JP2004335188A - Coin type non-aqueous secondary battery - Google Patents
Coin type non-aqueous secondary battery Download PDFInfo
- Publication number
- JP2004335188A JP2004335188A JP2003126822A JP2003126822A JP2004335188A JP 2004335188 A JP2004335188 A JP 2004335188A JP 2003126822 A JP2003126822 A JP 2003126822A JP 2003126822 A JP2003126822 A JP 2003126822A JP 2004335188 A JP2004335188 A JP 2004335188A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- secondary battery
- negative electrode
- mixture
- coin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】正極の機械的強度を高めて、サイクル特性および貯蔵特性が優れたコイン形非水二次電池を提供する。
【解決手段】正極と、負極と、前記正極と負極との間に介在するセパレータと、非水系の電解液を、正極缶と負極缶と環状の絶縁性ガスケットとで形成される密閉空間内に収容してなるコイン形非水二次電池において、前記正極を少なくとも活物質と導電助剤とバインダーを含む正極合剤のペレット状成形体で構成し、かつ、前記バインダーとしてポリフッ化ビニリデンとポリアミドイミドとの混合物を用いる。
上記ポリフッ化ビニリデンとポリアミドイミドとの混合物におけるポリアミドイミドの比率は5〜40質量%であることが好ましい。
【選択図】 図1Provided is a coin-type non-aqueous secondary battery having improved cycle characteristics and storage characteristics by increasing the mechanical strength of a positive electrode.
A positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte are placed in a closed space formed by a positive electrode can, a negative electrode can, and an annular insulating gasket. In the coin-shaped non-aqueous secondary battery accommodated, the positive electrode is constituted by a pellet-shaped molded product of a positive electrode mixture containing at least an active material, a conductive auxiliary agent, and a binder, and polyvinylidene fluoride and polyamideimide are used as the binder. Use a mixture with
The ratio of the polyamideimide in the mixture of the polyvinylidene fluoride and the polyamideimide is preferably 5 to 40% by mass.
[Selection diagram] Fig. 1
Description
【0001】
【発明の属する技術分野】
本発明は、コイン形非水二次電池に関し、さらに詳しくは、正極の機械的強度が高く、サイクル特性および貯蔵特性が優れたコイン形非水二次電池に関する。
【0002】
【従来の技術】
現在、携帯電話やノート型パソコンなどの携帯用電子機器の電源としては主としてリチウムイオン二次電池が用いられている。その理由としてはニッケル−カドミウム二次電池や金属水素化二次電池などに代表される従来の二次電池に比べて、軽量化が可能になったことと高電圧化が可能になったことが挙げられる。
【0003】
現在使用されているリチウムイオン二次電池では、LiCoO2 などの金属酸化物を正極に用い、黒鉛を負極に用いていて、市販されている円筒形や角形のリチウムイオン二次電池では、その電極として金属箔に活物質を含む合剤塗膜を形成した塗布型電極が一般的に用いられている。このリチウムイオン二次電池の負荷特性を考えると、主として正極の負荷特性が律速になっており、また、導電助剤の選定も負荷特性に重要な影響を与えていて、その導電助剤としては、これまで、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラックなどが用いられ、また、合剤層と集電体との間に前記導電性物質からなる層を形成し、導電性を確保することも提案されている(例えば、特許文献1〜2参照)。
【0004】
【特許文献1】
特開平9−97625号公報(第1頁)
【特許文献2】
特開平11−312516号公報(第1頁)
【0005】
しかしながら、正極合剤のペレット状成形体を正極に用いる場合は、その成形体の厚みが通常の塗布型電極で採用されている厚み(通常、100μm程度)よりもかなり厚く、厚みが数百μmまたはそれ以上になる場合が多いため、厚み方向の導電性は前記のような方法では充分に向上させることができなかった。
【0006】
そこで、導電助剤の添加量を通常の塗布型電極で採用されている以上に増加させることによって、厚み方向の導電性を向上させることが提案されている(例えば、特許文献3参照)。
【0007】
【特許文献3】
特開2003−017133号公報(第1頁)
【0008】
しかしながら、上記のように導電助剤の添加量を増加させると、それに伴って、活物質の充填比率が低下し、容量密度が低下するという問題が生じると共に、比表面積の大きい導電助剤を用いた場合には、バインダーを多くしないと正極の機械的強度が低下するため、バインダーを多くせざるを得ず、そうすることによって、負荷特性の低下を引き起こすことになる。また、それらの成形体を正極に用いて電池を作製する際に、正極に電解液を浸潤させると膨潤が生じて負荷特性をさらに低下させる。これまで、正極のバインダーとしてはポリフッ化ビニリデンが最も一般的に用いられており、またフッ素ゴムなども用いられているが、これらをバインダーとして用いた場合、電解液の浸潤によって成形体が膨潤しやすく、そのため、機械的強度の低下が生じて、負荷特性が低下し、それによって、サイクル特性および貯蔵特性が低下するという問題があった。
【0009】
【発明が解決しようとする課題】
本発明は、前記のような正極合剤のペレット形成形体を正極に用いるコイン形非水二次電池における問題点を解決し、正極の機械的強度を高めて、サイクル特性および負荷特性が優れたコイン形非水二次電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、正極と、負極と、前記正極と負極との間に介在するセパレータと、非水系の電解液とを、正極缶と負極缶と環状の絶縁性ガスケットとで形成される密閉空間内に収容してなるコイン形非水二次電池において、前記正極を少なくとも活物質と導電助剤とバインダーとを含む正極合剤のペレット状成形体で構成し、かつ前記バインダーとしてポリフッ化ビニリデンとポリアミドイミドとの混合物を用いることによって、前記課題を解決したものである。
【0011】
【発明の実施の形態】
本発明が上記構成を採用することにより、正極の機械的強度を高めて、サイクル特性および負荷特性が優れたコイン形非水二次電池を提供することができる理由を、以下に本発明の実施の形態とともに説明する。
【0012】
前記のように、正極のバインダーとしてポリフッ化ビニリデンを用いた場合には、電解液の浸潤によって成形体が膨潤しやすく、負荷特性が低下する上に、正極の膨張により、作製後の電池の厚みが規格値より大きくなり、また、成形体の面方向への膨張により面積がセパレータよりも大きくなることによって負極との短絡が生じることになる。これに対して、ポリアミドイミドを正極のバインダーとして用いた場合は、分子量によっても異なるが、ポリフッ化ビニリデンに比べて一般的に正極が硬くなり、強固な正極が形成できるが、その反面、負荷特性がポリフッ化ビニリデンを用いた場合に比べて低下する傾向がある。
【0013】
そこで、本発明においては、それらのポリフッ化ビニリデンとポリアミドイミドとを混合し、その混合物を導電助剤として用いることによって、導電助剤の比率を増加させても、バインダーの比率を増加させずに、機械的強度が優れた正極を得ることができ、それによって、負荷特性が優れ、サイクル特性および貯蔵特性が優れたコイン形非水二次電池が得られることを見出したのである。
【0014】
本発明において、上記のような目的で用いるポリフッ化ビニリデンとしては、例えば、商品名で例示すると、呉羽化学社製の♯1120などを用いることが好ましく、ポリアミドイミドとしては、例えば、東洋紡績社製のバイロマックスN−100を用いることが好ましく、これらを用いた場合、その混合比率によってそれぞれの中間的な物性が得られる。
【0015】
本発明において、上記ポリフッ化ビニリデンとポリアミドイミドとの混合物中において、ポリアミドイミドの比率は5〜40質量%にすることが好ましい。すなわち、ポリアミドイミドの比率が5質量%より少ない場合は、正極の機械的強度を充分に高めることができず、また、ポリアミドイミドの比率が40質量%多くなると、負荷特性が低下して、かえってサイクル特性や貯蔵特性が低下するおそれがある。本発明においては、ポリフッ化ビニリデンとポリアミドイミドとの混合物でバインダーを構成するとしているが、正極合剤の調製にあたって、ポリフッ化ビニリデンとポリアミドイミドはあらかじめ混合しておくことは必要とされず、正極合剤中や正極合剤のペレット状成形体で構成される正極中においてポリフッ化ビニリデンとポリアミドイミドが混在した状態で存在すればよい。
【0016】
本発明において、正極の活物質としては、特に限定されることはないが、例えば、LiCoO2 、LiNiO2 、LiNix Co1−x O2 、LiMnO2 、LiMn2 O4 などのリチウムイオンの挿入・脱離が可能なリチウム含有複合酸化物が好ましい。
【0017】
正極の導電助剤としては、特に限定されることはないが、例えば、カーボンブラック、黒鉛、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、フラーレン、気相成長炭素繊維などの炭素質材料、Al、Ptなどの金属粉などが好ましい。
【0018】
正極の作製にあたっては、上記正極活物質、導電助剤、バインダーなどを混合して、正極合剤を調製し、それを金型に充填して加圧成形することによって、正極を構成する正極合剤のペレット状成形体が作製される。そして、その正極を構成する正極合剤のペレット状成形体は、通常、0.2mm以上の厚さに作製される。また、上記正極合剤の調製にあたって、正極活物質、導電助剤、バインダーを溶剤の存在下で混合し、それを乾燥して、粉砕すると、各成分がより均一に分散した正極合剤が得られる。本発明においてバインダーとして用いるポリフッ化ビニリデンとポリアミドイミドとの混合物は、通常、正極合剤中に3〜20質量%含有されるようにすることが好ましく、また、上記ポリフッ化ビニリデンとポリアミドイミドとの混合物からなるバインダーが正極合剤中に上記の程度含有されていれば、他のバインダーを併用してもよい。
【0019】
本発明において、負極は、負極活物質を含む負極合剤のペレット状成形体で構成してもよいし、また、金属リチウムやリチウム合金のみで構成してもよい。負極を負極合剤のペレット状成形体で構成する場合、その負極の活物質としては、リチウムイオンが挿入・脱離できるものであれば特に限定されることはないが、例えば、黒鉛、カーボンナノチューブ、気相成長炭素繊維、低結晶カーボンなどの炭素質材料、Si、Snなどの金属の酸化物などが好ましい。
【0020】
また、負極を負極合剤のペレット状成形体で構成する場合、その作製にあたって、上記負極活物質以外にバインダーが必要であり、そのバインダーとしては、特に限定されることはないが、例えば、ポリフッ化ビニリデン、スチレンブタジエンゴムとカルボキシメチルセルロースとの混合物、ポリアミドイミドなどが好ましい。また、この負極のバインダーとして、前記正極のバインダーと同様のものを用いることもできる。
【0021】
本発明において、非水系の電解液、正極缶、負極缶、セパレータ、環状の絶縁性ガスケットなどは、特に限定されることなく、従来構成のものも用いることができ、また、電解液は液状のまま用いる場合ばかりでなく、ゲル化剤でゲル化してゲル状で用いてもよい。
【0022】
【実施例】
つぎに、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。
【0023】
実施例1
正極活物質として平均粒径5μmのLiCoO2 を用い、導電助剤としてカーボンブラックを用い、バインダーを構成するポリフッ化ビニリデンとして呉羽化学社製♯1120(商品名)を用い、ポリアミドイミドとして東洋紡績社製バイロマックスN−100(商品名)を用い、まず、前記LiCoO2 87質量部とカーボンブラック5質量部とを混合し、得られた混合物92質量部とあらかじめ前記ポリフッ化ビニリデンをN−メチル−2−ピロリドン中に5質量部溶解させて調製しておいたポリフッ化ビニリデンのN−メチル−2−ピロリドン溶液と前記ポリアミドイミドをN−メチル−2−ピロリドン中に3質量部溶解させて調製しておいたポリアミドイミドのN−メチル−2−ピロリドン溶液とを混合、攪拌することによって、合剤含有塗料を調製した。この塗料を一旦乾燥して、溶剤としてのN−メチル−2−ピロリドンを除去した後、粉砕し、得られた正極合剤粉末を金型に充填して加圧成形することにより直径16mm、厚さ0.9mmのペレット状成形体を作製し、これを正極とした。バインダーを構成するポリフッ化ビニリデンとポリアミドイミドの全正極合剤中での比率は5質量%で、ポリアミドイミドの全正極合剤中での比率は3質量%であり、それらのバインダーを構成するポリフッ化ビニリデンとポリアミドイミドとの合計中のポリアミドイミドの比率は37.5質量%であった。
【0024】
負極活物質として平均粒径3μmのメソカーボンマイクロビーズを黒鉛化処理したものを用い、このメソカーボンマイクロビーズを黒鉛化処理したもの90質量部とあらかじめバインダーとしてのポリフッ化ビニリデンをN−メチル−2−ピロリドン中に10質量部溶解させて調製しておいたバインダー溶液とを混合、攪拌することによって合剤含有塗料を作製した。この塗料を一旦乾燥して、溶剤を除去した後、粉砕し、得られた負極合剤粉末を金型に充填して加圧成形することにより直径16.5mm、厚さ0.7mmのペレット状成形体を作製して、これを負極とした。
【0025】
電解液としては、エチレンカーボネートとメチルエチルカーボネートとの体積比1:3の混合溶媒にLiPF6 を1モル/リットル溶解させて調製した非水系電解液を用い、セパレータとしては微孔性ポリプロピレンフィルムを用い、正極缶としてはステンレス鋼製のものを用い、負極缶としてはステンレス鋼製のものを用い、環状の絶縁性ガスケットとしてはポリプロピレン製のものを用い、これらと前記正極および負極とで図1に示すようなコイン形非水二次電池を作製した。
【0026】
ここで、図1に示すコイン形非水二次電池について説明すると、1は前記の正極で、2は前記の負極であり、これらの正極1と負極2との間にはセパレータ3が介在し、これらの正極1と負極2とセパレータ3と前記電解液とは正極缶4と負極缶5と環状の絶縁性ガスケット6とで形成される密閉空間内に収容されている。
【0027】
これを詳細に説明すると、正極1は正極缶4に収容され、その正極1上にセパレータ3を載置し、電解液を注入し、負極2を載置し、その上から周辺部に絶縁性ガスケット6を取り付けた負極缶5をかぶせ、正極缶4の開口端部を内方に締めつけて絶縁性ガスケット6を負極缶5の周辺部と正極缶4の開口端部の内面に圧接することによって正極缶4と負極缶5との間隙を密閉することによってコイン形非水二次電池が組み立てられている。
【0028】
実施例2
ポリアミドイミドとして実施例1で用いた東洋紡績社製のバイロマックスN−100(商品名)の分子量を小さくすることによって硬さを増したものを用い、ポリフッ化ビニリデンの全正極合剤中の比率を7.5質量%、ポリアミドイミドの全正極合剤中の比率を0.5質量%とした以外は、実施例1と同様にコイン形非水二次電池を作製した。
【0029】
比較例1
正極合剤の調製にあたってポリアミドイミドを用いず、バインダーをポリフッ化ビニリデンのみで構成して、全正極合剤中のポリフッ化ビニリデンの比率を8質量%とした以外は、実施例1と同様にコイン形非水二次電池を作製した。
【0030】
比較例2
正極合剤の調製にあたって、ポリフッ化ビニリデンを用いず、バインダーをポリアミドイミドのみで構成して、全正極合剤中のポリアミドイミドの比率を8質量%とした以外は、実施例1と同様にコイン形非水二次電池を作製した。
【0031】
上記実施例1〜2および比較例1〜2の電池について、充電終止電圧を4.2V、放電終止電圧を3.0V、充電電流密度1mA/cm2 に固定し、その充電電流密度1mA/cm2 で4.2Vまで充電し、放電電流密度1mA/cm2 、10mA/cm2 で、それぞれ3.0Vまで放電して初回放電容量を測定し、その10mA/cm2 での初回放電容量の1mA/cm2 での初回放電容量に対する比率を負荷特性とし、また、充電電流密度1mA/cm2 、放電電流密度1mA/cm2 で充放電を100回繰り返して放電容量を測定し、100サイクル後の放電容量の初回放電容量に対する比率をサイクル特性とし、また、60℃で30日間充電状態で貯蔵して放電電流密度1mA/cm2 での放電容量を測定し、その貯蔵後の放電容量の貯蔵前の放電容量に対する比率を貯蔵特性とし、それぞれ、百分率(%)表示で表1に示した。
【0032】
【表1】
【0033】
表1から示す結果から明らかなように、実施例1〜2の電池は、比較例1〜2の電池に比べて、サイクル特性および貯蔵特性が優れていた。これは、実施例1〜2の電池では、比較例1〜2の電池に比べて、正極の機械的強度が高くなったことに基づくものと考えられる。
【0034】
以上説明したように、本発明によれば、正極の機械的強度を高めて、サイクル特性および負荷特性が優れたコイン形非水二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係るコイン形非水二次電池の一例を模式的に示す断面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 正極缶
5 負極缶
6 環状の絶縁性ガスケット[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coin-type non-aqueous secondary battery, and more particularly, to a coin-type non-aqueous secondary battery having high mechanical strength of a positive electrode and excellent cycle characteristics and storage characteristics.
[0002]
[Prior art]
At present, lithium ion secondary batteries are mainly used as power supplies for portable electronic devices such as mobile phones and notebook computers. The reason is that compared to conventional secondary batteries typified by nickel-cadmium secondary batteries and metal hydride secondary batteries, the weight can be reduced and the voltage can be increased. No.
[0003]
Currently used lithium ion secondary batteries use a metal oxide such as LiCoO 2 for the positive electrode and graphite for the negative electrode. Commercially available cylindrical or prismatic lithium ion secondary batteries use the same electrode. A coating type electrode in which a mixture film containing an active material is formed on a metal foil is generally used. Considering the load characteristics of this lithium ion secondary battery, mainly the load characteristics of the positive electrode are rate-determining, and the selection of the conductive auxiliary also has an important effect on the load characteristics. Heretofore, artificial graphite, carbon black, acetylene black, Ketjen black and the like are used, and a layer made of the conductive substance is formed between the mixture layer and the current collector to secure conductivity. It has also been proposed (see, for example,
[0004]
[Patent Document 1]
JP-A-9-97625 (page 1)
[Patent Document 2]
JP-A-11-313516 (page 1)
[0005]
However, when a pellet-shaped molded product of the positive electrode mixture is used for the positive electrode, the thickness of the molded product is considerably larger than the thickness (usually, about 100 μm) employed in a normal coating type electrode, and the thickness is several hundred μm. In many cases, the conductivity in the thickness direction cannot be sufficiently improved by the above method.
[0006]
Therefore, it has been proposed to increase the conductivity in the thickness direction by increasing the amount of the conductive additive added to that used in the usual coating type electrode (for example, see Patent Document 3).
[0007]
[Patent Document 3]
JP-A-2003-017133 (page 1)
[0008]
However, as described above, when the amount of the conductive additive is increased, the filling ratio of the active material is reduced, which causes a problem that the capacity density is reduced, and a conductive additive having a large specific surface area is used. In such a case, the mechanical strength of the positive electrode is reduced unless the amount of the binder is increased. Therefore, the amount of the binder has to be increased, which causes a decrease in load characteristics. In addition, when a battery is manufactured using such a molded body as a positive electrode, when the electrolyte is infiltrated into the positive electrode, swelling occurs and the load characteristics are further reduced. Until now, polyvinylidene fluoride has been most commonly used as a binder for the positive electrode, and fluorine rubber and the like have also been used.However, when these are used as the binder, the molded body swells due to infiltration of the electrolytic solution. Therefore, there is a problem that the mechanical strength is reduced and the load characteristics are reduced, whereby the cycle characteristics and the storage characteristics are reduced.
[0009]
[Problems to be solved by the invention]
The present invention solves the problems in the coin-type non-aqueous secondary battery using the pellet-forming form of the positive electrode mixture as the positive electrode as described above, increases the mechanical strength of the positive electrode, and has excellent cycle characteristics and load characteristics. It is an object to provide a coin-type non-aqueous secondary battery.
[0010]
[Means for Solving the Problems]
The present invention provides a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolytic solution in a closed space formed by a positive electrode can, a negative electrode can, and an annular insulating gasket. In the coin-shaped non-aqueous secondary battery accommodated in the positive electrode, the positive electrode is composed of a pellet-shaped molded body of a positive electrode mixture containing at least an active material, a conductive auxiliary agent and a binder, and polyvinylidene fluoride and polyamide as the binder The problem has been solved by using a mixture with imide.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The reason why the present invention employs the above configuration to increase the mechanical strength of the positive electrode and provide a coin-type non-aqueous secondary battery having excellent cycle characteristics and load characteristics is described below. It will be described together with the embodiment.
[0012]
As described above, when polyvinylidene fluoride is used as the binder of the positive electrode, the molded body is easily swelled due to the infiltration of the electrolytic solution, and the load characteristics are reduced. Is larger than the standard value, and the area of the formed body becomes larger than that of the separator due to expansion in the surface direction of the molded body, thereby causing a short circuit with the negative electrode. On the other hand, when polyamideimide is used as the binder for the positive electrode, the positive electrode is generally harder than polyvinylidene fluoride and can form a strong positive electrode, although the molecular weight varies depending on the molecular weight. Tends to decrease as compared with the case where polyvinylidene fluoride is used.
[0013]
Therefore, in the present invention, by mixing the polyvinylidene fluoride and the polyamideimide and using the mixture as a conductive additive, even if the ratio of the conductive additive is increased, the ratio of the binder is not increased. It has been found that a positive electrode having excellent mechanical strength can be obtained, whereby a coin-shaped non-aqueous secondary battery having excellent load characteristics and excellent cycle characteristics and storage characteristics can be obtained.
[0014]
In the present invention, as the polyvinylidene fluoride used for the above purpose, for example, when exemplified by a trade name, it is preferable to use # 1120 manufactured by Kureha Chemical Co., and as the polyamideimide, for example, manufactured by Toyobo Co., Ltd. It is preferable to use Viromax N-100, and when these are used, intermediate properties can be obtained depending on the mixing ratio.
[0015]
In the present invention, the ratio of polyamideimide in the mixture of polyvinylidene fluoride and polyamideimide is preferably 5 to 40% by mass. That is, when the proportion of the polyamideimide is less than 5% by mass, the mechanical strength of the positive electrode cannot be sufficiently increased, and when the proportion of the polyamideimide increases by 40% by mass, the load characteristics are deteriorated. Cycle characteristics and storage characteristics may be reduced. In the present invention, the binder is composed of a mixture of polyvinylidene fluoride and polyamide imide. It is sufficient that polyvinylidene fluoride and polyamideimide are present in a mixed state in the mixture and in the positive electrode formed of the pellet-shaped molded product of the positive electrode mixture.
[0016]
In the present invention, the active material of the positive electrode is not particularly limited, and for example, insertion of lithium ions such as LiCoO 2 , LiNiO 2 , LiNi x Co 1-x O 2 , LiMnO 2 , and LiMn 2 O 4 -A removable lithium-containing composite oxide is preferable.
[0017]
The conductive assistant for the positive electrode is not particularly limited, and examples thereof include carbonaceous materials such as carbon black, graphite, Ketjen black, acetylene black, carbon nanotube, fullerene, and vapor grown carbon fiber, Al, Pt. And the like are preferred.
[0018]
In preparing the positive electrode, a positive electrode mixture is prepared by mixing the above-described positive electrode active material, a conductive auxiliary agent, a binder, and the like, and the mixture is filled in a mold and pressed to form a positive electrode mixture. A pellet-shaped molded article of the agent is produced. And the pellet-shaped molded product of the positive electrode mixture constituting the positive electrode is usually produced to a thickness of 0.2 mm or more. In preparing the positive electrode mixture, the positive electrode active material, the conductive additive, and the binder are mixed in the presence of a solvent, and the mixture is dried and pulverized to obtain a positive electrode mixture in which each component is more uniformly dispersed. Can be The mixture of polyvinylidene fluoride and polyamide imide used as a binder in the present invention is usually preferably contained in an amount of 3 to 20% by mass in the positive electrode mixture, and the mixture of polyvinylidene fluoride and polyamide imide is preferably used. Other binders may be used in combination as long as the binder composed of the mixture is contained in the positive electrode mixture at the above-described level.
[0019]
In the present invention, the negative electrode may be composed of a pellet-shaped molded product of a negative electrode mixture containing a negative electrode active material, or may be composed of only metal lithium or a lithium alloy. When the negative electrode is composed of a pellet-shaped molded body of the negative electrode mixture, the active material of the negative electrode is not particularly limited as long as lithium ions can be inserted and desorbed, for example, graphite, carbon nanotubes Preferred are carbonaceous materials such as vapor-grown carbon fibers and low-crystalline carbon, and oxides of metals such as Si and Sn.
[0020]
In the case where the negative electrode is formed of a pellet-shaped molded product of the negative electrode mixture, a binder is required in addition to the above-described negative electrode active material in producing the negative electrode mixture, and the binder is not particularly limited. Preferred are vinylidene chloride, a mixture of styrene-butadiene rubber and carboxymethylcellulose, and polyamideimide. Further, as the binder for the negative electrode, the same binder as the binder for the positive electrode can be used.
[0021]
In the present invention, the non-aqueous electrolyte, the positive electrode can, the negative electrode can, the separator, the annular insulating gasket and the like are not particularly limited, and those having a conventional configuration can also be used. Not only when used as it is, it may be gelled with a gelling agent and used in a gel form.
[0022]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.
[0023]
Example 1
LiCoO 2 having an average particle size of 5 μm is used as a positive electrode active material, carbon black is used as a conductive aid, and polyvinylidene fluoride constituting a binder is # 1120 (trade name) manufactured by Kureha Chemical Co., Ltd .; First, 87 parts by mass of the above LiCoO 2 and 5 parts by mass of carbon black were mixed using Vylomax N-100 (trade name), and 92 parts by mass of the obtained mixture and the polyvinylidene fluoride were previously mixed with N-methyl- An N-methyl-2-pyrrolidone solution of polyvinylidene fluoride prepared by dissolving 5 parts by mass in 2-pyrrolidone and the polyamideimide dissolved in N-methyl-2-pyrrolidone by 3 parts by mass were prepared. By mixing and stirring the N-methyl-2-pyrrolidone solution of the polyamideimide set forth above, The agent-containing paint was prepared. The paint was once dried to remove N-methyl-2-pyrrolidone as a solvent, and then pulverized. The obtained positive electrode mixture powder was filled in a mold and pressed to form a 16 mm diameter, A pellet-shaped molded body having a thickness of 0.9 mm was prepared and used as a positive electrode. The ratio of polyvinylidene fluoride and polyamide imide constituting the binder in the total positive electrode mixture was 5% by mass, and the ratio of polyamide imide in the whole positive electrode mixture was 3% by mass. The ratio of polyamideimide in the total of vinylidene chloride and polyamideimide was 37.5% by mass.
[0024]
Graphite-treated mesocarbon microbeads having an average particle diameter of 3 μm were used as the negative electrode active material, and 90 parts by mass of the mesocarbon microbeads were graphitized, and polyvinylidene fluoride as a binder was N-methyl-2 in advance. -A mixture-containing coating was prepared by mixing and stirring with a binder solution prepared by dissolving 10 parts by mass in pyrrolidone. The paint was once dried, the solvent was removed, and then pulverized. The obtained negative electrode mixture powder was filled in a mold and pressed to form a pellet having a diameter of 16.5 mm and a thickness of 0.7 mm. A molded body was prepared and used as a negative electrode.
[0025]
As the electrolyte, a non-aqueous electrolyte prepared by dissolving 1 mol / l of LiPF 6 in a mixed solvent of ethylene carbonate and methyl ethyl carbonate at a volume ratio of 1: 3 was used. As a separator, a microporous polypropylene film was used. The positive electrode can was made of stainless steel, the negative electrode can was made of stainless steel, and the annular insulating gasket was made of polypropylene. The coin type non-aqueous secondary battery shown in FIG.
[0026]
Here, the coin-shaped non-aqueous secondary battery shown in FIG. 1 will be described. 1 is the positive electrode, 2 is the negative electrode, and a
[0027]
More specifically, the
[0028]
Example 2
Polyamideimide whose hardness was increased by reducing the molecular weight of Vylomax N-100 (trade name) manufactured by Toyobo Co., Ltd. used in Example 1 was used, and the ratio of polyvinylidene fluoride in the total positive electrode mixture Was 7.5 mass%, and the ratio of polyamideimide to the total positive electrode mixture was 0.5 mass%, and a coin-shaped non-aqueous secondary battery was produced in the same manner as in Example 1.
[0029]
Comparative Example 1
A coin was prepared in the same manner as in Example 1 except that the binder was composed of polyvinylidene fluoride alone and the ratio of polyvinylidene fluoride in all the positive electrode mixture was 8% by mass without using polyamideimide in preparing the positive electrode mixture. A non-aqueous secondary battery was manufactured.
[0030]
Comparative Example 2
In preparing the positive electrode mixture, a coin was prepared in the same manner as in Example 1, except that polyvinylidene fluoride was not used, and the binder was composed only of polyamideimide, and the ratio of polyamideimide in the entire positive electrode mixture was 8% by mass. A non-aqueous secondary battery was manufactured.
[0031]
Regarding the batteries of Examples 1 and 2 and Comparative Examples 1 and 2, the charge end voltage was fixed at 4.2 V, the discharge end voltage was fixed at 3.0 V, the charge current density was 1 mA / cm 2 , and the charge current density was 1 mA /
[0032]
[Table 1]
[0033]
As is clear from the results shown in Table 1, the batteries of Examples 1 and 2 were superior in cycle characteristics and storage characteristics to the batteries of Comparative Examples 1 and 2. This is considered to be based on the fact that the batteries of Examples 1 and 2 had higher mechanical strength of the positive electrode than the batteries of Comparative Examples 1 and 2.
[0034]
As described above, according to the present invention, it is possible to provide a coin-type non-aqueous secondary battery having excellent cycle characteristics and load characteristics by increasing the mechanical strength of the positive electrode.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing one example of a coin-type non-aqueous secondary battery according to the present invention.
[Explanation of symbols]
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003126822A JP4124694B2 (en) | 2003-05-02 | 2003-05-02 | Coin type non-aqueous secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003126822A JP4124694B2 (en) | 2003-05-02 | 2003-05-02 | Coin type non-aqueous secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004335188A true JP2004335188A (en) | 2004-11-25 |
JP4124694B2 JP4124694B2 (en) | 2008-07-23 |
Family
ID=33503590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003126822A Expired - Fee Related JP4124694B2 (en) | 2003-05-02 | 2003-05-02 | Coin type non-aqueous secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4124694B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011515739A (en) * | 2008-03-06 | 2011-05-19 | ミュールバウアー アーゲー | Device having RFID transponder in conductive material and manufacturing method thereof |
WO2013088929A1 (en) * | 2011-12-16 | 2013-06-20 | 日本電気株式会社 | Secondary battery |
KR20130079232A (en) | 2011-12-26 | 2013-07-10 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Positive electrode for secondary battery and manufacturing method of positive electrode for secondary battery |
WO2021001315A1 (en) * | 2019-07-01 | 2021-01-07 | Solvay Specialty Polymers Italy S.P.A. | Composition for secondary battery electrodes |
CN114050260A (en) * | 2021-10-22 | 2022-02-15 | 深圳市研一新材料有限责任公司 | Positive electrode film additive composition, positive electrode film additive, positive electrode plate and secondary battery |
EP4576266A1 (en) * | 2023-12-22 | 2025-06-25 | Arkema France | Binder for dry process electrode preparation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101665656B1 (en) | 2015-04-28 | 2016-10-12 | 충남대학교산학협력단 | Cathode Material for secondary battery, and Lithium secondary battery manufactured therefrom |
-
2003
- 2003-05-02 JP JP2003126822A patent/JP4124694B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011515739A (en) * | 2008-03-06 | 2011-05-19 | ミュールバウアー アーゲー | Device having RFID transponder in conductive material and manufacturing method thereof |
WO2013088929A1 (en) * | 2011-12-16 | 2013-06-20 | 日本電気株式会社 | Secondary battery |
US9570747B2 (en) | 2011-12-16 | 2017-02-14 | Nec Corporation | Secondary battery |
KR20130079232A (en) | 2011-12-26 | 2013-07-10 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Positive electrode for secondary battery and manufacturing method of positive electrode for secondary battery |
KR20200034682A (en) | 2011-12-26 | 2020-03-31 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Positive electrode for secondary battery and manufacturing method of positive electrode for secondary battery |
US10938035B2 (en) | 2011-12-26 | 2021-03-02 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of electrode for secondary battery |
KR20210064128A (en) | 2011-12-26 | 2021-06-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Positive electrode for secondary battery and manufacturing method of positive electrode for secondary battery |
US11962013B2 (en) | 2011-12-26 | 2024-04-16 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode for secondary battery and manufacturing method of positive electrode for secondary battery |
WO2021001315A1 (en) * | 2019-07-01 | 2021-01-07 | Solvay Specialty Polymers Italy S.P.A. | Composition for secondary battery electrodes |
CN114050260A (en) * | 2021-10-22 | 2022-02-15 | 深圳市研一新材料有限责任公司 | Positive electrode film additive composition, positive electrode film additive, positive electrode plate and secondary battery |
EP4576266A1 (en) * | 2023-12-22 | 2025-06-25 | Arkema France | Binder for dry process electrode preparation |
WO2025132947A1 (en) * | 2023-12-22 | 2025-06-26 | Arkema France | Binder for dry process electrode preparation |
Also Published As
Publication number | Publication date |
---|---|
JP4124694B2 (en) | 2008-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6068655B2 (en) | Negative electrode active material for lithium secondary battery, lithium secondary battery containing the same, and method for producing negative electrode active material | |
US20070190422A1 (en) | Carbon nanotube lithium metal powder battery | |
JP2009245808A (en) | Lithium ion secondary battery, and power source for electric vehicle | |
CN114068924A (en) | Negative electrode active material and lithium secondary battery including the same | |
JP2004273433A (en) | Electrode for battery and method of manufacturing the same | |
JP2007173134A (en) | Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery | |
JPH11283623A (en) | Lithium ion battery and its manufacture | |
JP4124694B2 (en) | Coin type non-aqueous secondary battery | |
US7682749B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2003272704A (en) | Nonaqueous secondary battery | |
JPH08335465A (en) | Nonaqueous electrolytic battery | |
JPH10116604A (en) | Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using it | |
JP2000149996A (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP5890715B2 (en) | Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP2003282147A (en) | Lithium ion secondary battery | |
JPH07105935A (en) | Non-aqueous electrolyte secondary battery | |
JP2004296305A (en) | Lithium ion secondary battery | |
JPH11312523A (en) | Battery electrode and non-aqueous electrolyte battery | |
JP2004362777A (en) | Coin type non-aqueous secondary battery and method of manufacturing the same | |
JPH10270079A (en) | Nonaqueous electrolyte battery | |
JP2002110251A (en) | Lithium ion secondary battery | |
JP3424419B2 (en) | Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery | |
JP2004335185A (en) | Coin type non-aqueous secondary battery | |
JP2000195550A (en) | Nonaqueous electrolyte secondary battery | |
JP2000357514A (en) | Negative electrode material and nonaqueous electrolyte battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051025 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080325 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080502 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080502 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |