JP2004239722A - 放射線検出器 - Google Patents
放射線検出器 Download PDFInfo
- Publication number
- JP2004239722A JP2004239722A JP2003028270A JP2003028270A JP2004239722A JP 2004239722 A JP2004239722 A JP 2004239722A JP 2003028270 A JP2003028270 A JP 2003028270A JP 2003028270 A JP2003028270 A JP 2003028270A JP 2004239722 A JP2004239722 A JP 2004239722A
- Authority
- JP
- Japan
- Prior art keywords
- scintillator layer
- photoelectric conversion
- scintillator
- conversion substrate
- phosphor particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims description 22
- 238000006243 chemical reaction Methods 0.000 claims abstract description 62
- 239000000758 substrate Substances 0.000 claims abstract description 60
- 238000005192 partition Methods 0.000 claims abstract description 43
- 239000002245 particle Substances 0.000 claims description 100
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 57
- 238000000638 solvent extraction Methods 0.000 claims description 32
- 238000001514 detection method Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 221
- 239000010408 film Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 14
- 239000003990 capacitor Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000003860 storage Methods 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Transforming Light Signals Into Electric Signals (AREA)
- Light Receiving Elements (AREA)
- Measurement Of Radiation (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
【課題】解像度及び機械的強度を向上することが可能であるとともに、画素の輝度ムラを改善することが可能な放射線検出器を提供することを目的とする。
【解決手段】放射線検出器は、画素単位の光電変換素子13が複数配列してなる光電変換基板11と、光電変換基板11上に配置されたシンチレータ層39と、光電変換基板11上に形成されシンチレータ層39を画素単位に区画する区画部38と、を備えている。シンチレータ層39は、光電変換基板11上の第1シンチレータ層391と、第1シンチレータ層391上の第2シンチレータ層392と、を含み、光電変換基板11と区画部38との間には、第1シンチレータ層391が配置されたことを特徴とする。
【選択図】 図2
【解決手段】放射線検出器は、画素単位の光電変換素子13が複数配列してなる光電変換基板11と、光電変換基板11上に配置されたシンチレータ層39と、光電変換基板11上に形成されシンチレータ層39を画素単位に区画する区画部38と、を備えている。シンチレータ層39は、光電変換基板11上の第1シンチレータ層391と、第1シンチレータ層391上の第2シンチレータ層392と、を含み、光電変換基板11と区画部38との間には、第1シンチレータ層391が配置されたことを特徴とする。
【選択図】 図2
Description
【0001】
【発明の属する技術分野】
この発明は、放射線検出器に係り、特に、放射線画像を検出する間接方式の放射線検出器に関する。
【0002】
【従来の技術】
新世代のX線診断用検出器としてアクティブマトリックス型の平面検出器が大きな注目を集めている。この平面検出器において、照射されたX線を検出することにより、X線撮影像またはリアルタイムのX線画像がデジタル信号として出力される。固体検出器であることから、画質性能や安定性の面でも極めて期待が大きい。このため、多くの大学やメーカが研究開発に取り組んいる。
【0003】
実用化の最初の用途として、比較的大きなX線量で、静止画像を収集する胸部・一般撮影用に開発され、近年商品化されている。より高い技術的なハードルをクリアして、透視線量下で秒30コマ以上のリアルタイム動画を実現させる必要のある循環器、消化器分野への応用に対しても近い将来に商品化が予想される。この動画用途に対しては、S/Nの改善や微小信号のリアルタイム処理技術等が重要な開発項目となっている。
【0004】
平面検出器には、大きく分けて直接方式と間接方式との2通りがある。
【0005】
直接方式は、X線をa−Seなどの光導電膜を用いて直接信号電荷に変換し、変換した信号電荷を電荷蓄積用キャパシタに蓄積する方式である。この直接方式は、X線により発生した光導電電荷を高電界により直接に電荷蓄積用キャパシタに導くため、ほぼアクティブマトリックスの画素ピッチで規定される解像度特性が得られる。
【0006】
一方の間接方式は、シンチレータ層によりX線を受けて一旦可視光に変換し、可視光をa−SiフォトダイオードやCCDにより信号電荷に変換して、電荷蓄積用キャパシタに導く方式である。この間接方式は、シンチレータ層からの可視光がフォトダイオードに到達するまでの光学的な拡散及び散乱により、その分の解像度劣化を生じる。
【0007】
しかしながら、この間接方式において、隔壁によりシンチレータ層を画素毎に分離することにより、シンチレータ層内で発光した蛍光は、隔壁により横方向への散乱や拡散を抑制される。したがって、光学的なガイド効果により、蛍光をフォトダイオード等の光電変換素子に効率良く到達させることができ、解像度特性が改善される(例えば、特許文献1参照。)。
【0008】
また、シンチレータ材料やフォトダーオードについての技術は確立しており、直接方式と比較して安定して作成することが可能である。
【0009】
【特許文献1】
特開平11−166976号公報
【0010】
【発明が解決しようとする課題】
上述した画素分離型シンチレータの製造方法は、例えば光電変換素子が複数配列してなる光電変換基板上にシンチレータ層を形成する。その後、このシンチレータ層に溝を加工して画素分離を施す。その後、光反射材を溝内部に充填させることにより隔壁を形成する。
【0011】
解像度特性上、溝は光電変換基板に達する深さに形成し、シンチレータ層を完全に画素分離することが好ましい。
【0012】
このような構造の場合、シンチレータ層の機械的強度δは、シンチレータ層とフォトダイオードを保護する絶縁層との接触面積SFと、これらの間の接着強度γFとの積(δ=SF×γF)に依存する。しかしながら、接触面積SFは非常に小さく、かつ接着強度γFも異物質間の接着強度であるために非常に弱い。このため、シンチレータ層の機械的強度δは、非常に弱く、横倒れやシンチレータ層の飛び(いわゆるチップ飛び)の発生確率が高くなる。
【0013】
また、完全に画素分離を施すと、画素毎の輝度は、各光電変換素子上に形成されたシンチレータ層の体積、及び、シンチレータ層を構成する蛍光体粒子の充填密度に大きく依存する。例えば、シンチレータ層の体積が各画素においてわずかに異なることによって、各画素での輝度の差が発生する。この現象は、画像の輝度ムラに対して大きな要因となる。
【0014】
この発明は、上述した問題点に鑑みなされたものであって、その目的は、解像度及び機械的強度を向上することが可能であるとともに、画素の輝度ムラを改善することが可能な放射線検出器を提供することにある。
【0015】
【課題を解決するための手段】
この発明の第1の様態による放射線検出器は、
画素単位の光電変換素子が複数配列してなる光電変換基板と、
前記光電変換基板上に配置されたシンチレータ層と、
前記光電変換基板上に形成され、前記シンチレータ層を画素単位に区画する区画部と、
を備え、
前記シンチレータ層は、前記光電変換基板上の第1シンチレータ層と、前記第1シンチレータ層上の第2シンチレータ層と、を含み、
前記光電変換基板と前記区画部との間には、前記第1シンチレータ層が配置されたことを特徴とする。
【0016】
この発明の第2の様態による放射線検出器は、
画素単位の光電変換素子が複数配列してなる光電変換基板と、
前記光電変換基板上に配置されたシンチレータ層と、
前記光電変換基板上に形成され、前記シンチレータ層を画素単位に区画する区画部と、
を備え、
前記シンチレータ層は、前記光電変換基板上に配置され第1平均粒径D1を有する蛍光体粒子によって構成された第1シンチレータ層と、前記第1シンチレータ層上に配置され前記第1平均粒径D1より大きな第2平均粒径D2を有する蛍光体粒子によって構成された第2シンチレータ層と、を含み、
前記光電変換基板と前記区画部との間には、少なくとも前記第1シンチレータ層が配置されたことを特徴とする。
【0017】
【発明の実施の形態】
以下、この発明の一実施の形態に係る放射線検出器について図面を参照して説明する。
【0018】
なお、本発明においてはX線,γ線,その他各種放射線の場合に適用可能であるが、以下の一実施の形態においては、放射線の中の代表的なX線の場合を例にとり説明する。したがって、実施の形態の「X線」を「放射線」に置き換えることにより、本発明が対象とする他の放射線にも適用可能である。
【0019】
図1に示すように、X線を検出してX線の強度分布に対応する電気信号を出力するX線検出器1は、複数の画素を有するアクティブマトリクス型の光電変換基板11を有している。この光電変換基板11は、ガラスなどの絶縁基板上に、行方向(例えば図中の横方向)及び列方向(例えば図中の縦方向)に所定のピッチLで2次元的にマトリクス状に配列された同じ構造の複数の画素12を有している。図1に示した例では、9個の画素単位(12a〜12i)が図示されている。
【0020】
各画素12(a〜i)は、入射した光強度に対応して信号電荷に変換する光電変換素子として機能するフォトダイオード13、スイッチング素子として機能する薄膜トランジスタ(以下TFTと称する)14、信号電荷を蓄積する電荷蓄積部として機能する蓄積キャパシタ15などによって構成されている。
【0021】
各TFT14は、ゲート電極G、ソース電極S、及び、ドレイン電極Dを有している。ドレイン電極Dは、例えばフォトダイオード13及び蓄積キャパシタ15と電気的に接続されている。
【0022】
光電変換基板11の外部には、制御回路16が設けられている。この制御回路16は、TFT14の動作状態、例えばオン/オフを制御する。また、この制御回路16には、行方向に延びる複数の制御ライン17が接続されている。図1に示した例では、第1乃至第4の4個の制御ライン171乃至174が設けられている。それぞれの制御ライン17は、同じ行の画素12を構成する各TFT14のゲート電極Gに接続されている。例えば、第1の制御ライン171は、画素12a乃至12cを構成する各TFT14のゲート電極Gに接続されている。
【0023】
列方向には、複数のデータライン18が設けられている。図1に示した例では、第1乃至第4の4個のデータライン181乃至184が設けられている。それぞれのデータライン18は、同じ列の画素12を構成する各TFT14のソース電極Sに接続されている。例えば、第1のデータライン181は、画素12a、12d、12gを構成する各TFT14のソース電極Sに接続されている。
【0024】
それぞれのデータライン17は、対応する電荷増幅器19に接続されている。各電荷増幅器19は、例えば演算増幅器で構成され、その一方の入力端子a1にデータライン18が接続され、他方の入力端子a2は接地されている。一方の入力端子a1と出力端子bとの間にコンデンサCが接続され、積分機能を有する。また、コンデンサCに並列にスイッチSが接続され、例えばスイッチSを閉じてコンデンサCに残った電荷を放電する構成になっている。
【0025】
それぞれの電荷増幅器19は、並列に入力する複数の電気信号を直列信号に変換する並列/直列変換器20に接続されている。並列/直列変換器20は、アナログ信号をデジタル信号に変換するアナログ−デジタル変換器21に接続されている。
【0026】
(第1実施形態)
次に、第1実施形態に係るX線検出器の画素単位の構造について図2を参照して説明する。なお、図2では、1つの画素部分を抜き出して図示しており、図1に対応する部分には同じ参照符号を付して重複する説明は一部省略する。
【0027】
光電変換基板11は、ガラスなどの絶縁基板31上に形成されたTFT14及び蓄積キャパシタ15を備えている。
【0028】
TFT14は、3つの電気的接続、すなわちゲート電極G、ソース電極S、及び、ドレイン電極Dを備えている。ゲート電極Gは、絶縁基板31上に形成されている。このゲート電極Gは、絶縁膜32によって覆われている。また、このゲート電極Gは、同じ行に位置する他のTFT14のゲート電極Gとともに共通の制御ライン17に接続されている。
【0029】
ソース電極Sは、絶縁膜32上に形成された半絶縁膜33にコンタクトしている。このソース電極Sは、このソース電極Sは、同じ列に位置する他のTFT14のソース電極Sとともに共通のデータライン18に接続されている。ドレイン電極Dは、半絶縁膜33にコンタクトしている。このドレイン電極Dは、フォトダイオード13及び蓄積キャパシタ15に接続されている。
【0030】
蓄積キャパシタ15は、絶縁基板31上に形成された下部電極34、絶縁膜32を介して下部電極34に対向して設けられた上部電極35などによって構成されている。上部電極35は、TFT14のドレイン電極Dと電気的に接続されている。
【0031】
TFT14及び蓄積キャパシタ15の上方には、第1絶縁層361が設けられている。この第1絶縁層361上には、フォトダイオード13が形成されている。フォトダイオード13の周囲の第1絶縁層361上には、第2絶縁層362が設けられている。この第2絶縁層362は、ほぼ矩形状のフォトダイオード13を囲むように枠状に形成されている。
【0032】
フォトダイオード13は、a−SiのpnダイオードやPINダイオードなどで形成される。このフォトダイオード13は、第1絶縁層361上に形成された第1電極131、第1電極131に対向して配置された第2電極132などによって構成されている。
【0033】
第1電極131は、第1絶縁層361の一部に形成されたスルーホール37を介してTFT14のドレイン電極Dに接続されている。第2電極132は、例えばスパッタリング法によってITOなどの透明導電膜を成膜することによって形成される。これら第1電極131と第2電極132との間には、バイアス電圧が印加される。
【0034】
上述したような構造の光電変換基板11の上には、外部から入射したX線を可視光に変換するシンチレータ層39が配置されている。また、この光電変換基板11上には、シンチレータ層39を画素単位に区画する区画部38が形成されている。この区画部38は、例えば隔壁部または溝部によって構成されている。
【0035】
すなわち、図2に示すように、シンチレータ層39は、光電変換基板11におけるフォトダイオード13上及び第2絶縁層362上に配置されている。このシンチレータ層39は、ほぼ同等の平均粒径を有する蛍光体粒子、例えばGOS(Gd2O2S:Tb,PR+3,CE+3,F)によって構成されている。シンチレータ層39を構成する蛍光体粒子の粒径は、例えばシンチレータ層39の断面を走査型電子顕微鏡によって撮影することによって確認される。
【0036】
このシンチレータ層39は、例えば以下のような方法で形成される。まず、マトリクス状に配置された複数のフォトダイオード13などを有する光電変換基板11上に、液状のシンチレータ材料を塗布して、シンチレータ含有塗膜層を形成する。このシンチレータ材料は、X線を吸収して発光する蛍光体粒子として例えばGd2O2S:Tbの粉末を樹脂バインダと有機溶剤とを用いて形成される。このシンチレータ材料は、ディスペンサやインクジェット、スプレー等を用いた塗布法で塗布される。
【0037】
その後、60〜150℃で加熱する乾燥工程を通して有機溶剤を除去し、シンチレータ含有塗膜層を硬化させる。これにより、膜の剥離やクラック等を生じない良好なシンチレータ層39が形成される。
【0038】
区画部38は、上方よりシンチレータ層39に入射したX線40がシンチレータ層39内で蛍光41に変換され、この蛍光41が隣接する画素12のフォトダイオード13のエリアに干渉しないように、画素12を分離する境界に沿って形成される。
【0039】
この区画部38は、例えば以下のような方法で形成される。まず、シンチレータ層39に溝部を形成する。その後、この溝部の内部に、高屈折特性を有する光反射材として例えばTiO2、またはX線発光蛍光体粒子として例えばGd2O2S:Tbを充填することにより、隔壁部を形成する。なお、隔壁部を形成せずに溝部のみであっても区画部38としての機能を有する。
【0040】
上述した溝部は、ダイサーや、YAG3次高調波の紫外線レーザを用いることによって形成することができる。この溝部は、光電変換基板11に達することなく、シンチレータ層39の一部が残るような深さに形成される。すなわち、光電変換基板11と区画部38との間にシンチレータ層39が存在している。
【0041】
なお、この第1実施形態では、説明の便宜上、光電変換基板11と区画部38との間に存在するシンチレータ層39を第1シンチレータ層391とする。すなわち、シンチレータ層39は、光電変換基板11上に配置された第1シンチレータ層391と、この第1シンチレータ層391の上に配置された第2シンチレータ層392とを含むものとする。当然、第1シンチレータ層391は、第2シンチレータ層392とほぼ同等の平均粒径を有する蛍光体粒子によって構成されている。
【0042】
図2に示した第1シンチレータ層391は、隣接する画素12の第1シンチレータ層391と繋がった一体構造を有している。すなわち、第1シンチレータ層391は、区画部38によって画素単位に区画されることはなく、光電変換基板11と区画部38との間に配置される。一方、第2シンチレータ層392は、区画部38によって画素単位に区画される。
【0043】
第1シンチレータ層391の平均膜厚T1は、第1シンチレータ層391を構成する蛍光体粒子の平均粒径D1以上とすることが望ましい。これにより、シンチレータ層39の機械的強度を向上することが可能となる。
【0044】
すなわち、シンチレータ層39の機械的強度δは、シンチレータ層39とフォトダイオード13を保護する第2絶縁層362との接触面積SFと、これらの間の接着強度γFとの積(δ=SF×γF)に依存する。区画部38が光電変換基板11に達する完全画素分離を施した場合、接触面積SFは非常に小さく、かつ接着強度γFも非常に弱い。このため、機械的強度δは、非常に弱く、シンチレータ層39の横倒れやシンチレータの飛び(いわゆるチップ飛び)の発生確率が高くなる。
【0045】
しかしながら、上述した第1実施形態のように、区画部38が光電変換基板11に達することなく、区画部38の下部に第1シンチレータ層391を配置することにより、隣接する画素12のシンチレータ層39同士を第1シンチレータ層391を介して繋げることができ、画素単位のシンチレータ層39における機械的強度δを向上させることが可能である。
【0046】
つまり、図2に示した構造での機械的強度δは、シンチレータ層39とフォトダイオード13を保護する第2絶縁層362との接触面積SFと、これらの間の接着強度γFとの積だけではなく、フォトダイオード13上のシンチレータ層39と区画部38の下部に位置するシンチレータ層39との接触面積SSと、これらの間の接着強度γSとの積にも依存する(δ=SF×γF+SS×γS)。
【0047】
同種類の材料で形成されたシンチレータ層同士の接着強度γSは、非常に強い。このため、シンチレータ層同士の接触面積SSが小さい場合でも、すなわち区画部38の下部にわずかでもシンチレータ層39が存在すれば、シンチレータ層39の機械的強度δは顕著に向上することになる。
【0048】
また、区画部38の下部に位置するシンチレータ層39の平均膜厚Tが厚くなるほど、シンチレータ層同士の接触面積SSが大きくなるため、機械的強度δは向上する。
【0049】
さらに、第1シンチレータ層391を通して隣接する画素12のシンチレータ層39同士で連続性を持たせることにより、局部的な剥がれや画素12の横倒れを隣接画素で補強し合って抑制することができる。このため、チップ飛びの発生確率を格段に低減することができる。
【0050】
図3には、第1シンチレータ層391の平均膜厚T1と、チップ飛び個数との関係の一例が示されている。なお、このとき、シンチレータ層39を構成する蛍光体粒子の平均粒径D1は、40μmである。また、チップ飛びの個数は、1cm角内に位置する画素12においてチップ飛びを発生した画素の個数に対応する。
【0051】
図3に示した結果から明らかなように、区画部38の下部に位置する第1シンチレータ層391の平均膜厚T1が大きいほど、チップ飛びの個数を著しく低減することが可能となる。また、図3に示した例では、第1シンチレータ層391の平均膜厚T1を蛍光体粒子の平均粒径D1(この例では40μm)以上にすることで、チップ飛びの個数を顕著に低減することができる。
【0052】
逆に、第1シンチレータ層391の平均膜厚T1を、第1シンチレータ層391を構成する蛍光体粒子の粒径D1より小さくした場合、第1シンチレータ層391を構成する蛍光体粒子に溝部を形成することになる。この場合、蛍光体粒子にクラックが発生する確率が非常に高い。蛍光体粒子にクラックが生じると、隣接する画素12間でシンチレータ層39の連続性が失われ、シンチレータ層39の機械的強度δが非常に弱くなる。このため、チップ飛びの個数を十分に低減することができない。
【0053】
したがって、第1シンチレータ層391の平均膜厚T1は、第1シンチレータ層391を構成する蛍光体粒子の粒径D1以上にすることが好ましい。
【0054】
また、図2に示したような構造によって、画素分離された第2シンチレータ層392を光ガイド効果によって進行する蛍光41が、隣接する画素12のシンチレータ層39同士に連続性を持つ第1シンチレータ層391に到達した際、蛍光14は散乱され、一部の蛍光14は隣接する画素のフォトダイオード13に到達する。
【0055】
この効果により、隣接する画素12同士の輝度が平均化され、画像の輝度ムラが改善される。例えば、各画素12における蛍光体粒子の充填密度の差により輝度特性の低い画素12と高い画素12とが隣接している場合に、第1シンチレータ層391を通して高輝度の画素側から低輝度の画素側に拡散する蛍光量は、その逆方向の蛍光量より上回ることは明らかである。隣接画素がラインセンサのように1次元的に配列した場合でも、平面検出器のように2次元的に配列した場合でも同様な効果が期待される。
【0056】
このように、第1シンチレータ層391を通して隣接画素12が光学的に繋がっている場合には、直近の画素12間で輝度を補い合う効果を有する。このため、輝度ムラを抑える効果が発揮される。この効果も、第1シンチレータ層391の平均膜厚T1が厚いほど大きい。
【0057】
一方、第1シンチレータ層391の平均膜厚Tが110μm以下であることが望ましい。これにより、X線平面検出器としての解像度を向上することが可能となる。
【0058】
図4には、第1シンチレータ層391の平均膜厚T1と、その解像度特性CTFとの関係の一例が示されている。図4に示したように、区画部38の下部に位置する第1シンチレータ層391の平均膜厚T1が大きいほど、解像度特性の劣化を招くことになる。
【0059】
すなわち、シンチレータ層39で発生した蛍光41は、平均膜厚T1が大きいほど第1シンチレータ層391を介して隣接する画素12のシンチレータ層39に拡散する。このため、所定画素12のフォトダイオード13に、隣接する画素12の蛍光が過剰に到達することになり、解像度特性が劣化する。
【0060】
X線平面検出器の解像度特性として、X線診断用検出器に使用されてきたイメージ管(I.I)の入力面以上の特性が要求される。イメージ管の入力面の解像度特性CTFは、2lp/mmで35%以上である。図4に示した結果を参照すると、解像度特性CTFが35%以上であるためには、第1シンチレータ層391の平均膜厚Tは、110μm以下とすることが望ましい。これにより、良好な解像度を得ることが可能となる。
【0061】
以上説明したように、第1実施形態に係るX線検出器によれば、シンチレータ層39は、隔壁部または溝部による区画部38によって画素単位に区画される。このシンチレータ層39は、光電変換基板11と区画部38との間に配置される第1シンチレータ層391と、この第1シンチレータ層391の上に配置され実質的に第1シンチレータ層391と同一材料で構成された第2シンチレータ層392とを含む。
【0062】
第1シンチレータ層391は、隣接する画素に共通の一体構造である。このため、シンチレータ層39と絶縁層362との接触面積を拡大することができ、シンチレータ層39の機械的強度を向上することができる。また、第2シンチレータ層392は、区画部38によって画素単位に区画されている。このため、シンチレータ層39を区画することによって画素を分離することができ、解像度を向上することができる。
【0063】
また、第1シンチレータ層391の平均膜厚T1は、第1シンチレータ層391を構成する蛍光体粒子の粒径D1以上としている。これにより、画素分離されたシンチレータ層39の機械的強度を向上することができるとともに、画像の輝度ムラを改善することが可能となる。
【0064】
さらに、第1シンチレータ層391の平均膜厚T1は、110μm以下としている。これにより、シンチレータ層39を区画部38によって画素分離することができ(特に第2シンチレータ層392を区画部38によって画素単位に区画することができ)、解像度を向上することができる。
【0065】
(第2実施形態)
次に、第2実施形態に係るX線検出器の画素単位の構造について図5を参照して説明する。なお、図5では、1つの画素部分を抜き出して図示しており、図1及び図2に対応する部分には同じ参照符号を付して重複する説明は一部省略する。
【0066】
間接方式のX線検出器での解像度は、シンチレータ層によりX線を受けて蛍光に変換し、フォトダイオードに到達させるまでの蛍光の効率に影響する。蛍光をフォトダイオードまで効率良く導くためには、シンチレータ層の同一体積に占める蛍光体粒子とその周囲のバインダなどとの界面の割合は極力小さいことが望ましい。つまり、蛍光体粒子の粒径が大きい程望ましい。
【0067】
しかしながら、比較的大きな粒径を有する蛍光体粒子によってシンチレータ層を構成した場合、区画部の下部に位置するシンチレータ層も蛍光を効率よく導くため、隣接する画素のフォトダイオードに他の画素の蛍光が侵入してしまうおそれがあり、解像度が劣化するおそれがある。
【0068】
そこで、この第2実施形態は、シンチレータ層で発生した蛍光を効率良くフォトダイオードに導くとともに、解像度を向上することが可能なX線検出器を提供するものである。
【0069】
すなわち、図5に示すように、第2実施形態に係るX線検出器は、光電変換基板上11に配置されたシンチレータ層39と、光電変換基板11上に形成されシンチレータ層39を画素単位に区画する区画部38と、を備えている。このシンチレータ層39は、光電変換基板11におけるフォトダイオード13上及び第2絶縁層362上に配置されている。
【0070】
また、シンチレータ層39は、光電変換基板11上に配置され第1平均粒径D1を有する蛍光体粒子によって構成された第1シンチレータ層391と、第1シンチレータ層391上に配置され第1平均粒径D1より大きな第2平均粒径D2を有する蛍光体粒子によって構成された第2シンチレータ層392と、を含んでいる。
【0071】
このシンチレータ層39は、例えば以下のような方法で形成される。まず、マトリクス状に配置された複数のフォトダイオード13などを有する光電変換基板11上に、液状の第1シンチレータ材料を塗布して、第1シンチレータ含有塗膜層を形成する。この第1シンチレータ材料は、X線を吸収して発光する第1平均粒径D1を有する蛍光体粒子として例えばGd2O2S:Tbの粉末を樹脂バインダと有機溶剤とを用いて形成される。
【0072】
その後、60〜150℃で加熱する乾燥工程を通して有機溶剤を除去し、第1シンチレータ含有塗膜層を硬化させる。これにより、膜の剥離やクラック等を生じない良好な第1シンチレータ層391が形成される。
【0073】
続いて、第1シンチレータ層391上に、液状の第2シンチレータ材料を塗布して、第2シンチレータ含有塗膜層を形成する。この第2シンチレータ材料は、X線を吸収して発光する第1平均粒径D1より大きな第2平均粒径D2を有する蛍光体粒子として例えばGd2O2S:Tbの粉末を樹脂バインダと有機溶剤とを用いて形成される。
【0074】
これらの第1及び第2シンチレータ材料は、ディスペンサやインクジェット、スプレー等を用いた塗布法で塗布される。
【0075】
その後、60〜150℃で加熱する乾燥工程を通して有機溶剤を除去し、第2シンチレータ含有塗膜層を硬化させる。これにより、膜の剥離やクラック等を生じない良好な第2シンチレータ層392が形成される。
【0076】
区画部38は、上方よりシンチレータ層39に入射したX線40がシンチレータ層39内で蛍光41に変換され、この蛍光41が隣接する画素12のフォトダイオード13のエリアに干渉しないように、画素12を分離する境界に沿って形成される。
【0077】
この区画部38は、上述した第1実施形態と同様の方法で形成される。溝部及びこの溝部に形成された隔壁部からなる区画部38は、光電変換基板11に達することなく、シンチレータ層39の一部が残るような深さに形成される。すなわち、光電変換基板11と区画部38との間にシンチレータ層39が存在している。光電変換基板11と区画部38との間には、少なくとも第1シンチレータ層391が配置されている。
【0078】
図5に示した第1シンチレータ層391は、隣接する画素12の第1シンチレータ層391と繋がった一体構造を有している。すなわち、第1シンチレータ層391は、区画部38によって画素単位に区画されることはなく、光電変換基板11と区画部38との間に配置される。
【0079】
一方、第2シンチレータ層392のほとんどの部分は、区画部38によって画素単位に区画される。第2シンチレータ層392は、比較的平均粒径の大きな蛍光体粒子によって構成されているため、X線の入射によって発生した蛍光41を効率よくフォトダイオード13に向けて縦方向(下方)に導くことができる。また、この第2シンチレータ層392の大部分は、区画部38によって区画されているため、第2シンチレータ層392内で発生した蛍光41の隣接する画素への横方向への散乱や拡散を抑止することができる。
【0080】
シンチレータ層39内で発生した蛍光14は、蛍光体粒子とその周辺のバインダとの界面での屈折により散乱・減衰されてしまう。蛍光14の減衰を抑え、蛍光14を効率よくフォトダイオードに導くためには、シンチレータ層39の同一体積に占める蛍光体粒子とその周囲のバインダなどとの界面の割合を極力小さくする、つまり蛍光体粒子の平均粒径が大きい程望ましい。
【0081】
しかしながら、区画部38の下部に位置するシンチレータ層39を比較的大粒径の蛍光体粒子で構成した場合、ここでも蛍光41は大して減衰されずに拡散され、隣接する画素12のフォトダイオード13に他の画素12の蛍光が達してしまい、解像度の劣化を招くおそれがある。
【0082】
したがって、区画部38の下部に位置するシンチレータ層39及びフォトダイオード13に接するシンチレータ層39では、発光した蛍光41の拡散を抑える必要がある。つまり、区画部38の下部に位置するシンチレータ層39及びフォトダイオード13に接するシンチレータ層39においては、蛍光体粒子とその周辺のバインダとの界面の割合を極力大きくする、つまり蛍光体粒子の平均粒径が小さい程望ましい。
【0083】
図6には、シンチレータ層39を構成する蛍光体粒子の平均粒径と、その解像度特性CTFとの関係の一例が示されている。ここでは、シンチレータ層39は、100μmの膜厚を有し、ほぼ均一な粒径の蛍光体粒子によって構成している。図6に示した結果から明らかなように、シンチレータ層39を構成する蛍光体粒子の平均粒径が小さいほど解像度特性CTFを向上することができる。
【0084】
そこで、図5に示すように、シンチレータ層39は、平均粒径の異なる2層構造を有している。X線入射側に位置する第2シンチレータ層392は、比較的大粒径の平均粒径D2を有する蛍光体粒子によって構成されている。フォトダイオード13上に位置する第1シンチレータ層391は、比較的小粒径の平均粒径D1を有する蛍光体粒子によって構成されている。
【0085】
すなわち、第1シンチレータ層391を構成する蛍光体粒子の平均粒径D1と、第2シンチレータ層392を構成する蛍光体粒子の平均粒径D2との関係は、D1<D2とし、D2とD1との差分が大きいほど望ましい。
【0086】
これにより、第2シンチレータ層392は、X線が入射することによって発生した蛍光41の減衰を抑制するとともに下方に向けて効率よく蛍光41を導くことができる。また、第1シンチレータ層391は、第2シンチレータ層392において発生した蛍光41をフォトダイオード13に導くとともに隣接画素12への拡散を抑制することができ、解像度の低下を抑制することができる。
【0087】
なお、第1シンチレータ層391の平均膜厚T1は、光電変換基板11と区画部38との間隔t2以下であることが望ましい。すなわち、フォトダイオード13に接する第1シンチレータ層391の平均膜厚T1が厚すぎると、第1シンチレータ層391の第1平均粒子径D1が比較的小さいために第1シンチレータ層391自体が反射膜として作用してしまい、第2シンチレータ層392で発光した蛍光41を反射する効果を有する。
【0088】
したがって、これらの2層のシンチレータ層391及び392の境界における反射による影響を少なくするためには、第1シンチレータ層391の平均膜厚T1をできるだけ薄くする必要があり、光電変換基板11と区画部38との間のシンチレータ層39の膜厚T2以下にする必要がある。
【0089】
区画部38は、2層のシンチレータ層391及び392の境界に達する深さまで形成することが望ましい(すなわち、T1=T2)。このような構造は、蛍光41を効率よく拡散する第2シンチレータ層392を区画部38によって完全に画素分離することを可能とするとともに、画素分離されていない第1シンチレータ層391における蛍光41の拡散を抑制することを可能とするものである。これにより、X線検出器としての解像度特性を向上させることができる。
【0090】
区画部38が2層のシンチレータ層391及び392の境界に達していない場合(T1<T2)でも、T1=T2の場合ほどではないが、上述した効果によりX線検出器の解像度特性を向上させることができる。
【0091】
一方で、第1シンチレータ層391を構成する蛍光体粒子の第1平均粒径をD1、第1シンチレータ層391の平均膜厚をT1、第1シンチレータ層391内における蛍光体粒子の平均充填率をF1としたとき、
D1≧T1・F1/10
の関係にあることが望ましい。
【0092】
すなわち、図7には、シンチレータ層を構成する蛍光体粒子の厚さ方向の層数と、シンチレータ層を透過する蛍光の透過率との関係の一例が示されている。図7に示した結果から明らかなように、シンチレータ層の上部から下部まで10%以上の蛍光が到達するためには、蛍光体粒子10層以下の膜厚が望ましく、つまりシンチレータ層内における蛍光体粒子の平均充填密度F1、実効膜厚T1・F1により、
T1・F1/D1≦10
の関係になることが望ましい。
【0093】
以上説明したように、第2実施形態に係るX線検出器によれば、シンチレータ層39を2層構造とし、光電変換素子基板11上に第1平均粒径D1を有する蛍光体粒子によって構成した第1シンチレータ層391を配置し、この第1シンチレータ層391上に第1平均粒径D1よりも大きな第2平均粒径D2を有する蛍光体粒子によって構成した第2シンチレータ層392を配置している。
【0094】
これにより、第2シンチレータ層392によって発光した蛍光41の減衰が抑制され、効率よく縦方向に導くことができる。また、第2シンチレータ層392から第1シンチレータ層391に導かれた蛍光41の拡散が抑制され、解像度の低下を防止することができる。
【0095】
また、第1シンチレータ層391の平均膜厚T1は、光電変換基板11と区画部38との間の間隔T2以下としている。これにより、第2シンチレータ層392は、区画部38によって画素分離されるため、解像度を向上することができる。
【0096】
さらに、第1シンチレータ層391を構成する蛍光体粒子の第1平均粒径をD1、第1シンチレータ層391の平均膜厚をT1、第1シンチレータ層391内における蛍光体粒子の平均充填率をF1としたとき、
D1≧T1・F1/10
の関係としている。これにより、シンチレータ層からフォトダイオード13に到達する蛍光の透過率を十分に確保することができる。
【0097】
なお、上述した実施の形態において、X線40は、図8に示すように、シンチレータ層39の中心部分から上面に距離をおいて設置されたX線源51によって、放射状に放射される。このため、シンチレータ層39を画素分離する区画部38は、X線源51から放射された通常のX線(直進波)の進行方向と平行になるように形成されることが望ましい。
【0098】
なお、この発明は上記各実施の形態に限定されるものではなく、その実施の段階ではその要旨を逸脱しない範囲で種々な変形・変更が可能である。また、各実施の形態は可能な限り適宜組み合わせて実施されてもよく、その場合組み合わせによる効果が得られる。
【0099】
本発明の放射線検出器は、縦横に複数の画素が配列された構成のものについて説明したが、縦横の画素の比率が異なる(例えば、一方の画素数が1個の場合等)一見すると線状に構成されたX検出器に適用することも可能である。この場合、スイッチング素子はTFTを使用しなくとも実施可能である。
【0100】
【発明の効果】
以上説明したように、この発明によれば、解像度及び機械的強度を向上することが可能であるとともに、画素の輝度ムラを改善することが可能な放射線検出器を提供することができる。
【図面の簡単な説明】
【図1】図1は、この発明の一実施の形態に係るX線検出器の回路構成を模式的に示す図である。
【図2】図2は、第1実施形態に係るX線検出器の1画素部分の構造を概略的に示す断面図である。
【図3】図3は、第1シンチレータ層の平均膜厚と、チップ飛び個数との関係の一例を示す図である。
【図4】図4は、第1シンチレータ層の平均膜厚と、その解像度特性との関係の一例を示す図である。
【図5】図5は、第2実施形態に係るX線検出器の1画素部分の構造を概略的に示す断面図である。
【図6】図6は、シンチレータ層を構成する蛍光体粒子の平均粒径と、その解像度特性との関係の一例を示す図である。
【図7】図7は、シンチレータ層を構成する蛍光体粒子の厚さ方向の層数と、シンチレータ層を透過する蛍光の透過率との関係の一例を示す図である。
【図8】図8は、放射されるX線の進行方向と平行に形成した区画部の構造を説明するための図である。
【符号の説明】
1…X線検出器、11…光電変換基板、12…画素、13…フォトダイオード、14…薄膜トランジスタ(TFT)、15…蓄積キャパシタ、38…区画部(溝部または隔壁部)、39…シンチレータ層、391…第1シンチレータ層、392…第2シンチレータ層、41…蛍光
【発明の属する技術分野】
この発明は、放射線検出器に係り、特に、放射線画像を検出する間接方式の放射線検出器に関する。
【0002】
【従来の技術】
新世代のX線診断用検出器としてアクティブマトリックス型の平面検出器が大きな注目を集めている。この平面検出器において、照射されたX線を検出することにより、X線撮影像またはリアルタイムのX線画像がデジタル信号として出力される。固体検出器であることから、画質性能や安定性の面でも極めて期待が大きい。このため、多くの大学やメーカが研究開発に取り組んいる。
【0003】
実用化の最初の用途として、比較的大きなX線量で、静止画像を収集する胸部・一般撮影用に開発され、近年商品化されている。より高い技術的なハードルをクリアして、透視線量下で秒30コマ以上のリアルタイム動画を実現させる必要のある循環器、消化器分野への応用に対しても近い将来に商品化が予想される。この動画用途に対しては、S/Nの改善や微小信号のリアルタイム処理技術等が重要な開発項目となっている。
【0004】
平面検出器には、大きく分けて直接方式と間接方式との2通りがある。
【0005】
直接方式は、X線をa−Seなどの光導電膜を用いて直接信号電荷に変換し、変換した信号電荷を電荷蓄積用キャパシタに蓄積する方式である。この直接方式は、X線により発生した光導電電荷を高電界により直接に電荷蓄積用キャパシタに導くため、ほぼアクティブマトリックスの画素ピッチで規定される解像度特性が得られる。
【0006】
一方の間接方式は、シンチレータ層によりX線を受けて一旦可視光に変換し、可視光をa−SiフォトダイオードやCCDにより信号電荷に変換して、電荷蓄積用キャパシタに導く方式である。この間接方式は、シンチレータ層からの可視光がフォトダイオードに到達するまでの光学的な拡散及び散乱により、その分の解像度劣化を生じる。
【0007】
しかしながら、この間接方式において、隔壁によりシンチレータ層を画素毎に分離することにより、シンチレータ層内で発光した蛍光は、隔壁により横方向への散乱や拡散を抑制される。したがって、光学的なガイド効果により、蛍光をフォトダイオード等の光電変換素子に効率良く到達させることができ、解像度特性が改善される(例えば、特許文献1参照。)。
【0008】
また、シンチレータ材料やフォトダーオードについての技術は確立しており、直接方式と比較して安定して作成することが可能である。
【0009】
【特許文献1】
特開平11−166976号公報
【0010】
【発明が解決しようとする課題】
上述した画素分離型シンチレータの製造方法は、例えば光電変換素子が複数配列してなる光電変換基板上にシンチレータ層を形成する。その後、このシンチレータ層に溝を加工して画素分離を施す。その後、光反射材を溝内部に充填させることにより隔壁を形成する。
【0011】
解像度特性上、溝は光電変換基板に達する深さに形成し、シンチレータ層を完全に画素分離することが好ましい。
【0012】
このような構造の場合、シンチレータ層の機械的強度δは、シンチレータ層とフォトダイオードを保護する絶縁層との接触面積SFと、これらの間の接着強度γFとの積(δ=SF×γF)に依存する。しかしながら、接触面積SFは非常に小さく、かつ接着強度γFも異物質間の接着強度であるために非常に弱い。このため、シンチレータ層の機械的強度δは、非常に弱く、横倒れやシンチレータ層の飛び(いわゆるチップ飛び)の発生確率が高くなる。
【0013】
また、完全に画素分離を施すと、画素毎の輝度は、各光電変換素子上に形成されたシンチレータ層の体積、及び、シンチレータ層を構成する蛍光体粒子の充填密度に大きく依存する。例えば、シンチレータ層の体積が各画素においてわずかに異なることによって、各画素での輝度の差が発生する。この現象は、画像の輝度ムラに対して大きな要因となる。
【0014】
この発明は、上述した問題点に鑑みなされたものであって、その目的は、解像度及び機械的強度を向上することが可能であるとともに、画素の輝度ムラを改善することが可能な放射線検出器を提供することにある。
【0015】
【課題を解決するための手段】
この発明の第1の様態による放射線検出器は、
画素単位の光電変換素子が複数配列してなる光電変換基板と、
前記光電変換基板上に配置されたシンチレータ層と、
前記光電変換基板上に形成され、前記シンチレータ層を画素単位に区画する区画部と、
を備え、
前記シンチレータ層は、前記光電変換基板上の第1シンチレータ層と、前記第1シンチレータ層上の第2シンチレータ層と、を含み、
前記光電変換基板と前記区画部との間には、前記第1シンチレータ層が配置されたことを特徴とする。
【0016】
この発明の第2の様態による放射線検出器は、
画素単位の光電変換素子が複数配列してなる光電変換基板と、
前記光電変換基板上に配置されたシンチレータ層と、
前記光電変換基板上に形成され、前記シンチレータ層を画素単位に区画する区画部と、
を備え、
前記シンチレータ層は、前記光電変換基板上に配置され第1平均粒径D1を有する蛍光体粒子によって構成された第1シンチレータ層と、前記第1シンチレータ層上に配置され前記第1平均粒径D1より大きな第2平均粒径D2を有する蛍光体粒子によって構成された第2シンチレータ層と、を含み、
前記光電変換基板と前記区画部との間には、少なくとも前記第1シンチレータ層が配置されたことを特徴とする。
【0017】
【発明の実施の形態】
以下、この発明の一実施の形態に係る放射線検出器について図面を参照して説明する。
【0018】
なお、本発明においてはX線,γ線,その他各種放射線の場合に適用可能であるが、以下の一実施の形態においては、放射線の中の代表的なX線の場合を例にとり説明する。したがって、実施の形態の「X線」を「放射線」に置き換えることにより、本発明が対象とする他の放射線にも適用可能である。
【0019】
図1に示すように、X線を検出してX線の強度分布に対応する電気信号を出力するX線検出器1は、複数の画素を有するアクティブマトリクス型の光電変換基板11を有している。この光電変換基板11は、ガラスなどの絶縁基板上に、行方向(例えば図中の横方向)及び列方向(例えば図中の縦方向)に所定のピッチLで2次元的にマトリクス状に配列された同じ構造の複数の画素12を有している。図1に示した例では、9個の画素単位(12a〜12i)が図示されている。
【0020】
各画素12(a〜i)は、入射した光強度に対応して信号電荷に変換する光電変換素子として機能するフォトダイオード13、スイッチング素子として機能する薄膜トランジスタ(以下TFTと称する)14、信号電荷を蓄積する電荷蓄積部として機能する蓄積キャパシタ15などによって構成されている。
【0021】
各TFT14は、ゲート電極G、ソース電極S、及び、ドレイン電極Dを有している。ドレイン電極Dは、例えばフォトダイオード13及び蓄積キャパシタ15と電気的に接続されている。
【0022】
光電変換基板11の外部には、制御回路16が設けられている。この制御回路16は、TFT14の動作状態、例えばオン/オフを制御する。また、この制御回路16には、行方向に延びる複数の制御ライン17が接続されている。図1に示した例では、第1乃至第4の4個の制御ライン171乃至174が設けられている。それぞれの制御ライン17は、同じ行の画素12を構成する各TFT14のゲート電極Gに接続されている。例えば、第1の制御ライン171は、画素12a乃至12cを構成する各TFT14のゲート電極Gに接続されている。
【0023】
列方向には、複数のデータライン18が設けられている。図1に示した例では、第1乃至第4の4個のデータライン181乃至184が設けられている。それぞれのデータライン18は、同じ列の画素12を構成する各TFT14のソース電極Sに接続されている。例えば、第1のデータライン181は、画素12a、12d、12gを構成する各TFT14のソース電極Sに接続されている。
【0024】
それぞれのデータライン17は、対応する電荷増幅器19に接続されている。各電荷増幅器19は、例えば演算増幅器で構成され、その一方の入力端子a1にデータライン18が接続され、他方の入力端子a2は接地されている。一方の入力端子a1と出力端子bとの間にコンデンサCが接続され、積分機能を有する。また、コンデンサCに並列にスイッチSが接続され、例えばスイッチSを閉じてコンデンサCに残った電荷を放電する構成になっている。
【0025】
それぞれの電荷増幅器19は、並列に入力する複数の電気信号を直列信号に変換する並列/直列変換器20に接続されている。並列/直列変換器20は、アナログ信号をデジタル信号に変換するアナログ−デジタル変換器21に接続されている。
【0026】
(第1実施形態)
次に、第1実施形態に係るX線検出器の画素単位の構造について図2を参照して説明する。なお、図2では、1つの画素部分を抜き出して図示しており、図1に対応する部分には同じ参照符号を付して重複する説明は一部省略する。
【0027】
光電変換基板11は、ガラスなどの絶縁基板31上に形成されたTFT14及び蓄積キャパシタ15を備えている。
【0028】
TFT14は、3つの電気的接続、すなわちゲート電極G、ソース電極S、及び、ドレイン電極Dを備えている。ゲート電極Gは、絶縁基板31上に形成されている。このゲート電極Gは、絶縁膜32によって覆われている。また、このゲート電極Gは、同じ行に位置する他のTFT14のゲート電極Gとともに共通の制御ライン17に接続されている。
【0029】
ソース電極Sは、絶縁膜32上に形成された半絶縁膜33にコンタクトしている。このソース電極Sは、このソース電極Sは、同じ列に位置する他のTFT14のソース電極Sとともに共通のデータライン18に接続されている。ドレイン電極Dは、半絶縁膜33にコンタクトしている。このドレイン電極Dは、フォトダイオード13及び蓄積キャパシタ15に接続されている。
【0030】
蓄積キャパシタ15は、絶縁基板31上に形成された下部電極34、絶縁膜32を介して下部電極34に対向して設けられた上部電極35などによって構成されている。上部電極35は、TFT14のドレイン電極Dと電気的に接続されている。
【0031】
TFT14及び蓄積キャパシタ15の上方には、第1絶縁層361が設けられている。この第1絶縁層361上には、フォトダイオード13が形成されている。フォトダイオード13の周囲の第1絶縁層361上には、第2絶縁層362が設けられている。この第2絶縁層362は、ほぼ矩形状のフォトダイオード13を囲むように枠状に形成されている。
【0032】
フォトダイオード13は、a−SiのpnダイオードやPINダイオードなどで形成される。このフォトダイオード13は、第1絶縁層361上に形成された第1電極131、第1電極131に対向して配置された第2電極132などによって構成されている。
【0033】
第1電極131は、第1絶縁層361の一部に形成されたスルーホール37を介してTFT14のドレイン電極Dに接続されている。第2電極132は、例えばスパッタリング法によってITOなどの透明導電膜を成膜することによって形成される。これら第1電極131と第2電極132との間には、バイアス電圧が印加される。
【0034】
上述したような構造の光電変換基板11の上には、外部から入射したX線を可視光に変換するシンチレータ層39が配置されている。また、この光電変換基板11上には、シンチレータ層39を画素単位に区画する区画部38が形成されている。この区画部38は、例えば隔壁部または溝部によって構成されている。
【0035】
すなわち、図2に示すように、シンチレータ層39は、光電変換基板11におけるフォトダイオード13上及び第2絶縁層362上に配置されている。このシンチレータ層39は、ほぼ同等の平均粒径を有する蛍光体粒子、例えばGOS(Gd2O2S:Tb,PR+3,CE+3,F)によって構成されている。シンチレータ層39を構成する蛍光体粒子の粒径は、例えばシンチレータ層39の断面を走査型電子顕微鏡によって撮影することによって確認される。
【0036】
このシンチレータ層39は、例えば以下のような方法で形成される。まず、マトリクス状に配置された複数のフォトダイオード13などを有する光電変換基板11上に、液状のシンチレータ材料を塗布して、シンチレータ含有塗膜層を形成する。このシンチレータ材料は、X線を吸収して発光する蛍光体粒子として例えばGd2O2S:Tbの粉末を樹脂バインダと有機溶剤とを用いて形成される。このシンチレータ材料は、ディスペンサやインクジェット、スプレー等を用いた塗布法で塗布される。
【0037】
その後、60〜150℃で加熱する乾燥工程を通して有機溶剤を除去し、シンチレータ含有塗膜層を硬化させる。これにより、膜の剥離やクラック等を生じない良好なシンチレータ層39が形成される。
【0038】
区画部38は、上方よりシンチレータ層39に入射したX線40がシンチレータ層39内で蛍光41に変換され、この蛍光41が隣接する画素12のフォトダイオード13のエリアに干渉しないように、画素12を分離する境界に沿って形成される。
【0039】
この区画部38は、例えば以下のような方法で形成される。まず、シンチレータ層39に溝部を形成する。その後、この溝部の内部に、高屈折特性を有する光反射材として例えばTiO2、またはX線発光蛍光体粒子として例えばGd2O2S:Tbを充填することにより、隔壁部を形成する。なお、隔壁部を形成せずに溝部のみであっても区画部38としての機能を有する。
【0040】
上述した溝部は、ダイサーや、YAG3次高調波の紫外線レーザを用いることによって形成することができる。この溝部は、光電変換基板11に達することなく、シンチレータ層39の一部が残るような深さに形成される。すなわち、光電変換基板11と区画部38との間にシンチレータ層39が存在している。
【0041】
なお、この第1実施形態では、説明の便宜上、光電変換基板11と区画部38との間に存在するシンチレータ層39を第1シンチレータ層391とする。すなわち、シンチレータ層39は、光電変換基板11上に配置された第1シンチレータ層391と、この第1シンチレータ層391の上に配置された第2シンチレータ層392とを含むものとする。当然、第1シンチレータ層391は、第2シンチレータ層392とほぼ同等の平均粒径を有する蛍光体粒子によって構成されている。
【0042】
図2に示した第1シンチレータ層391は、隣接する画素12の第1シンチレータ層391と繋がった一体構造を有している。すなわち、第1シンチレータ層391は、区画部38によって画素単位に区画されることはなく、光電変換基板11と区画部38との間に配置される。一方、第2シンチレータ層392は、区画部38によって画素単位に区画される。
【0043】
第1シンチレータ層391の平均膜厚T1は、第1シンチレータ層391を構成する蛍光体粒子の平均粒径D1以上とすることが望ましい。これにより、シンチレータ層39の機械的強度を向上することが可能となる。
【0044】
すなわち、シンチレータ層39の機械的強度δは、シンチレータ層39とフォトダイオード13を保護する第2絶縁層362との接触面積SFと、これらの間の接着強度γFとの積(δ=SF×γF)に依存する。区画部38が光電変換基板11に達する完全画素分離を施した場合、接触面積SFは非常に小さく、かつ接着強度γFも非常に弱い。このため、機械的強度δは、非常に弱く、シンチレータ層39の横倒れやシンチレータの飛び(いわゆるチップ飛び)の発生確率が高くなる。
【0045】
しかしながら、上述した第1実施形態のように、区画部38が光電変換基板11に達することなく、区画部38の下部に第1シンチレータ層391を配置することにより、隣接する画素12のシンチレータ層39同士を第1シンチレータ層391を介して繋げることができ、画素単位のシンチレータ層39における機械的強度δを向上させることが可能である。
【0046】
つまり、図2に示した構造での機械的強度δは、シンチレータ層39とフォトダイオード13を保護する第2絶縁層362との接触面積SFと、これらの間の接着強度γFとの積だけではなく、フォトダイオード13上のシンチレータ層39と区画部38の下部に位置するシンチレータ層39との接触面積SSと、これらの間の接着強度γSとの積にも依存する(δ=SF×γF+SS×γS)。
【0047】
同種類の材料で形成されたシンチレータ層同士の接着強度γSは、非常に強い。このため、シンチレータ層同士の接触面積SSが小さい場合でも、すなわち区画部38の下部にわずかでもシンチレータ層39が存在すれば、シンチレータ層39の機械的強度δは顕著に向上することになる。
【0048】
また、区画部38の下部に位置するシンチレータ層39の平均膜厚Tが厚くなるほど、シンチレータ層同士の接触面積SSが大きくなるため、機械的強度δは向上する。
【0049】
さらに、第1シンチレータ層391を通して隣接する画素12のシンチレータ層39同士で連続性を持たせることにより、局部的な剥がれや画素12の横倒れを隣接画素で補強し合って抑制することができる。このため、チップ飛びの発生確率を格段に低減することができる。
【0050】
図3には、第1シンチレータ層391の平均膜厚T1と、チップ飛び個数との関係の一例が示されている。なお、このとき、シンチレータ層39を構成する蛍光体粒子の平均粒径D1は、40μmである。また、チップ飛びの個数は、1cm角内に位置する画素12においてチップ飛びを発生した画素の個数に対応する。
【0051】
図3に示した結果から明らかなように、区画部38の下部に位置する第1シンチレータ層391の平均膜厚T1が大きいほど、チップ飛びの個数を著しく低減することが可能となる。また、図3に示した例では、第1シンチレータ層391の平均膜厚T1を蛍光体粒子の平均粒径D1(この例では40μm)以上にすることで、チップ飛びの個数を顕著に低減することができる。
【0052】
逆に、第1シンチレータ層391の平均膜厚T1を、第1シンチレータ層391を構成する蛍光体粒子の粒径D1より小さくした場合、第1シンチレータ層391を構成する蛍光体粒子に溝部を形成することになる。この場合、蛍光体粒子にクラックが発生する確率が非常に高い。蛍光体粒子にクラックが生じると、隣接する画素12間でシンチレータ層39の連続性が失われ、シンチレータ層39の機械的強度δが非常に弱くなる。このため、チップ飛びの個数を十分に低減することができない。
【0053】
したがって、第1シンチレータ層391の平均膜厚T1は、第1シンチレータ層391を構成する蛍光体粒子の粒径D1以上にすることが好ましい。
【0054】
また、図2に示したような構造によって、画素分離された第2シンチレータ層392を光ガイド効果によって進行する蛍光41が、隣接する画素12のシンチレータ層39同士に連続性を持つ第1シンチレータ層391に到達した際、蛍光14は散乱され、一部の蛍光14は隣接する画素のフォトダイオード13に到達する。
【0055】
この効果により、隣接する画素12同士の輝度が平均化され、画像の輝度ムラが改善される。例えば、各画素12における蛍光体粒子の充填密度の差により輝度特性の低い画素12と高い画素12とが隣接している場合に、第1シンチレータ層391を通して高輝度の画素側から低輝度の画素側に拡散する蛍光量は、その逆方向の蛍光量より上回ることは明らかである。隣接画素がラインセンサのように1次元的に配列した場合でも、平面検出器のように2次元的に配列した場合でも同様な効果が期待される。
【0056】
このように、第1シンチレータ層391を通して隣接画素12が光学的に繋がっている場合には、直近の画素12間で輝度を補い合う効果を有する。このため、輝度ムラを抑える効果が発揮される。この効果も、第1シンチレータ層391の平均膜厚T1が厚いほど大きい。
【0057】
一方、第1シンチレータ層391の平均膜厚Tが110μm以下であることが望ましい。これにより、X線平面検出器としての解像度を向上することが可能となる。
【0058】
図4には、第1シンチレータ層391の平均膜厚T1と、その解像度特性CTFとの関係の一例が示されている。図4に示したように、区画部38の下部に位置する第1シンチレータ層391の平均膜厚T1が大きいほど、解像度特性の劣化を招くことになる。
【0059】
すなわち、シンチレータ層39で発生した蛍光41は、平均膜厚T1が大きいほど第1シンチレータ層391を介して隣接する画素12のシンチレータ層39に拡散する。このため、所定画素12のフォトダイオード13に、隣接する画素12の蛍光が過剰に到達することになり、解像度特性が劣化する。
【0060】
X線平面検出器の解像度特性として、X線診断用検出器に使用されてきたイメージ管(I.I)の入力面以上の特性が要求される。イメージ管の入力面の解像度特性CTFは、2lp/mmで35%以上である。図4に示した結果を参照すると、解像度特性CTFが35%以上であるためには、第1シンチレータ層391の平均膜厚Tは、110μm以下とすることが望ましい。これにより、良好な解像度を得ることが可能となる。
【0061】
以上説明したように、第1実施形態に係るX線検出器によれば、シンチレータ層39は、隔壁部または溝部による区画部38によって画素単位に区画される。このシンチレータ層39は、光電変換基板11と区画部38との間に配置される第1シンチレータ層391と、この第1シンチレータ層391の上に配置され実質的に第1シンチレータ層391と同一材料で構成された第2シンチレータ層392とを含む。
【0062】
第1シンチレータ層391は、隣接する画素に共通の一体構造である。このため、シンチレータ層39と絶縁層362との接触面積を拡大することができ、シンチレータ層39の機械的強度を向上することができる。また、第2シンチレータ層392は、区画部38によって画素単位に区画されている。このため、シンチレータ層39を区画することによって画素を分離することができ、解像度を向上することができる。
【0063】
また、第1シンチレータ層391の平均膜厚T1は、第1シンチレータ層391を構成する蛍光体粒子の粒径D1以上としている。これにより、画素分離されたシンチレータ層39の機械的強度を向上することができるとともに、画像の輝度ムラを改善することが可能となる。
【0064】
さらに、第1シンチレータ層391の平均膜厚T1は、110μm以下としている。これにより、シンチレータ層39を区画部38によって画素分離することができ(特に第2シンチレータ層392を区画部38によって画素単位に区画することができ)、解像度を向上することができる。
【0065】
(第2実施形態)
次に、第2実施形態に係るX線検出器の画素単位の構造について図5を参照して説明する。なお、図5では、1つの画素部分を抜き出して図示しており、図1及び図2に対応する部分には同じ参照符号を付して重複する説明は一部省略する。
【0066】
間接方式のX線検出器での解像度は、シンチレータ層によりX線を受けて蛍光に変換し、フォトダイオードに到達させるまでの蛍光の効率に影響する。蛍光をフォトダイオードまで効率良く導くためには、シンチレータ層の同一体積に占める蛍光体粒子とその周囲のバインダなどとの界面の割合は極力小さいことが望ましい。つまり、蛍光体粒子の粒径が大きい程望ましい。
【0067】
しかしながら、比較的大きな粒径を有する蛍光体粒子によってシンチレータ層を構成した場合、区画部の下部に位置するシンチレータ層も蛍光を効率よく導くため、隣接する画素のフォトダイオードに他の画素の蛍光が侵入してしまうおそれがあり、解像度が劣化するおそれがある。
【0068】
そこで、この第2実施形態は、シンチレータ層で発生した蛍光を効率良くフォトダイオードに導くとともに、解像度を向上することが可能なX線検出器を提供するものである。
【0069】
すなわち、図5に示すように、第2実施形態に係るX線検出器は、光電変換基板上11に配置されたシンチレータ層39と、光電変換基板11上に形成されシンチレータ層39を画素単位に区画する区画部38と、を備えている。このシンチレータ層39は、光電変換基板11におけるフォトダイオード13上及び第2絶縁層362上に配置されている。
【0070】
また、シンチレータ層39は、光電変換基板11上に配置され第1平均粒径D1を有する蛍光体粒子によって構成された第1シンチレータ層391と、第1シンチレータ層391上に配置され第1平均粒径D1より大きな第2平均粒径D2を有する蛍光体粒子によって構成された第2シンチレータ層392と、を含んでいる。
【0071】
このシンチレータ層39は、例えば以下のような方法で形成される。まず、マトリクス状に配置された複数のフォトダイオード13などを有する光電変換基板11上に、液状の第1シンチレータ材料を塗布して、第1シンチレータ含有塗膜層を形成する。この第1シンチレータ材料は、X線を吸収して発光する第1平均粒径D1を有する蛍光体粒子として例えばGd2O2S:Tbの粉末を樹脂バインダと有機溶剤とを用いて形成される。
【0072】
その後、60〜150℃で加熱する乾燥工程を通して有機溶剤を除去し、第1シンチレータ含有塗膜層を硬化させる。これにより、膜の剥離やクラック等を生じない良好な第1シンチレータ層391が形成される。
【0073】
続いて、第1シンチレータ層391上に、液状の第2シンチレータ材料を塗布して、第2シンチレータ含有塗膜層を形成する。この第2シンチレータ材料は、X線を吸収して発光する第1平均粒径D1より大きな第2平均粒径D2を有する蛍光体粒子として例えばGd2O2S:Tbの粉末を樹脂バインダと有機溶剤とを用いて形成される。
【0074】
これらの第1及び第2シンチレータ材料は、ディスペンサやインクジェット、スプレー等を用いた塗布法で塗布される。
【0075】
その後、60〜150℃で加熱する乾燥工程を通して有機溶剤を除去し、第2シンチレータ含有塗膜層を硬化させる。これにより、膜の剥離やクラック等を生じない良好な第2シンチレータ層392が形成される。
【0076】
区画部38は、上方よりシンチレータ層39に入射したX線40がシンチレータ層39内で蛍光41に変換され、この蛍光41が隣接する画素12のフォトダイオード13のエリアに干渉しないように、画素12を分離する境界に沿って形成される。
【0077】
この区画部38は、上述した第1実施形態と同様の方法で形成される。溝部及びこの溝部に形成された隔壁部からなる区画部38は、光電変換基板11に達することなく、シンチレータ層39の一部が残るような深さに形成される。すなわち、光電変換基板11と区画部38との間にシンチレータ層39が存在している。光電変換基板11と区画部38との間には、少なくとも第1シンチレータ層391が配置されている。
【0078】
図5に示した第1シンチレータ層391は、隣接する画素12の第1シンチレータ層391と繋がった一体構造を有している。すなわち、第1シンチレータ層391は、区画部38によって画素単位に区画されることはなく、光電変換基板11と区画部38との間に配置される。
【0079】
一方、第2シンチレータ層392のほとんどの部分は、区画部38によって画素単位に区画される。第2シンチレータ層392は、比較的平均粒径の大きな蛍光体粒子によって構成されているため、X線の入射によって発生した蛍光41を効率よくフォトダイオード13に向けて縦方向(下方)に導くことができる。また、この第2シンチレータ層392の大部分は、区画部38によって区画されているため、第2シンチレータ層392内で発生した蛍光41の隣接する画素への横方向への散乱や拡散を抑止することができる。
【0080】
シンチレータ層39内で発生した蛍光14は、蛍光体粒子とその周辺のバインダとの界面での屈折により散乱・減衰されてしまう。蛍光14の減衰を抑え、蛍光14を効率よくフォトダイオードに導くためには、シンチレータ層39の同一体積に占める蛍光体粒子とその周囲のバインダなどとの界面の割合を極力小さくする、つまり蛍光体粒子の平均粒径が大きい程望ましい。
【0081】
しかしながら、区画部38の下部に位置するシンチレータ層39を比較的大粒径の蛍光体粒子で構成した場合、ここでも蛍光41は大して減衰されずに拡散され、隣接する画素12のフォトダイオード13に他の画素12の蛍光が達してしまい、解像度の劣化を招くおそれがある。
【0082】
したがって、区画部38の下部に位置するシンチレータ層39及びフォトダイオード13に接するシンチレータ層39では、発光した蛍光41の拡散を抑える必要がある。つまり、区画部38の下部に位置するシンチレータ層39及びフォトダイオード13に接するシンチレータ層39においては、蛍光体粒子とその周辺のバインダとの界面の割合を極力大きくする、つまり蛍光体粒子の平均粒径が小さい程望ましい。
【0083】
図6には、シンチレータ層39を構成する蛍光体粒子の平均粒径と、その解像度特性CTFとの関係の一例が示されている。ここでは、シンチレータ層39は、100μmの膜厚を有し、ほぼ均一な粒径の蛍光体粒子によって構成している。図6に示した結果から明らかなように、シンチレータ層39を構成する蛍光体粒子の平均粒径が小さいほど解像度特性CTFを向上することができる。
【0084】
そこで、図5に示すように、シンチレータ層39は、平均粒径の異なる2層構造を有している。X線入射側に位置する第2シンチレータ層392は、比較的大粒径の平均粒径D2を有する蛍光体粒子によって構成されている。フォトダイオード13上に位置する第1シンチレータ層391は、比較的小粒径の平均粒径D1を有する蛍光体粒子によって構成されている。
【0085】
すなわち、第1シンチレータ層391を構成する蛍光体粒子の平均粒径D1と、第2シンチレータ層392を構成する蛍光体粒子の平均粒径D2との関係は、D1<D2とし、D2とD1との差分が大きいほど望ましい。
【0086】
これにより、第2シンチレータ層392は、X線が入射することによって発生した蛍光41の減衰を抑制するとともに下方に向けて効率よく蛍光41を導くことができる。また、第1シンチレータ層391は、第2シンチレータ層392において発生した蛍光41をフォトダイオード13に導くとともに隣接画素12への拡散を抑制することができ、解像度の低下を抑制することができる。
【0087】
なお、第1シンチレータ層391の平均膜厚T1は、光電変換基板11と区画部38との間隔t2以下であることが望ましい。すなわち、フォトダイオード13に接する第1シンチレータ層391の平均膜厚T1が厚すぎると、第1シンチレータ層391の第1平均粒子径D1が比較的小さいために第1シンチレータ層391自体が反射膜として作用してしまい、第2シンチレータ層392で発光した蛍光41を反射する効果を有する。
【0088】
したがって、これらの2層のシンチレータ層391及び392の境界における反射による影響を少なくするためには、第1シンチレータ層391の平均膜厚T1をできるだけ薄くする必要があり、光電変換基板11と区画部38との間のシンチレータ層39の膜厚T2以下にする必要がある。
【0089】
区画部38は、2層のシンチレータ層391及び392の境界に達する深さまで形成することが望ましい(すなわち、T1=T2)。このような構造は、蛍光41を効率よく拡散する第2シンチレータ層392を区画部38によって完全に画素分離することを可能とするとともに、画素分離されていない第1シンチレータ層391における蛍光41の拡散を抑制することを可能とするものである。これにより、X線検出器としての解像度特性を向上させることができる。
【0090】
区画部38が2層のシンチレータ層391及び392の境界に達していない場合(T1<T2)でも、T1=T2の場合ほどではないが、上述した効果によりX線検出器の解像度特性を向上させることができる。
【0091】
一方で、第1シンチレータ層391を構成する蛍光体粒子の第1平均粒径をD1、第1シンチレータ層391の平均膜厚をT1、第1シンチレータ層391内における蛍光体粒子の平均充填率をF1としたとき、
D1≧T1・F1/10
の関係にあることが望ましい。
【0092】
すなわち、図7には、シンチレータ層を構成する蛍光体粒子の厚さ方向の層数と、シンチレータ層を透過する蛍光の透過率との関係の一例が示されている。図7に示した結果から明らかなように、シンチレータ層の上部から下部まで10%以上の蛍光が到達するためには、蛍光体粒子10層以下の膜厚が望ましく、つまりシンチレータ層内における蛍光体粒子の平均充填密度F1、実効膜厚T1・F1により、
T1・F1/D1≦10
の関係になることが望ましい。
【0093】
以上説明したように、第2実施形態に係るX線検出器によれば、シンチレータ層39を2層構造とし、光電変換素子基板11上に第1平均粒径D1を有する蛍光体粒子によって構成した第1シンチレータ層391を配置し、この第1シンチレータ層391上に第1平均粒径D1よりも大きな第2平均粒径D2を有する蛍光体粒子によって構成した第2シンチレータ層392を配置している。
【0094】
これにより、第2シンチレータ層392によって発光した蛍光41の減衰が抑制され、効率よく縦方向に導くことができる。また、第2シンチレータ層392から第1シンチレータ層391に導かれた蛍光41の拡散が抑制され、解像度の低下を防止することができる。
【0095】
また、第1シンチレータ層391の平均膜厚T1は、光電変換基板11と区画部38との間の間隔T2以下としている。これにより、第2シンチレータ層392は、区画部38によって画素分離されるため、解像度を向上することができる。
【0096】
さらに、第1シンチレータ層391を構成する蛍光体粒子の第1平均粒径をD1、第1シンチレータ層391の平均膜厚をT1、第1シンチレータ層391内における蛍光体粒子の平均充填率をF1としたとき、
D1≧T1・F1/10
の関係としている。これにより、シンチレータ層からフォトダイオード13に到達する蛍光の透過率を十分に確保することができる。
【0097】
なお、上述した実施の形態において、X線40は、図8に示すように、シンチレータ層39の中心部分から上面に距離をおいて設置されたX線源51によって、放射状に放射される。このため、シンチレータ層39を画素分離する区画部38は、X線源51から放射された通常のX線(直進波)の進行方向と平行になるように形成されることが望ましい。
【0098】
なお、この発明は上記各実施の形態に限定されるものではなく、その実施の段階ではその要旨を逸脱しない範囲で種々な変形・変更が可能である。また、各実施の形態は可能な限り適宜組み合わせて実施されてもよく、その場合組み合わせによる効果が得られる。
【0099】
本発明の放射線検出器は、縦横に複数の画素が配列された構成のものについて説明したが、縦横の画素の比率が異なる(例えば、一方の画素数が1個の場合等)一見すると線状に構成されたX検出器に適用することも可能である。この場合、スイッチング素子はTFTを使用しなくとも実施可能である。
【0100】
【発明の効果】
以上説明したように、この発明によれば、解像度及び機械的強度を向上することが可能であるとともに、画素の輝度ムラを改善することが可能な放射線検出器を提供することができる。
【図面の簡単な説明】
【図1】図1は、この発明の一実施の形態に係るX線検出器の回路構成を模式的に示す図である。
【図2】図2は、第1実施形態に係るX線検出器の1画素部分の構造を概略的に示す断面図である。
【図3】図3は、第1シンチレータ層の平均膜厚と、チップ飛び個数との関係の一例を示す図である。
【図4】図4は、第1シンチレータ層の平均膜厚と、その解像度特性との関係の一例を示す図である。
【図5】図5は、第2実施形態に係るX線検出器の1画素部分の構造を概略的に示す断面図である。
【図6】図6は、シンチレータ層を構成する蛍光体粒子の平均粒径と、その解像度特性との関係の一例を示す図である。
【図7】図7は、シンチレータ層を構成する蛍光体粒子の厚さ方向の層数と、シンチレータ層を透過する蛍光の透過率との関係の一例を示す図である。
【図8】図8は、放射されるX線の進行方向と平行に形成した区画部の構造を説明するための図である。
【符号の説明】
1…X線検出器、11…光電変換基板、12…画素、13…フォトダイオード、14…薄膜トランジスタ(TFT)、15…蓄積キャパシタ、38…区画部(溝部または隔壁部)、39…シンチレータ層、391…第1シンチレータ層、392…第2シンチレータ層、41…蛍光
Claims (8)
- 画素単位の光電変換素子が複数配列してなる光電変換基板と、
前記光電変換基板上に配置されたシンチレータ層と、
前記光電変換基板上に形成され、前記シンチレータ層を画素単位に区画する区画部と、
を備え、
前記シンチレータ層は、前記光電変換基板上の第1シンチレータ層と、前記第1シンチレータ層上の第2シンチレータ層と、を含み、
前記光電変換基板と前記区画部との間には、前記第1シンチレータ層が配置されたことを特徴とする放射線検出器。 - 画素単位の光電変換素子が複数配列してなる光電変換基板と、
前記光電変換基板上に配置されたシンチレータ層と、
前記光電変換基板上に形成され、前記シンチレータ層を画素単位に区画する区画部と、
を備え、
前記シンチレータ層は、前記光電変換基板上に配置され第1平均粒径D1を有する蛍光体粒子によって構成された第1シンチレータ層と、前記第1シンチレータ層上に配置され前記第1平均粒径D1より大きな第2平均粒径D2を有する蛍光体粒子によって構成された第2シンチレータ層と、を含み、
前記光電変換基板と前記区画部との間には、少なくとも前記第1シンチレータ層が配置されたことを特徴とする放射線検出器。 - 前記第1シンチレータ層は、前記第2シンチレータ層とほぼ同等の平均粒径を有する蛍光体粒子によって構成されたことを特徴とする請求項1乃至請求項3いずれか1項に記載の放射線検出器。
- 前記第1シンチレータ層の平均膜厚T1と、前記第1シンチレータ層を構成する蛍光体粒子の平均粒径D1との関係がT1≧D1であることを特徴とする請求項1請求項1乃至請求項3いずれか1項に記載の放射線検出器。
- 前記第1シンチレータ層の平均膜厚T1は、前記光電変換基板と前記区画部との間の間隔T2以下であることを特徴とする請求項1乃至請求項4いずれか1項に記載の放射線検出器。
- 前記第1シンチレータ層を構成する蛍光体粒子の第1平均粒径をD1、前記第1シンチレータ層の平均膜厚をT1、前記第1シンチレータ層内における蛍光体粒子の平均充填率をF1としたとき、
D1≧T1・F1/10
の関係にあることを特徴とする請求項1乃至請求項5に記載の放射線検出器。 - 前記区画部は、隔壁部であることを特徴とする請求項1乃至請求項6いずれか1項に記載の放射線検出器。
- 前記区画部は、溝部であることを特徴とする請求項1乃至請求項6いずれか1項に記載の放射線検出器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003028270A JP2004239722A (ja) | 2003-02-05 | 2003-02-05 | 放射線検出器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003028270A JP2004239722A (ja) | 2003-02-05 | 2003-02-05 | 放射線検出器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004239722A true JP2004239722A (ja) | 2004-08-26 |
Family
ID=32955776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003028270A Pending JP2004239722A (ja) | 2003-02-05 | 2003-02-05 | 放射線検出器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004239722A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0487359A (ja) * | 1990-07-31 | 1992-03-19 | Sanyo Electric Co Ltd | 混成集積回路装置 |
WO2014002363A1 (ja) * | 2012-06-25 | 2014-01-03 | ソニー株式会社 | 放射線検出器及びその製造方法 |
JP2014013230A (ja) * | 2012-06-04 | 2014-01-23 | Canon Inc | 放射線検出装置及び撮像システム |
JP2016038324A (ja) * | 2014-08-08 | 2016-03-22 | コニカミノルタ株式会社 | 放射線画像検出器およびその製造方法 |
JP2017191113A (ja) * | 2012-06-25 | 2017-10-19 | ソニー株式会社 | 放射線検出器及びその製造方法 |
US10176902B2 (en) | 2013-11-20 | 2019-01-08 | Toray Industries, Inc. | Scintillator panel |
-
2003
- 2003-02-05 JP JP2003028270A patent/JP2004239722A/ja active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0487359A (ja) * | 1990-07-31 | 1992-03-19 | Sanyo Electric Co Ltd | 混成集積回路装置 |
JP2014013230A (ja) * | 2012-06-04 | 2014-01-23 | Canon Inc | 放射線検出装置及び撮像システム |
WO2014002363A1 (ja) * | 2012-06-25 | 2014-01-03 | ソニー株式会社 | 放射線検出器及びその製造方法 |
JP2014029314A (ja) * | 2012-06-25 | 2014-02-13 | Sony Corp | 放射線検出器及びその製造方法 |
JP2017191113A (ja) * | 2012-06-25 | 2017-10-19 | ソニー株式会社 | 放射線検出器及びその製造方法 |
US10176902B2 (en) | 2013-11-20 | 2019-01-08 | Toray Industries, Inc. | Scintillator panel |
JP2016038324A (ja) * | 2014-08-08 | 2016-03-22 | コニカミノルタ株式会社 | 放射線画像検出器およびその製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7053380B2 (en) | X-ray detector and method for producing X-ray detector | |
US7569832B2 (en) | Dual-screen digital radiographic imaging detector array | |
US20060033030A1 (en) | X-ray detector | |
US20130048861A1 (en) | Radiation detector, radiation detector fabrication method, and radiographic image capture device | |
US20130048960A1 (en) | Photoelectric conversion substrate, radiation detector, and radiographic image capture device | |
US4948978A (en) | Imaging device with matrix structure | |
JP2004340737A (ja) | 放射線検出器及びその製造方法 | |
US20130048862A1 (en) | Radiation detector, radiation detector fabrication method, and radiographic image capture device | |
JP5317675B2 (ja) | 放射線検出器およびその製造方法 | |
JP2004151007A (ja) | 放射線検出器 | |
JP2004317300A (ja) | 放射線平面検出器及びその製造方法 | |
JP2004239722A (ja) | 放射線検出器 | |
JP7625738B2 (ja) | 放射線撮像パネル、放射線撮像装置、放射線撮像システム、放射線撮像パネルの製造方法、および、シンチレータプレート | |
JP2002202373A (ja) | 平面検出器及びその製造方法 | |
US8581198B2 (en) | Apparatus and method for detecting radiation | |
US7351978B2 (en) | Solid-state radiation detector | |
JP2013065825A (ja) | 光電変換基板、放射線検出器、及び放射線画像撮影装置 | |
JP2003167060A (ja) | X線平面検出器 | |
US8415634B2 (en) | Apparatus and method for detecting radiation | |
JP2004163169A (ja) | 放射線検出器 | |
JP2005308582A (ja) | 放射線検出器 | |
JP2005308583A (ja) | 放射線検出器 | |
JP2005147889A (ja) | 放射線検出器 | |
US10061036B2 (en) | Radiation detector, method of manufacturing radiation detector, and imaging apparatus | |
JP2005030806A (ja) | 放射線検出器及びその製造方法 |