JP2004328949A - スイッチング定電流電源装置 - Google Patents
スイッチング定電流電源装置 Download PDFInfo
- Publication number
- JP2004328949A JP2004328949A JP2003123247A JP2003123247A JP2004328949A JP 2004328949 A JP2004328949 A JP 2004328949A JP 2003123247 A JP2003123247 A JP 2003123247A JP 2003123247 A JP2003123247 A JP 2003123247A JP 2004328949 A JP2004328949 A JP 2004328949A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- current
- load
- feedback signal
- control circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Dc-Dc Converters (AREA)
Abstract
【課題】負荷(例えば、LEDを含む表示装置等)に流れる電流が断続を繰返す条件下においても当該負荷電流を安定化することのできるスイッチング定電流電源装置を提供する。
【解決手段】負荷電流に応じた第1の帰還信号を発生する検出回路5と、断続負荷6に電流を供給する電力変換回路3を駆動するための制御回路4との間に、信号レベルが一定の第2の帰還信号を発生する固定信号発生回路8を備えた帰還回路7を設置する。そして、当該帰還回路7から制御回路4に対し、負荷6に電流が流れる電流流通期間には検出回路5で生じた第1の帰還信号を選択的に供給させ、負荷6に電流が流れない電流遮断期間には固定信号発生回路8で生じた第2の帰還信号を選択的に供給させる。
【選択図】 図1
【解決手段】負荷電流に応じた第1の帰還信号を発生する検出回路5と、断続負荷6に電流を供給する電力変換回路3を駆動するための制御回路4との間に、信号レベルが一定の第2の帰還信号を発生する固定信号発生回路8を備えた帰還回路7を設置する。そして、当該帰還回路7から制御回路4に対し、負荷6に電流が流れる電流流通期間には検出回路5で生じた第1の帰還信号を選択的に供給させ、負荷6に電流が流れない電流遮断期間には固定信号発生回路8で生じた第2の帰還信号を選択的に供給させる。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、断続が繰り返される負荷に安定した電流を供給するためのスイッチング式定電流電源装置に関する。
【0002】
【従来の技術】
一般にスイッチング方式の電源装置は負荷に安定した電圧を供給する電圧源として使用されることが多い。しかし、図6に示すように接続構成し、帰還信号を出力電流に応じたものにすることで、負荷にほぼ一定の電流を供給する電流源として使用することも可能である。
図6において、1は外部のバッテリー等から電力の供給を受けるための入力端子であり、2a、2bは、その間に接続された負荷6に所定の電流を安定供給するための出力端子である。入力端子1と一方の出力端子2aとの間にはチョークコイルL1、スイッチングトランジスタQ1、整流ダイオードD1および平滑コンデンサC1が昇圧チョッパコンバータを形成するように接続構成された電力変換回路3が接続されている。
【0003】
他方の出力端子2bと回路の基準電位点としてのグランドとの間には、負荷6に流れる電流(以下、負荷電流という)を検出し、当該負荷電流に応じた帰還信号を発生するための検出回路5が接続されている。そして、電力変換回路3と検出回路5の間には、検出回路5から帰還信号の供給を受け、帰還信号のレベルに応じて電力変換回路3を駆動するための制御回路4が接続されている。(ここでは、制御回路4としてごく一般的な他励PWM制御方式の制御用ICを想定)
これら電力変換回路3、制御回路4および検出回路5により、スイッチング定電流電源装置が構成されている。なお、入力端子1とグランドとの間に接続された素子C0は入力フィルタ用コンデンサである。
【0004】
この図6のスイッチング定電流電源装置の動作を簡単に解説すると、電力変換回路3内のスイッチングトランジスタQ1は、制御回路4の端子ピンOUTから供給される信号に従ってオン、オフ動作を行う。このスイッチングトランジスタQ1のオン、オフ動作に伴ってチョークコイルL1から整流ダイオードD1を介して平滑コンデンサC1に電流が流入する。これにより平滑コンデンサC1は入力端子1に供給される入力電圧よりも高い電圧に充電され、このコンデンサC1の端子間電圧に応じた電流が負荷6および検出回路5に流れる。そして、検出回路5において負荷電流に応じた帰還信号が生成され、制御回路4の帰還信号受信用の端子ピンFBに供給される。
【0005】
検出回路5から制御回路4に提供される帰還信号は通常のスイッチング電源装置のような出力電圧に応じたレベルではなく、出力電流(=負荷電流)に応じたレベルとなっている。このため制御回路4は、その内部の誤差増幅器EA1、基準電圧源VRおよび駆動回路DRからなる制御ロジックにおいて、帰還信号(=負荷電流)に応じたオンデューティで高周波(数百kHz)のパルス状の信号を生成し、それを端子ピンOUTに連なるスイッチングトランジスタQ1に供給する。するとスイッチングトランジスタQ1は、当該パルス状の信号によって負荷電流の大きさに応じたオンデューティにてオン、オフ動作を行い、例えば、負荷電流が安定化目標値よりも低い場合、平滑コンデンサC1の端子間電圧を上昇させて負荷電流が増加するように誘導する。このような動作が行われる結果、図6の装置では負荷電流が安定化されることになる。
【0006】
ところで、近年の電子機器には大小様々な表示装置や照明装置が取り付けられており、その表示装置や照明装置の光源として発光ダイオード(以下、LEDという)が使用されるケースが増えている。LEDを光源として利用する場合、その発光量や輝度等を一定にするために、LEDへの供給電流を安定化することが要求される。そこで近年の電子機器の中には、表示装置や照明装置に付随して図6に示すようなスイッチング定電流電源装置を設け、当該電源装置からLEDに安定化した電流を供給するように構成するものが存在した。(特許文献1乃至特許文献3参照)
【0007】
【特許文献1】
特開平11−068161号公報
【特許文献2】
特開2001−215913号公報
【特許文献3】
特開2002−203988号公報
【0008】
【発明が解決しようとする課題】
近年のLEDを光源として使用する表示装置や照明装置の中には、人間の目では認識できない速度(数百Hzかそれ以上)でLEDの点灯と消灯を繰り返し、省電力化や調光を行うようにしたものが存在する。このような表示装置や照明装置では、LEDに電流が流れている期間(以下、電流流通期間と言う)と流れていない期間(以下、電流遮断期間と言う)が当然に生じる。すると、LEDへ電流を供給するための電源が図6に示すような構成となっているスイッチング定電流電源装置では、負荷の断続によって生じる電流遮断期間には、検出回路5から制御回路4に供給される帰還信号がほぼゼロレベルとなってしまう。
【0009】
このような帰還信号に対して制御回路4は、電流遮断期間にはスイッチングトランジスタQ1のオンオフ動作のオンデューティを最大に設定しようとし、その次に現れる電流流通期間には帰還信号に応じたオンデューティに設定しようとする。ここで、電流遮断期間中にオンデューティが最大になると、平滑コンデンサC1の端子間電圧が急激かつ必要以上に上昇し、次の負荷電流流通期間には、比較的長い間、安定化目標値以上の負荷電流が流れるという不都合な負荷電流不安定化の現象を生じる。
【0010】
このような負荷電流不安定化への対策の一つとしては、例えば、その帰還信号を比較的大きな容量を持つコンデンサで平滑した上で制御回路4に供給することが考えられる。しかし、電流遮断期間の間、帰還信号を有意な大きさに維持できるだけの大容量のコンデンサを設けると、制御回路4で処理される帰還信号は比較的長い期間の平均値となってしまう。このため非周期的な負荷の断続、あるいは断続とは別の原因による負荷電流の変動が生じた時には、速やかに安定化目標値から外れた負荷電流を目標値に復帰させることが出来なくなり、その結果、電流遮断期間とは別の原因で負荷電流の不安定化が引き起こされてしまう。
【0011】
このように、負荷が断続される条件下では、制御回路4からスイッチングトランジスタQ1、平滑コンデンサC1、負荷6、検出回路5を経て再び制御回路4に戻るフィードバックループの制御動作の応答速度が負荷の変化に追従できず、負荷電流を安定化できなくなる可能性があった。
そこで本発明は、負荷が断続を繰返す条件下においても負荷電流を安定化することのできるスイッチング定電流電源装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明は、負荷に所定の電流を供給するスイッチング方式の電力変換回路、負荷電流に応じた第1の帰還信号を発生する電流検出手段、基準電圧を得るための基準電圧源および、基準電圧と帰還信号に応じて負荷電流を安定化するように電力変換回路を駆動する制御回路を備えたスイッチング定電流電源装置において、 電流検出手段と制御回路との間に設けられ、その内部には信号レベルが一定の第2の帰還信号を生成する固定信号発生回路を有し、負荷状態に応じて該第1の帰還信号と該第2の帰還信号のいずれか一方を該制御回路に供給する帰還回路を備えることを特徴とする。
【0013】
【発明の実施の形態】
負荷電流に応じた帰還信号を発生する検出回路と、負荷に電流を供給するための電力変換回路を駆動する制御回路との間に、その内部に信号レベルが一定の第2の帰還信号を生成する固定信号発生を備え、負荷電流が流れている場合には電流検出手段が出力する第1の帰還信号を制御回路に供給し、負荷電流が流れていない場合には固定信号発生回路が出力する第2の帰還信号を制御回路に供給する帰還回路を設ける。なお、固定信号発生回路で生じる第2の帰還信号の信号レベル(電圧)は、制御回路内部の基準電圧源が出力する基準電圧とほぼ同じ、あるいは基準電圧よりも大きいものとする。
【0014】
このような帰還回路を組み込んだスイッチング定電流電源装置は、負荷電流が流れている時、帰還回路が第1の帰還信号を制御回路に供給することにより、従来回路と同様に負荷電流を安定化するように動作する。
一方、負荷電流が流れていない時、このような帰還回路を組み込んだスイッチング定電流電源装置は、帰還回路が第2の帰還信号を制御回路に供給することにより、スイッチングトランジスタのオンオフ動作のオンデューティを所定の大きさに固定する。これにより負荷が断続されても、平滑コンデンサの端子間電圧が必要以上に上昇し、あるいはスイッチング定電流電源装置の電流制御動作がフィードバックループの応答速度の都合で負荷の変化に追従できなくなり、負荷電流を安定化できなくなるという現象の発生を防止する。
【0015】
【実施例】
本発明によるスイッチング定電流電源装置の実施例を図1に示した。
図1にブロック図で示したスイッチング定電流電源装置は、制御回路4と検出回路5の間に帰還回路7を設けた点を除けば図6に示した従来の回路と同じである。この図1の帰還回路7は、大きく分けて第2の帰還信号を生成するための固定信号発生回路8と、検出回路5が出力する第1の帰還信号と先の第2の帰還信号のいずれかを制御回路4に供給するための選択手段9から成っている。ここで選択手段9は、負荷6の動作(換言すると、LEDの点灯と消灯の動作)に連動して切り替え動作するものとなっている。
【0016】
帰還回路7は、一例として図2のブロック図に示すように構成される。
図2において、固定信号発生回路8は出力電圧値がほぼ一定の電圧源VCより構成される。一方、選択手段9は、検出回路5と制御回路4の間に設けられた第1のバッファBU1と、固定信号発生回路8と制御回路4の間に直列に設けられた第2のバッファBU2とスイッチSWとから構成される。
【0017】
このような構成とした帰還回路7は、例えば、負荷6に負荷電流が流れ、検出回路5から出力される第1の帰還信号のレベルが高い時、選択手段9のスイッチSWはオフ状態になり、バッファBU1から制御回路4に第1の帰還信号を供給する。一方、負荷6に負荷電流が流れず、検出回路5からの第1の帰還信号のレベルがほぼゼロレベルである時、スイッチSWはオン状態に転換し、バッファBU2から固定信号発生回路8が生成する第2の帰還信号を制御回路4に供給するといった動作を行う。
【0018】
このような帰還回路7を備えた図1のスイッチング定電流電源装置では、負荷電流が流れている時、制御回路4には検出回路5からの第1の帰還信号が選択的に供給される。この状態での図1に示す構成の装置は、従来回路と全く同じ動作をして負荷電流を安定化する。
一方、負荷電流が流れていない時、制御回路4には固定信号発生回路8からの第2の帰還信号が選択的に供給される。この第2の帰還信号の供給を受けた制御回路4は、スイッチングトランジスタQ1のオンオフ動作のオンデューティを所定の大きさに固定する。
【0019】
スイッチングトランジスタQ1のオンデューティが固定されると、電流遮断期間における平滑コンデンサC1の端子間電圧の上昇が抑制される。このため、次の電流流通期間に安定化目標値以上の負荷電流が流れるという不都合な現象が発生し難くなる。また、電流遮断期間でのスイッチングトランジスタQ1のオンデューティを、実際に負荷6に安定化目標値の電流を供給している時とほぼ同じにすると、負荷電流が流れない状態から流れる状態になった時、第1の帰還信号に応じて素早くフィードバックループの制御動作が働くようになる。
このような動作の結果、負荷が断続を繰返す場合にも負荷電流を安定化できるようになる。
【0020】
図3には、具体的な本発明によるスイッチング定電流電源装置の回路例を示した。この図3の回路では本発明の要部である帰還回路7を次のように構成している。
誤差増幅器EA2の非反転側入力端子(+)を検出回路5に接続し、その反転側入力端子(−)を抵抗R1を介してグランドに接続する。誤差増幅器EA2の出力端子と反転側入力端子(−)の間に抵抗R2を接続し、誤差増幅器EA2の出力端子をさらに誤差増幅器EA3の非反転側入力端子(+)に接続する。
誤差増幅器EA3の出力端子は逆流防止用のダイオードD2を介して制御回路4の帰還信号入力用の端子ピンFBに接続し、誤差増幅器EA3の反転側入力端子(−)はダイオードD2と端子ピンFBの接続点に接続する。
【0021】
誤差増幅器EA3の出力端子とグランドの間に抵抗R3と抵抗R4の直列回路を接続し、抵抗R3とR4の接続点をトランジスタQ2のベースに接続する。トランジスタQ2ののエミッタはグランドに接続し、トランジスタQ2のコレクタとグランドの間には抵抗R5と電圧源VCを接続する。
トランジスタQ2のコレクタは更に誤差増幅器EA4の非反転側入力端子(+)に接続し、誤差増幅器EA4の出力端子はダイオードD3を介して制御回路4の端子ピンFBに接続し、反転側入力端子(−)はダイオードD3と端子ピンFBの接続点に接続する。
【0022】
この図3のスイッチング定電流電源装置において、帰還回路7を構成する誤差増幅器EA3とダイオードD2からなる回路部分が実質的に図2のバッファBU1に相当し、誤差増幅器EA4とダイオードD3からなる回路部分が実質的に図2のバッファBU2に相当する。また、抵抗R3、R4、R5およびトランジスタQ2からなる回路部分が機能的に図2のスイッチSWに相当している。
なお、誤差増幅器EA2、抵抗R1および抵抗R2からなる回路部分は、検出回路5から提供される第1の帰還信号を制御回路4内部の制御ロジックで処理することが可能なレベルに増幅・調整するためのものであり、図3の回路では帰還回路7内に構成しているが、場合によっては検出回路5の内部に構成される。
【0023】
このような構成となっている図3の回路では、先ず、負荷電流が流れている状態の場合、検出回路5が出力する第1の帰還信号は負荷電流に応じたレベルとなる。この第1の帰還信号は誤差増幅器EA2において増幅され、誤差増幅器EA3およびトランジスタQ2に供給される。
この時、トランジスタQ2はオンし、誤差増幅器EA4の非反転側入力端子(+)をグランドに落とす。これにより誤差増幅器EA4の出力はゼロレベルとなり、制御回路4の端子ピンFBには、選択的に誤差増幅器EA3が出力する第1の帰還信号が供給される。その結果、制御回路4は、負荷電流を安定化目標値に設定すべく、当該負荷電流に応じたオンデューティにてスイッチングトランジスタQ1を駆動することになる。
【0024】
次に、負荷電流が流れていない状態となった場合、検出回路5が出力する第1の帰還信号はほぼゼロレベルとなり、誤差増幅器EA2を介して誤差増幅器EA3およびトランジスタQ2に供給される信号レベルもほぼゼロレベルとなる。
この時、トランジスタQ2はオフし、誤差増幅器EA4の非反転側入力端子(+)には電圧源VCからの第2の帰還信号が供給される。すると誤差増幅器EA3の出力はゼロレベルであるため、制御回路4の端子ピンFBには、選択的に誤差増幅器EA4が出力する第2の帰還信号が供給される。その結果、制御回路4は、所定の大きさに固定されたオンデューティにてスイッチングトランジスタQ1を駆動することになる。
【0025】
以上に説明した図2、図3の回路において、例えば、電圧源VCの出力電圧、(すなわち第2の帰還信号の信号レベル)を制御回路4内の基準電圧源VRが出力する基準電圧とほぼ同じ大きさに設定すると、電流遮断期間の間、制御回路4はスイッチングトランジスタQ1を所定のオンデューティで駆動する。この時のスイッチングトランジスタQ1のオンデューティは負荷6に安定化目標値の電流が流れている時のオンデューティとほぼ同じに固定され、電流遮断期間における平滑コンデンサC1の端子間電圧の上昇が抑制される。
【0026】
一方、電圧源VCの出力電圧を基準電圧よりも大きい値、例えば基準電圧の2倍程度、に設定すると、電流遮断期間の間、制御回路4はスイッチングトランジスタQ1をフルオフ状態にする。すなわち、スイッチングトランジスタQ1のオン、オフ動作のオンデューティをゼロにする。スイッチングトランジスタQ1がオフ状態を維持すれば、実質的に電力変換回路3は動作を停止し、平滑コンデンサC1の端子間電圧の上昇は完全に防止される。
【0027】
例えば、負荷6のLEDの数が多く、電流遮断期間が短い場合には電圧源VCの出力電圧を基準電圧とほぼ同じ大きさに設定する。このように電流遮断期間が短い場合、平滑コンデンサC1の端子間電圧の上昇量が少なくて済む。しかも、負荷6に負荷電流が流れるように状態が切り替った時、電流遮断期間の間に平滑コンデンサC1に余分に蓄積された電荷によって、電流遮断期間の間に消滅したLED発光層の電荷を素早く回復することができる。これにより負荷電流が流れない状態から流れる状態になった時、大きな負荷電流を流れ難くするのと同時に、第1の帰還信号に応じて素早くフィードバックループの制御動作を働かせることができるようになる。
【0028】
逆に、LEDの数が少なく、電流遮断期間が長い場合には、電圧源VCの出力電圧を基準電圧よりも大きい値に設定する。つまり、電流遮断期間が長いと、その間に平滑コンデンサC1の端子間電圧が過大になる可能性が高くなる。しかしスイッチングトランジスタQ1がオフ状態を維持すれば、平滑コンデンサC1の端子間電圧は電流遮断期間に全く上昇しないため、負荷電流が流れない状態から流れる状態になった時、大きな負荷電流が流れることが無い。
このように、電圧源VCの出力電圧値は、負荷6のLEDの数、電流遮断期間の長さ、等の条件に応じて選択し、設定すれば良い。
【0029】
市場に出回っているDC−DCコンバータ制御用ICの中には、IC内部で生成した安定した電圧をIC外部に導出できる構造となっているものがある。図4は、その一例のICの概略の内部構造を示しており、内部に設けられた基準電圧源VRでは1.0Vの基準電圧Vrefと2.2Vの安定化電圧V1が生成される。このうち基準電圧Vrefについては、一方の入力端子に第1あるいは第2の帰還信号が入力される誤差増幅器EA1の他方の入力端子に供給されるよう構成され、それと同時にREF端子からIC外部に導出できる様に構成されている。そして安定化電圧V1についてはREG端子からIC外部に導出できる様に構成されている。
【0030】
図4に示すような制御用ICを制御回路4として使用した場合、図5に示すようにして電圧源VCを得ることができる。例えば、第2の帰還信号の信号レベル(=電圧源VCの出力電圧)を基準電圧よりも大きい値に設定する場合には図5右側の(a)に示すように構成すれば良く、他方で第2の帰還信号の信号レベルを基準電圧とほぼ同じ大きさに設定する場合には図5左側の(b)に示すように構成すれば良い。勿論、図5右側の(a)に示すように回路を構成した上で、抵抗R6、R7の抵抗値を調節して第2の帰還信号の信号レベルを基準電圧とほぼ同じ大きさに設定しても構わない。
なお、IC内部で生成した安定した電圧をIC外部に導出できる構造となっている制御用ICとしてはFA7703(富士電機株式会社製)等がある。
【0031】
以上の各実施例の説明では、電力変換回路3に昇圧チョッパ型の回路、制御回路4に他励PWM型の制御用ICを想定して説明したが、本発明を適用するスイッチング定電流電源装置はこれに限定されるものではない。検出回路5も抵抗検出以外の検出方法を用いても良く、本発明の要旨を変更しない範囲であれば、具体的な回路構成の変形が可能であることは言うまでも無い。
当然、負荷6についても、使用時に断続を繰り返すものであれば、LEDを含む表示装置や照明装置でなくても構わない。
【0032】
【発明の効果】
以上までに説明したように、本発明によるスイッチング定電流電源装置は、負荷電流に応じた第1の帰還信号を発生する検出回路と、断続動作する負荷に電流を供給する電力変換回路を駆動するための制御回路との間に、信号レベルが一定の第2の帰還信号を発生する固定信号発生回路を備えた帰還回路を設置する。そして当該帰還回路から制御回路に、電流流通期間中には第1の帰還信号を供給させ、電流遮断期間中には第2の帰還信号を供給させることを特徴としている。
このような本発明によれば、平滑コンデンサの端子間電圧の上昇が抑制されると共にフィードバックループの電流制御動作の応答速度が負荷変動に追従できなくなる事態が防止され、その結果、負荷が断続される場合にも負荷電流を安定化できるスイッチング定電流電源装置が提供できる。
【図面の簡単な説明】
【図1】本発明によるスイッチング定電流電源装置のブロック図。
【図2】本発明の要部を成す帰還回路のブロック図。
【図3】本発明によるスイッチング定電流電源装置の具体的な回路図。
【図4】DC−DCコンバータ制御用ICの一例の内部構造のブロック図。
【図5】第2の帰還信号生成用の電圧源VCの構成例。
【図6】従来のスイッチング定電流電源装置の一例のブロック図。
【符号の説明】
1:入力端子 2a、2b:出力端子 3:電力変換回路 4:制御回路 5:検出回路 6:負荷(断続を繰り返す負荷) 7:帰還回路 8:固定信号発生回路 9:選択回路 VR:基準電圧源
VC:電圧源
【発明の属する技術分野】
本発明は、断続が繰り返される負荷に安定した電流を供給するためのスイッチング式定電流電源装置に関する。
【0002】
【従来の技術】
一般にスイッチング方式の電源装置は負荷に安定した電圧を供給する電圧源として使用されることが多い。しかし、図6に示すように接続構成し、帰還信号を出力電流に応じたものにすることで、負荷にほぼ一定の電流を供給する電流源として使用することも可能である。
図6において、1は外部のバッテリー等から電力の供給を受けるための入力端子であり、2a、2bは、その間に接続された負荷6に所定の電流を安定供給するための出力端子である。入力端子1と一方の出力端子2aとの間にはチョークコイルL1、スイッチングトランジスタQ1、整流ダイオードD1および平滑コンデンサC1が昇圧チョッパコンバータを形成するように接続構成された電力変換回路3が接続されている。
【0003】
他方の出力端子2bと回路の基準電位点としてのグランドとの間には、負荷6に流れる電流(以下、負荷電流という)を検出し、当該負荷電流に応じた帰還信号を発生するための検出回路5が接続されている。そして、電力変換回路3と検出回路5の間には、検出回路5から帰還信号の供給を受け、帰還信号のレベルに応じて電力変換回路3を駆動するための制御回路4が接続されている。(ここでは、制御回路4としてごく一般的な他励PWM制御方式の制御用ICを想定)
これら電力変換回路3、制御回路4および検出回路5により、スイッチング定電流電源装置が構成されている。なお、入力端子1とグランドとの間に接続された素子C0は入力フィルタ用コンデンサである。
【0004】
この図6のスイッチング定電流電源装置の動作を簡単に解説すると、電力変換回路3内のスイッチングトランジスタQ1は、制御回路4の端子ピンOUTから供給される信号に従ってオン、オフ動作を行う。このスイッチングトランジスタQ1のオン、オフ動作に伴ってチョークコイルL1から整流ダイオードD1を介して平滑コンデンサC1に電流が流入する。これにより平滑コンデンサC1は入力端子1に供給される入力電圧よりも高い電圧に充電され、このコンデンサC1の端子間電圧に応じた電流が負荷6および検出回路5に流れる。そして、検出回路5において負荷電流に応じた帰還信号が生成され、制御回路4の帰還信号受信用の端子ピンFBに供給される。
【0005】
検出回路5から制御回路4に提供される帰還信号は通常のスイッチング電源装置のような出力電圧に応じたレベルではなく、出力電流(=負荷電流)に応じたレベルとなっている。このため制御回路4は、その内部の誤差増幅器EA1、基準電圧源VRおよび駆動回路DRからなる制御ロジックにおいて、帰還信号(=負荷電流)に応じたオンデューティで高周波(数百kHz)のパルス状の信号を生成し、それを端子ピンOUTに連なるスイッチングトランジスタQ1に供給する。するとスイッチングトランジスタQ1は、当該パルス状の信号によって負荷電流の大きさに応じたオンデューティにてオン、オフ動作を行い、例えば、負荷電流が安定化目標値よりも低い場合、平滑コンデンサC1の端子間電圧を上昇させて負荷電流が増加するように誘導する。このような動作が行われる結果、図6の装置では負荷電流が安定化されることになる。
【0006】
ところで、近年の電子機器には大小様々な表示装置や照明装置が取り付けられており、その表示装置や照明装置の光源として発光ダイオード(以下、LEDという)が使用されるケースが増えている。LEDを光源として利用する場合、その発光量や輝度等を一定にするために、LEDへの供給電流を安定化することが要求される。そこで近年の電子機器の中には、表示装置や照明装置に付随して図6に示すようなスイッチング定電流電源装置を設け、当該電源装置からLEDに安定化した電流を供給するように構成するものが存在した。(特許文献1乃至特許文献3参照)
【0007】
【特許文献1】
特開平11−068161号公報
【特許文献2】
特開2001−215913号公報
【特許文献3】
特開2002−203988号公報
【0008】
【発明が解決しようとする課題】
近年のLEDを光源として使用する表示装置や照明装置の中には、人間の目では認識できない速度(数百Hzかそれ以上)でLEDの点灯と消灯を繰り返し、省電力化や調光を行うようにしたものが存在する。このような表示装置や照明装置では、LEDに電流が流れている期間(以下、電流流通期間と言う)と流れていない期間(以下、電流遮断期間と言う)が当然に生じる。すると、LEDへ電流を供給するための電源が図6に示すような構成となっているスイッチング定電流電源装置では、負荷の断続によって生じる電流遮断期間には、検出回路5から制御回路4に供給される帰還信号がほぼゼロレベルとなってしまう。
【0009】
このような帰還信号に対して制御回路4は、電流遮断期間にはスイッチングトランジスタQ1のオンオフ動作のオンデューティを最大に設定しようとし、その次に現れる電流流通期間には帰還信号に応じたオンデューティに設定しようとする。ここで、電流遮断期間中にオンデューティが最大になると、平滑コンデンサC1の端子間電圧が急激かつ必要以上に上昇し、次の負荷電流流通期間には、比較的長い間、安定化目標値以上の負荷電流が流れるという不都合な負荷電流不安定化の現象を生じる。
【0010】
このような負荷電流不安定化への対策の一つとしては、例えば、その帰還信号を比較的大きな容量を持つコンデンサで平滑した上で制御回路4に供給することが考えられる。しかし、電流遮断期間の間、帰還信号を有意な大きさに維持できるだけの大容量のコンデンサを設けると、制御回路4で処理される帰還信号は比較的長い期間の平均値となってしまう。このため非周期的な負荷の断続、あるいは断続とは別の原因による負荷電流の変動が生じた時には、速やかに安定化目標値から外れた負荷電流を目標値に復帰させることが出来なくなり、その結果、電流遮断期間とは別の原因で負荷電流の不安定化が引き起こされてしまう。
【0011】
このように、負荷が断続される条件下では、制御回路4からスイッチングトランジスタQ1、平滑コンデンサC1、負荷6、検出回路5を経て再び制御回路4に戻るフィードバックループの制御動作の応答速度が負荷の変化に追従できず、負荷電流を安定化できなくなる可能性があった。
そこで本発明は、負荷が断続を繰返す条件下においても負荷電流を安定化することのできるスイッチング定電流電源装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明は、負荷に所定の電流を供給するスイッチング方式の電力変換回路、負荷電流に応じた第1の帰還信号を発生する電流検出手段、基準電圧を得るための基準電圧源および、基準電圧と帰還信号に応じて負荷電流を安定化するように電力変換回路を駆動する制御回路を備えたスイッチング定電流電源装置において、 電流検出手段と制御回路との間に設けられ、その内部には信号レベルが一定の第2の帰還信号を生成する固定信号発生回路を有し、負荷状態に応じて該第1の帰還信号と該第2の帰還信号のいずれか一方を該制御回路に供給する帰還回路を備えることを特徴とする。
【0013】
【発明の実施の形態】
負荷電流に応じた帰還信号を発生する検出回路と、負荷に電流を供給するための電力変換回路を駆動する制御回路との間に、その内部に信号レベルが一定の第2の帰還信号を生成する固定信号発生を備え、負荷電流が流れている場合には電流検出手段が出力する第1の帰還信号を制御回路に供給し、負荷電流が流れていない場合には固定信号発生回路が出力する第2の帰還信号を制御回路に供給する帰還回路を設ける。なお、固定信号発生回路で生じる第2の帰還信号の信号レベル(電圧)は、制御回路内部の基準電圧源が出力する基準電圧とほぼ同じ、あるいは基準電圧よりも大きいものとする。
【0014】
このような帰還回路を組み込んだスイッチング定電流電源装置は、負荷電流が流れている時、帰還回路が第1の帰還信号を制御回路に供給することにより、従来回路と同様に負荷電流を安定化するように動作する。
一方、負荷電流が流れていない時、このような帰還回路を組み込んだスイッチング定電流電源装置は、帰還回路が第2の帰還信号を制御回路に供給することにより、スイッチングトランジスタのオンオフ動作のオンデューティを所定の大きさに固定する。これにより負荷が断続されても、平滑コンデンサの端子間電圧が必要以上に上昇し、あるいはスイッチング定電流電源装置の電流制御動作がフィードバックループの応答速度の都合で負荷の変化に追従できなくなり、負荷電流を安定化できなくなるという現象の発生を防止する。
【0015】
【実施例】
本発明によるスイッチング定電流電源装置の実施例を図1に示した。
図1にブロック図で示したスイッチング定電流電源装置は、制御回路4と検出回路5の間に帰還回路7を設けた点を除けば図6に示した従来の回路と同じである。この図1の帰還回路7は、大きく分けて第2の帰還信号を生成するための固定信号発生回路8と、検出回路5が出力する第1の帰還信号と先の第2の帰還信号のいずれかを制御回路4に供給するための選択手段9から成っている。ここで選択手段9は、負荷6の動作(換言すると、LEDの点灯と消灯の動作)に連動して切り替え動作するものとなっている。
【0016】
帰還回路7は、一例として図2のブロック図に示すように構成される。
図2において、固定信号発生回路8は出力電圧値がほぼ一定の電圧源VCより構成される。一方、選択手段9は、検出回路5と制御回路4の間に設けられた第1のバッファBU1と、固定信号発生回路8と制御回路4の間に直列に設けられた第2のバッファBU2とスイッチSWとから構成される。
【0017】
このような構成とした帰還回路7は、例えば、負荷6に負荷電流が流れ、検出回路5から出力される第1の帰還信号のレベルが高い時、選択手段9のスイッチSWはオフ状態になり、バッファBU1から制御回路4に第1の帰還信号を供給する。一方、負荷6に負荷電流が流れず、検出回路5からの第1の帰還信号のレベルがほぼゼロレベルである時、スイッチSWはオン状態に転換し、バッファBU2から固定信号発生回路8が生成する第2の帰還信号を制御回路4に供給するといった動作を行う。
【0018】
このような帰還回路7を備えた図1のスイッチング定電流電源装置では、負荷電流が流れている時、制御回路4には検出回路5からの第1の帰還信号が選択的に供給される。この状態での図1に示す構成の装置は、従来回路と全く同じ動作をして負荷電流を安定化する。
一方、負荷電流が流れていない時、制御回路4には固定信号発生回路8からの第2の帰還信号が選択的に供給される。この第2の帰還信号の供給を受けた制御回路4は、スイッチングトランジスタQ1のオンオフ動作のオンデューティを所定の大きさに固定する。
【0019】
スイッチングトランジスタQ1のオンデューティが固定されると、電流遮断期間における平滑コンデンサC1の端子間電圧の上昇が抑制される。このため、次の電流流通期間に安定化目標値以上の負荷電流が流れるという不都合な現象が発生し難くなる。また、電流遮断期間でのスイッチングトランジスタQ1のオンデューティを、実際に負荷6に安定化目標値の電流を供給している時とほぼ同じにすると、負荷電流が流れない状態から流れる状態になった時、第1の帰還信号に応じて素早くフィードバックループの制御動作が働くようになる。
このような動作の結果、負荷が断続を繰返す場合にも負荷電流を安定化できるようになる。
【0020】
図3には、具体的な本発明によるスイッチング定電流電源装置の回路例を示した。この図3の回路では本発明の要部である帰還回路7を次のように構成している。
誤差増幅器EA2の非反転側入力端子(+)を検出回路5に接続し、その反転側入力端子(−)を抵抗R1を介してグランドに接続する。誤差増幅器EA2の出力端子と反転側入力端子(−)の間に抵抗R2を接続し、誤差増幅器EA2の出力端子をさらに誤差増幅器EA3の非反転側入力端子(+)に接続する。
誤差増幅器EA3の出力端子は逆流防止用のダイオードD2を介して制御回路4の帰還信号入力用の端子ピンFBに接続し、誤差増幅器EA3の反転側入力端子(−)はダイオードD2と端子ピンFBの接続点に接続する。
【0021】
誤差増幅器EA3の出力端子とグランドの間に抵抗R3と抵抗R4の直列回路を接続し、抵抗R3とR4の接続点をトランジスタQ2のベースに接続する。トランジスタQ2ののエミッタはグランドに接続し、トランジスタQ2のコレクタとグランドの間には抵抗R5と電圧源VCを接続する。
トランジスタQ2のコレクタは更に誤差増幅器EA4の非反転側入力端子(+)に接続し、誤差増幅器EA4の出力端子はダイオードD3を介して制御回路4の端子ピンFBに接続し、反転側入力端子(−)はダイオードD3と端子ピンFBの接続点に接続する。
【0022】
この図3のスイッチング定電流電源装置において、帰還回路7を構成する誤差増幅器EA3とダイオードD2からなる回路部分が実質的に図2のバッファBU1に相当し、誤差増幅器EA4とダイオードD3からなる回路部分が実質的に図2のバッファBU2に相当する。また、抵抗R3、R4、R5およびトランジスタQ2からなる回路部分が機能的に図2のスイッチSWに相当している。
なお、誤差増幅器EA2、抵抗R1および抵抗R2からなる回路部分は、検出回路5から提供される第1の帰還信号を制御回路4内部の制御ロジックで処理することが可能なレベルに増幅・調整するためのものであり、図3の回路では帰還回路7内に構成しているが、場合によっては検出回路5の内部に構成される。
【0023】
このような構成となっている図3の回路では、先ず、負荷電流が流れている状態の場合、検出回路5が出力する第1の帰還信号は負荷電流に応じたレベルとなる。この第1の帰還信号は誤差増幅器EA2において増幅され、誤差増幅器EA3およびトランジスタQ2に供給される。
この時、トランジスタQ2はオンし、誤差増幅器EA4の非反転側入力端子(+)をグランドに落とす。これにより誤差増幅器EA4の出力はゼロレベルとなり、制御回路4の端子ピンFBには、選択的に誤差増幅器EA3が出力する第1の帰還信号が供給される。その結果、制御回路4は、負荷電流を安定化目標値に設定すべく、当該負荷電流に応じたオンデューティにてスイッチングトランジスタQ1を駆動することになる。
【0024】
次に、負荷電流が流れていない状態となった場合、検出回路5が出力する第1の帰還信号はほぼゼロレベルとなり、誤差増幅器EA2を介して誤差増幅器EA3およびトランジスタQ2に供給される信号レベルもほぼゼロレベルとなる。
この時、トランジスタQ2はオフし、誤差増幅器EA4の非反転側入力端子(+)には電圧源VCからの第2の帰還信号が供給される。すると誤差増幅器EA3の出力はゼロレベルであるため、制御回路4の端子ピンFBには、選択的に誤差増幅器EA4が出力する第2の帰還信号が供給される。その結果、制御回路4は、所定の大きさに固定されたオンデューティにてスイッチングトランジスタQ1を駆動することになる。
【0025】
以上に説明した図2、図3の回路において、例えば、電圧源VCの出力電圧、(すなわち第2の帰還信号の信号レベル)を制御回路4内の基準電圧源VRが出力する基準電圧とほぼ同じ大きさに設定すると、電流遮断期間の間、制御回路4はスイッチングトランジスタQ1を所定のオンデューティで駆動する。この時のスイッチングトランジスタQ1のオンデューティは負荷6に安定化目標値の電流が流れている時のオンデューティとほぼ同じに固定され、電流遮断期間における平滑コンデンサC1の端子間電圧の上昇が抑制される。
【0026】
一方、電圧源VCの出力電圧を基準電圧よりも大きい値、例えば基準電圧の2倍程度、に設定すると、電流遮断期間の間、制御回路4はスイッチングトランジスタQ1をフルオフ状態にする。すなわち、スイッチングトランジスタQ1のオン、オフ動作のオンデューティをゼロにする。スイッチングトランジスタQ1がオフ状態を維持すれば、実質的に電力変換回路3は動作を停止し、平滑コンデンサC1の端子間電圧の上昇は完全に防止される。
【0027】
例えば、負荷6のLEDの数が多く、電流遮断期間が短い場合には電圧源VCの出力電圧を基準電圧とほぼ同じ大きさに設定する。このように電流遮断期間が短い場合、平滑コンデンサC1の端子間電圧の上昇量が少なくて済む。しかも、負荷6に負荷電流が流れるように状態が切り替った時、電流遮断期間の間に平滑コンデンサC1に余分に蓄積された電荷によって、電流遮断期間の間に消滅したLED発光層の電荷を素早く回復することができる。これにより負荷電流が流れない状態から流れる状態になった時、大きな負荷電流を流れ難くするのと同時に、第1の帰還信号に応じて素早くフィードバックループの制御動作を働かせることができるようになる。
【0028】
逆に、LEDの数が少なく、電流遮断期間が長い場合には、電圧源VCの出力電圧を基準電圧よりも大きい値に設定する。つまり、電流遮断期間が長いと、その間に平滑コンデンサC1の端子間電圧が過大になる可能性が高くなる。しかしスイッチングトランジスタQ1がオフ状態を維持すれば、平滑コンデンサC1の端子間電圧は電流遮断期間に全く上昇しないため、負荷電流が流れない状態から流れる状態になった時、大きな負荷電流が流れることが無い。
このように、電圧源VCの出力電圧値は、負荷6のLEDの数、電流遮断期間の長さ、等の条件に応じて選択し、設定すれば良い。
【0029】
市場に出回っているDC−DCコンバータ制御用ICの中には、IC内部で生成した安定した電圧をIC外部に導出できる構造となっているものがある。図4は、その一例のICの概略の内部構造を示しており、内部に設けられた基準電圧源VRでは1.0Vの基準電圧Vrefと2.2Vの安定化電圧V1が生成される。このうち基準電圧Vrefについては、一方の入力端子に第1あるいは第2の帰還信号が入力される誤差増幅器EA1の他方の入力端子に供給されるよう構成され、それと同時にREF端子からIC外部に導出できる様に構成されている。そして安定化電圧V1についてはREG端子からIC外部に導出できる様に構成されている。
【0030】
図4に示すような制御用ICを制御回路4として使用した場合、図5に示すようにして電圧源VCを得ることができる。例えば、第2の帰還信号の信号レベル(=電圧源VCの出力電圧)を基準電圧よりも大きい値に設定する場合には図5右側の(a)に示すように構成すれば良く、他方で第2の帰還信号の信号レベルを基準電圧とほぼ同じ大きさに設定する場合には図5左側の(b)に示すように構成すれば良い。勿論、図5右側の(a)に示すように回路を構成した上で、抵抗R6、R7の抵抗値を調節して第2の帰還信号の信号レベルを基準電圧とほぼ同じ大きさに設定しても構わない。
なお、IC内部で生成した安定した電圧をIC外部に導出できる構造となっている制御用ICとしてはFA7703(富士電機株式会社製)等がある。
【0031】
以上の各実施例の説明では、電力変換回路3に昇圧チョッパ型の回路、制御回路4に他励PWM型の制御用ICを想定して説明したが、本発明を適用するスイッチング定電流電源装置はこれに限定されるものではない。検出回路5も抵抗検出以外の検出方法を用いても良く、本発明の要旨を変更しない範囲であれば、具体的な回路構成の変形が可能であることは言うまでも無い。
当然、負荷6についても、使用時に断続を繰り返すものであれば、LEDを含む表示装置や照明装置でなくても構わない。
【0032】
【発明の効果】
以上までに説明したように、本発明によるスイッチング定電流電源装置は、負荷電流に応じた第1の帰還信号を発生する検出回路と、断続動作する負荷に電流を供給する電力変換回路を駆動するための制御回路との間に、信号レベルが一定の第2の帰還信号を発生する固定信号発生回路を備えた帰還回路を設置する。そして当該帰還回路から制御回路に、電流流通期間中には第1の帰還信号を供給させ、電流遮断期間中には第2の帰還信号を供給させることを特徴としている。
このような本発明によれば、平滑コンデンサの端子間電圧の上昇が抑制されると共にフィードバックループの電流制御動作の応答速度が負荷変動に追従できなくなる事態が防止され、その結果、負荷が断続される場合にも負荷電流を安定化できるスイッチング定電流電源装置が提供できる。
【図面の簡単な説明】
【図1】本発明によるスイッチング定電流電源装置のブロック図。
【図2】本発明の要部を成す帰還回路のブロック図。
【図3】本発明によるスイッチング定電流電源装置の具体的な回路図。
【図4】DC−DCコンバータ制御用ICの一例の内部構造のブロック図。
【図5】第2の帰還信号生成用の電圧源VCの構成例。
【図6】従来のスイッチング定電流電源装置の一例のブロック図。
【符号の説明】
1:入力端子 2a、2b:出力端子 3:電力変換回路 4:制御回路 5:検出回路 6:負荷(断続を繰り返す負荷) 7:帰還回路 8:固定信号発生回路 9:選択回路 VR:基準電圧源
VC:電圧源
Claims (5)
- 負荷に所定の電流を供給するスイッチング方式の電力変換回路、負荷電流に応じた第1の帰還信号を発生する電流検出手段、基準電圧を得るための基準電圧源および、該基準電圧と帰還信号に応じて該負荷電流を安定化するように該電力変換回路を駆動する制御回路を備えたスイッチング定電流電源装置において、
該電流検出手段と該制御回路との間に設けられ、その内部には信号レベルが一定の第2の帰還信号を生成する固定信号発生回路を有し、負荷状態に応じて該第1の帰還信号と該第2の帰還信号のいずれか一方を該制御回路に供給する帰還回路を備える
ことを特徴とするスイッチング定電流電源装置。 - 前記帰還回路は、負荷電流が流れている時には前記第1の帰還信号を前記制御回路に供給し、負荷電流が流れていない時には前記第2の帰還信号を該制御回路に供給することを特徴とする請求項1のスイッチング定電流電源装置。
- 前記固定信号発生回路で生成された前記第2の帰還信号の信号レベルが前記基準電圧とほぼ等しい大きさであることを特徴とする、請求項1あるいは請求項2に記載したスイッチング定電流電源装置。
- 前記固定信号発生回路で生成された前記第2の帰還信号の信号レベルが前記基準電圧よりも大きく、該第2の帰還信号の供給を受けた前記制御回路が前記電力変換回路の動作を停止させることを特徴とする、請求項1あるいは請求項2に記載したスイッチング定電流電源装置。
- 前記負荷が高速で点滅を繰り返す発光ダイオード素子を含むことを特徴とする、請求項1から請求項4のいずれかに記載したスイッチング定電流電源装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003123247A JP3747036B2 (ja) | 2003-04-28 | 2003-04-28 | スイッチング定電流電源装置 |
US10/831,588 US7034607B2 (en) | 2003-04-28 | 2004-04-23 | Switching constant-current power device |
TW093111764A TW200504485A (en) | 2003-04-28 | 2004-04-27 | Switching constant-current power device |
KR1020040029484A KR20040093457A (ko) | 2003-04-28 | 2004-04-28 | 스위칭 정전류 전원장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003123247A JP3747036B2 (ja) | 2003-04-28 | 2003-04-28 | スイッチング定電流電源装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004328949A true JP2004328949A (ja) | 2004-11-18 |
JP3747036B2 JP3747036B2 (ja) | 2006-02-22 |
Family
ID=33501193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003123247A Expired - Fee Related JP3747036B2 (ja) | 2003-04-28 | 2003-04-28 | スイッチング定電流電源装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3747036B2 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008311602A (ja) * | 2007-05-17 | 2008-12-25 | Seiko Npc Corp | Led駆動回路 |
JP2010062184A (ja) * | 2008-09-01 | 2010-03-18 | Sanken Electric Co Ltd | Led点灯装置 |
JP2010114224A (ja) * | 2008-11-05 | 2010-05-20 | Aw Japan:Kk | Led点灯装置 |
JP2011060696A (ja) * | 2009-09-14 | 2011-03-24 | Asahi Kasei Toko Power Device Corp | Pwm調光回路 |
JP2021082958A (ja) * | 2019-11-20 | 2021-05-27 | Necプラットフォームズ株式会社 | 駆動回路 |
-
2003
- 2003-04-28 JP JP2003123247A patent/JP3747036B2/ja not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008311602A (ja) * | 2007-05-17 | 2008-12-25 | Seiko Npc Corp | Led駆動回路 |
JP2010062184A (ja) * | 2008-09-01 | 2010-03-18 | Sanken Electric Co Ltd | Led点灯装置 |
JP2010114224A (ja) * | 2008-11-05 | 2010-05-20 | Aw Japan:Kk | Led点灯装置 |
JP2011060696A (ja) * | 2009-09-14 | 2011-03-24 | Asahi Kasei Toko Power Device Corp | Pwm調光回路 |
JP2021082958A (ja) * | 2019-11-20 | 2021-05-27 | Necプラットフォームズ株式会社 | 駆動回路 |
JP7060562B2 (ja) | 2019-11-20 | 2022-04-26 | Necプラットフォームズ株式会社 | 駆動回路 |
Also Published As
Publication number | Publication date |
---|---|
JP3747036B2 (ja) | 2006-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7034607B2 (en) | Switching constant-current power device | |
JP3653078B2 (ja) | スイッチング定電流電源装置 | |
KR101437017B1 (ko) | Led들용 구동 장치 및 관련 방법 | |
JP5492921B2 (ja) | 光源を駆動する回路および方法 | |
US8026676B2 (en) | Dimming control circuit | |
JP5174061B2 (ja) | 電源装置及び照明器具 | |
JP6430665B2 (ja) | Ledドライバ及び駆動方法 | |
TW201034371A (en) | Load driving device and liquid crystal display using such load driving device | |
JP2006319172A (ja) | Ledランプ調光用アダプタ装置 | |
JP2012235676A (ja) | 光源を駆動するための回路および方法 | |
JP2010055843A (ja) | 照明点灯装置、照明装置及び照明器具 | |
JP4748025B2 (ja) | 位相制御型電源装置 | |
JP5220235B2 (ja) | 電源装置及び照明器具 | |
JP4199202B2 (ja) | 電源装置及び照明装置 | |
TW201412185A (zh) | 發光二極體驅動裝置及其運作方法 | |
JP4209730B2 (ja) | スイッチング定電流電源装置 | |
JP2007165001A (ja) | Led点灯装置 | |
JP3747037B2 (ja) | スイッチング定電流電源装置 | |
JP4971254B2 (ja) | Led点灯装置 | |
JP5220234B2 (ja) | 電源装置及び照明器具 | |
JP3910942B2 (ja) | スイッチング定電流電源装置 | |
JP3747036B2 (ja) | スイッチング定電流電源装置 | |
JP6453164B2 (ja) | 照明用電源制御装置、半導体集積回路、照明用電源および照明器具 | |
JP3910941B2 (ja) | スイッチング定電流電源装置 | |
JP2013030390A (ja) | 電源装置ならびにこの電源装置を有する照明器具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050801 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051125 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |