JP2004278588A - Disc springs and lap disc springs and disc spring devices - Google Patents
Disc springs and lap disc springs and disc spring devices Download PDFInfo
- Publication number
- JP2004278588A JP2004278588A JP2003068395A JP2003068395A JP2004278588A JP 2004278588 A JP2004278588 A JP 2004278588A JP 2003068395 A JP2003068395 A JP 2003068395A JP 2003068395 A JP2003068395 A JP 2003068395A JP 2004278588 A JP2004278588 A JP 2004278588A
- Authority
- JP
- Japan
- Prior art keywords
- disc spring
- disc
- contact surface
- springs
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011347 resin Substances 0.000 claims abstract description 21
- 229920005989 resin Polymers 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000004962 Polyamide-imide Substances 0.000 claims description 5
- 229920002312 polyamide-imide Polymers 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 2
- 230000001050 lubricating effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 abstract description 6
- 230000007423 decrease Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 15
- 238000004381 surface treatment Methods 0.000 description 14
- 238000009499 grossing Methods 0.000 description 10
- 239000000314 lubricant Substances 0.000 description 9
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Images
Landscapes
- Vibration Prevention Devices (AREA)
- Springs (AREA)
Abstract
【課題】皿ばねを用いて支持体を支持又は加圧する皿ばね装置において、皿ばねの荷重特性を長期間にわたって維持する。
【解決手段】基体10と、支持体19と、基体10と支持体19の間に介装される複数枚の皿ばね20a〜20gとを備える。最下端の皿ばね20gと接触する基体10側の接触面12と、最上端の皿ばね20aと接触する支持体19側の接触面16とが、樹脂層で被覆されている。この皿ばね装置では、接触面12,16が樹脂層で被覆されるため、皿ばね20gと接触面12の摩擦抵抗が減少し、皿ばね20aと接触面16の摩擦抵抗が減少する。このため、両者の磨耗が抑制され、重ね皿ばね20の荷重特性を長期間にわたって維持することができる。
【選択図】 図1A disc spring device for supporting or pressing a support using a disc spring maintains a load characteristic of the disc spring for a long period of time.
The apparatus includes a base, a support, and a plurality of disc springs interposed between the base and the support. The contact surface 12 on the side of the base 10 that contacts the lowermost disc spring 20g and the contact surface 16 on the side of the support 19 that contacts the uppermost disc spring 20a are covered with a resin layer. In this disc spring device, since the contact surfaces 12, 16 are covered with the resin layer, the frictional resistance between the disc spring 20g and the contact surface 12 decreases, and the frictional resistance between the disc spring 20a and the contact surface 16 decreases. For this reason, wear of both is suppressed, and the load characteristics of the lap disc spring 20 can be maintained for a long period of time.
[Selection diagram] Fig. 1
Description
【0001】
【発明の属する技術分野】本発明は、皿ばね及び複数枚の皿ばねを重ね合わせた重ね皿ばねに関する。また、本発明は、1又は複数枚の皿ばねを用いた皿ばね装置に関する。
【0002】
【従来の技術】皿ばねは、荷重方向の小さな変位で大きな力を発生させることができ、種々の用途に用いられている。皿ばねを利用した装置としては、例えば、特許文献1や特許文献2に開示された装置が知られている。
特許文献1に記載の皿ばね装置では、基礎(基体)と建築物(支持体)との間に複数枚の皿ばねが介装される。複数枚の皿ばねは、同一方向に積み重ねられ、建築物の重量が作用している。この皿ばね装置では、地震等によって基礎が上下方向に変位すると、皿ばねに作用する荷重も変化する。このため、各皿ばねが弾性変形し、基礎の建築物に対する相対変位を吸収して建築物に伝達される振動を吸収するようにしている。
また、特許文献2に記載の皿ばね装置では、ケーシング(基体)と、ケーシング内に収容されるセル積層体(支持体)を備える。皿ばねは圧縮された状態でケーシングとセル積層体との間に介装され、セル積層体のセル同士を密着させる方向に力を作用させる。
【0003】
【特許文献1】
特開2002−39244号公報
【特許文献2】
特開2001−167745号公報
【0004】
【発明が解決しようとする課題】上述した皿ばね装置においては、基体と支持体の間に介装される皿ばねは、所望の荷重特性が得られるよう設計され、かかる荷重特性は長期間にわたって維持されることが要求される。しかしながら、従来においては、皿ばねの荷重特性を長期間にわたって維持する観点から詳細に検討されたことはなかった。
【0005】
本発明の目的は、皿ばねを用いた皿ばね装置において、皿ばねの荷重特性を長期間にわたって維持することを可能とする技術を提供する。
【0006】
【課題を解決するための手段と作用と効果】上記課題を解決するために、本願に係る皿ばね装置は、基体と、支持体と、基体と支持体の間に介装される1又は複数枚の皿ばねとを備える。そして、皿ばねと接触する基体側の接触面及び皿ばねと接触する支持体側の接触面のうち少なくとも一方の接触面が異種材料層で被覆されていることを特徴とする。
この皿ばね装置では、皿ばねと接触する基体側の接触面及び皿ばねと接触する支持体側の接触面の少なくとも一方を皿ばねの材料とは異なる異種材料層で被覆することで、皿ばねの荷重特性が経時的に変化することを抑制する。すなわち、基体や支持体に作用する外力や、基体や支持体の熱変形等によって、皿ばねに作用する荷重が変化すると、皿ばねの形状(すなわち、皿ばねの傾斜角度)が変化する。このため、長期間使用される間に、皿ばねと基体側(あるいは、支持体側)の接触面が擦れ合い、両者が磨耗(たとえば、凝着磨耗)することでその荷重特性を変化させる。この皿ばね装置では、皿ばねと接触する基体側の接触面(あるいは、支持体側の接触面)が異種材料層で被覆されるため、両者の磨耗(特に、凝着磨耗)が抑制される。このため、皿ばねの荷重特性を長期にわたって維持することができる。
なお、皿ばねと接触する基体側の接触面と皿ばねと接触する支持体側の接触面の両者に異種材料層を被覆してもよく、いずれの接触面を被覆するかは、皿ばね装置の用途や使用態様に応じて決定することができる。
また、基体と支持体の間に複数枚の皿ばねを介装する場合、皿ばね間の接触面に異種材料層(例えば、樹脂層)を被覆するようにしてもよい。皿ばね間を被覆すると、皿ばね同士の磨耗が抑制できるため、より効果的である。
【0007】
上記異種材料層は、例えば、ポリアミドイミド樹脂を主成分とする樹脂層とすることができる。また、樹脂層には潤滑材が混入されていることが好ましい。潤滑材が混入されていると、両者の摩擦抵抗がより低下し、擦れ合いによる磨耗をより抑制することができる。
また、上記異種材料層は、ダイヤモンド・ライク・カーボン(DLC)を主成分とする皮膜とすることも好ましい。
【0008】
上記皿ばね装置においては、基体側の接触面と接触する皿ばねの角部及び支持体側の接触面と接触する皿ばねの角部のうち少なくとも一つが面取り又はR形状とされていることが好ましい。皿ばねの角部を面取りすると、皿ばねと接触面との接触面積が大きくなってその面圧が低下する。このため、両者の磨耗を抑制することができる。また、皿ばねの角部をR形状とすると、皿ばねの角部が接触面上を滑りやすくなるため、両者の磨耗を抑制することができる。
【0009】
また、本願は荷重特性を長期にわたって維持することができる皿ばねを提供する。本願に係る皿ばねは、内径面の板厚方向両端に形成される2つの角部と外径面の板厚方向両端に形成される2つの角部のうち少なくとも1つの角部が面取り又はR形状とされていることを特徴とする。
この皿ばねでは、皿ばねと接触する相手部材(たとえば、皿ばねを保持する保持部材)の磨耗を抑制することができる。これによって、皿ばねの荷重特性を長期にわたって維持することができる。
【0010】
さらに、上記の本願に係る皿ばねを用いて重ね皿ばねを構成することもできる。すなわち、本願に係る重ね皿ばねの一態様では、皿ばねが複数枚重ね合わされてなる重ね皿ばねであって、その両端に配される皿ばねの少なくとも一方の皿ばねに上記の皿ばねが用いられる。
なお、皿ばね同士の接触面は、両者間の摩擦抵抗を低減するため、樹脂層により被覆されていることが好ましい。
【0011】
【発明の実施の形態】本発明を具現化した一実施形態に係る皿ばね装置について図面を参照して説明する。図1は皿ばね装置の概略構成を示す図である。
図1に示すように、本実施形態に係る皿ばね装置は、ケーシング10と、ケーシング10内に収容されたセル積層体19(例えば、燃料電池等のセル積層体)とを備える。ケーシング10の下端(図面下側)にはケーシング側ホルダ11が取付けられる。ケーシング側ホルダ11は、ケーシング10に固定されるホルダ本体13を備える。ホルダ本体13の接触面12には、皿ばね20a〜20gの外径に応じて壁14が設けられている。
一方、セル積層体19の下端にはセル側ホルダ15が取付けられる。セル側ホルダ15は、セル積層体19の一端面(図面下側の端面)に固定されるホルダ本体17を備える。ホルダ本体17の接触面16からは、円柱状の脚部18が設けられている。脚部18の外径は、皿ばね20a〜20gの内径と略同一寸法(若干小さい)とされ、脚部18が皿ばね20a〜20gの中央開口部に挿入可能となっている。
【0012】
上述したケーシング側ホルダ11とセル側ホルダ15の間には、同一方向に積み重ねられた複数枚の皿ばね20a〜20g(以下、皿ばね20a〜20gが積み重ねられた状態を重ね皿ばね20ともいう。)が保持される。すなわち、各皿ばね20a〜20gの中央開口部にはセル側ホルダ15の脚部18が挿入され、最下端の皿ばね20gは壁14によってケーシング側のホルダ本体13に対して位置決めされる。これにより、ケーシング側ホルダ11とセル側ホルダ15の間に重ね皿ばね20が保持される。
重ね皿ばね20が保持された状態では、上端の皿ばね20aがセル側の接触面16に当接し、下端の皿ばね20gがケーシング側の接触面12に当接する。また、重ね皿ばね20は、セル積層体19を加圧する方向(図面の上方向)に力が発生するよう、予め圧縮された状態でケーシング10と支持体19との間に配される。
なお、重ね皿ばね20を構成する皿ばねの枚数は、目的とする荷重特性が得られるよう適宜決定することができ、その数は図1に示す例に限られない。
【0013】
上記皿ばね装置においてセル積層体19は、その特性を向上させる観点から、略一定の加圧力で加圧されることが好ましい。一方、使用中のセル積層体19は熱変位等によってその寸法が変化するため、皿ばね20a〜20gのたわみ量も変動する。このため、皿ばね20a〜20gは、そのたわみ量が変化しても、セル積層体19を略一定の加圧力で加圧できることが好ましい。そこで、本実施形態では、「たわみ量」が変化しても「荷重」の変動量が少ない領域(図5のグラフ内で水平な荷重曲線となる領域)においてセル積層体19に所定の加圧力を作用させることができるよう、重ね皿ばね20の荷重特性と初期変位が決められている(図5参照)。
【0014】
なお、皿ばね20a〜20gのたわみ量が変化すると、皿ばね同士の接触面が擦れ合い、また、上端の皿ばね20aとセル側の接触面16及び下端の皿ばね20gとケーシング側の接触面12とが擦れ合う。このため、重ね皿ばね20の加圧時の「たわみ量−荷重曲線」と除荷時の「たわみ量−荷重曲線」とに差(いわゆる、ヒステリシス損失)が発生する。セル積層体19を略一定の加圧力で加圧する観点からは、重ね皿ばね20のヒステリシス損失をできるだけ小さくすることが好ましく、また、ヒステリシス損失が小さい状態が長期間にわたって維持されることが好ましい。
【0015】
そこで、本実施形態では、セル側の接触面16及びケーシング側の接触面12には、以下に説明する表面処理等が施されている。すなわち、接触面16,12には、まず、研磨(例えば、バフ研磨等)が施され、次いで、皿ばね20a〜20gの材料とは異なる異種材料層が被覆されている。これによって、重ね皿ばね20と接触面12,16との摩擦抵抗を減らし、重ね皿ばね20のヒステリシス損失を小さくしている。
【0016】
接触面12,16に施される研磨処理においては、接触面12,16の表面粗さをRmax0.5〜5.0の範囲とすることが好ましい。Rmaxが0.5より小さいと研磨処理の手間(時間等)がかかりすぎて好ましくなく、Rmaxが5.0より大きくなるとヒステリシスが充分に小さくならないためである。より好ましくは、Rmaxが1.0〜2.0(例えば、Rmax1.6程度)の範囲内とすることが好ましい。また、接触面12,16の平面度は0.1以下程度とすることが好ましい。
【0017】
接触面12,16に異種材料層を被覆する処理には、樹脂溶液を塗布する皮膜処理を用いることができる。塗布する樹脂溶液は、例えばポリアミドイミド樹脂、エポキシ樹脂、フェノール樹脂等を主成分とする樹脂溶液を用いることができる。また、樹脂溶液中には、潤滑材(たとえば、フッ素樹脂(PTFE)やPEなどの樹脂系潤滑材、グラファイトや二硫化モリブデンなどの潤滑材)を混入することが好ましい。混入される潤滑材の粒子径は、1μmより小さくすることが好ましい。
樹脂皮膜を付与する方法には、乾性皮膜処理を用いることができる。乾性皮膜処理は、たとえば、まず接触面12,16の表面から油・ゴミ等を除去し、次いで樹脂溶液に潤滑材を混入したものを塗布し、次いで塗布した溶液を乾燥させ、最後に乾燥させた皮膜を加熱処理(200〜300℃)することにより実施することができる。塗布する方法としては、スプレー、スプレータンブリング、刷毛塗りを用いることができる。このような処理により付与される樹脂皮膜の膜厚は、15μm程度(例えば、5〜25μm)とすることが好ましい。皮膜の厚さを15μm程度とするのは、長期間にわたって皮膜の効果を維持するためである。
【0018】
また、接触面12,16を被覆する異種材料層としては、上述した以外にも、例えば、ダイヤモンド・ライク・カーボン(DLC)を主成分とする皮膜、窒化処理、リウブライト処理、二硫化モリブデン処理等により得られる皮膜、さらには、各種めっき処理(例えば、無電解Niめっき、無電解Ni−P複合めっき、クロムめっき等)により得られる皮膜を好適に用いることができる。このような表面処理により付与される皮膜中には、潤滑材が混入されていることが好ましい。混入される潤滑材としては、例えば、上述したPTFE等を使用することができる。
【0019】
また、上述した接触面12に当接する皿ばね20gの角部と、上述した接触面16に当接する皿ばね20aの角部には、以下に説明する平滑化処理が施されている。図2に示すように、皿ばね20a〜20gは、中央に開口部が形成されたドーナツ状をなし、その周面は傾斜面をなしている。皿ばね20gについては、接触面12と接触する外縁24の角部25に平滑化処理が施される。皿ばね20aについては、接触面16と接触する内縁21の角部22に平滑化処理が施される。
【0020】
図3,図4には、皿ばね20gの角部25に施された平滑化処理の一例が示されている。図3に示す例では、皿ばね20gの角部25がR形状に加工されている。角部25がR形状に加工されることで、角部25と接触面12が擦れ合う際に角部25によって接触面12の皮膜が削り取られる現象(いわゆる皮むき現象)を抑制することができる。これによって、重ね皿ばね20のヒステリシス特性を長期にわたって維持することができる。
図4に示す例では、皿ばね20gの角部25が面取り加工されている。角部25を面取りすることで、皿ばね20gと接触面12との接触面積が増えるため、その接触面圧が低下する。したがって、角部25と接触面12が擦れ合う際の摩擦抵抗が小さくなって、接触面12の皮膜の磨耗を抑制することができる。このような方法によっても、重ね皿ばね20のヒステリシス特性を長期にわたって維持することができる。
皿ばね20aの角部22に施される平滑化処理については、上述した皿ばね20gの角部25に施される平滑化処理と同様の処理を施すことができる。
【0021】
なお、上述した平滑化処理は、皿ばね20a〜20gのそれぞれについて、その内径面の板厚方向上端に形成される角部と外径面の板厚方向下端に形成される角部に施すようにしてもよい。このように構成すると、皿ばね20a〜20gが全て同一構成となり、どのような順番で重ね合わせてもよいため、重ね合わせる際の作業が容易となる。
また、皿ばねを保持するホルダの形状等によっては、皿ばねの内径面板厚方向下端に形成される角部と外径面板厚方向上端に形成される角部もホルダと擦れ合う場合がある。かかる場合には、これらの角部にも上述した平滑化処理を施すことが好ましい。
【0022】
なお、重ね皿ばね20を構成する各皿ばね20a〜20gの皿ばね同士の接触面にも、接触面12,16に施した表面処理と同様の処理が施されていることが好ましい。すなわち、皿ばねの上面(図2において26で示される面)及び/または底面(図2において27で示される面)に上述した表面処理が施されることによって、皿ばね同士の摩擦抵抗が小さくなるため、重ね皿ばねのヒステリシス損失を小さくすることができる。
【0023】
【実験例】次に、上述した皿ばね装置を実際に製作し、そのヒステリシス損失と耐久性との関係を調べた。実験には、外径200mm、内径110mm、板厚3.7mmの皿ばねを5枚重ね合せて重ね皿ばねとした。各皿ばねの接触面の表面粗さはRmax1.6とし、各接触面にはポリアミドイミド樹脂にPTFEを分散させた皮膜(約15μm)を被覆した。また、ホルダと接触する2箇所の角部(すなわち、上端の皿ばねの内径面上端の角部と、下端の皿ばねの外径面下端の角部)については、R形状としたものを2種類(R半径0.23mm,0.76mm)と、面取り加工を施したものを1種類と、比較例(従来技術)としてR形状や面取り加工を施さないものを1種類製作した。
また、ホルダについては、ホルダの接触面にポリアミドイミド樹脂系表面処理(皮膜15μm,添加剤;PTFE+グラファイト)を施したもの1種類と、比較例(従来技術)としてホルダの接触面に表面処理を施さなかったもの1種類を製作した。
製作した重ね皿ばねとホルダとを種々に組合せたものについて、初期荷重をかけた状態から所定のストローク(4mm)で弾性変形を繰り返し与え、弾性変形回数とヒステリシス損失との関係を調べた。
【0024】
図6には、角部をR形状とした重ね皿ばねと、従来技術に係る重ね皿ばねについての実験結果が示されている。いずれの実験も、接触面に表面処理が施されていない従来技術に係るホルダを使用した。図6から明らかなように、角部をR形状とした重ね皿ばねは、R形状としていない場合と比較して、長い期間ヒステリシス損失の増大を抑制することができた。また、角部に施されるR形状は、その曲率半径が大きくなるほど良好な結果を示した。
【0025】
図7には、角部に面取り加工を施した重ね皿ばねと、従来技術に係る重ね皿ばねについての実験結果が示されている。いずれの実験も、接触面に表面処理が施されていない従来技術に係るホルダを使用した。図7から明らかなように、角部に面取り加工を施した重ね皿ばねは、面取り加工を施していない場合と比較して、長い期間ヒステリシス損失の増大を抑制することができた。
【0026】
図8には、接触面に表面処理が施されたホルダと、従来技術に係るホルダについての実験結果が示されている。いずれの実験も、角部にR加工や面取り加工を施していない従来技術に係る重ね皿ばねを使用した。図8から明らかなように、接触面に表面処理が施されたホルダは、表面処理が施されていない場合と比較して、ヒステリシス損失の増大を抑制することができた。
【0027】
図9には、角部をR形状(R;0.76mm)とした重ね皿ばねを接触面に表面処理を施したホルダで保持した場合と、従来技術に係る重ね皿ばねを接触面に表面処理を施したホルダで保持した場合と、従来技術に係る重ね皿ばねを従来技術に係るホルダで保持した場合についての実験結果が示されている。図9から明らかなように、角部をR形状とした重ね皿ばねを接触面に表面処理を施したホルダで保持する場合が、最もヒステリシスが小さく、その耐久性についても最も良い結果が得られた。
【0028】
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【図面の簡単な説明】
【図1】実施形態に係わる皿ばね装置の構造を示す図である。
【図2】皿ばねの断面図である。
【図3】皿ばねの角部に施される平滑化処理の一例を示す図である。
【図4】皿ばねの角部に施される平滑化処理の他の例を示す図である。
【図5】重ね皿ばねの荷重特性(ヒステリシス特性)を示す図である。
【図6】角部をR形状とした重ね皿ばねと、従来技術に係る重ね皿ばねについて、実測した「ヒステリシス−耐久回数」の関係を併せて示す図である。
【図7】角部に面取り加工を施した重ね皿ばねと、従来技術に係る重ね皿ばねについて、実測した「ヒステリシス−耐久回数」の関係を併せて示す図である。
【図8】接触面に表面処理が施されたホルダを用いた場合と、従来技術に係るホルダを用いた場合について、実測した「ヒステリシス−耐久回数」の関係を併せて示す図である。
【図9】角部をR形状(R;0.76mm)とした重ね皿ばねを接触面に表面処理を施したホルダで保持した場合と、従来技術に係る重ね皿ばねを接触面に表面処理を施したホルダで保持した場合と、従来技術に係る重ね皿ばねを従来技術に係るホルダで保持した場合について、実測した「ヒステリシス−耐久回数」の関係を併せて示す図である。
【符号の説明】
10:ケーシング
11:ケーシング側ホルダ
12:側接触面
13:ホルダ本体
14;壁
15:セル側ホルダ
16:接触面
17:ホルダ本体
18:脚部
19:セル積層体
20:重ね皿ばね
20a〜20g:皿ばね
22,25:角部[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a disc spring and a stacked disc spring in which a plurality of disc springs are overlapped. The present invention also relates to a disc spring device using one or more disc springs.
[0002]
2. Description of the Related Art Disc springs can generate a large force with a small displacement in the load direction, and are used for various purposes. As a device using a disc spring, for example, devices disclosed in Patent Literature 1 and Patent Literature 2 are known.
In the disc spring device described in Patent Document 1, a plurality of disc springs are interposed between a foundation (base) and a building (support). The plurality of disc springs are stacked in the same direction, and the weight of the building acts. In this disc spring device, when the foundation is displaced in the vertical direction due to an earthquake or the like, the load acting on the disc spring also changes. For this reason, each disc spring is elastically deformed to absorb the relative displacement of the foundation relative to the building, thereby absorbing the vibration transmitted to the building.
The disc spring device described in Patent Document 2 includes a casing (base) and a cell stack (support) housed in the casing. The disc spring is interposed between the casing and the cell stack in a compressed state, and applies a force in a direction in which the cells of the cell stack adhere to each other.
[0003]
[Patent Document 1]
JP 2002-39244 A [Patent Document 2]
JP 2001-167745 A
In the above-described disc spring device, the disc spring interposed between the base and the support is designed to obtain a desired load characteristic, and the load characteristic is maintained for a long period of time. It is required to be maintained. However, conventionally, no detailed study has been made from the viewpoint of maintaining the load characteristics of the disc spring over a long period of time.
[0005]
An object of the present invention is to provide a technology that enables a load characteristic of a disc spring to be maintained for a long time in a disc spring device using the disc spring.
[0006]
In order to solve the above-mentioned problems, a coned disk spring device according to the present invention comprises a base, a support, and one or a plurality of members interposed between the base and the support. And two disc springs. Further, at least one of the contact surface on the substrate side that contacts the disc spring and the contact surface on the support that contacts the disc spring is covered with a different material layer.
In this disc spring device, at least one of the contact surface on the base side contacting the disc spring and the contact surface on the support side contacting the disc spring is coated with a different material layer different from the material of the disc spring, thereby forming the disc spring. The load characteristics are prevented from changing over time. That is, when the load acting on the disc spring changes due to an external force acting on the base or the support, or thermal deformation of the base or the support, the shape of the disc spring (that is, the inclination angle of the disc spring) changes. For this reason, during long-term use, the contact surfaces of the disc spring and the base side (or the support side) rub against each other, and both of them wear (for example, cohesive wear) to change the load characteristics. In this disc spring device, since the contact surface on the base side (or the contact surface on the support side) that comes into contact with the disc spring is covered with the different material layer, wear (particularly, adhesion wear) of both is suppressed. For this reason, the load characteristics of the disc spring can be maintained for a long time.
It is to be noted that both the contact surface on the base side contacting the disc spring and the contact surface on the support side contacting the disc spring may be coated with a different material layer. It can be determined according to the use and the mode of use.
When a plurality of disc springs are interposed between the base and the support, the contact surface between the disc springs may be covered with a different material layer (for example, a resin layer). Covering between the disc springs is more effective because wear between the disc springs can be suppressed.
[0007]
The different material layer can be, for example, a resin layer containing a polyamideimide resin as a main component. Further, it is preferable that a lubricant is mixed in the resin layer. When the lubricant is mixed, the frictional resistance between the two is further reduced, and the abrasion due to rubbing can be further suppressed.
Further, it is preferable that the different material layer is a film containing diamond-like carbon (DLC) as a main component.
[0008]
In the above-mentioned disc spring device, it is preferable that at least one of the corner of the disc spring contacting the contact surface on the base side and the corner portion of the disc spring contacting the contact surface on the support is chamfered or rounded. . If the corner of the disc spring is chamfered, the contact area between the disc spring and the contact surface increases, and the surface pressure decreases. For this reason, wear of both can be suppressed. Further, when the corner of the disc spring has an R-shape, the corner of the disc spring easily slides on the contact surface, so that wear of both can be suppressed.
[0009]
Further, the present application provides a disc spring capable of maintaining load characteristics for a long period of time. In the disc spring according to the present application, at least one of the two corners formed at both ends in the thickness direction of the inner diameter surface and the two corners formed at both ends in the thickness direction of the outer diameter surface is chamfered or rounded. It is characterized by having a shape.
With this disc spring, wear of a mating member that comes into contact with the disc spring (for example, a holding member that holds the disc spring) can be suppressed. As a result, the load characteristics of the disc spring can be maintained for a long time.
[0010]
Further, a stacked disc spring can be formed using the disc spring according to the present invention. That is, in one embodiment of the stacked disc spring according to the present application, the disc spring is a stacked disc spring in which a plurality of disc springs are stacked, and the disc spring is used as at least one of the disc springs disposed at both ends thereof. Can be
The contact surface between the disc springs is preferably covered with a resin layer in order to reduce the frictional resistance between them.
[0011]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A disc spring device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view showing a schematic configuration of the disc spring device.
As shown in FIG. 1, the disc spring device according to the present embodiment includes a
On the other hand, a cell-
[0012]
Between the casing-
In a state where the stacked
Note that the number of disc springs constituting the stacked
[0013]
In the above-mentioned disc spring device, it is preferable that the cell laminated
[0014]
When the amount of deflection of the disc springs 20a to 20g changes, the contact surfaces of the disc springs rub against each other, and the
[0015]
Therefore, in this embodiment, the surface treatment described below is applied to the
[0016]
In the polishing process performed on the contact surfaces 12 and 16, it is preferable that the surface roughness of the contact surfaces 12 and 16 be in the range of Rmax 0.5 to 5.0. If Rmax is less than 0.5, the time (time, etc.) of the polishing process is too long, which is not preferable. If Rmax is more than 5.0, the hysteresis is not sufficiently reduced. More preferably, Rmax is preferably in the range of 1.0 to 2.0 (for example, about Rmax 1.6). Further, it is preferable that the flatness of the contact surfaces 12, 16 is about 0.1 or less.
[0017]
For the treatment for covering the contact surfaces 12 and 16 with the different material layer, a film treatment for applying a resin solution can be used. As a resin solution to be applied, for example, a resin solution containing a polyamideimide resin, an epoxy resin, a phenol resin, or the like as a main component can be used. Further, it is preferable to mix a lubricant (for example, a resin-based lubricant such as fluororesin (PTFE) or PE, or a lubricant such as graphite or molybdenum disulfide) into the resin solution. The particle size of the lubricant to be mixed is preferably smaller than 1 μm.
As a method for providing a resin film, a dry film treatment can be used. In the dry film treatment, for example, first, oil and dirt are removed from the surfaces of the contact surfaces 12 and 16, then a resin solution mixed with a lubricant is applied, and then the applied solution is dried and finally dried. The heat treatment (200 to 300 ° C.) of the coated film can be performed. Spraying, spray tumbling, and brush coating can be used as a method of applying. The thickness of the resin film provided by such a treatment is preferably about 15 μm (for example, 5 to 25 μm). The reason why the thickness of the film is set to about 15 μm is to maintain the effect of the film over a long period of time.
[0018]
In addition to the above, as a different material layer covering the contact surfaces 12 and 16, for example, a film containing diamond-like carbon (DLC) as a main component, a nitriding treatment, a Liubrite treatment, a molybdenum disulfide treatment, or the like. And a film obtained by various plating processes (for example, electroless Ni plating, electroless Ni-P composite plating, chromium plating, etc.) can be preferably used. It is preferable that a lubricant is mixed in the film provided by such a surface treatment. As the lubricant to be mixed, for example, the above-mentioned PTFE or the like can be used.
[0019]
Further, a smoothing process described below is performed on the corner of the
[0020]
3 and 4 show an example of the smoothing process performed on the
In the example shown in FIG. 4, the
As for the smoothing process performed on the
[0021]
The above-described smoothing process is performed on the corners formed at the upper end in the thickness direction of the inner diameter surface and the corners formed at the lower end in the thickness direction of the outer diameter surface for each of the disc springs 20a to 20g. It may be. With such a configuration, all the disc springs 20a to 20g have the same configuration, and may be superposed in any order.
Further, depending on the shape of the holder for holding the disc spring, the corner formed at the lower end in the thickness direction of the inner diameter surface of the disc spring and the corner formed at the upper end in the thickness direction of the outer diameter surface may also rub against the holder. In such a case, it is preferable to perform the above-described smoothing processing also on these corners.
[0022]
In addition, it is preferable that the same treatment as the surface treatment applied to the contact surfaces 12 and 16 is applied to the contact surfaces of the respective plate springs of the respective disc springs 20a to 20g constituting the stacked
[0023]
EXPERIMENTAL EXAMPLE Next, the above-described disc spring device was actually manufactured, and the relationship between hysteresis loss and durability was examined. In the experiment, five disc springs having an outer diameter of 200 mm, an inner diameter of 110 mm, and a plate thickness of 3.7 mm were superposed to form a laminated disc spring. The surface roughness of the contact surface of each disc spring was Rmax 1.6, and each contact surface was coated with a film (about 15 μm) in which PTFE was dispersed in polyamideimide resin. The two corners that come into contact with the holder (ie, the upper end corner of the inner diameter surface of the disc spring at the upper end and the lower end corner of the outer diameter surface of the lower disc spring) have two R shapes. One type (R radius 0.23 mm, 0.76 mm), one subjected to chamfering, and one type as a comparative example (prior art) without R-shape or chamfering were produced.
As for the holder, one kind in which the contact surface of the holder is subjected to a polyamideimide resin-based surface treatment (
With respect to the various combinations of the manufactured disc springs and holders, elastic deformation was repeatedly applied with a predetermined stroke (4 mm) from the state where the initial load was applied, and the relationship between the number of elastic deformations and the hysteresis loss was examined.
[0024]
FIG. 6 shows an experimental result of a laminated disc spring having a rounded corner portion and a conventional laminated disc spring. In each of the experiments, a holder according to the prior art in which the contact surface was not subjected to a surface treatment was used. As is clear from FIG. 6, the laminated disc spring having the R-shaped corner portion was able to suppress an increase in the hysteresis loss for a long period of time as compared with the case where the R-shaped spring was not formed. In addition, the R shape applied to the corners showed better results as the radius of curvature increased.
[0025]
FIG. 7 shows an experimental result of a laminated disc spring having a chamfered corner portion and a conventional laminated disc spring. In each of the experiments, a holder according to the prior art in which the contact surface was not subjected to a surface treatment was used. As is clear from FIG. 7, the overlapped disc spring with the chamfered corner portion was able to suppress an increase in hysteresis loss for a longer period of time as compared with the case without the chamfered process.
[0026]
FIG. 8 shows experimental results of a holder having a contact surface subjected to a surface treatment and a holder according to the related art. In each of the experiments, the lap springs according to the prior art, in which the corners were not rounded or chamfered, were used. As is clear from FIG. 8, the holder in which the contact surface was subjected to the surface treatment was able to suppress an increase in the hysteresis loss as compared with the case where the surface treatment was not performed.
[0027]
FIG. 9 shows a case where a laminated disc spring having a corner portion having an R shape (R; 0.76 mm) is held by a holder whose surface is subjected to a surface treatment on the contact surface, and a case where the laminated disc spring according to the prior art is placed on the contact surface. Experimental results are shown for a case where the holder is treated with a treated holder and for a case where the lap spring according to the prior art is held by a holder according to the related art. As is evident from FIG. 9, when the overlapping disc spring having an R-shaped corner is held by a holder having a contact surface subjected to a surface treatment, the hysteresis is the smallest, and the best result is obtained for the durability. Was.
[0028]
As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and alterations of the specific examples illustrated above.
Further, the technical elements described in the present specification or the drawings exhibit technical utility singly or in various combinations, and are not limited to the combinations described in the claims at the time of filing. The technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.
[Brief description of the drawings]
FIG. 1 is a diagram showing a structure of a disc spring device according to an embodiment.
FIG. 2 is a sectional view of a disc spring.
FIG. 3 is a diagram illustrating an example of a smoothing process performed on a corner of a disc spring.
FIG. 4 is a diagram showing another example of the smoothing process performed on the corners of the disc spring.
FIG. 5 is a view showing load characteristics (hysteresis characteristics) of the lap disc spring.
FIG. 6 is a view additionally showing the relationship between the measured hysteresis and the number of endurance times for a stacked disc spring having an R-shaped corner portion and a conventional stacked disc spring.
FIG. 7 is a view additionally showing the relationship between the measured hysteresis and the number of endurance times for a laminated disc spring having a corner portion subjected to chamfering and a conventional laminated disc spring.
FIG. 8 is a diagram also showing the relationship between the actually measured “hysteresis and the number of endurance times” when a holder having a surface treated on a contact surface is used and when a holder according to the related art is used.
FIG. 9 shows a case where a laminated disc spring having a corner portion having an R shape (R; 0.76 mm) is held by a holder whose surface is subjected to a surface treatment on a contact surface, and a case where a laminated disc spring according to a conventional technique is surface treated on a contact surface. FIG. 11 is a diagram additionally showing the relationship between the actually measured “hysteresis and the number of endurance times” in the case of holding with the holder according to the related art and the case of holding the laminated disc spring according to the related art with the holder according to the related art.
[Explanation of symbols]
10: Casing 11: Casing-side holder 12: Side contact surface 13:
Claims (7)
皿ばねと接触する基体側の接触面及び皿ばねと接触する支持体側の接触面のうち少なくとも一方の接触面が異種材料層で被覆されていることを特徴とする皿ばね装置。A base, a support, and one or more disc springs interposed between the base and the support;
A disc spring device wherein at least one of a contact surface on a substrate side contacting the disc spring and a contact surface on a support side contacting the disc spring is coated with a dissimilar material layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003068395A JP4286034B2 (en) | 2003-03-13 | 2003-03-13 | Belleville spring, double disc spring, and disc spring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003068395A JP4286034B2 (en) | 2003-03-13 | 2003-03-13 | Belleville spring, double disc spring, and disc spring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004278588A true JP2004278588A (en) | 2004-10-07 |
JP4286034B2 JP4286034B2 (en) | 2009-06-24 |
Family
ID=33285743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003068395A Expired - Lifetime JP4286034B2 (en) | 2003-03-13 | 2003-03-13 | Belleville spring, double disc spring, and disc spring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4286034B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2427375B (en) * | 2003-05-22 | 2007-12-19 | Westwind Air Bearings Ltd | Rotary tool holder assemblies |
WO2010123098A1 (en) * | 2009-04-24 | 2010-10-28 | 日本発條株式会社 | Coil spring |
CN111306230A (en) * | 2020-03-19 | 2020-06-19 | 上海核工碟形弹簧制造有限公司 | A mutation disc spring |
-
2003
- 2003-03-13 JP JP2003068395A patent/JP4286034B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2427375B (en) * | 2003-05-22 | 2007-12-19 | Westwind Air Bearings Ltd | Rotary tool holder assemblies |
WO2010123098A1 (en) * | 2009-04-24 | 2010-10-28 | 日本発條株式会社 | Coil spring |
JP2010255759A (en) * | 2009-04-24 | 2010-11-11 | Nhk Spring Co Ltd | coil spring |
EP2423531A4 (en) * | 2009-04-24 | 2014-02-12 | Nhk Spring Co Ltd | HELICAL SPRING |
CN111306230A (en) * | 2020-03-19 | 2020-06-19 | 上海核工碟形弹簧制造有限公司 | A mutation disc spring |
Also Published As
Publication number | Publication date |
---|---|
JP4286034B2 (en) | 2009-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6456455B2 (en) | Damped spacer articles and disk drive assemblies containing damped spacer articles | |
JP2619105B2 (en) | Vibration damper | |
TWI506211B (en) | Slippage structure, bearing apparatus, and seismically isolated structure | |
US7838067B2 (en) | Method for producing single-sided sputtered magnetic recording disks | |
JP2000339805A (en) | Disc tightening mechanism | |
CN107849703A (en) | Band coating sliding members | |
US11664746B2 (en) | Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device | |
CN108138876A (en) | Flexible installation of the friction lining element in brake lining | |
JP2004278588A (en) | Disc springs and lap disc springs and disc spring devices | |
TW201313388A (en) | Polishing pad | |
JP5196495B2 (en) | Structural member for sliding and manufacturing method thereof | |
JP2015009315A (en) | Grinding / polishing carrier and method of manufacturing glass substrate for magnetic disk | |
CN106243992A (en) | Transporting equipment parts polyureas crosslinked particle, slide unit and the transporting equipment parts manufacture method of polyureas crosslinked particle | |
TWI803385B (en) | Lamination fixture | |
DK2942542T3 (en) | Damping plate | |
JP2925192B2 (en) | Vibration wave drive | |
JP2003065377A (en) | Laminated disc spring | |
KR102695958B1 (en) | Retainer ring used in polishing apparatus | |
JPH05141461A (en) | Improved spring uniformly withstanding load | |
US8199428B2 (en) | Clamp of disk rotation driver | |
WO2023027055A1 (en) | Sliding structure | |
JPH07264881A (en) | Ultrasonic motor | |
JPS5964771A (en) | Preparation of capstan | |
JPH0727133A (en) | Thrust bearing | |
JPH03263643A (en) | Pinch roller device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080819 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090324 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120403 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130403 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130403 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140403 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |