[go: up one dir, main page]

JP2004301002A - Engine intake flow control device - Google Patents

Engine intake flow control device Download PDF

Info

Publication number
JP2004301002A
JP2004301002A JP2003094245A JP2003094245A JP2004301002A JP 2004301002 A JP2004301002 A JP 2004301002A JP 2003094245 A JP2003094245 A JP 2003094245A JP 2003094245 A JP2003094245 A JP 2003094245A JP 2004301002 A JP2004301002 A JP 2004301002A
Authority
JP
Japan
Prior art keywords
intake
passage
flow control
egr gas
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003094245A
Other languages
Japanese (ja)
Other versions
JP4210988B2 (en
Inventor
Koichi Takada
耕一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003094245A priority Critical patent/JP4210988B2/en
Publication of JP2004301002A publication Critical patent/JP2004301002A/en
Application granted granted Critical
Publication of JP4210988B2 publication Critical patent/JP4210988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】EGRガスを吸気通路に導入する4サイクルエンジンにおいて、吸気流制御弁の開閉を制御することによりEGRガスの吸気通路への導入時における安定した燃焼と、スロットル全開時を含む中、高負荷時におけるEGRガス通路の連通による吸気脈動効果の阻害を回避した良好な燃焼性能の保持を同時に実現可能とするエンジンの吸気流制御装置を提供する。
【解決手段】吸気マニホールド内の中空通路とシリンダヘッドの吸気ポートとを備えて形成される吸気通路にEGRガス(排気再循環ガス)通路を開口してなるエンジンにおいて、前記吸気通路に吸気流を偏向させる吸気流制御弁を設けるとともに、該吸気流制御弁により前記EGRガス通路の開口部を開閉可能に構成したことを特徴とする。
【選択図】 図1
In a four-cycle engine in which EGR gas is introduced into an intake passage, stable opening of the EGR gas into the intake passage is controlled by controlling opening and closing of an intake flow control valve. Provided is an intake air flow control device for an engine that can simultaneously maintain good combustion performance while avoiding inhibition of an intake pulsation effect due to communication of an EGR gas passage under load.
In an engine having an EGR gas (exhaust gas recirculation gas) passage opened in an intake passage formed having a hollow passage in an intake manifold and an intake port of a cylinder head, an intake flow is supplied to the intake passage. An intake flow control valve for deflecting the air is provided, and the opening of the EGR gas passage can be opened and closed by the intake flow control valve.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、車両用エンジン等に適用され、吸気マニホールドの中空通路とシリンダヘッドの吸気ポートとを備えて形成される吸気通路及び吸気流の偏向度合を調整する吸気流制御弁を備え、該吸気通路にEGRガス通路を開口してなるエンジンの吸気流制御装置に関する。
【0002】
【従来の技術】
4サイクルエンジンにおいては、部分負荷、特に低、中負荷運転域における燃焼性能の向上による燃料消費率の改善や始動後における燃焼の安定性を保持するため、吸気ポートの入口近傍の吸気通路に吸気流制御弁(タンブル弁やスワール弁)を設置して、該吸気流制御弁で吸気通路を絞ることにより、吸気がシリンダ内において偏向流(タンブル流やスワール流)を生起するように吸気流を偏向させる手段が、例えば特許文献1(実用新案登録第2605777号)にて提供されている。
【0003】
【特許文献1】
実用新案登録第2605777号公報
【0004】
【発明が解決しようとする課題】
特許文献1の4サイクルエンジンにおいては、吸気ポートの入口近傍の吸気通路に吸気流制御弁を設置して、該吸気流制御弁で吸気通路を絞り、吸気がシリンダ内において偏向流を生起するように吸気流を偏向させることにより、部分負荷、特に低、中負荷運転域における燃焼性能の向上による燃料消費率の改善や始動後における燃焼の安定性を保持可能であるが、該特許文献1には吸気通路にEGRガスを導入することについては述べられておらず、そのままの形態の許で吸気通路にEGRガスを導入した場合には、吸気流制御弁の開閉とEGRガスの導入とのマッチングがなされていないため、燃焼性能や充填効率の低下を来たす虞がある。
等の問題点を有している。
【0005】
本発明はかかる従来技術の課題に鑑み、EGRガスを吸気通路に導入する4サイクルエンジンにおいて、吸気流制御弁の開閉を制御することによりEGRガスの吸気通路への導入時における安定した燃焼と、スロットル全開時を含む中、高負荷時におけるEGRガス通路と吸気通路との連通による吸気脈動効果の阻害を回避した良好な全負荷性能の保持を同時に実現可能とするエンジンの吸気流制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明はかかる目的を達成するもので、吸気マニホールド内の中空通路とシリンダヘッドの吸気ポートとを備えて形成される吸気通路にEGRガス(排気再循環ガス)通路を開口してなるエンジンにおいて、前記吸気通路に吸気流を偏向させる吸気流制御弁を設けるとともに、該吸気流制御弁により前記EGRガス通路の開口部を開閉可能に構成したことを特徴とする。
【0007】
かかる発明において、好ましくは、前記吸気流制御弁は、前記吸気流の偏向度合が最小のとき前記EGRガス通路の開口部を全閉にするように構成してなる。
またかかる発明において、好ましくは、前記吸気流制御弁は、前記吸気流の偏向度合を最大側に調整する偏向度合調整期間において前記EGRガス通路を開放して該EGRガスを前記吸気通路に導入せしめるように構成されてなる。
【0008】
また、好ましくは、前記吸気マニホールドとシリンダヘッドとの間に、前記吸気マニホールドの前記中空通路と前記吸気ポートを連通する吸気路を備えた間座を介装し、該間座の吸気路に前記EGRガス通路を開口するとともに、前記吸気流制御弁を設ける。
また前記吸気流制御弁は、次のように構成するのがよい。
即ち、前記吸気流制御弁は、アクチュエータにより回転駆動される弁軸と該弁軸に固着された板状の弁体とを備え、該弁軸及び弁体の回動により前記EGRガス通路を開閉するとともに、前記吸気流の偏向度合を調整する回転式の板状弁に構成される。
【0009】
かかる発明によれば、スロットル開度が小さく吸入空気量も小さい低負荷領域においては、吸気流制御弁は吸気がシリンダ内において偏向流(タンブル流やスワール流)を生起するように吸気流を偏向させるとともに、EGRガス通路を全開とする。
これにより、EGRガスが吸気通路を経てシリンダ内に供給される。この際において、該吸気流制御弁の開度を絞り側に調整することにより吸気がシリンダ内において偏向流を生起せしめるため、前記EGRガスの導入による燃焼性能の低下が抑制され、安定した燃焼が得られる。
【0010】
一方、スロットル全開時を含む中、高負荷時においては、前記吸気流制御弁が吸気通路を全開にするとともに、EGRガス通路の吸気通路への開口部を全閉にするので、従来技術のように、EGRガス通路が吸気通路に連通することにより吸気通路における吸気脈動効果が阻害されるのが防止される。
【0011】
従って、かかる発明によれば、低負荷領域等におけるEGRガスの吸気通路への供給時においては、該吸気流制御弁を絞り側に調整する、即ち吸気流の偏向度合を最大側に調整することによって生起されるシリンダ内における吸気の偏向流により、EGRガスの導入による燃焼性能の低下を抑制することが可能となり、これによって安定した燃焼性能を得ることができる。
また、スロットル全開時を含む中、高負荷時においては、吸気流制御弁が吸気通路を全開にして吸気流の偏向度合を最小にするとともに、EGRガス通路の吸気通路への開口部を全閉にするので、EGRガスの吸気通路への流入による吸気脈動効果の阻害を回避でき、良好な燃焼性能を保持できる。
これにより、EGRガスの吸気通路への導入時における安定した燃焼と、スロットル全開時を含む中、高負荷時におけるEGRガス通路と吸気通路との連通による吸気脈動効果の阻害を回避した良好な燃焼及び全負荷性能の保持を同時に実現できる。
【0012】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
【0013】
図1は本発明の実施例に係る車両用エンジンにおける間座の吸気流制御弁装着部近傍を示す要部断面図(図2のA−A線断面図)、図2は間座の正面図(図1のZ矢視図)、図3は図1のB−B線断面図、図4は図2のC矢視図である。図5は吸気流制御弁の作用説明図である。
【0014】
図1〜図4において、7はシリンダヘッド07に形成された吸気ポート、6は4シリンダ(複数シリンダであればよい)一体の吸気マニホールドで、該シリンダヘッド07と吸気マニホールド6との間には4シリンダ(複数シリンダであればよい)一体の間座1がボルト(図示省略)により締着されている。
4は前記間座1内に形成された吸気路で、各シリンダの前記吸気ポート7と前記吸気マニホールド6内の中空通路とを連通している。そして、吸気マニホールド6内の中空通路、間座1内の吸気路、及び吸気ポート7により吸気通路が形成される。
図3において、2は前記間座1の下部側内部にエンジンの軸方向に延設されたEGR通路で、その入口部にEGR管9が接続されている。10は該EGR管9の通路面積を制御するEGR弁である。3は各シリンダのEGR穴で、前記EGR通路2から分岐して前記間座1内の吸気路4に開口している。
【0015】
5は前記吸気路4内に設けられた吸気流制御弁(タンブル弁)で、該吸気路4の開度つまり通路面積を調整することにより吸気流を偏向させる機能を有しており、エンジンのクランク軸方向に延設されて前記間座1に回動可能に支持された弁軸5aと該弁軸5aにシリンダ毎に取り付けられた板状の弁体5bとを備えてなる。
該吸気流制御弁5は、前記弁軸5aの回転により、弁体5bが図1の二点鎖線のように水平位置になって前記間座1に形成された弁座部06に着座したとき、前記EGR穴3を閉じるとともに前記吸気路4を全開し、該弁体5bが図1の実線のように垂直位置になって前記EGR穴3を開いたとき、前記吸気路4を最小通路面積に絞るように構成されている。
【0016】
8はダイヤフラムアクチュエータで、図4に示されるように、作動空気圧によってその出力軸8aを往復動させるようになっている。弁体5bは前記弁軸5aの軸端部に固定されたレバーで、小端部が前記出力軸8aに連結されている。従って、図4の矢印のように、前記ダイヤフラムアクチュエータ8によってその出力軸8aが往復動すると、ピン5cを介して前記レバー5bが回動せしめられることにより、該出力軸8aが回動するようになっている。
【0017】
かかる構成からなる吸気流制御弁装置を備えた車両用エンジンにおいて、スロットル開度が小さく吸入空気量も小さい低負荷運転時、あるいは始動後においては、前記ダイヤフラムアクチュエータ8により、出力軸8a、ピン5c及びレバー5bを介して弁軸5aが回動せしめられ、これに伴い弁体5bが図1の実線のように垂直位置となり、該吸気路4の開度つまり通路面積を最小として、吸気流の偏向度合を最大としている。
【0018】
また弁体5bは前記EGR穴3を全開としており、図5に示されるように、前記EGR弁10が開きEGRガスの導入域Cとなっているので、該EGRガスがEGR穴3から吸気路4内に供給される。
しかるに、前記のように、吸気流制御弁5によって吸気路4の通路面積が絞られた吸気流制御弁作動域(図5のB領域)となっているので、該吸気流制御弁5により、吸気路4及び吸気ポート7を通った吸気流が偏向せしめられてシリンダ内において軸方向流(タンブル流)を生起する。
かかる吸気流制御弁5の作用により、前記EGR穴3からのEGRガスの導入によるシリンダ内の燃焼性能の低下が抑制され、安定した燃焼を行うことができる。
【0019】
一方、スロットル全開時を含む中、高負荷運転域、つまり図5のAの吸気流制御弁非作動域においては、前記弁軸5aの回転により、吸気流制御弁5の弁体5bが図1の鎖線のように水平位置になって前記EGR穴3を閉じるとともに前記吸気路4の開度つまり通路面積を最大にして、吸気流の偏向度合を最小(ここではゼロ)としている。
従って、かかる吸気路4の全開時においては、EGR穴3が閉じられているため、EGRガスの吸気路4への流入が遮断されることとなり、従来技術のように、吸気路4の全開時にEGRガス通路(EGR穴3、EGR通路2)と複数の吸気路4とを連通することにより全吸気路における吸気脈動効果を阻害することはない。
これにより、スロットル全開時を含む中、高負荷時において、EGRガス通路による吸気脈動効果の阻害を回避した、良好な燃焼性能を保持できる。
また、EGRガスを導入するEGRガス通路を間座1における吸気ポート7に近接した部位に配設したので、吸気マニホールド6の容積によるEGRの応答遅れを回避できる。また、吸気マニホールド6が樹脂材の場合には、EGRガスによる熱劣化を回避できる。
【0020】
【発明の効果】
以上記載のごとく本発明によれば、低負荷領域等におけるEGRガスの吸気通路への供給時においては、該吸気流制御弁による吸気流の偏向度合を最大側に調整することによって生起されるシリンダ内における吸気の偏向流により、EGRガスの導入による燃焼性能の低下を抑制することが可能となり、これによって安定した燃焼性能を得ることができる。
また、スロットル全開時を含む中、高負荷時においては、吸気流制御弁による吸気流の偏向度合を最小にするとともに、EGRガス通路の吸気通路への開口部を全閉にするので、EGRガス通路と吸気通路との連通による吸気脈動効果の阻害を回避でき、良好な燃焼性能を保持できる。
これにより、EGRガスの吸気通路への導入時における安定した燃焼と、スロットル全開時を含む中、高負荷時におけるEGRガス通路の連通による吸気脈動効果の阻害を回避した良好な燃焼及び全負荷性能の保持を同時に実現できる。
【図面の簡単な説明】
【図1】本発明の実施例に係る車両用エンジンにおける間座の吸気流制御弁装着部近傍を示す要部断面図(図2のA−A線断面図)である。
【図2】間座の正面図(図1のZ矢視図)である。
【図3】図1のB−B線断面図である。
【図4】図2のC矢視図である。
【図5】吸気流制御弁の作用説明図である。
【符号の説明】
1 間座
2 EGR通路
3 EGR穴
4 吸気路
5 吸気流制御弁
5a 弁軸
5b 弁体
6 吸気マニホールド
06 弁座部
7 吸気ポート
07 シリンダヘッド
8 ダイヤフラムアクチュエータ
9 EGR管
10 EGR弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is applied to a vehicle engine or the like, and includes an intake passage formed with a hollow passage of an intake manifold and an intake port of a cylinder head, and an intake flow control valve for adjusting a degree of deflection of an intake flow. The present invention relates to an intake air flow control device for an engine having an EGR gas passage opened in a passage.
[0002]
[Prior art]
In a four-stroke engine, the intake air is introduced into the intake passage near the inlet of the intake port in order to improve the fuel consumption rate by improving the combustion performance in the partial load, particularly in the low and medium load operation range, and to maintain the stability of combustion after starting. By installing a flow control valve (tumble valve or swirl valve) and narrowing the intake passage with the intake flow control valve, the intake air flow is generated so that the intake air generates a deflected flow (tumble flow or swirl flow) in the cylinder. Means for deflecting is provided, for example, in Patent Document 1 (Utility Model Registration No. 2605777).
[0003]
[Patent Document 1]
Japanese Utility Model Registration No. 2605777
[Problems to be solved by the invention]
In the four-stroke engine of Patent Document 1, an intake flow control valve is installed in an intake passage near an inlet of an intake port, and the intake flow control valve narrows the intake passage so that intake air generates a deflected flow in a cylinder. By deflecting the intake air flow into the fuel cell, it is possible to improve the fuel consumption rate by improving the combustion performance in a partial load, particularly in a low and medium load operation range, and to maintain the stability of combustion after starting. Does not state that EGR gas is introduced into the intake passage. If EGR gas is introduced into the intake passage as it is, matching between opening and closing of the intake flow control valve and introduction of the EGR gas is not described. Is not performed, there is a possibility that the combustion performance and the charging efficiency are reduced.
And the like.
[0005]
The present invention has been made in view of the problems of the related art, and in a four-stroke engine that introduces EGR gas into an intake passage, controlling the opening and closing of an intake flow control valve to achieve stable combustion when introducing EGR gas into the intake passage; Provided is an intake air flow control device for an engine capable of simultaneously realizing good full load performance while avoiding inhibition of an intake pulsation effect due to communication between an EGR gas passage and an intake passage at high load, including when the throttle is fully opened. The purpose is to do.
[0006]
[Means for Solving the Problems]
The present invention achieves the above object and provides an engine in which an EGR gas (exhaust gas recirculation gas) passage is opened in an intake passage formed by including a hollow passage in an intake manifold and an intake port of a cylinder head. An intake flow control valve for deflecting the intake flow is provided in the intake passage, and the opening of the EGR gas passage can be opened and closed by the intake flow control valve.
[0007]
In this invention, preferably, the intake flow control valve is configured to completely close the opening of the EGR gas passage when the degree of deflection of the intake flow is minimum.
In this invention, it is preferable that the intake flow control valve opens the EGR gas passage and introduces the EGR gas into the intake passage during a deflection degree adjustment period in which the degree of deflection of the intake flow is adjusted to a maximum side. It is constituted as follows.
[0008]
Preferably, a spacer having an intake path communicating the hollow passage and the intake port of the intake manifold is interposed between the intake manifold and the cylinder head. An EGR gas passage is opened and the intake flow control valve is provided.
The intake flow control valve is preferably configured as follows.
That is, the intake flow control valve includes a valve shaft that is rotationally driven by an actuator and a plate-shaped valve body fixed to the valve shaft, and the EGR gas passage is opened and closed by rotation of the valve shaft and the valve body. And a rotary plate-like valve for adjusting the degree of deflection of the intake air flow.
[0009]
According to this invention, in the low load region where the throttle opening is small and the intake air amount is small, the intake flow control valve deflects the intake flow so that the intake generates a deflected flow (tumble flow or swirl flow) in the cylinder. And the EGR gas passage is fully opened.
Thus, the EGR gas is supplied into the cylinder via the intake passage. At this time, since the intake generates a deflected flow in the cylinder by adjusting the opening of the intake flow control valve to the throttle side, a decrease in combustion performance due to the introduction of the EGR gas is suppressed, and stable combustion is achieved. can get.
[0010]
On the other hand, during high load, including when the throttle is fully opened, the intake flow control valve fully opens the intake passage and completely closes the opening of the EGR gas passage to the intake passage. In addition, the EGR gas passage communicating with the intake passage prevents the intake pulsation effect in the intake passage from being impaired.
[0011]
Therefore, according to the invention, when the EGR gas is supplied to the intake passage in a low load region or the like, the intake flow control valve is adjusted to the throttle side, that is, the degree of deflection of the intake flow is adjusted to the maximum side. As a result, it is possible to suppress a decrease in combustion performance due to the introduction of the EGR gas due to the deflected flow of intake air in the cylinder, whereby stable combustion performance can be obtained.
In addition, when the load is high, including when the throttle is fully opened, the intake flow control valve fully opens the intake passage to minimize the degree of deflection of the intake flow, and completely closes the opening of the EGR gas passage to the intake passage. Therefore, it is possible to prevent the intake pulsation effect from being hindered by the inflow of the EGR gas into the intake passage, and to maintain good combustion performance.
As a result, stable combustion when the EGR gas is introduced into the intake passage, and good combustion that avoids the inhibition of the intake pulsation effect due to the communication between the EGR gas passage and the intake passage under a high load, including when the throttle is fully opened, during high load And the full load performance can be maintained at the same time.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail using embodiments shown in the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. It's just
[0013]
FIG. 1 is a cross-sectional view of a main part (a cross-sectional view taken along the line AA in FIG. 2) showing a vicinity of an intake flow control valve mounting portion of a spacer in a vehicle engine according to an embodiment of the present invention, and FIG. FIG. 3 is a sectional view taken along the line BB of FIG. 1, and FIG. 4 is a sectional view taken along the arrow C of FIG. FIG. 5 is an explanatory diagram of the operation of the intake flow control valve.
[0014]
1 to 4, reference numeral 7 denotes an intake port formed in a cylinder head 07, reference numeral 6 denotes an intake manifold integrated with four cylinders (a plurality of cylinders are required), and a cylinder head 07 and an intake manifold 6 are provided between the cylinder head 07 and the intake manifold 6. A four-cylinder (only a plurality of cylinders) integral spacer 1 is fastened by bolts (not shown).
Reference numeral 4 denotes an intake passage formed in the spacer 1, which communicates the intake port 7 of each cylinder with a hollow passage in the intake manifold 6. An intake passage is formed by the hollow passage in the intake manifold 6, the intake passage in the spacer 1, and the intake port 7.
In FIG. 3, reference numeral 2 denotes an EGR passage extending in the axial direction of the engine inside the lower portion of the spacer 1, and an EGR pipe 9 is connected to an inlet thereof. Reference numeral 10 denotes an EGR valve for controlling a passage area of the EGR pipe 9. Reference numeral 3 denotes an EGR hole of each cylinder, which branches off from the EGR passage 2 and opens to the intake passage 4 in the spacer 1.
[0015]
Reference numeral 5 denotes an intake flow control valve (tumble valve) provided in the intake passage 4, which has a function of deflecting the intake flow by adjusting the opening degree of the intake passage 4, that is, the passage area. It comprises a valve shaft 5a extending in the crankshaft direction and rotatably supported by the spacer 1, and a plate-shaped valve body 5b attached to the valve shaft 5a for each cylinder.
When the valve body 5b is in a horizontal position as shown by a two-dot chain line in FIG. 1 and is seated on a valve seat portion 06 formed on the spacer 1, by the rotation of the valve shaft 5a. When the EGR hole 3 is closed and the intake path 4 is fully opened, and the valve element 5b is in a vertical position as shown by the solid line in FIG. It is configured to focus on.
[0016]
A diaphragm actuator 8 reciprocates an output shaft 8a by operating air pressure as shown in FIG. The valve body 5b is a lever fixed to the shaft end of the valve shaft 5a, and has a small end connected to the output shaft 8a. Therefore, as shown by the arrow in FIG. 4, when the output shaft 8a reciprocates by the diaphragm actuator 8, the lever 5b is rotated through the pin 5c, so that the output shaft 8a rotates. Has become.
[0017]
In a vehicle engine provided with the intake air flow control valve device having such a configuration, during low load operation with a small throttle opening and a small intake air amount, or after starting, the diaphragm shaft 8 causes the output shaft 8a and the pin 5c to be driven. The valve shaft 5a is rotated via the lever 5b and the valve body 5b is brought to a vertical position as shown by the solid line in FIG. 1, and the opening degree of the intake passage 4, that is, the passage area is minimized, and the intake air flow is reduced. The degree of deflection is maximized.
[0018]
The valve element 5b has the EGR hole 3 fully open, and as shown in FIG. 5, the EGR valve 10 is open and is in the EGR gas introduction region C, so that the EGR gas flows from the EGR hole 3 through the intake passage. 4.
However, as described above, the intake air flow control valve 5 has an intake air flow control valve operating area (area B in FIG. 5) in which the passage area of the intake air passage 4 is narrowed. The intake air flowing through the intake passage 4 and the intake port 7 is deflected to generate an axial flow (tumble flow) in the cylinder.
By the operation of the intake flow control valve 5, a decrease in combustion performance in the cylinder due to the introduction of EGR gas from the EGR hole 3 is suppressed, and stable combustion can be performed.
[0019]
On the other hand, in the middle of a high load operation region including the time when the throttle is fully opened, that is, in the inactive region of the intake flow control valve in FIG. 5A, the rotation of the valve shaft 5a causes the valve body 5b of the intake flow control valve 5 to move as shown in FIG. The EGR hole 3 is closed at the horizontal position as indicated by the dashed line, and the opening degree of the intake passage 4, that is, the passage area is maximized to minimize the degree of deflection of the intake flow (here, zero).
Therefore, when the intake path 4 is fully opened, the EGR hole 3 is closed, so that the inflow of the EGR gas into the intake path 4 is interrupted. The communication between the EGR gas passages (the EGR holes 3 and the EGR passages 2) and the plurality of intake passages 4 does not impair the intake pulsation effect in all intake passages.
This makes it possible to maintain good combustion performance while avoiding the inhibition of the intake pulsation effect by the EGR gas passage during high load, including when the throttle is fully opened.
Further, since the EGR gas passage for introducing the EGR gas is disposed in the portion of the spacer 1 close to the intake port 7, a response delay of the EGR due to the volume of the intake manifold 6 can be avoided. In addition, when the intake manifold 6 is made of a resin material, thermal deterioration due to EGR gas can be avoided.
[0020]
【The invention's effect】
As described above, according to the present invention, when the EGR gas is supplied to the intake passage in a low load region or the like, the cylinder generated by adjusting the degree of deflection of the intake flow by the intake flow control valve to the maximum side. Due to the deflected flow of intake air in the inside, it is possible to suppress a decrease in combustion performance due to the introduction of the EGR gas, and thereby it is possible to obtain stable combustion performance.
In addition, during high loads, including when the throttle is fully opened, the degree of deflection of the intake flow by the intake flow control valve is minimized, and the opening of the EGR gas passage to the intake passage is fully closed. Disturbance of the intake pulsation effect due to communication between the passage and the intake passage can be avoided, and good combustion performance can be maintained.
As a result, stable combustion at the time of introduction of the EGR gas into the intake passage, and good combustion and full load performance avoiding the inhibition of the intake pulsation effect due to the communication of the EGR gas passage at a high load, including when the throttle is fully opened, Can be simultaneously realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view (a cross-sectional view taken along the line AA in FIG. 2) of a main part of a vehicle engine according to an embodiment of the present invention, showing the vicinity of an intake flow control valve mounting portion of a spacer.
FIG. 2 is a front view of the spacer (as viewed in the direction of arrow Z in FIG. 1).
FIG. 3 is a sectional view taken along line BB of FIG. 1;
FIG. 4 is a view taken in the direction of arrow C in FIG. 2;
FIG. 5 is an explanatory diagram of an operation of an intake flow control valve.
[Explanation of symbols]
1 Spacer 2 EGR passage 3 EGR hole 4 Intake path 5 Intake flow control valve 5a Valve shaft 5b Valve 6 Intake manifold 06 Valve seat 7 Intake port 07 Cylinder head 8 Diaphragm actuator 9 EGR pipe 10 EGR valve

Claims (5)

吸気マニホールド内の中空通路とシリンダヘッドの吸気ポートとを備えて形成される吸気通路にEGRガス(排気再循環ガス)通路を開口してなるエンジンにおいて、前記吸気通路に吸気流を偏向させる吸気流制御弁を設けるとともに、該吸気流制御弁により前記EGRガス通路の開口部を開閉可能に構成したことを特徴とするエンジンの吸気流制御装置。In an engine in which an EGR gas (exhaust gas recirculation gas) passage is opened in an intake passage formed having a hollow passage in an intake manifold and an intake port of a cylinder head, an intake flow for deflecting the intake flow to the intake passage. An intake air flow control device for an engine, further comprising a control valve, wherein the opening of the EGR gas passage can be opened and closed by the intake air flow control valve. 前記吸気流制御弁は、前記吸気流の偏向度合が最小のとき前記EGRガス通路の開口部を全閉にするように構成してなることを特徴とする請求項1記載のエンジンの吸気流制御装置。2. The intake flow control of an engine according to claim 1, wherein the intake flow control valve is configured to completely close an opening of the EGR gas passage when a degree of deflection of the intake flow is minimum. apparatus. 前記吸気流制御弁は、前記吸気流の偏向度合を最大側に調整する偏向度合調整期間において前記EGRガス通路を開放して該EGRガスを前記吸気通路に導入せしめるように構成されてなることを特徴とする請求項1記載のエンジンの吸気流制御装置。The intake flow control valve is configured to open the EGR gas passage and introduce the EGR gas into the intake passage during a deflection degree adjustment period in which the degree of deflection of the intake flow is adjusted to a maximum side. The intake air flow control device for an engine according to claim 1, wherein: 前記吸気流制御弁は、アクチュエータにより回転駆動される弁軸と該弁軸に固着された板状の弁体とを備え、該弁軸及び弁体の回動により前記EGRガス通路を開閉するとともに、前記吸気流の偏向度合を調整する回転式の板状弁に構成されたことを特徴とする請求項1記載のエンジンの吸気流制御装置。The intake flow control valve includes a valve shaft that is rotationally driven by an actuator, and a plate-shaped valve body fixed to the valve shaft. The rotation of the valve shaft and the valve body opens and closes the EGR gas passage. 2. The intake air flow control device for an engine according to claim 1, wherein the intake air flow control device is configured as a rotary plate-shaped valve that adjusts a degree of deflection of the intake air flow. 前記吸気マニホールドとシリンダヘッドとの間に、前記吸気マニホールドの前記中空通路と前記吸気ポートを連通する吸気路を備えた間座を介装し、該間座の吸気路に前記EGRガス通路を開口するとともに、前記吸気流制御弁を設けたことを特徴とする請求項1乃至4記載のエンジンの吸気流制御装置。A spacer is provided between the intake manifold and the cylinder head, the spacer including an intake passage communicating the hollow passage of the intake manifold and the intake port, and the EGR gas passage is opened in the intake passage of the spacer. 5. The intake flow control device for an engine according to claim 1, wherein the intake flow control valve is provided.
JP2003094245A 2003-03-31 2003-03-31 Engine intake flow control device Expired - Fee Related JP4210988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094245A JP4210988B2 (en) 2003-03-31 2003-03-31 Engine intake flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094245A JP4210988B2 (en) 2003-03-31 2003-03-31 Engine intake flow control device

Publications (2)

Publication Number Publication Date
JP2004301002A true JP2004301002A (en) 2004-10-28
JP4210988B2 JP4210988B2 (en) 2009-01-21

Family

ID=33406847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094245A Expired - Fee Related JP4210988B2 (en) 2003-03-31 2003-03-31 Engine intake flow control device

Country Status (1)

Country Link
JP (1) JP4210988B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278116A (en) * 2006-04-04 2007-10-25 Nissan Motor Co Ltd Egr device for engine
WO2010071013A1 (en) * 2008-12-17 2010-06-24 アイシン精機株式会社 Air intake manifold
US8261724B2 (en) 2008-05-14 2012-09-11 Nippon Soken, Inc. Intake apparatus for internal combustion engine
JP2013199877A (en) * 2012-03-26 2013-10-03 Denso Corp Intake and exhaust device of internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517659A (en) * 1978-07-25 1980-02-07 Toyota Motor Corp Exhaust gas recirculation controllor for diesel engine
JPS5598647A (en) * 1979-01-24 1980-07-26 Toyota Motor Corp Exhaust gas recirculating device for multicylinder internal combustion engine
JPS5629050A (en) * 1979-08-15 1981-03-23 Toyota Motor Corp Controller for recirculation of exhaust gas for internal combustion engine
JPS57113949A (en) * 1981-01-07 1982-07-15 Kanesaka Gijutsu Kenkyusho:Kk Method and device for exhaust gas circulation in engine
JPS646355U (en) * 1987-07-01 1989-01-13
JPH08135517A (en) * 1994-11-11 1996-05-28 Nippondenso Co Ltd Exhaust gas cooling device
JPH11294267A (en) * 1998-04-10 1999-10-26 Hino Motors Ltd Exhaust gas recirculation system of engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517659A (en) * 1978-07-25 1980-02-07 Toyota Motor Corp Exhaust gas recirculation controllor for diesel engine
JPS5598647A (en) * 1979-01-24 1980-07-26 Toyota Motor Corp Exhaust gas recirculating device for multicylinder internal combustion engine
JPS5629050A (en) * 1979-08-15 1981-03-23 Toyota Motor Corp Controller for recirculation of exhaust gas for internal combustion engine
JPS57113949A (en) * 1981-01-07 1982-07-15 Kanesaka Gijutsu Kenkyusho:Kk Method and device for exhaust gas circulation in engine
JPS646355U (en) * 1987-07-01 1989-01-13
JPH08135517A (en) * 1994-11-11 1996-05-28 Nippondenso Co Ltd Exhaust gas cooling device
JPH11294267A (en) * 1998-04-10 1999-10-26 Hino Motors Ltd Exhaust gas recirculation system of engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278116A (en) * 2006-04-04 2007-10-25 Nissan Motor Co Ltd Egr device for engine
US8261724B2 (en) 2008-05-14 2012-09-11 Nippon Soken, Inc. Intake apparatus for internal combustion engine
WO2010071013A1 (en) * 2008-12-17 2010-06-24 アイシン精機株式会社 Air intake manifold
JP2011208642A (en) * 2008-12-17 2011-10-20 Aisin Seiki Co Ltd Intake manifold
JP4840676B2 (en) * 2008-12-17 2011-12-21 アイシン精機株式会社 Intake manifold
US8181633B2 (en) 2008-12-17 2012-05-22 Aisin Seiki Kabushiki Kaisha Intake manifold
JP2013199877A (en) * 2012-03-26 2013-10-03 Denso Corp Intake and exhaust device of internal combustion engine

Also Published As

Publication number Publication date
JP4210988B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
US5979401A (en) Internal combustion engine having induction system with aerodynamic charge motion control valve
WO2007026542A1 (en) Air intake device for engine
JP5369045B2 (en) Intake device for internal combustion engine
JP2017160889A (en) Exhaust system for engine
US8769948B2 (en) Exhaust gas system
JP2004301002A (en) Engine intake flow control device
JPH10339225A (en) Intake device for on vehicle internal combustion engine
JP2002221036A (en) Engine intake system
JP3617691B2 (en) Engine intake control device
JP4252670B2 (en) Engine intake passage structure
KR100765613B1 (en) Throttle Plate with Improved Flow Resistance
JPH04153524A (en) Intake device of engine
JP2004003424A (en) Intake device for engine
JPH05133234A (en) Air intake control valve device of internal combustion engine
WO2006123818A1 (en) Air intake device for multi-cylinder engine
JPH0330598Y2 (en)
KR100558500B1 (en) Flow control actuator that controls the amount of air supplied to the vehicle at idle
JP4021081B2 (en) Swirl control valve
JPH036859Y2 (en)
JP2006258077A (en) Reed valve for engine
JPH0338410B2 (en)
JPH08284709A (en) Diesel engine
JPH11311140A (en) Engine intake system
JPH01187356A (en) Combustion controller for engine
JP2003222055A (en) Butterfly throttle valve type carburetor for stratification scavenging internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees