an ejection pressure of 0.5 to 2.0 kg / cm 2 to obtain an amorphous alloy lump (round bar) having a diameter of 0.1 mm.
The amorphous size of this amorphous alloy ingot was 50% by volume component ratio. The temperature width of the supercooled liquid region of this amorphous alloy was 10 ° C., and the strength was 300 MPa.
[0017]
(Comparative Example 2)
After dissolving a Ti-Ni-Cu-based alloy in which the O content is 1500 wtppm, the total amount of gas components other than O is 1000 wtppm, and the total amount of impurity metal elements is about 300 ppm in a quartz tube in an argon atmosphere, the ejection pressure is 0 A copper mold was filled and solidified at a pressure of 0.5 to 2.0 kg / cm 2 . In this case, only an amorphous alloy lump (round bar) having a diameter of 0.3 mm was obtained.
The amorphous size of this amorphous alloy ingot was 60% by volume component ratio. Further, the temperature width of the supercooled liquid region of this amorphous alloy was 15 ° C., the strength was 800 MPa, and a titanium-based amorphous alloy having satisfactory strength could not be obtained.
[0018]
【The invention's effect】
The titanium-based amorphous alloy of the present invention dramatically improves the amorphous forming ability and workability of the titanium-based amorphous alloy, and makes use of the corrosion resistance and strength possessed by the material. It has an excellent effect that an applicable titanium-based amorphous alloy can be provided.

Claims (6)

酸素含有量が0.1wt%以下であることを特徴とするチタン基非晶質合金。A titanium-based amorphous alloy having an oxygen content of 0.1 wt% or less. 酸素含有量が0.05wt%以下であることを特徴とするチタン基非晶質合金。A titanium-based amorphous alloy having an oxygen content of 0.05 wt% or less. ガス成分を除く不純物含有量が1000wtppm以下であることを特徴とする請求項1又は2記載のチタン基非晶質合金。3. The titanium-based amorphous alloy according to claim 1, wherein an impurity content excluding gas components is 1000 wt ppm or less. ガス成分含有量が1wt%以下であることを特徴とする請求項1〜3のいずれかに記載のチタン基非晶質合金。The titanium-based amorphous alloy according to any one of claims 1 to 3, wherein the content of the gas component is 1 wt% or less. 非晶質の体積分率が80%以上であることを特徴とする請求項1〜4のいずれかに記載のチタン基非晶質合金。The titanium-based amorphous alloy according to any one of claims 1 to 4, wherein the amorphous has a volume fraction of 80% or more. 非晶質の体積分率が90%以上であることを特徴とする請求項1〜4のいずれかに記載のチタン基非晶質合金。The titanium-based amorphous alloy according to any one of claims 1 to 4, wherein the amorphous has a volume fraction of 90% or more.
JP2003153650A 2003-05-30 2003-05-30 Titanium based amorphous alloy Withdrawn JP2004353053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153650A JP2004353053A (en) 2003-05-30 2003-05-30 Titanium based amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153650A JP2004353053A (en) 2003-05-30 2003-05-30 Titanium based amorphous alloy

Publications (1)

Publication Number Publication Date
JP2004353053A true JP2004353053A (en) 2004-12-16

Family

ID=34048507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153650A Withdrawn JP2004353053A (en) 2003-05-30 2003-05-30 Titanium based amorphous alloy

Country Status (1)

Country Link
JP (1) JP2004353053A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150047463A1 (en) * 2012-06-26 2015-02-19 California Institute Of Technology Systems and methods for implementing bulk metallic glass-based macroscale gears
US9610650B2 (en) 2013-04-23 2017-04-04 California Institute Of Technology Systems and methods for fabricating structures including metallic glass-based materials using ultrasonic welding
US9783877B2 (en) 2012-07-17 2017-10-10 California Institute Of Technology Systems and methods for implementing bulk metallic glass-based macroscale compliant mechanisms
US9791032B2 (en) 2013-02-11 2017-10-17 California Institute Of Technology Method for manufacturing bulk metallic glass-based strain wave gear components
US9868150B2 (en) 2013-09-19 2018-01-16 California Institute Of Technology Systems and methods for fabricating structures including metallic glass-based materials using low pressure casting
US10151377B2 (en) 2015-03-05 2018-12-11 California Institute Of Technology Systems and methods for implementing tailored metallic glass-based strain wave gears and strain wave gear components
US10155412B2 (en) 2015-03-12 2018-12-18 California Institute Of Technology Systems and methods for implementing flexible members including integrated tools made from metallic glass-based materials
US10174780B2 (en) 2015-03-11 2019-01-08 California Institute Of Technology Systems and methods for structurally interrelating components using inserts made from metallic glass-based materials
US10471652B2 (en) 2013-07-15 2019-11-12 California Institute Of Technology Systems and methods for additive manufacturing processes that strategically buildup objects
US10487934B2 (en) 2014-12-17 2019-11-26 California Institute Of Technology Systems and methods for implementing robust gearbox housings
US10968527B2 (en) 2015-11-12 2021-04-06 California Institute Of Technology Method for embedding inserts, fasteners and features into metal core truss panels
US11014162B2 (en) 2017-05-26 2021-05-25 California Institute Of Technology Dendrite-reinforced titanium-based metal matrix composites
US11123797B2 (en) 2017-06-02 2021-09-21 California Institute Of Technology High toughness metallic glass-based composites for additive manufacturing
US11155907B2 (en) 2013-04-12 2021-10-26 California Institute Of Technology Systems and methods for shaping sheet materials that include metallic glass-based materials
US11185921B2 (en) 2017-05-24 2021-11-30 California Institute Of Technology Hypoeutectic amorphous metal-based materials for additive manufacturing
US11198181B2 (en) 2017-03-10 2021-12-14 California Institute Of Technology Methods for fabricating strain wave gear flexsplines using metal additive manufacturing
US11400613B2 (en) 2019-03-01 2022-08-02 California Institute Of Technology Self-hammering cutting tool
US11591906B2 (en) 2019-03-07 2023-02-28 California Institute Of Technology Cutting tool with porous regions
US11680629B2 (en) 2019-02-28 2023-06-20 California Institute Of Technology Low cost wave generators for metal strain wave gears and methods of manufacture thereof
US11859705B2 (en) 2019-02-28 2024-01-02 California Institute Of Technology Rounded strain wave gear flexspline utilizing bulk metallic glass-based materials and methods of manufacture thereof

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11920668B2 (en) 2012-06-26 2024-03-05 California Institute Of Technology Systems and methods for implementing bulk metallic glass-based macroscale gears
US20150047463A1 (en) * 2012-06-26 2015-02-19 California Institute Of Technology Systems and methods for implementing bulk metallic glass-based macroscale gears
US10941847B2 (en) 2012-06-26 2021-03-09 California Institute Of Technology Methods for fabricating bulk metallic glass-based macroscale gears
US9783877B2 (en) 2012-07-17 2017-10-10 California Institute Of Technology Systems and methods for implementing bulk metallic glass-based macroscale compliant mechanisms
US9791032B2 (en) 2013-02-11 2017-10-17 California Institute Of Technology Method for manufacturing bulk metallic glass-based strain wave gear components
US11155907B2 (en) 2013-04-12 2021-10-26 California Institute Of Technology Systems and methods for shaping sheet materials that include metallic glass-based materials
US9610650B2 (en) 2013-04-23 2017-04-04 California Institute Of Technology Systems and methods for fabricating structures including metallic glass-based materials using ultrasonic welding
US10471652B2 (en) 2013-07-15 2019-11-12 California Institute Of Technology Systems and methods for additive manufacturing processes that strategically buildup objects
US9868150B2 (en) 2013-09-19 2018-01-16 California Institute Of Technology Systems and methods for fabricating structures including metallic glass-based materials using low pressure casting
US10487934B2 (en) 2014-12-17 2019-11-26 California Institute Of Technology Systems and methods for implementing robust gearbox housings
US10690227B2 (en) 2015-03-05 2020-06-23 California Institute Of Technology Systems and methods for implementing tailored metallic glass-based strain wave gears and strain wave gear components
US10151377B2 (en) 2015-03-05 2018-12-11 California Institute Of Technology Systems and methods for implementing tailored metallic glass-based strain wave gears and strain wave gear components
US10174780B2 (en) 2015-03-11 2019-01-08 California Institute Of Technology Systems and methods for structurally interrelating components using inserts made from metallic glass-based materials
US10883528B2 (en) 2015-03-11 2021-01-05 California Institute Of Technology Systems and methods for structurally interrelating components using inserts made from metallic glass-based materials
US10155412B2 (en) 2015-03-12 2018-12-18 California Institute Of Technology Systems and methods for implementing flexible members including integrated tools made from metallic glass-based materials
US10953688B2 (en) 2015-03-12 2021-03-23 California Institute Of Technology Systems and methods for implementing flexible members including integrated tools made from metallic glass-based materials
US10968527B2 (en) 2015-11-12 2021-04-06 California Institute Of Technology Method for embedding inserts, fasteners and features into metal core truss panels
US11198181B2 (en) 2017-03-10 2021-12-14 California Institute Of Technology Methods for fabricating strain wave gear flexsplines using metal additive manufacturing
US11839927B2 (en) 2017-03-10 2023-12-12 California Institute Of Technology Methods for fabricating strain wave gear flexsplines using metal additive manufacturing
US11185921B2 (en) 2017-05-24 2021-11-30 California Institute Of Technology Hypoeutectic amorphous metal-based materials for additive manufacturing
US11905578B2 (en) 2017-05-24 2024-02-20 California Institute Of Technology Hypoeutectic amorphous metal-based materials for additive manufacturing
US11014162B2 (en) 2017-05-26 2021-05-25 California Institute Of Technology Dendrite-reinforced titanium-based metal matrix composites
US11123797B2 (en) 2017-06-02 2021-09-21 California Institute Of Technology High toughness metallic glass-based composites for additive manufacturing
US11773475B2 (en) 2017-06-02 2023-10-03 California Institute Of Technology High toughness metallic glass-based composites for additive manufacturing
US11680629B2 (en) 2019-02-28 2023-06-20 California Institute Of Technology Low cost wave generators for metal strain wave gears and methods of manufacture thereof
US11859705B2 (en) 2019-02-28 2024-01-02 California Institute Of Technology Rounded strain wave gear flexspline utilizing bulk metallic glass-based materials and methods of manufacture thereof
US11400613B2 (en) 2019-03-01 2022-08-02 California Institute Of Technology Self-hammering cutting tool
US11591906B2 (en) 2019-03-07 2023-02-28 California Institute Of Technology Cutting tool with porous regions

Similar Documents

Publication Publication Date Title
JP2004353053A (en) Titanium based amorphous alloy
JP3852809B2 (en) High strength and toughness Zr amorphous alloy
CN101314838B (en) Zr-Cu-Ni-Al-Ag alloy with higher amorphous forming ability and production method thereof
Gong et al. Effects of Fe addition on glass-forming ability and mechanical properties of Ti–Zr–Be bulk metallic glass
JP6243327B2 (en) Platinum alloy
WO2014079188A1 (en) Zirconium-based amorphous alloy
WO2004022811A1 (en) Cu-BASE AMORPHOUS ALLOY
WO2006054822A1 (en) Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
CN105420642B (en) A kind of titanium-based amorphous alloy of nitrogen oxygen alloy and preparation method thereof
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
JP3860445B2 (en) Cu-Be based amorphous alloy
JP2015504483A (en) Zr-based amorphous alloy
CN114836700A (en) Large-size zirconium-based amorphous alloy with high strength and high hardness and preparation method thereof
WO2013075829A1 (en) Bulk metallic glass forming alloy
CN102146550B (en) Nickel-free zirconium alloy with amorphous structure easily formed by pouring melt copper mould
CN101016606A (en) Magnesium-base massive non-crystalline material and preparing method thereof
JP2004315973A5 (en)
CN101328566A (en) A bulk rare earth gadolinium-based composite amorphous material and its preparation method
JP3737056B2 (en) High strength Zr-based metallic glass
JP3761737B2 (en) High specific strength Ti-based amorphous alloy
CN105132834B (en) A kind of high intensity non-crystaline amorphous metal and preparation method thereof
CN111279001B (en) Sulfur-containing alloys that form metallic glasses
CN102952969B (en) Large-size Zr standard crystal material and preparation method thereof
Zeng et al. Ni-rich Ni–Pd–P bulk metallic glasses with significantly improved glass-forming ability and mechanical properties by Si addition
CN114032478A (en) Zr-based amorphous alloy with plasticity and preparation method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801