[go: up one dir, main page]

JP2004316441A - Method for raising temperature of particulate filter - Google Patents

Method for raising temperature of particulate filter Download PDF

Info

Publication number
JP2004316441A
JP2004316441A JP2003107581A JP2003107581A JP2004316441A JP 2004316441 A JP2004316441 A JP 2004316441A JP 2003107581 A JP2003107581 A JP 2003107581A JP 2003107581 A JP2003107581 A JP 2003107581A JP 2004316441 A JP2004316441 A JP 2004316441A
Authority
JP
Japan
Prior art keywords
injection
temperature
particulate filter
post
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107581A
Other languages
Japanese (ja)
Inventor
Hiroshi Funahashi
博 舟橋
Katsushi Ogimoto
克司 扇元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2003107581A priority Critical patent/JP2004316441A/en
Publication of JP2004316441A publication Critical patent/JP2004316441A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize fuel addition by post injection while surely avoiding a problem of clogging caused by unprocessed fuel addition. <P>SOLUTION: In a method for raising temperature of a catalyst bed of a particulate filter 12 by reaction heat generated when fuel which is added under unburned condition into exhaust gas 9 by executing post injection at an incombustible timing later than a compression top dead center with following main injection in a diesel engine 1 side is oxidized on oxidization catalyst of the catalyst regeneration type particulate filter 12 installed in a middle of an exhaust pipe 11, after injection is executed at a combustible timing right after main injection and pre post injection for keeping ember to extent to suppress temperature drop in a expansion stroke is added in a period between the after injection and the post injection under an operation condition that temperature of exhaust gas 9 is a predetermined temperature or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、パティキュレートフィルタの昇温方法に関するものである。
【0002】
【従来の技術】
ディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)は、炭素質から成る煤と、高沸点炭化水素成分から成るSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とし、更に微量のサルフェート(ミスト状硫酸成分)を含んだ組成を成すものであるが、この種のパティキュレートの低減対策としては、排気ガスが流通する排気管の途中に、パティキュレートフィルタを装備することが従来より行われている。
【0003】
この種のパティキュレートフィルタは、コージェライト等のセラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出されるようにしてある。
【0004】
そして、排気ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集されて堆積するので、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要があるが、通常のディーゼルエンジンの運転状態においては、パティキュレートが自己燃焼するほどの高い排気温度が得られる機会が少ないため、例えばアルミナに白金を担持させたものに適宜な量のセリウム等の希土類元素を添加して成る酸化触媒を一体的に担持させた触媒再生型のパティキュレートフィルタの実用化が進められている。
【0005】
即ち、このような触媒再生型のパティキュレートフィルタを採用すれば、捕集されたパティキュレートの酸化反応が促進されて着火温度が低下し、従来より低い排気温度でもパティキュレートを燃焼除去することが可能となるのであり、更には、ディーゼルエンジン側でメイン噴射に続き圧縮上死点より遅い非着火のタイミングでポスト噴射を行うことで排気ガス中に燃料を未燃のまま添加し、その添加燃料(炭化水素)がパティキュレートフィルタの酸化触媒上で酸化反応した時の反応熱によりパティキュレートフィルタの触媒床温度を上げて積極的に捕集済みパティキュレートを燃焼除去させたり、滞留サルフェートを脱離させたりすることが可能となるのである。
【0006】
尚、この種のディーゼルエンジン側でのポスト噴射による燃料添加の手法に関しては、下記の先行出願1や先行出願2にもとりあげられている。
【0007】
【先行出願1】
特願2001−355061号明細書
【先行出願2】
特願2002−20374号明細書
【0008】
【発明が解決しようとする課題】
しかしながら、ポスト噴射により排気ガス中に添加した燃料がパティキュレートフィルタの酸化触媒上で酸化反応するに際しては、パティキュレートフィルタの後方部分に向かうにつれて酸化触媒との接触機会が増えて添加燃料の酸化反応が活発化することになるため、パティキュレートフィルタの前方部分は後方部分より温度が上がり難く、ただ単にパティキュレートフィルタの後方部分の触媒床温度を約600℃以上に上昇させるのに必要な量の燃料を添加するだけでは、排気ガスの温度が低い運転状態の場合に、あまり温度の高くない(触媒活性の低い)パティキュレートフィルタの前方部分で処理しきれない添加燃料が溜まり、これによりパティキュレートフィルタの前方部分がべたべたしたウェット状態となってパティキュレートが付着し易くなり、ここにパティキュレートが酸化処理されることなく溜まり続けてパティキュレートフィルタが早期に目詰まりを引き起こすという問題があった。
【0009】
本発明は、上述の実情に鑑みてなされたものであり、未処理の添加燃料により引き起こされる目詰まりの問題を確実に回避しながらポスト噴射による燃料添加を実現することを目的としている。
【0010】
【課題を解決するための手段】
本発明は、触媒再生型のパティキュレートフィルタを排気管の途中に装備し、エンジン側でメイン噴射に続き圧縮上死点より遅い非着火のタイミングでポスト噴射を行うことで排気ガス中に燃料を未燃のまま添加し、その添加燃料がパティキュレートフィルタの酸化触媒上で酸化反応した時の反応熱によりパティキュレートフィルタの触媒床温度を上げる昇温方法において、排気ガスが所定温度以下となる運転状態で、メイン噴射直後の燃焼可能なタイミングでアフタ噴射を行い且つ該アフタ噴射からポスト噴射までの間に膨張行程での温度低下を抑制し得る程度に残り火を継続せしめるプリポスト噴射を追加することを特徴とするものである。
【0011】
而して、このようにすれば、アフタ噴射による添加燃料が出力に転換され難いタイミングで燃焼することによりエンジンの熱効率が下がり、燃料の発熱量のうちの動力に利用されない熱量分が増えて気筒内での排気温度が上昇し、しかも、このアフタ噴射からポスト噴射までの間にプリポスト噴射が追加されることで、気筒内で失火せずに残り火が継続されて膨張行程での排気温度低下が抑制されるので、本来ならば排気温度が低いはずの運転状態にあっても、エンジンから排出される排気ガスの大幅な昇温化が図られることになる。
【0012】
そして、排気弁の開弁時に合わせて非着火のタイミングで行われるポスト噴射での添加燃料が高温の排気ガスに随伴されることになり、パティキュレートフィルタにおける前方部分の触媒床温度が上がり且つ添加燃料が排気ガス中で良好にガス化する結果、前記パティキュレートフィルタの前方部分にて添加燃料が効率良く酸化処理されて未処理のまま溜り続けるような虞れが回避され、ここにパティキュレートが付着することによる目詰まりの問題が起こらなくなる。
【0013】
また、本発明は、前段にフロースルー型の酸化触媒を付帯した触媒再生型のパティキュレートフィルタを排気管の途中に装備し、エンジン側でメイン噴射に続き圧縮上死点より遅い非着火のタイミングでポスト噴射を行うことで排気ガス中に燃料を未燃のまま添加し、その添加燃料が前段の酸化触媒上で酸化反応した時の反応熱により後段のパティキュレートフィルタの触媒床温度を上げる昇温方法において、排気ガスが所定温度以下となる運転状態で、メイン噴射直後の燃焼可能なタイミングでアフタ噴射を行い且つ該アフタ噴射からポスト噴射までの間に膨張行程での温度低下を抑制し得る程度に残り火を継続せしめるプリポスト噴射を追加することを特徴とするものでもある。
【0014】
而して、このようにした場合も、アフタ噴射による添加燃料が出力に転換され難いタイミングで燃焼することによりエンジンの熱効率が下がり、燃料の発熱量のうちの動力に利用されない熱量分が増えて気筒内での排気温度が上昇し、しかも、このアフタ噴射からポスト噴射までの間にプリポスト噴射が追加されることで、気筒内で失火せずに残り火が継続されて膨張行程での排気温度低下が抑制されるので、本来ならば排気温度が低いはずの運転状態にあっても、エンジンから排出される排気ガスの大幅な昇温化が図られることになる。
【0015】
そして、排気弁の開弁時に合わせて非着火のタイミングで行われるポスト噴射での添加燃料が高温の排気ガスに随伴されることになり、前段の酸化触媒における前方部分の触媒床温度が上がり且つ添加燃料が排気ガス中で良好にガス化する結果、前記前段の酸化触媒の前方部分にて添加燃料が効率良く酸化処理されて未処理のまま溜り続けるような虞れが回避され、ここにパティキュレートが付着することによる目詰まりの問題が起こらなくなる。
【0016】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照しつつ説明する。
【0017】
図1〜図3は本発明を実施する形態の一例を示すもので、図1中における1はターボチャージャ2を装備したディーゼルエンジンを示しており、エアクリーナ3から導かれた吸気4が吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気4がインタークーラ6へと送られて冷却され、該インタークーラ6から更に吸気マニホールド7へと吸気4が導かれてディーゼルエンジン1の各気筒8(図1では直列6気筒の場合を例示している)に分配されるようになっている。
【0018】
更に、このディーゼルエンジン1の各気筒8から排出された排気ガス9は、排気マニホールド10を介しターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排気ガス9が排気管11を介し車外へ排出されるようにしてある。
【0019】
また、この排気管11の途中には、酸化触媒を一体的に担持して成る触媒再生型のパティキュレートフィルタ12がフィルタケース13に抱持されて装備されており、図2に拡大して示す如く、このパティキュレートフィルタ12は、セラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路12aの入口が交互に目封じされ、入口が目封じされていない流路12aについては、その出口が目封じされるようになっており、各流路12aを区画する多孔質薄壁12bを透過した排気ガス9のみが下流側へ排出されるようにしてある。
【0020】
そして、フィルタケース13の入口部分には、排気ガス9の温度を計測する温度センサ14が装備されており、該温度センサ14の温度信号14aがエンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置15に対し入力されるようになっている。
【0021】
この制御装置15は、エンジン制御コンピュータを兼ねていることから燃料の噴射に関する制御も担うようになっており、より具体的には、アクセル開度をディーゼルエンジン1の負荷として検出するアクセルセンサ16(負荷センサ)からのアクセル開度信号16aと、ディーゼルエンジン1の機関回転数を検出する回転センサ17からの回転数信号17aとに基づき、ディーゼルエンジン1の各気筒8に燃料を噴射する燃料噴射装置18に向け燃料噴射信号18aが出力されるようになっている。
【0022】
ここで、前記燃料噴射装置18は、各気筒8毎に装備される複数のインジェクタ19により構成されており、これら各インジェクタ19の電磁弁が前記燃料噴射信号18aにより適宜に開弁制御されて燃料の噴射タイミング(開弁時期)及び噴射量(開弁時間)が適切に制御されるようになっている。
【0023】
他方、前記制御装置15では、アクセル開度信号16a及び回転数信号17aに基づき通常モードの燃料噴射信号18aが決定されるようになっている一方、ポスト噴射による燃料添加を行う必要が生じた際に、通常モードから再生モードに切り替わり、圧縮上死点(クランク角0゜)付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を行うような燃料噴射信号18aが決定されるようになっている。
【0024】
つまり、このようにメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射が行われると、このポスト噴射により排気ガス9中に未燃の燃料(主として炭化水素)が添加されることになり、この未燃の燃料がパティキュレートフィルタ12表面の酸化触媒上で酸化反応し、その反応熱により触媒床温度が上昇してパティキュレートフィルタ12内のパティキュレートが燃焼除去されることになる。
【0025】
ただし、この制御装置15においては、アクセル開度信号16a及び回転数信号17a、更には、温度センサ14からの温度信号14aに基づいて、ディーゼルエンジン1からの排気ガス9の温度が、パティキュレートフィルタ12に担持された酸化触媒の活性を得るのに必要な目標温度(約300℃程度)に達しないほど低い運転状態にあるか否かを判定し、このような排気温度の低い運転状態にあると判定された条件下でポスト噴射を行うにあたり、図3に制御イメージを示す如く、メイン噴射A直後の燃焼可能なタイミングでアフタ噴射Bを行い且つ該アフタ噴射Bからポスト噴射Dまでの間に膨張行程での温度低下を抑制し得る程度に残り火を継続せしめるプリポスト噴射Cを追加するようにしてある。
【0026】
而して、斯かる制御装置15により排気浄化装置を運転すれば、アフタ噴射Bによる添加燃料が出力に転換され難いタイミングで燃焼することによりディーゼルエンジン1の熱効率が下がり、燃料の発熱量のうちの動力に利用されない熱量分が増えて気筒内での排気温度が上昇し、しかも、このアフタ噴射Bからポスト噴射Dまでの間にプリポスト噴射Cが追加されることで、気筒内で失火せずに残り火が継続されて膨張行程での排気温度低下が抑制されるので、本来ならば排気温度が低いはずの運転領域にあっても、ディーゼルエンジン1から排出される排気ガス9の大幅な昇温化が図られることになる。
【0027】
ここで、メイン噴射Aとアフタ噴射Bの総量は、アクセルセンサ16からのアクセル開度信号16aに基づき必要な出力が得られるように制御装置15にて決定されるが、これを仮に一回のメイン噴射Aだけで実行してしまうと、図3中に二点鎖線で示すように、ピーク温度は高くなるものの直ぐに温度低下してしまう結果となり、しかも、この後にプリポスト噴射Cを追加しないと、そのまま温度低下し続けてしまうので、排気弁の開弁時に合わせて非着火のタイミングで行われるポスト噴射Dの実行時に、本形態例よりも大幅に低い気筒内温度となって温度差T(図3参照)が生じてしまうのである。
【0028】
これに対し、本形態例では、排気弁の開弁時に合わせて非着火のタイミングで行われるポスト噴射Dでの添加燃料が高温の排気ガス9に随伴されることになり、パティキュレートフィルタ12における前方部分の触媒床温度が上がり且つ添加燃料が排気ガス9中で良好にガス化する結果、前記パティキュレートフィルタ12の前方部分にて添加燃料が効率良く酸化処理されて未処理のまま溜り続けるような虞れが回避され、ここにパティキュレートが付着することによる目詰まりの問題が起こらなくなる。
【0029】
従って、上記形態例によれば、ポスト噴射Dによる燃料添加でパティキュレートフィルタ12の触媒床温度を上昇させるに際し、排気温度が低い運転状態にあっても、アフタ噴射Bによる動力に利用されない熱量分で排気温度を上昇し且つプリポスト噴射Cによる残り火の継続により膨張行程での排気温度低下を抑制してディーゼルエンジン1から排出される排気ガス9の大幅な昇温化を図ることができるので、パティキュレートフィルタ12の前方部分に添加燃料が未処理のまま溜り続ける虞れを解消することができ、この未処理の添加燃料により引き起こされる目詰まりの問題を確実に回避することができる。
【0030】
また、以上は酸化触媒を一体的に担持したパティキュレートフィルタ12を単独で使用する形態の場合を例示しているが、捕集済みパティキュレートの酸化反応を支援する目的でパティキュレートフィルタ12の前段にフロースルー型の酸化触媒20を備えた形態にも本発明が有効であることは勿論である。
【0031】
即ち、図4に示してある通り、その上段におけるパティキュレートフィルタ12の前段に酸化触媒20を備えた形態の場合も、その下段におけるパティキュレートフィルタ12を単独で使用する形態の場合も、最初に排気ガス9が流入する最上流側の端部から後方部分に向かうにつれて添加燃料の酸化反応が活発化して内部温度が上昇してくる理屈は同じであり、パティキュレートフィルタ12の前段に酸化触媒20を備えた形態では、この前段の酸化触媒20の前方部分で処理しきれない添加燃料が溜まり、これにより前段の酸化触媒20の前方部分がべたべたしたウェット状態となってパティキュレートが付着し易くなり、ここにパティキュレートが溜まることで早期に目詰まりを引き起こすことが懸念される。
【0032】
そこで、このようなパティキュレートフィルタ12の前段に酸化触媒20を備えた形態に関し、排気温度の低い運転状態にあると判定された条件下でポスト噴射Dを行うにあたり、メイン噴射A直後の燃焼可能なタイミングでアフタ噴射Bを行い且つ該アフタ噴射Bからポスト噴射Dまでの間に膨張行程での温度低下を抑制し得る程度に残り火を継続せしめるプリポスト噴射Cを追加するようにすれば、前述と同様に、ディーゼルエンジン1から排出される排気ガス9の大幅な昇温化を図ることができるので、前段の酸化触媒20の前方部分に添加燃料が未処理のまま溜り続ける虞れを解消することができ、この未処理の添加燃料により引き起こされる目詰まりの問題を確実に回避することができる。
【0033】
尚、本発明のパティキュレートフィルタの昇温方法は、上述の形態例にのみ限定されるものではなく、ポスト噴射により燃料を添加した後もアフタ噴射とプリポスト噴射を所定時間だけ継続させて排気温度を高く維持し続けることにより、パティキュレートフィルタ又はその前段の酸化触媒における前方部分のウェット状態を早期に解消させるようにしても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0034】
【発明の効果】
上記した本発明のパティキュレートフィルタの昇温方法によれば、ポスト噴射による燃料添加でパティキュレートフィルタの触媒床温度を上昇させるに際し、排気温度が低い運転状態にあっても、アフタ噴射による動力に利用されない熱量分で排気温度を上昇し且つプリポスト噴射による残り火の継続により膨張行程での排気温度低下を抑制してディーゼルエンジンから排出される排気ガスの大幅な昇温化を図ることができるので、パティキュレートフィルタ又はその前段の酸化触媒における前方部分に添加燃料が未処理のまま溜り続ける虞れを解消することができ、この未処理の添加燃料により引き起こされる目詰まりの問題を確実に回避することができるという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明を実施する形態の一例を示す概略図である。
【図2】図1のパティキュレートフィルタの詳細を示す断面図である。
【図3】図1の制御装置による燃料噴射の制御イメージを示すグラフである。
【図4】本発明の別の形態例に関する説明図である。
【符号の説明】
1 ディーゼルエンジン(エンジン)
8 気筒
9 排気ガス
11 排気管
12 パティキュレートフィルタ
15 制御装置
18 燃料噴射装置
20 酸化触媒
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for raising the temperature of a particulate filter.
[0002]
[Prior art]
Particulate matter (particulate matter) discharged from the diesel engine is mainly composed of soot composed of carbonaceous material and SOF component (Soluble Organic Fraction: soluble organic component) composed of a high-boiling hydrocarbon component. Although it has a composition containing a small amount of sulfate (mist-like sulfuric acid component), as a measure to reduce this kind of particulates, it is necessary to equip a particulate filter in the middle of the exhaust pipe through which exhaust gas flows. This has been done conventionally.
[0003]
This kind of particulate filter has a porous honeycomb structure made of ceramic such as cordierite, and the inlets of the respective flow paths partitioned in a lattice are alternately plugged, and the inlets are not plugged. The outlets of the flow passages are sealed so that only the exhaust gas that has passed through the thin porous wall that defines each flow passage is discharged to the downstream side.
[0004]
Since the particulates in the exhaust gas are collected and deposited on the inner surface of the porous thin wall, the particulates are appropriately burned and removed before the exhaust resistance increases due to clogging, and the particulate filter is removed. It is necessary to regenerate, but in the normal diesel engine operating state, there is little chance of obtaining a high exhaust temperature enough for the particulates to self-burn, so for example, an appropriate amount of platinum supported on alumina Commercialization of a catalyst regeneration type particulate filter integrally supporting an oxidation catalyst to which a rare earth element such as cerium is added has been promoted.
[0005]
That is, if such a catalyst regeneration type particulate filter is employed, the oxidation reaction of the collected particulates is promoted, the ignition temperature is lowered, and the particulates can be burned and removed even at a lower exhaust temperature than before. Further, by performing post-injection at a non-ignition timing later than the compression top dead center on the diesel engine side following the main injection on the diesel engine side, fuel is added to the exhaust gas unburned, and the added fuel is added. The reaction heat when (hydrocarbon) is oxidized on the oxidation catalyst of the particulate filter raises the catalyst bed temperature of the particulate filter to actively combust and remove trapped particulates and desorb retained sulfate. It is possible to do.
[0006]
Incidentally, this type of fuel addition by post-injection on the diesel engine side is also described in the following prior application 1 and prior application 2.
[0007]
[Prior application 1]
Japanese Patent Application No. 2001-355061 [Prior application 2]
Japanese Patent Application No. 2002-20374 [0008]
[Problems to be solved by the invention]
However, when the fuel added to the exhaust gas by the post-injection undergoes an oxidation reaction on the oxidation catalyst of the particulate filter, the chance of contact with the oxidation catalyst increases toward the rear part of the particulate filter, and the oxidation reaction of the added fuel increases. Is activated, so that the temperature of the front part of the particulate filter is harder to rise than that of the rear part, and the amount of catalyst necessary for simply raising the catalyst bed temperature at the rear part of the particulate filter to about 600 ° C. or more is obtained. In the operation state where the temperature of the exhaust gas is low, the addition fuel that cannot be completely processed is accumulated in the front part of the particulate filter that is not so high in temperature (low in catalytic activity). The front part of the filter becomes sticky and wet and particulates Attached easily, here particulates particulate filter continues reservoir without being oxidized is a problem of causing clogging in the early stage.
[0009]
The present invention has been made in view of the above circumstances, and has as its object to realize post-injection fuel addition while reliably avoiding the problem of clogging caused by untreated added fuel.
[0010]
[Means for Solving the Problems]
According to the present invention, a catalyst regeneration type particulate filter is provided in the middle of an exhaust pipe, and post injection is performed at a timing of non-ignition later than a compression top dead center on the engine side following main injection on an engine side to thereby supply fuel to exhaust gas. An operation in which the exhaust gas falls below a predetermined temperature in a heating method in which unburned fuel is added and the added fuel undergoes an oxidation reaction on the oxidation catalyst of the particulate filter to raise the catalyst bed temperature of the particulate filter. In this state, after-injection is performed at a combustible timing immediately after the main injection, and a pre-post injection for continuing the embers to the extent that the temperature drop in the expansion stroke can be suppressed between the after-injection and the post-injection is added. It is a feature.
[0011]
Thus, in this case, the fuel added by the after-injection is burned at a timing that is difficult to be converted to an output, so that the thermal efficiency of the engine is reduced, and the calorific value of the calorific value of the fuel that is not used for power increases, thereby increasing the cylinder. The pre-post injection is added between the after injection and the post injection, so that the embers continue without igniting in the cylinder and the exhaust temperature drops during the expansion stroke. Since the exhaust gas temperature is suppressed, the temperature of the exhaust gas discharged from the engine can be significantly increased even in an operation state in which the exhaust gas temperature should be low.
[0012]
Then, the added fuel in the post-injection performed at the non-ignition timing at the time of opening the exhaust valve is accompanied by the high-temperature exhaust gas, and the catalyst bed temperature in the front part of the particulate filter rises and the added fuel is added. As a result of good gasification of the fuel in the exhaust gas, the risk that the added fuel is efficiently oxidized in the front part of the particulate filter and continues to remain untreated is avoided. The problem of clogging due to adhesion does not occur.
[0013]
Also, the present invention provides a catalyst regeneration type particulate filter provided with a flow-through type oxidation catalyst at the front stage in the middle of the exhaust pipe, and the timing of non-ignition timing later than the compression top dead center following the main injection on the engine side. The fuel is added to the exhaust gas in an unburned state by post-injection, and the heat of reaction when the added fuel oxidizes on the oxidation catalyst of the preceding stage raises the catalyst bed temperature of the subsequent particulate filter. In the temperature method, in an operating state where the exhaust gas temperature is equal to or lower than a predetermined temperature, after-injection is performed at a combustible timing immediately after the main injection, and a decrease in temperature during the expansion stroke between the after-injection and the post-injection can be suppressed. It is also characterized by adding a pre-post injection for maintaining the embers to a certain extent.
[0014]
Thus, also in this case, the added fuel by the after-injection is burned at a timing that is difficult to be converted into an output, so that the thermal efficiency of the engine is reduced, and the calorific value of the calorific value of the fuel that is not used for power increases. The exhaust temperature in the cylinder rises, and pre-post injection is added between this after injection and post-injection, so that the residual fire continues without misfiring in the cylinder and the exhaust temperature drops during the expansion stroke. Is suppressed, so that the temperature of the exhaust gas discharged from the engine can be significantly increased even in the operating state where the exhaust temperature should be low.
[0015]
Then, the added fuel in the post-injection performed at the non-ignition timing in accordance with the opening of the exhaust valve is accompanied by the high-temperature exhaust gas, and the catalyst bed temperature in the front part of the preceding oxidation catalyst rises and As a result of good gasification of the added fuel in the exhaust gas, the risk that the added fuel is efficiently oxidized in the front part of the preceding oxidation catalyst and continues to remain unprocessed is avoided. The problem of clogging due to adhesion of curate does not occur.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
1 to 3 show an example of an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a diesel engine equipped with a turbocharger 2, and intake air 4 guided from an air cleaner 3 is used as an intake pipe 5. To the compressor 2a of the turbocharger 2, the intake air 4 pressurized by the compressor 2a is sent to the intercooler 6 where it is cooled, and the intake air 4 further flows from the intercooler 6 to the intake manifold 7. It is guided and distributed to each cylinder 8 of the diesel engine 1 (FIG. 1 illustrates the case of in-line six cylinders).
[0018]
Further, exhaust gas 9 discharged from each cylinder 8 of the diesel engine 1 is sent to a turbine 2b of the turbocharger 2 via an exhaust manifold 10, and the exhaust gas 9 driving the turbine 2b is passed through an exhaust pipe 11. It is designed to be discharged outside the vehicle.
[0019]
In the middle of the exhaust pipe 11, a catalyst regeneration type particulate filter 12 integrally supporting an oxidation catalyst is mounted and held in a filter case 13, and is shown in an enlarged scale in FIG. As described above, the particulate filter 12 has a porous honeycomb structure made of ceramic, and the inlets of the respective flow paths 12a partitioned in a lattice are alternately plugged, and the inlets are not plugged. As for 12a, the outlet thereof is plugged, and only the exhaust gas 9 that has passed through the porous thin wall 12b that defines each flow path 12a is discharged to the downstream side.
[0020]
A temperature sensor 14 for measuring the temperature of the exhaust gas 9 is provided at the inlet of the filter case 13, and a temperature signal 14 a of the temperature sensor 14 is controlled by an engine control computer (ECU: Electronic Control Unit). The information is input to the device 15.
[0021]
Since the control device 15 also serves as an engine control computer, it also controls fuel injection, and more specifically, an accelerator sensor 16 (which detects an accelerator opening as a load on the diesel engine 1). A fuel injection device for injecting fuel into each cylinder 8 of the diesel engine 1 based on an accelerator opening signal 16a from a load sensor) and a rotation speed signal 17a from a rotation sensor 17 for detecting the engine rotation speed of the diesel engine 1. A fuel injection signal 18 a is output to the fuel injection valve 18.
[0022]
Here, the fuel injection device 18 is constituted by a plurality of injectors 19 provided for each cylinder 8, and the solenoid valves of each of the injectors 19 are appropriately opened by the fuel injection signal 18a to control the fuel injection. The injection timing (valve opening timing) and the injection amount (valve opening time) of the fuel cell are appropriately controlled.
[0023]
On the other hand, the control device 15 determines the fuel injection signal 18a in the normal mode based on the accelerator opening signal 16a and the rotation speed signal 17a. In addition, the fuel injection is switched from the normal mode to the regeneration mode, and the post-injection is performed at a non-ignition timing later than the compression top dead center following the main injection of the fuel performed near the compression top dead center (crank angle 0 °). The signal 18a is determined.
[0024]
That is, when the post injection is performed at the non-ignition timing later than the compression top dead center following the main injection, unburned fuel (mainly hydrocarbons) is added to the exhaust gas 9 by the post injection. This means that the unburned fuel undergoes an oxidation reaction on the oxidation catalyst on the surface of the particulate filter 12, and the heat of the reaction raises the catalyst bed temperature to burn and remove the particulates in the particulate filter 12. Become.
[0025]
However, in the control device 15, the temperature of the exhaust gas 9 from the diesel engine 1 is changed based on the accelerator opening signal 16a, the rotation speed signal 17a, and the temperature signal 14a from the temperature sensor 14. It is determined whether or not the operating state is low enough not to reach the target temperature (about 300 ° C.) necessary for obtaining the activity of the oxidation catalyst supported on the fuel cell 12, and the operating state is such that the exhaust gas temperature is low. In performing post-injection under the conditions determined as above, as shown in the control image in FIG. 3, after-injection B is performed at a combustible timing immediately after main injection A, and between post-injection B and post-injection D. The pre-post injection C for continuing the embers to such an extent that the temperature drop during the expansion stroke can be suppressed is added.
[0026]
Thus, when the exhaust purification device is operated by the control device 15, the added fuel by the after-injection B is burned at a timing that is difficult to be converted into an output, so that the thermal efficiency of the diesel engine 1 is reduced. The amount of heat not used for the power of the engine increases, the exhaust temperature in the cylinder rises, and the pre-post injection C is added between the after-injection B and the post-injection D to prevent misfiring in the cylinder. And the temperature of the exhaust gas 9 discharged from the diesel engine 1 is significantly increased even in the operating region where the exhaust temperature should be low, because the embers are continued and the decrease in the exhaust temperature during the expansion stroke is suppressed. Will be achieved.
[0027]
Here, the total amount of the main injection A and the after injection B is determined by the control device 15 based on the accelerator opening signal 16a from the accelerator sensor 16 so that a necessary output is obtained. If only the main injection A is executed, as shown by a two-dot chain line in FIG. 3, the peak temperature increases but the temperature immediately decreases, and if the pre-post injection C is not added after this, Since the temperature continues to decrease as it is, when the post-injection D is performed at the non-ignition timing in accordance with the opening of the exhaust valve, the temperature in the cylinder becomes significantly lower than that of the present embodiment, and the temperature difference T (see FIG. 3) occurs.
[0028]
On the other hand, in the present embodiment, the added fuel in the post-injection D, which is performed at the non-ignition timing at the time of opening the exhaust valve, accompanies the high-temperature exhaust gas 9, and the particulate filter 12 As a result, the temperature of the catalyst bed in the front portion rises and the added fuel gasifies well in the exhaust gas 9, so that the added fuel is efficiently oxidized in the front portion of the particulate filter 12 and continues to remain untreated. This avoids the risk of clogging due to particulates adhering thereto.
[0029]
Therefore, according to the above embodiment, when raising the catalyst bed temperature of the particulate filter 12 by adding fuel by the post-injection D, even if the exhaust gas temperature is low, the calorie amount not used for power by the after-injection B even in the operating state where the exhaust temperature is low. As a result, the temperature of the exhaust gas 9 discharged from the diesel engine 1 can be significantly increased by suppressing the decrease in the exhaust gas temperature during the expansion stroke by increasing the exhaust gas temperature and continuing the embers due to the pre-post injection C. The possibility that the added fuel continues to remain untreated in the front portion of the curated filter 12 can be eliminated, and the problem of clogging caused by the untreated added fuel can be reliably avoided.
[0030]
In the above, the case where the particulate filter 12 integrally supporting the oxidation catalyst is used alone is illustrated. However, in order to support the oxidation reaction of the collected particulates, the former stage of the particulate filter 12 is used. Needless to say, the present invention is also effective in a configuration provided with a flow-through type oxidation catalyst 20.
[0031]
That is, as shown in FIG. 4, in the case where the oxidation catalyst 20 is provided in front of the particulate filter 12 in the upper stage, and in the case where the particulate filter 12 in the lower stage is used alone, first, The rationale is that the oxidation reaction of the added fuel is activated and the internal temperature rises from the end on the most upstream side where the exhaust gas 9 flows into the rear part, and the oxidation catalyst 20 is located upstream of the particulate filter 12. In the configuration provided with, the additional fuel that cannot be processed is accumulated in the front part of the oxidation catalyst 20 of the former stage, and the front part of the oxidation catalyst 20 of the former stage becomes sticky and wet, so that the particulates easily adhere. However, there is a concern that the accumulation of particulates may cause clogging at an early stage.
[0032]
Therefore, with respect to such an embodiment in which the oxidation catalyst 20 is provided in front of the particulate filter 12, in performing the post-injection D under the conditions determined to be in the low exhaust temperature operating state, the combustion immediately after the main injection A is possible. By performing after-injection B at an appropriate timing and adding a pre-post injection C for continuing the embers to such an extent that the temperature drop during the expansion stroke can be suppressed between the after-injection B and the post-injection D, Similarly, since the temperature of the exhaust gas 9 discharged from the diesel engine 1 can be significantly increased, it is possible to eliminate the possibility that the added fuel may remain untreated in the front part of the oxidation catalyst 20 in the preceding stage. Thus, the problem of clogging caused by the untreated added fuel can be reliably avoided.
[0033]
The method for raising the temperature of the particulate filter of the present invention is not limited to the above-described embodiment, and the after-injection and the pre- and post-injection are continued for a predetermined time even after the fuel is added by the post-injection. May be kept high so that the wet state of the front part of the particulate filter or the oxidation catalyst at the preceding stage may be eliminated at an early stage, and various other changes may be made without departing from the gist of the present invention. Of course, it can be added.
[0034]
【The invention's effect】
According to the method for raising the temperature of the particulate filter of the present invention described above, when raising the catalyst bed temperature of the particulate filter by adding fuel by post-injection, even in an operation state where the exhaust gas temperature is low, the power by the after-injection is reduced. Since the exhaust gas temperature is increased by the amount of heat not used and the embers due to the pre-post injection continue to suppress the exhaust gas temperature decrease during the expansion stroke, the exhaust gas discharged from the diesel engine can be significantly heated. It is possible to eliminate the possibility that the added fuel remains untreated in the front part of the particulate filter or the preceding oxidation catalyst, and to reliably avoid the problem of clogging caused by the untreated added fuel. It is possible to achieve an excellent effect of being able to perform.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of an embodiment for carrying out the present invention.
FIG. 2 is a sectional view showing details of the particulate filter of FIG. 1;
FIG. 3 is a graph showing a control image of fuel injection by the control device of FIG. 1;
FIG. 4 is an explanatory diagram relating to another embodiment of the present invention.
[Explanation of symbols]
1 diesel engine (engine)
8 Cylinder 9 Exhaust gas 11 Exhaust pipe 12 Particulate filter 15 Control device 18 Fuel injection device 20 Oxidation catalyst

Claims (2)

触媒再生型のパティキュレートフィルタを排気管の途中に装備し、エンジン側でメイン噴射に続き圧縮上死点より遅い非着火のタイミングでポスト噴射を行うことで排気ガス中に燃料を未燃のまま添加し、その添加燃料がパティキュレートフィルタの酸化触媒上で酸化反応した時の反応熱によりパティキュレートフィルタの触媒床温度を上げる昇温方法において、排気ガスが所定温度以下となる運転状態で、メイン噴射直後の燃焼可能なタイミングでアフタ噴射を行い且つ該アフタ噴射からポスト噴射までの間に膨張行程での温度低下を抑制し得る程度に残り火を継続せしめるプリポスト噴射を追加することを特徴とするパティキュレートフィルタの昇温方法。Equipped with a catalyst regeneration type particulate filter in the middle of the exhaust pipe, the fuel is left unburned in the exhaust gas by performing post-injection at the engine side at a non-ignition timing later than the compression top dead center following the main injection. In the temperature increasing method in which the added fuel is oxidized on the oxidation catalyst of the particulate filter by the reaction heat when raising the catalyst bed temperature of the particulate filter, in the operating state where the exhaust gas becomes a predetermined temperature or less, A post-injection for performing after-injection at a combustible timing immediately after the injection, and adding a pre-post injection for continuing the embers to such an extent that a temperature drop in an expansion stroke can be suppressed between the after-injection and the post-injection. How to raise the temperature of the curated filter. 前段にフロースルー型の酸化触媒を付帯した触媒再生型のパティキュレートフィルタを排気管の途中に装備し、エンジン側でメイン噴射に続き圧縮上死点より遅い非着火のタイミングでポスト噴射を行うことで排気ガス中に燃料を未燃のまま添加し、その添加燃料が前段の酸化触媒上で酸化反応した時の反応熱により後段のパティキュレートフィルタの触媒床温度を上げる昇温方法において、排気ガスが所定温度以下となる運転状態で、メイン噴射直後の燃焼可能なタイミングでアフタ噴射を行い且つ該アフタ噴射からポスト噴射までの間に膨張行程での温度低下を抑制し得る程度に残り火を継続せしめるプリポスト噴射を追加することを特徴とするパティキュレートフィルタの昇温方法。A catalyst regeneration particulate filter with a flow-through oxidation catalyst attached to the front stage is installed in the middle of the exhaust pipe, and the engine performs post-injection at the non-ignition timing later than the compression top dead center following the main injection following the main injection. In a heating method in which fuel is added to the exhaust gas in an unburned state by the unburned fuel, and the added fuel undergoes an oxidation reaction on the oxidation catalyst of the preceding stage, the reaction bed heats up the catalyst bed temperature of the subsequent particulate filter. In the operating state where the temperature becomes equal to or lower than the predetermined temperature, after-injection is performed at a combustible timing immediately after the main injection, and the embers are continued to such an extent that the temperature drop in the expansion stroke can be suppressed between the after-injection and the post-injection. A method for raising the temperature of a particulate filter, characterized by adding pre-post injection.
JP2003107581A 2003-04-11 2003-04-11 Method for raising temperature of particulate filter Pending JP2004316441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107581A JP2004316441A (en) 2003-04-11 2003-04-11 Method for raising temperature of particulate filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107581A JP2004316441A (en) 2003-04-11 2003-04-11 Method for raising temperature of particulate filter

Publications (1)

Publication Number Publication Date
JP2004316441A true JP2004316441A (en) 2004-11-11

Family

ID=33469371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107581A Pending JP2004316441A (en) 2003-04-11 2003-04-11 Method for raising temperature of particulate filter

Country Status (1)

Country Link
JP (1) JP2004316441A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162585A (en) * 2005-12-14 2007-06-28 Nissan Motor Co Ltd Fuel injection control device and fuel injection control method for engine
CN103184947A (en) * 2011-12-28 2013-07-03 马自达汽车株式会社 Control device and control method of diesel engine
DE102012023523A1 (en) 2011-12-28 2013-07-04 Mazda Motor Corporation Turbocharged diesel engine, control apparatus therefor, method of controlling and controlling a diesel engine and computer program product
JP2013136987A (en) * 2011-12-28 2013-07-11 Mazda Motor Corp Control device of diesel engine with turbocharger
EP3521596A1 (en) 2018-02-01 2019-08-07 Mazda Motor Corporation Exhaust gas control device for engine and method of controlling an exhaust gas control device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162585A (en) * 2005-12-14 2007-06-28 Nissan Motor Co Ltd Fuel injection control device and fuel injection control method for engine
US7779622B2 (en) 2005-12-14 2010-08-24 Nissan Motor Co., Ltd. Post injection control of internal combustion engine
CN103184947A (en) * 2011-12-28 2013-07-03 马自达汽车株式会社 Control device and control method of diesel engine
DE102012023524A1 (en) 2011-12-28 2013-07-04 Mazda Motor Corporation Diesel engine, control device, method of controlling and computer program product therefor
DE102012023523A1 (en) 2011-12-28 2013-07-04 Mazda Motor Corporation Turbocharged diesel engine, control apparatus therefor, method of controlling and controlling a diesel engine and computer program product
JP2013136987A (en) * 2011-12-28 2013-07-11 Mazda Motor Corp Control device of diesel engine with turbocharger
US8919107B2 (en) 2011-12-28 2014-12-30 Mazda Motor Corporation Control device of diesel engine with turbocharger
CN103184947B (en) * 2011-12-28 2016-04-06 马自达汽车株式会社 The control gear of diesel engine and controlling method
US9334784B2 (en) 2011-12-28 2016-05-10 Mazda Motor Corporation Control device of diesel engine
DE102012023524B4 (en) * 2011-12-28 2017-11-09 Mazda Motor Corporation Diesel engine, control device, method of controlling and computer program product therefor
DE102012023523B4 (en) * 2011-12-28 2018-02-01 Mazda Motor Corporation Turbocharged diesel engine, control apparatus therefor, method of controlling and controlling a diesel engine and computer program product
EP3521596A1 (en) 2018-02-01 2019-08-07 Mazda Motor Corporation Exhaust gas control device for engine and method of controlling an exhaust gas control device
US10954872B2 (en) 2018-02-01 2021-03-23 Mazda Motor Corporation Exhaust gas control device, method, and computer program product for an engine

Similar Documents

Publication Publication Date Title
CN101292078B (en) How to regenerate a particulate filter
CN100408834C (en) Exhaust purification device
JP2005299480A (en) Engine exhaust emission control device
JP2004308567A (en) Regenerating method for particulate filter
JP2007270705A (en) Egr device for engine
JP5316041B2 (en) Engine exhaust purification system
JP4211611B2 (en) Exhaust gas purification device for internal combustion engine
JP4012043B2 (en) Particulate filter regeneration method
JP2006022769A (en) Exhaust gas purification device for internal combustion engine
JP2004150417A (en) Exhaust emission control device
JP4012037B2 (en) Exhaust purification equipment
JP2004316441A (en) Method for raising temperature of particulate filter
JP4210555B2 (en) Exhaust purification equipment
JP3914751B2 (en) Exhaust purification method
JP5761517B2 (en) Engine exhaust heat recovery device
JP5516888B2 (en) Exhaust gas purification device for internal combustion engine
JP2004176636A (en) Exhaust purification device for internal combustion engine
JP4377574B2 (en) Exhaust purification equipment
JP2005163652A (en) Emission control device
JP4236896B2 (en) Exhaust purification equipment
JP5323506B2 (en) Particulate filter regeneration method
JP3831677B2 (en) Preventing sulfate poisoning of particulate filters
JP4248267B2 (en) Automatic switching control device for vehicles
JP2003083139A (en) Exhaust temperature rising device for internal combustion engine
JP4998109B2 (en) Exhaust gas purification system and exhaust gas purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403