[go: up one dir, main page]

JPH01187356A - Combustion controller for engine - Google Patents

Combustion controller for engine

Info

Publication number
JPH01187356A
JPH01187356A JP63011308A JP1130888A JPH01187356A JP H01187356 A JPH01187356 A JP H01187356A JP 63011308 A JP63011308 A JP 63011308A JP 1130888 A JP1130888 A JP 1130888A JP H01187356 A JPH01187356 A JP H01187356A
Authority
JP
Japan
Prior art keywords
exhaust
valve
intake
control valve
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63011308A
Other languages
Japanese (ja)
Other versions
JP2575773B2 (en
Inventor
Yoshikuni Yada
矢田 佳邦
Mikikimi Fujii
幹公 藤井
Michihiko Tabata
田端 道彦
Tadayoshi Kaide
忠良 甲斐出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP63011308A priority Critical patent/JP2575773B2/en
Publication of JPH01187356A publication Critical patent/JPH01187356A/en
Application granted granted Critical
Publication of JP2575773B2 publication Critical patent/JP2575773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To make improvements in combustibility at the time of idling by installing each exhaust control valve in plural exhaust parts, and forming its passage diameter to be relatively smaller, in a device which makes a part of exhaust gas flow backward to a combustion chamber from one of four exhaust ports at time of the intake stroke. CONSTITUTION:Intake and exhaust ports 7, 8 and 9, 10 being opened or closed each by intake and exhaust valves 3, 4 and 5, 6 are opened each cylinder 2 of an engine 1, and these intake ports 3, 4 and exhaust ports 9, 10 are connected each to common suction and exhaust passages 12, 13. A throttle valve (unillustrated herein) is installed in this suction passage 12, while suction and exhaust valves 15, 16 are installed each in the second exhaust ports 8, 10. In addition, the second exhaust port 10 is formed into a small diameter as compared with the first exhaust port 9, while the second exhaust valve 6 sets a valve overlap period with the suction valve to be larger and thereby exhaust gas is made introducible to a combustion chamber at an intake stroke, so that an exhaust gas quantity at that time is made free of adjustment by the exhaust control valve 16.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの燃焼制御装置に関し、特にEGR
(排気ガス還流)の一方法として排気ガスの一部を排気
ポートから直接シリンダに逆流させるものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine combustion control device, and in particular to an EGR
One method for (exhaust gas recirculation) is a method in which a part of the exhaust gas flows directly back into the cylinder from the exhaust port.

(従来の技術) 排気ポートからシリンダへ直接的に適量の排気ガスを逆
流させる(吸い戻す)方式のEGRは、排気ガス還流通
路を用いた通常のEGR装置に対して内部EGRと呼ば
れている。
(Prior art) EGR, which is a method of backflowing (sucking back) an appropriate amount of exhaust gas directly from the exhaust port to the cylinder, is called internal EGR, as opposed to a normal EGR device that uses an exhaust gas recirculation passage. .

内部EGRについての従来技術が、例えば、特開昭55
−112814号公報に開示されている。この従来技術
では、排気弁の閉弁時期を低負荷域で遅くなるように変
化させるバルブタイミング機構を設け、排気弁の閉弁時
期を遅くして吸気弁とのバルブオーバーラツプ期間を大
きくし、排気ポート側に出た排気ガスの一部が吸気行程
の初期にシリンダ内へ逆流するようにして、内部EGR
を得るものである。
Conventional technology regarding internal EGR is, for example, disclosed in Japanese Patent Application Laid-open No. 1983
It is disclosed in the publication No.-112814. In this conventional technology, a valve timing mechanism is provided that changes the closing timing of the exhaust valve so that it is delayed in a low load range, and the closing timing of the exhaust valve is delayed to increase the valve overlap period with the intake valve. , a part of the exhaust gas that exited to the exhaust port side flows back into the cylinder at the beginning of the intake stroke, and internal EGR
This is what you get.

上記内部EGRでは、通常のEGRに比べて燃焼室に持
ち込まれる排気ガスの温度が高いことから同じEGR率
でもその容積が大きく、その分新気の流入量が低減する
ことからスロットル弁の開度が大きくなってポンピング
ロスが低減し、燃費性能が改善される。また、流入した
燃料が高温排気ガスの影響を受けて、その気化が促進さ
れ、燃焼性が改善されて未燃焼成分の排出量が低減し、
エミッション性の向上が図れる利点を有する。
In the internal EGR mentioned above, the temperature of the exhaust gas brought into the combustion chamber is higher than in normal EGR, so the volume is larger even at the same EGR rate, and the amount of fresh air inflow is reduced accordingly, so the opening of the throttle valve is becomes larger, reducing pumping loss and improving fuel efficiency. In addition, the inflowing fuel is affected by high-temperature exhaust gas, promoting its vaporization, improving combustibility, and reducing the amount of unburned components released.
This has the advantage of improving emission performance.

(発明が解決しようとする課題) しかして、上記のような従来技術では、EGR率の調整
を排気弁の閉弁時期を変えてバルブオーバーラツプ期間
を変更することによって行っているが、このオーバーラ
ツプ期間の調整でEGR率を高精度に制御することは困
難であると共に、可変バルブタイミング機構は複雑で高
価なものとなる。
(Problem to be Solved by the Invention) However, in the prior art as described above, the EGR rate is adjusted by changing the closing timing of the exhaust valve and changing the valve overlap period. It is difficult to control the EGR rate with high precision by adjusting the overlap period, and the variable valve timing mechanism is complicated and expensive.

上記点に対し、1つのシリンダに複数の排気弁を設け、
1つの排気弁の閉時期を遅らせてオーバーラツプ期間を
大きく設定し、この排気弁に対応する排気ポートに排気
制御弁を設け、この排気制御弁の開閉によってEGR率
を調整することが考えられる。すなわち、uF気制御弁
を開いた状態ではこの排気ポートに排出されたυト気ガ
スがオーバーラツプ期間中に燃焼室に吸い戻されること
になり、その排気制御弁の開度が大きい程EGR率が高
くなり、閉じているとEGR率は低減する。
In response to the above points, multiple exhaust valves are provided in one cylinder,
It is conceivable to set a large overlap period by delaying the closing timing of one exhaust valve, provide an exhaust control valve at the exhaust port corresponding to this exhaust valve, and adjust the EGR rate by opening and closing the exhaust control valve. In other words, when the uF air control valve is open, the uF air gas discharged to this exhaust port is sucked back into the combustion chamber during the overlap period, and the larger the opening of the exhaust control valve, the higher the EGR rate. If it becomes high and closed, the EGR rate will decrease.

しかるに、上記のように遅く閉じる排気ポートに内部E
GR率を調整する排気制御弁を設置した燃焼制御装置で
は、アイドル時には内部EGRをカットするべく前記排
気制御弁を仝閑にするが、この排気制御弁までの排気ポ
ート内に排気ガスが残留し、この部分の排気ガスがオー
バーラツプ時に燃焼室に流入して内部EGRとなる。す
なわち、排気制御弁が閉じていても、排気弁が開いたと
きに高圧の排気ガスが排気制御弁との間の排気ポートに
流入し、燃焼室内圧力が低下するオーバーラツプ期間に
燃焼室内に逆流して戻ることになって内部EGRとなり
、アイドル時でもともと燃焼性が低下しているのに加え
て燃焼性がさらに低下し、アイドル安定性を確保する点
で問題がある。
However, as mentioned above, the internal E
In a combustion control device that is equipped with an exhaust control valve that adjusts the GR rate, the exhaust control valve is turned off to cut internal EGR when idling, but exhaust gas remains in the exhaust port up to this exhaust control valve. , this portion of exhaust gas flows into the combustion chamber at the time of overlap and becomes internal EGR. In other words, even when the exhaust control valve is closed, high-pressure exhaust gas flows into the exhaust port between the exhaust valve and the exhaust control valve when it opens, and flows back into the combustion chamber during the overlap period when the combustion chamber pressure decreases. This results in internal EGR, which further reduces combustibility in addition to the already low combustibility at idle, which poses a problem in ensuring idling stability.

そこで、本発明は上記事情に鑑み、排気制御弁の閉じた
時点における内部EGR率を低減して運転性を確保した
上で、内部EGRによる燃焼性、燃費性向上を図るよう
にしたエンジンの燃焼制御装置を提供することを目的と
するものである。
Therefore, in view of the above circumstances, the present invention provides an engine combustion system that reduces the internal EGR rate at the time when the exhaust control valve is closed to ensure drivability, and that improves combustibility and fuel efficiency through internal EGR. The purpose of this invention is to provide a control device.

(課題を解決するだめの手段) 上記目的を達成するために本発明の燃焼制御装置は、各
気筒に排気弁を複数有し、そのうち少なくとも1つにつ
いて吸気弁とのバルブオーバーラツプ期間を大きく設定
して吸気行程への燃焼室に排気ポートから排気ガスを導
入する一方、このバルブオーバーラツプ期間を大きく設
定した排気弁に対応する排気ポートに燃焼室に導入する
排気ガス量を調整する排気制御弁を設けると共に、該排
気制御弁を設けた排気ポートの径を他の排気ポートより
も小さくなるように構成したものである。
(Means for solving the problem) In order to achieve the above object, the combustion control device of the present invention has a plurality of exhaust valves in each cylinder, and for at least one of them, the valve overlap period with the intake valve is increased. Set the valve overlap period to introduce exhaust gas into the combustion chamber from the exhaust port into the combustion chamber, and adjust the amount of exhaust gas introduced into the combustion chamber into the exhaust port corresponding to the exhaust valve with a large valve overlap period. In addition to providing a control valve, the exhaust port provided with the exhaust control valve is configured to have a smaller diameter than other exhaust ports.

(作用) 上記のようなエンジンの燃焼制御装置では、アイドルな
どで排気制御弁を閉じた状態においては、この排気制御
弁に対する排気ポートは小径であって、その容積は小さ
く、流出入する排気ガス量が低減することによって内部
EGR率が低下し、燃焼安定性を向上する一方、排気制
御弁を開いた時には、その開度に応じて簡単な構造で精
度よくEGR率を調整するようにしている。
(Function) In the engine combustion control device as described above, when the exhaust control valve is closed during idling, etc., the exhaust port for the exhaust control valve has a small diameter and a small volume, and the exhaust gas flowing in and out is By reducing the amount, the internal EGR rate decreases and improves combustion stability. On the other hand, when the exhaust control valve is opened, the EGR rate is adjusted with a simple structure and with high precision according to the opening degree. .

(実施例) 以下、図面に沿って本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図にエンジンの各気筒での?1■成を示す。Figure 1 shows each cylinder of the engine? 1. Indicates formation.

エンジン1の各気筒2には、第1吸気弁3によって開閉
される第1吸気ポート7と第2吸気弁4によって開閉さ
れる第2吸気ポート8と、第1排気弁5によって開閉さ
れ、る第1排気ポート9と第2排気弁6によって開閉さ
れる第2排気ポート10とが接続開口されている。両吸
気ポート7.8は共通の吸気通路12に接続され、同様
に両排気ポート9.10は共通の排気通路13に接続さ
れている。
Each cylinder 2 of the engine 1 has a first intake port 7 opened and closed by a first intake valve 3, a second intake port 8 opened and closed by a second intake valve 4, and a second intake port 8 opened and closed by a first exhaust valve 5. The first exhaust port 9 and the second exhaust port 10, which is opened and closed by the second exhaust valve 6, are connected to each other. Both intake ports 7.8 are connected to a common intake channel 12, and likewise both exhaust ports 9.10 are connected to a common exhaust channel 13.

そして、上記吸気通路12には図示しないスロットル弁
が介装されて吸気流量が制御される一方、前記第2吸気
ポート8には吸気制御弁15が介装され、また、第2排
気ポート10には排気制御弁16が介装されている。更
に、前記第2排気ポート10は、第1排気ポート9に比
べて小径に形成されている。
A throttle valve (not shown) is installed in the intake passage 12 to control the intake flow rate, while an intake control valve 15 is installed in the second intake port 8, and an intake control valve 15 is installed in the second exhaust port 10. An exhaust control valve 16 is installed. Further, the second exhaust port 10 is formed to have a smaller diameter than the first exhaust port 9.

前記第1および第2吸気弁3,4、第1および第2排気
弁5,6は、公知の動弁機構によって開閉作動され、そ
の開閉タイミングを第2図に示す。
The first and second intake valves 3 and 4 and the first and second exhaust valves 5 and 6 are opened and closed by a known valve mechanism, and the opening and closing timings thereof are shown in FIG.

まず、第1排気弁5はEOで開き、上死点TDC後のE
C1で閉じる。また、第2排気弁6は第1排気弁5と同
様にEOで開き、第1排気弁5の閉時期EC1より遅い
時期EC2に閉じる。一方、第1吸気弁3は上死点TD
C近傍の101で開き、Icで閉じる。また、第2吸気
弁4は第1吸気弁3の開時期101より早い時期lO2
に開き、第1吸気弁3と同様にICで閉じる。
First, the first exhaust valve 5 opens at EO, and after top dead center TDC, the first exhaust valve 5 opens at EO.
Close with C1. Further, like the first exhaust valve 5, the second exhaust valve 6 opens at EO and closes at a time EC2 later than the closing time EC1 of the first exhaust valve 5. On the other hand, the first intake valve 3 is at the top dead center TD.
It opens at 101 near C and closes at Ic. Further, the second intake valve 4 is opened at a timing lO2 earlier than the opening timing 101 of the first intake valve 3.
Similarly to the first intake valve 3, it is closed by the IC.

また、前記吸気制御弁15および排気制御弁16はそれ
ぞれアクチュエータ17.18によって開閉操作され、
このアクチュエータ17.18の作動はコントロールユ
ニット19からの制御信号によって運転状態に応じて制
御される。上記コントロールユニット19には、エンジ
ン1の運転状態を検出するために、回転センサ20から
のエンジン回転信号、吸気通路12に介装した吸気負圧
を検出する負圧センサ21からの負荷信号等がそれぞれ
人力される。
Further, the intake control valve 15 and the exhaust control valve 16 are respectively opened and closed by actuators 17 and 18,
The operation of the actuators 17, 18 is controlled by control signals from the control unit 19 depending on the operating state. In order to detect the operating state of the engine 1, the control unit 19 receives an engine rotation signal from a rotation sensor 20, a load signal from a negative pressure sensor 21 installed in the intake passage 12, which detects intake negative pressure, etc. Each is manually powered.

なお、上記排気制御弁16は、第2排気ポート10の容
積を小さくする点からは可及的に第2排気弁6に近付け
た位置に設置するのが好ましいが、余り近付けると高温
となって信頼性の点で不利となることから、例えば排気
マニホールドのシリンダヘッド近傍部分にシャッタバル
ブ型の開閉弁を設置して構成するようにすればよいもの
である。
In addition, from the point of view of reducing the volume of the second exhaust port 10, it is preferable to install the exhaust control valve 16 as close to the second exhaust valve 6 as possible, but if it is placed too close, the temperature will increase. Since this is disadvantageous in terms of reliability, for example, a shutter valve type on-off valve may be installed in the vicinity of the cylinder head of the exhaust manifold.

そして、上記コントロールユニット19は負荷およびエ
ンジン回転数に応じて、第3図および第4図に示すよう
に、部分負荷時すなわちEGR領域では、排気制御弁1
6を開いて第2排気弁6による開閉時期(遅閉じ)で排
気を行う一方、吸気制御弁15を閉じて第1吸気弁3に
よる開閉時期(遅開き)で吸気を行う。また、その他の
アイドル時および低速高負荷時すなわちEGRカット領
域では、排気制御弁16を閉じて第1排気弁5による開
閉時期(早閉じ)で排気を行う一方、吸気制御弁15を
開いて第2吸気弁4による開閉時期(早開き)で吸気を
行うように制御するものである。この制御は、マイクロ
コンピュータなどによる一般的なエンジンの電子制御と
同じ手法で容易゛  に実施するとかできるので、本明
細書では詳述しない。
As shown in FIGS. 3 and 4, the control unit 19 controls the exhaust control valve 1 in accordance with the load and the engine speed.
6 is opened to perform exhaustion at the opening/closing timing of the second exhaust valve 6 (late closing), while the intake control valve 15 is closed and intake is performed at the opening/closing timing of the first intake valve 3 (late opening). In addition, at other times of idling and at low speed and high load, that is, in the EGR cut region, the exhaust control valve 16 is closed and exhaust is performed at the opening/closing timing (early closing) of the first exhaust valve 5, while the intake control valve 15 is opened and the first exhaust valve 5 is opened/closed. This control is performed so that the intake valve 4 takes in air at the opening/closing timing (early opening) of the intake valve 4. This control can be easily implemented using the same method as general engine electronic control using a microcomputer, so it will not be described in detail in this specification.

次に上記構成による作用を説明する。まず、EGR領域
では、前記のように排気制御弁16を開いて第2排気弁
6による開閉時期(遅閉じ)で排気を行うことから、上
死点TDC後のオーバーラツプ期間が長くなる。その結
果、第2吸気弁4の開作動および上死点を過ぎてピスト
ンが下降するのに対して気筒2内圧力の低下に伴って、
第2排気弁6が閉じる直前に第2排気ポート10内の排
気ガスが気筒2内に逆流するように吸い戻されて導入さ
れる。このとき逆流して気筒2内に戻る排気ガスの量は
、第2排気ポート10の排気制御弁16の開度に応じて
変化し、その開度が大きいほど導入量が増大するもので
ある。これにより内部EGRによる燃焼性、燃費性能の
数倍効果が得られる。
Next, the effect of the above configuration will be explained. First, in the EGR region, since the exhaust control valve 16 is opened as described above and exhaust is performed at the opening/closing timing (late closing) of the second exhaust valve 6, the overlap period after top dead center TDC becomes longer. As a result, while the second intake valve 4 opens and the piston descends past the top dead center, as the pressure inside the cylinder 2 decreases,
Immediately before the second exhaust valve 6 closes, the exhaust gas in the second exhaust port 10 is sucked back into the cylinder 2 so as to flow back into the cylinder 2. At this time, the amount of exhaust gas that flows backward and returns into the cylinder 2 changes depending on the opening degree of the exhaust control valve 16 of the second exhaust port 10, and the larger the opening degree, the greater the amount of exhaust gas introduced. As a result, the combustibility and fuel efficiency of internal EGR can be improved several times.

また、上記EGR領域では、吸気制御弁15を閉じて第
1吸気弁3による開閉時期(遅開き)で吸気を行うこと
から、実質的にピストンがかなり下降してから吸気が気
筒2内に流入し、それまでに気筒2内に導入されている
排気ガスはピストン側に位置し、その上層に吸気が流入
して層状化を得るものである。これにより点火プラグ周
辺に可燃混合気を偏在させて着火性を向上し、排気ガス
の熱的影響を受けて上記内部EGRの作用は確保するよ
うにしている。
Furthermore, in the above EGR region, the intake control valve 15 is closed and intake is performed at the opening/closing timing (late opening) of the first intake valve 3, so that the intake air actually flows into the cylinder 2 after the piston has descended considerably. However, the exhaust gas that has been introduced into the cylinder 2 up to that point is located on the piston side, and the intake air flows into the upper layer of the piston, resulting in stratification. As a result, the flammable air-fuel mixture is unevenly distributed around the spark plug to improve ignitability, and the internal EGR function is ensured under the thermal influence of exhaust gas.

一方、EGRカット領域では、排気制御弁16を閉じて
第1排気弁5による開閉時期(早閉じ)で排気を行うと
共に、吸気制御弁15を開いて第2吸気弁4による開閉
時期(早開き)で吸気を行うことから、上死点TDC後
のオーバーラツプ期間を短くすると共に、吸入空気量を
確保する。このオーバーラツプ期間の短縮により、排気
行程から吸気行程に移行する際に、気筒2内に残留する
排気ガスの量は低減する。その際、内部EGRをカット
するべく前記排気制御弁16を全閉にしていても、第2
排気弁6が開いたときに高圧の排気ガスが排気制御弁1
6との間の第2排気ポート10に流入し、気筒内圧力が
低下するオーバーラツプ期間に気筒内に逆流して戻るこ
とになって内部EGRとなるが、この第2排気ポート1
0の径を小さく形成して容積を低減していることから、
第2排気ポート10内に残留する排気ガスの量を低減し
て、排気制御弁16全閉時、特にアイドル時の燃焼安定
性を確保するようにしている。
On the other hand, in the EGR cut region, the exhaust control valve 16 is closed to perform exhaust at the opening/closing timing of the first exhaust valve 5 (early closing), and the intake control valve 15 is opened to perform the opening/closing timing of the second intake valve 4 (early opening). ), the overlap period after top dead center TDC is shortened and the amount of intake air is ensured. By shortening this overlap period, the amount of exhaust gas remaining in the cylinder 2 is reduced when transitioning from the exhaust stroke to the intake stroke. At that time, even if the exhaust control valve 16 is fully closed to cut the internal EGR, the second
When the exhaust valve 6 opens, high pressure exhaust gas flows into the exhaust control valve 1.
6 and flows back into the cylinder during the overlap period when the cylinder pressure decreases, resulting in internal EGR.
Since the diameter of 0 is made small to reduce the volume,
The amount of exhaust gas remaining in the second exhaust port 10 is reduced to ensure combustion stability when the exhaust control valve 16 is fully closed, especially when idling.

なお、上記実施例においては、2つの吸気弁3゜4およ
び吸気制御弁15を配設して、吸気タイミングについて
もEGR領域に対応して変更するようにして層状化を得
るようにしているが、これは必須ではなくタイミングの
変更は行わず、1つの吸気弁によって吸気を導入するよ
うにしてもよい。
In the above embodiment, the two intake valves 3.4 and the intake control valve 15 are arranged, and the intake timing is also changed in accordance with the EGR region to obtain stratification. , this is not essential and the timing may not be changed and intake air may be introduced by one intake valve.

また、上記実施例では、高負荷領域ではEGRをカット
するようにしているが、これは排気ガスによる吸気温度
の上昇はノッキングが発生しやすくなることから、これ
を防止するために行うものであり、過給を行うエンジン
では排気制御弁16を開くようにしていてもよい。一方
、多気筒エンジンにおける各気筒2の排気制御弁16上
流の第2排気ポート10を連通路で連通し、排気ガスの
気筒間分配を向上するようにしてもよい。
Furthermore, in the above embodiment, EGR is cut in a high load region, but this is done to prevent knocking, since an increase in intake air temperature caused by exhaust gas tends to cause knocking. In an engine that performs supercharging, the exhaust control valve 16 may be opened. On the other hand, the second exhaust port 10 upstream of the exhaust control valve 16 of each cylinder 2 in a multi-cylinder engine may be communicated through a communication path to improve the distribution of exhaust gas between cylinders.

(発明の効果) 上記のような本発明によれば、気筒に対する複数の排気
弁のうち少な(とも1つについて吸気弁とのバルブオー
バーラツプ期間を大きく設定して吸気行程への燃焼室に
排気ポートからυ[気ガスを導入する一方、このバルブ
オーバーラツプ期間を大きく設定した排気弁に対応する
排気ポートに燃焼室に導入する排気ガス量を調整する排
気制御弁を設けると共に、該排気制御弁を設けた排気ポ
ートの径を他の排気ポートよりも小さくなるように構成
したことにより、アイドルなどで排気制御弁を閉じた状
態においては、この排気制御弁に対する排気ポートは小
径であって、その容積は小さく、流出入する排気ガス量
が低減することによって内部EGR率を低下して燃焼安
定性を向上して良好な運転性を確保する一方、排気制御
弁を開いた時には、その開度に応じて簡単な構造で精度
よくEGR率を調整することができるものである。
(Effects of the Invention) According to the present invention as described above, the valve overlap period with the intake valve is set to be large for one of the plurality of exhaust valves for the cylinder, and the valve overlap period with the intake valve is set to be large. While introducing υ gas from the exhaust port, an exhaust control valve for adjusting the amount of exhaust gas introduced into the combustion chamber is provided at the exhaust port corresponding to the exhaust valve with a large valve overlap period. By configuring the diameter of the exhaust port provided with the control valve to be smaller than other exhaust ports, when the exhaust control valve is closed, such as when idling, the exhaust port for this exhaust control valve has a small diameter. , its volume is small, and by reducing the amount of exhaust gas flowing in and out, it lowers the internal EGR rate and improves combustion stability, ensuring good drivability. It is possible to adjust the EGR rate with a simple structure and with high accuracy depending on the situation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるエンジンの燃焼制御
装置の概念図、 第2図はバルブタイミングの設定例を示す特性図、 第3図は排気および吸気制御弁の負荷に対する開閉制御
例を示す特性図、 第4図は同じく排気および吸気制御弁のエンジン回転数
に対する開閉制御例を示す特性図である。 1・・・・・・エンジン、2・・・・・・気筒、5.6
・・・・・・排気弁、9.10・・・・・・排気ポート
、13・・・・・・排気通路、16・・・・・・排気制
御弁、19・・・・・・コントロールユニット。 第1図 第2図 第3図    第4図
Fig. 1 is a conceptual diagram of an engine combustion control device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing an example of valve timing settings, and Fig. 3 is an example of opening/closing control of exhaust and intake control valves depending on the load. FIG. 4 is a characteristic diagram showing an example of opening/closing control of exhaust and intake control valves with respect to engine speed. 1...Engine, 2...Cylinder, 5.6
...Exhaust valve, 9.10...Exhaust port, 13...Exhaust passage, 16...Exhaust control valve, 19...Control unit. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)各気筒に排気弁を複数有し、そのうち少なくとも
1つについて吸気弁とのバルブオーバーラップ期間を大
きく設定して吸気行程への燃焼室に排気ポートから排気
ガスを導入する一方、このバルブオーバーラップ期間を
大きく設定した排気弁に対応する排気ポートに、燃焼室
に導入する排気ガス量を調整する排気制御弁を設けると
共に、該排気制御弁を設けた排気ポートの径を他の排気
ポートよりも小さく設定したことを特徴とするエンジン
の燃焼制御装置。
(1) Each cylinder has multiple exhaust valves, and at least one of them has a large valve overlap period with the intake valve to introduce exhaust gas from the exhaust port into the combustion chamber into the intake stroke. An exhaust control valve that adjusts the amount of exhaust gas introduced into the combustion chamber is provided at the exhaust port corresponding to the exhaust valve with a large overlap period set, and the diameter of the exhaust port equipped with the exhaust control valve is set to the other exhaust port. An engine combustion control device characterized by being set smaller than.
JP63011308A 1988-01-21 1988-01-21 Engine combustion control device Expired - Lifetime JP2575773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63011308A JP2575773B2 (en) 1988-01-21 1988-01-21 Engine combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63011308A JP2575773B2 (en) 1988-01-21 1988-01-21 Engine combustion control device

Publications (2)

Publication Number Publication Date
JPH01187356A true JPH01187356A (en) 1989-07-26
JP2575773B2 JP2575773B2 (en) 1997-01-29

Family

ID=11774380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63011308A Expired - Lifetime JP2575773B2 (en) 1988-01-21 1988-01-21 Engine combustion control device

Country Status (1)

Country Link
JP (1) JP2575773B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180252A (en) * 2016-03-30 2017-10-05 マツダ株式会社 Exhaust system for engine
JP2019070385A (en) * 2017-10-05 2019-05-09 エムアーエヌ トラック アンド バス アーゲーMAN Truck & Bus AG Internal combustion engine having valve seat pocket

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180252A (en) * 2016-03-30 2017-10-05 マツダ株式会社 Exhaust system for engine
JP2019070385A (en) * 2017-10-05 2019-05-09 エムアーエヌ トラック アンド バス アーゲーMAN Truck & Bus AG Internal combustion engine having valve seat pocket

Also Published As

Publication number Publication date
JP2575773B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
JP2753874B2 (en) Multi-cylinder engine intake system
JP4045844B2 (en) Engine control device
JPH10184370A (en) Four-cycle engine
US20100186406A1 (en) Control device of an internal combustion engine
WO2007116627A1 (en) Premix compression ignition engine and intake air control method for premix compression ignition engine
JPH07224626A (en) Control device for engine
JPH05340290A (en) Contorol device for engine having supercharger
US20030140877A1 (en) Four-stroke gasoline engine with direct injection and method for valve control
US20190093571A1 (en) Engine control device
JP2004068767A (en) Operation control of an internal combustion engine with a variable valve system
JP2013130121A (en) Exhaust gas recirculation system for spark-ignition-type internal combustion engine
JP2001280228A (en) Ignition timing control device for variable valve engine
JPH01187356A (en) Combustion controller for engine
JP3985419B2 (en) Control device for internal combustion engine
JP2002242714A (en) 4-cycle engine for automobile
JPH11190236A (en) Device for suppressing knocking of four cycle engine
JPS60150411A (en) Cylinder number controlling engine
JPH0324835Y2 (en)
JP3163587B2 (en) Valve train control device for internal combustion engine
JP2009052505A (en) Internal combustion engine
JPH04132824A (en) Control device for engine
JPH0634581Y2 (en) Double intake valve engine
JPH0519010B2 (en)
JPH0633803A (en) Fuel supply device of engine
JPH0925853A (en) Exhaust gas recirculation device