[go: up one dir, main page]

JP2004233031A - Underground heat exchanger with hollow tube buried by rotary press-in method and high-efficiency energy system using it - Google Patents

Underground heat exchanger with hollow tube buried by rotary press-in method and high-efficiency energy system using it Download PDF

Info

Publication number
JP2004233031A
JP2004233031A JP2003129223A JP2003129223A JP2004233031A JP 2004233031 A JP2004233031 A JP 2004233031A JP 2003129223 A JP2003129223 A JP 2003129223A JP 2003129223 A JP2003129223 A JP 2003129223A JP 2004233031 A JP2004233031 A JP 2004233031A
Authority
JP
Japan
Prior art keywords
hollow
heat exchanger
pipe
tube
hollow tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003129223A
Other languages
Japanese (ja)
Inventor
Yasushi Nakamura
靖 中村
Eiichiro Saeki
英一郎 佐伯
Yoichi Ishibashi
洋一 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003129223A priority Critical patent/JP2004233031A/en
Publication of JP2004233031A publication Critical patent/JP2004233031A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Piles And Underground Anchors (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

【課題】従来方式の地中熱交換器と比べて著しく工程が短縮でき、建設コストを大幅に抑制できる地中熱交換器とそれを利用した高効率エネルギーシステムを提供する。
【解決手段】下端部に回転羽根2が取り付けられた中空管体1に回転力と下向きの力を付加して回転圧入することで前記中空管体1が埋設され、前記中空管体1内の下端部または中間部には底蓋3が設けられて前記中空管体1の内部が密閉されており、前記中空管体1の内部空間を利用して構築されたことを特徴とする地中熱交換器とそれを利用した高効率エネルギーシステムである。
【選択図】 図1
[PROBLEMS] To provide an underground heat exchanger capable of significantly reducing the number of steps compared to a conventional underground heat exchanger and greatly reducing construction costs, and a high-efficiency energy system using the same.
The hollow tube is embedded by applying a rotational force and a downward force to the hollow tube with a rotating blade attached to a lower end thereof and rotationally press-fitting the hollow tube. A bottom lid 3 is provided at a lower end or an intermediate portion in the inside 1, the inside of the hollow tube 1 is sealed, and the hollow tube 1 is constructed using the internal space of the hollow tube 1. Underground heat exchanger and high efficiency energy system using it.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、大地が有する安定した温度を熱源として採放熱して利用する地中熱源方式や、大地の大きな熱容量を利用して土壌に蓄熱を行なう地中蓄熱方式等の地中熱利用システムにおいて、大地と熱利用側の熱授受に用いられる地中熱交換器に関する。
【0002】
【従来の技術】
大地が有する安定した温度を熱源として採放熱して利用する地中熱源方式や、大地の大きな熱容量を利用して土壌に蓄熱を行なう地中蓄熱方式等の地中熱利用システムは、空調や融雪等に用いられるエネルギーの消費量を削減する方法の1つとして非常に有効である。このように地中熱を利用する場合において、大地と熱利用側との熱授受に用いられる地中熱交換器は、▲1▼U字管方式や、▲2▼鋼管井戸方式(二重管方式)によるものが一般的である[非特許文献1および非特許文献2参照]。
【0003】
非特許文献3にも記載されているように、上記▲1▼のU字管方式による地中熱交換器は以下の工程で形成される。まず予め地中に孔を掘削し、仮ケーシング38を挿入して孔の側壁を維持する[図20(a)参照]。次に、この仮ケーシング38内に送水直管および還水直管の下端部を連結してなるU字管26を1組(1往復分)または2組(2往復分)挿入する[図20(b)参照]。そして、仮ケーシング38を引き抜きつつ、孔とU字管との間隙にモルタル、グラウト等を充填して埋め戻して設置が完了する[図20(c),(d)参照]。なお、孔壁維持のためには、仮ケーシング挿入ではなく泥水を用いる場合もある。
【0004】
また非特許文献4にも記載されているように、上記▲2▼の二重管方式による地中熱交換器は、予め地中に孔を掘削し、この孔内に内挿管を挿入した後、孔と内挿管との間隙にモルタル、グラウト等を充填して埋め戻し、内挿管の内部に送水管および還水管の少なくとも一方を設置することで形成される。
【0005】
上記▲1▼、▲2▼の地中熱交換器はいずれもエネルギー消費が少ない点で優れている。しかし、いずれの方式による場合も掘削、管挿入、埋め戻し、と工程が多く、このうち掘削費は特に高額である。さらに、孔壁維持のための泥水や仮ケーシングの使用、廃土処理の問題などから設置にかかる建設コストが高くなるため、現在は幅広い普及が阻害されている状況である[非特許文献2および非特許文献5参照]。
【0006】
ここで地中熱利用システムにおいて、PHC製基礎杭を二重管方式地中熱交換器に兼用することで建設コストの低減を図らんとする事例も見られる。しかし、コンクリートのひび割れによる熱源水や不凍液の漏洩が生じる点で改善の余地が多い。一方、水密性に優れる鋼管製の打撃杭については、管内部に土壌が侵入してくることから地中熱交換器との兼用は困難である[非特許文献5参照]。
【0007】
【非特許文献1】
遠藤,「蓄熱工学I[基礎編],第4章地中蓄熱」,森北出版株式会社,1995年12月,101〜103P
【非特許文献2】
濱田他,「垂直埋設U字管を用いた地中蓄熱型冷暖房システムの実験と解析」,空気調和・衛生工学会論文集,No.61,1996年4月,46〜47P
【非特許文献3】
落藤他,「深部地盤直接蓄熱システムに関する調査研究報告書」,財団法人エンジニアリング振興協会地下開発利用研究センター,平成11年3月,46〜47P
【非特許文献4】
長野,「特集クリーンエネルギーを目指して 8.地熱ヒートポンプ」,冷凍,社団法人日本冷凍空調学会,2001年12月号第76巻第890号,8P
【非特許文献5】
宮本他,「地中熱融雪Sのコスト削減等 福井県雪対策班,省エネ化も」,週間エネルギー通信,エンジニアリングニュース社,第976号 平成14年8月5日(月)発行,17P
【0008】
【発明が解決しようとする課題】
本発明は上記従来技術の欠点を除くためにされたものであり、その目的は地中熱交換器の埋設・据付に多工程を要する従来方式に比べて、非常に少ない工程で行なうことができ、かつ廃土処理も不要な地中熱交換器を提供することである。
【0009】
本発明の他の目的は、孔の掘削時における優れた貫入性と掘削効率の確保を可能とし、地中熱交換器の設置にかかる建設費を大幅に低減できる地中熱交換器を提供することである。
【0010】
また本発明の他の目的は、建物の基礎杭としての回転圧入鋼管杭において、管内部の土壌の侵入を抑制することで、水密性の高い鋼管杭を地中熱交換器に兼用可能にすることである。
【0011】
【課題を解決するための手段】
(1)第1の発明は、下端部に回転羽根2が取り付けられた中空管体1に回転力と下向きの力を付加して回転圧入し、埋設された前記中空管体1の内部空間を利用して構築したことを特徴とする地中熱交換器である。
(2)第2の発明は、第1の発明において、中空管体1が鋼管で形成されており、前記中空管体が建物を支持する基礎杭としての回転圧入鋼管杭22を兼用することを特徴とする。
(3)第3の発明は、第1または第2の発明において、回転羽根2が螺旋状羽根であって、回転羽根2の始端切断面6と終端切断面8との開き角度9が10度から90度に設定されていることを特徴とする。
(4)第4の発明は、第1から第3の発明において、中空管体1の管内径以下の直径に設定された開端穴10が回転羽根2の中心部に設けられていることを特徴とする。
(5)第5の発明は、第1から第4の発明において、中空管体1内の下端部または中間部に底蓋3が設けられて前記中空管体1の内部が密閉されていることを特徴とする。
(6)第6の発明は、第1から第5の発明において、予め底蓋3が内部に固着されている中空管体1が回転圧入で埋設されていることを特徴とする。
(7)第7の発明は、第6の発明において、内部に予め取り付けられた底蓋3または底蓋3より下側の中空管体1側壁部に圧力逃がし穴14が開口されていることを特徴とする。
(8)第8の発明は、第1から第5の発明において、内周の底蓋形成位置に予め突起物が取り付けられた中空管体1が回転圧入で埋設され、前記中空管体1に内接する落し蓋21を前記中空管体1の埋設・据付後に前記中空管体1内部に投下し、前記中空管体1の内周と前記落し蓋21とが固着されて底蓋3が形成されてなることを特徴とする。
(9)第9の発明は、第1から第5の発明において、内周の底蓋形成位置に予め突起物が取り付けられた中空管体1が回転圧入で埋設され、前記中空管体1の埋設・据付後に中空管体1内の底蓋形成位置に経時性硬化材を充填して底蓋3が形成されてなることを特徴とする。
(10)第10の発明は、第1から第5の発明において、内周の底蓋形成位置に予め突起物が取り付けられた中空管体1が回転圧入で埋設され、前記中空管体1に内接する落し蓋21を前記中空管体1の埋設・据付後に前記中空管体1内部に投下し、前記落し蓋21の上側に経時性硬化材を充填して底蓋3が形成されてなることを特徴とする。
(11)第11の発明は、第1から第10の発明において、中空管体1の内面および外面の少なくとも一方が、防食被覆されていることを特徴とする。
(12)第12の発明は、第1から第11の発明において、中空管体1の外面に熱交換を促進させるフィン1aを取り付けたことを特徴とする。
(13)第13の発明は、第1から第12の発明において、送水管4および還水管5の少なくとも一方が中空管体1の内側に設置されて前記中空管体1内部には熱媒が循環可能であって、周囲土壌より採熱または放熱ができるように構成されたことを特徴とする。
(14)第14の発明は、第1から第12の発明において、中空管体1の内径よりも小径であって、その先端および頂部が閉塞されてなる外管23bと、前記外管23bの内側に配置されて、先端部近傍で外管23b外部と連通してなる内管23cとで構成され、かつ前記外管23bおよび前記内管23cの間には空気または断熱材を密封して断熱層25aが形成された内挿二重管23aが中空管体1の内側に設置され、前記内挿二重管23aの内管23cを送水管4および還水管5のいずれか一方として利用し、前記中空管体1と前記内挿二重管23aとの間に送水管および還水管の他方を設置することで熱媒が循環可能であって、周囲土壌より採熱または放熱ができるように構成されたことを特徴とする。
(15)第15の発明は、第1から第12の発明において、中空管体1の内径よりも小径でかつ先端が閉塞されている内挿管23が前記中空管体1の内側に配置され、前記中空管体1と前記内挿管23との間隙には水またはモルタル、グラウト等の充填材25が充填されており、送水管4および還水管5の少なくとも一方が前記内挿管23の内側に設置されて前記内挿管23内部には熱媒が循環可能であって、周囲土壌より採熱または放熱ができるように構成されたことを特徴とする。
(16)第16の発明は、第1から第12の発明において、熱媒を循環可能なU字形内挿管26が中空管体1の内側に1組以上挿入され、前記中空管体1と前記U字形内挿管26との間隙には水またはモルタル、グラウト等の充填材25が充填されており、周囲土壌より採熱または放熱ができるように構成されたことを特徴とする。
(17)第17の発明は、第14の発明において、複数の中空管体を継ぎ足して構成された地中熱交換器であって、先端部の羽根付中空管体27には、中空管体の内径よりも小径であって、その先端が閉塞されてなる外管23bと、前記外管23bの内側に配置されて、先端部近傍で外管23b外部と連通してなる内管23cとからなる内挿二重管23aが配置されており、前記羽根付中空管体27を所定位置まで回転圧入した後に、継手29によって前記外管23bおよび前記内管23cを各々接続延長し、前記羽根付中空管体27と継ぎ足し中空管体28とを必要本数だけ順次接続することで必要長さを確保した上で、前記外管23bおよび前記内管23cの間に空気または断熱材を密封して断熱層25aを形成したことを特徴とする。
(18)第18の発明は、第15の発明において、複数の中空管体を継ぎ足して構成された地中熱交換器であって、先端部の羽根付中空管体27には、前記羽根付中空管体27の内径よりも小径でかつ先端が閉塞されている内挿管23が配置されており、前記羽根付中空管体27を所定位置まで回転圧入した後に、継手29によって内挿管23を延長した上で前記羽根付中空管体27と継ぎ足し中空管体28とを必要本数だけ順次接続することで必要長さを確保したことを特徴とする。
(19)第19の発明は、第16の発明において、複数の中空管体を継ぎ足して構成された地中熱交換器であって、先端部の羽根付中空管体27には、U字形内挿管26が1組以上挿入されており、前記羽根付中空管体27を所定位置まで回転圧入した後に、継手29によって各内挿管を延長した上で前記羽根付中空管体27と継ぎ足し中空管体28とを必要本数だけ順次接続することで必要長さを確保したことを特徴とする。
(20)第20の発明は、第1から第4の発明において、底蓋3を有しない中空管体1を回転圧入によって埋設し、前記中空管体1内部の土壌中に熱媒を循環可能なU字形内挿管26を圧入し、前記中空管体1内部の土壌が侵入していない前記U字形内挿管26と前記中空管体1との間隙には、水またはモルタル、グラウト等の充填材25が充填されており、周囲土壌より採熱または放熱ができるように構成されたことを特徴とする。
(21)第21の発明は、下端に回転羽根2を備えた掘削蓋31が中空管体1の下端に係合され、前記中空管体1の内側にU字形内挿管26が1組以上挿入され、前記U字形内挿管26の折返部分は前記掘削蓋31に連結されており、前記掘削蓋31が係合された状態の前記中空管体1を回転圧入で埋設した後、前記中空管体1と前記掘削蓋31との係合を解除して前記中空管体のみを引き抜き、生じた掘削孔と前記U字形内挿管26との空隙に水またはモルタル、グラウト等の充填材25を充填し、前記U字形内挿管26の内部に熱媒を循環して周囲土壌より採熱または放熱ができるように構成されたことを特徴とする地中熱交換器である。
(22)第22の発明は、第1〜第21の発明のいずれかの地中熱交換器とヒートポンプを連結し、前記ヒートポンプと空調機や融雪パイプ等の負荷処理設備を連結し、前記ヒートポンプと負荷処理設備との間に必要に応じて蓄熱槽を設置し、ヒートポンプにて製造した冷熱または温熱を冷房、暖房、融雪のいずれか一つ以上の熱源として使用することを特徴とする高効率エネルギーシステムである。
(23)第23の発明は、第1〜第21の発明のいずれかの地中熱交換器とヒートポンプを連結し、前記ヒートポンプと貯湯槽を連結し、貯湯槽内の水を昇温さらに温度保持し、ヒートポンプにて製造した温熱を給湯用途の熱源として使用することを特徴とする高効率エネルギーシステムである。
(24)第24の発明は、第1〜第21の発明のいずれかの地中熱交換器と空調機や融雪パイプ等の負荷処理設備を連結し、前記地中熱交換器と負荷処理設備との間に必要に応じて蓄熱槽を設置し、前記地中熱交換器内の地温水を循環ポンプにて負荷処理設備に送水することにより冷房、暖房、融雪のいずれか一つ以上の用途に直接利用することを特徴とする高効率エネルギーシステム。
【0012】
【発明の実施の形態】
<第1実施形態>
以下、本発明の第1実施形態の地中熱交換器について、図面を参照しつつ説明する。図1に示すように、第1実施形態の地中熱交換器は、下端部に回転羽根2が取り付けられた中空管体1を回転圧入して埋設し、中空管体1の底蓋3から上方の内部空間に送水管4および還水管5を設置して構築される。
【0013】
図2に第1実施形態に用いられる中空管体1を示す。この中空管体1が単管で必要熱交換長さに満たない場合には、現場での円周溶接等によって継ぎ足すことで必要熱交換長さを確保する。なお、中空管体1の材質は鋼管に限定されることなく、プラスチック等の樹脂系材料で中空管体1が形成されていてもよい。さらに、中空管体1に外面防食が必要な場合にはポリエチレンやウレタン等で外面被覆を施してもよく、内面防食が必要な場合には硬質塩化ビニルやエポキシ等で内面被覆を施してもよい。
【0014】
図2(a)に示すように、中空管体1の下端は螺旋状に切り欠かれており、この螺旋状切り欠きの始端部と終端部とは段差部分を介して接続されている。そして、螺旋状に切り欠かれた中空管体1の下端面に沿って、回転羽根2が中空管体1に対して同心状に固定されている。
【0015】
回転羽根2は、図3に示すように円盤状(リング状)の鋼板を半径方向に一部切欠いて形成されており、回転羽根2の始端切断面6には掘削刃7が溶接により固着されている。回転羽根2はその始端切断面6から徐々に中空管体1の下端部から離れながら螺旋状に上昇し、終端切断面8までほぼ1周程度周回するように形成されている。
【0016】
回転羽根2の始端切断面6と終端切断面8との開き角度9は、図3の例では45度程度であるが、10度から90度の範囲で設定することができる。なお回転羽根2を延長して開き角度9を0度の位置にした場合には、破線で示す仮想終端切断面8aと始端切断面6とが平行となる。
【0017】
また回転羽根2の中心部には開端穴10が開口されている。図2、図3の例では開端穴10の直径Dが中空管体1の内径の0.6倍程度に設定されているが、本発明の開端穴10の直径は中空管体1の内径以下であればいかなる直径であってもよく、また回転羽根2に開端穴10を設けなくともよい。
【0018】
上記のような開き角度9、開端穴10を備えた回転羽根2は、中空管体1の優れた貫入性を確保し、施工効率向上によるコストの低減に寄与する。また、上記形状の回転羽根2は、管内部への土壌の侵入を管直径の1.5倍程度から管体長さの半分程度までの間に調節することができ、中空管体1の内部空間の有効利用が可能となる。
【0019】
また中空管体1の内部には底蓋3が設置されており、土壌11の侵入する中空管体1下部と、地中熱交換器に利用される中空管体1上部とが底蓋3によって区画されている。この底蓋3は回転圧入前に中空管体1内に予め形成されていてもよく、回転圧入後に中空管体1内に事後的に形成してもよい。
【0020】
図4は底蓋3の取付態様の一例を示したものである。この例では、中空管体1内周の底蓋形成位置に予め突起物として輪状アングル12を溶接し、この輪状アングル12の上から落し蓋21を溶接固定して底蓋3を形成している。なお、輪状アングル12には必要に応じて補強スチフナを取り付けてもよい。
【0021】
図4の例において、軟弱地盤等で貫入抵抗が大きくない場合には、予め底蓋3を輪状アングル12に溶接して底蓋3の取り付けを完了した状態で、中空管体1の回転圧入施工をすることも可能である。この場合、図5に示すように底蓋3より下方の中空管体1下部に土壌11が適度に侵入して、中空管体1下部に残る空気の圧縮による空気ばね効果が発揮されることで、硬い地層に達すると管内部に土壌11がさらに侵入して、硬い土壌への貫入性が向上できる場合もある。
【0022】
一方、地盤の貫入抵抗が大きく、予め底蓋3を取り付けて中空管体1下部を密閉しておくことが困難な場合には、輪状アングル12のみ先付けした状態で中空管体1を回転圧入した後に、輪状アングル12に底蓋3を溶接してもよい。
【0023】
図6の例は、予め中空管体1内周に底蓋3を取り付ける一方で、中空管体1下部の圧力逃がし穴14を設けて中空管体1下部に土壌11を侵入し易くし、貫入抵抗を減少させて回転圧入する態様である。図6(a),(b)は、底蓋3に圧力逃がし穴14を設け、中空管体1の回転圧入後に圧力逃がし穴14をプレート15で塞ぐことで底蓋3の形成を完了する例である。また図6(c)は圧力逃がし穴14を底蓋3直下の中空管体1側壁部に開口した例である。この場合には回転圧入後に圧力逃がし穴14を塞ぐ必要はない。
【0024】
また、回転圧入後における中空管体1での火気使用を避けたい場合には、以下の種々の方法により事後的な底蓋3の形成が可能である。
【0025】
図7は、中空管体1内部に土壌11がある程度侵入してくる場合において底蓋3を回転圧入後に形成する態様の一例である。図7の例では、予め中空管体1内周の土壌侵入位置上部(底蓋形成位置)にコンクリート定着用の輪状鉄筋16を溶接しておく。次に中空管体の回転圧入後にコンクリート17を流し込み、さらに防水目地を中空管体との取り合い部に取ったシンダーコンクリート18を打設する。そして目地部をシール19した後に塗膜防水20を行い底蓋3を形成する。なお、底蓋形成位置より地下水位が浅い場合でも、水中コンクリートを打設することにより底蓋3の形成が可能である。
【0026】
また図8は、中空管体内部に土壌11があまり侵入してこない場合において底蓋3を回転圧入後に形成する態様の一例である。図8の例では、予め中空管体1内周の土壌侵入位置上部(底蓋形成位置)に輪状アングル12を溶接しておく。次に中空管体1の回転圧入後に、中空管体1に内接する落し蓋21を投下した上でシンダーコンクリート18を打設する。以下、図7の上記例と同様の工程で底蓋3が形成される。
【0027】
そして中空管体1を回転圧入した後に、中空管体1の内部に送水管4および還水管5を設置して第1実施形態の地中熱交換器が完成する。この第1実施形態の地中熱交換器は、中空管体1の内部空間を熱媒の循環流路として直接使用する構成であって、周囲土壌より採熱または放熱ができるようになっている。
【0028】
また図9は第1実施形態の地中熱交換器における送水管4および還水管5の配置例である。中空管体1が小口径の場合には、図9(a)に示すように送水管4および還水管5のいずれか一方を内挿する二重管方式となる(図示例では送水管4が内挿されている)。また中空管体1の口径が大きい場合には、図9(b)に示すように送水管4および還水管5の両方を内挿する鋼管井戸方式となる。
【0029】
第1実施形態の地中熱交換器では、中空管体1の回転圧入後に中空管体1の内部に送水管4および還水管5の少なくとも一方を設置するだけで施工が完了するため、従来方式の地中熱交換器と比べて著しく工程が短縮でき、飛躍的なコスト削減が可能となる。
【0030】
<第2実施形態>
図10は第2実施形態の地中熱交換器を示した図である。なお、以下の実施形態で第1実施形態と同一の構成には同一符号を付して重複説明を省略する。
【0031】
第2実施形態は、建物を支持する基礎杭としての回転圧入鋼管杭22を地中に回転圧入して埋設し、回転圧入鋼管杭22の先端付近または中間部に底蓋3を形成して密閉し、その回転圧入鋼管杭22の内部空間を利用して構築される地中熱交換器である。第2実施形態の地中熱交換器は、建物の支持に元来必要である基礎杭を熱交換器として兼用するため、熱交換器単独の埋設設置コストは不要となり、より一層のコスト削減が可能になる。なお、送水管4および還水管5の取り出し方法としては、図10(a)に示すように、通常通り、回転圧入鋼管杭22の頂部にフーチング22aを被せる取り合いとし、送水管4および還水管5を水平取り出しする方法や、回転圧入鋼管杭22頂部のフーチング取合部外周に突起物を取り付けて、杭からフーチングに支持力を伝達することとし、送水管4および還水管5を垂直に取り出す方法、そしてこれらを併用した方法が考えられる。
【0032】
<第3実施形態>
図11は第3実施形態の地中熱交換器を示した図である。第3実施形態では中空管体1の外周に熱交換促進用のフィン1aが取り付けてある。フィン1aの形状は中空管体1の回転圧入に支障のない形状であればよく、例えば掘削用回転羽根を上方に延長してなる小径螺旋型フィンなどが考えられる。なお、図11では中空管体1の全長にわたってフィン1aが設けられているが、フィン1aが熱交換促進に効果的であるのは地下水が存在する場合なので、実際には帯水層などの地下水が存在する地層部分をカバーできるようにフィン1aを設ければよい。
【0033】
<第4実施形態>
図12は第4実施形態の地中熱交換器を示した図である。第4実施形態では中空管体1の内側に内挿二重管23aを挿入し、内管23cの内部および外管23bの外側に熱媒を循環させて、周囲土壌より採熱または放熱ができるように構成されている。この第4実施形態は、地中熱交換器内の保有熱媒量を少なくできる点で有利である。例えば、基礎杭などの大口径の中空管体を地中熱交換器として用い、かつ寒冷地において熱媒に高価な不凍液を用いなければならない場合には、使用する不凍液の量を減少できるのでコスト面で有利となる。
【0034】
第4実施形態に用いられる内挿二重管23aは、中空管体1の内径よりも小径の外管23bと、この外管23bの内側に配置される内管23cで構成されている。外管23bの先端はキャップ24により閉塞されており、外管23bの頂部は内管23cが挿通する穴あきキャップ24aにより閉塞されている。また、外管23bの先端部近傍には、内管23cと連通してなる開口が設けられている。そして、内挿二重管23aにおける外管23bおよび内管23cの間には、空気または断熱材が密封されて断熱層25aが形成されている。
【0035】
第4実施形態の地中熱交換器では、中空管体1の内側に内挿二重管23aが配置され、かつ中空管体1と内挿二重管23aとの間に還水管5が配置されている。そして、内挿二重管23aの内管23cから送られた熱媒は、外管23bの開口部を経て、中空管体1と内挿二重管23aとの間から還水管5へ循環するように構成されている。なお、第4実施形態では内挿二重管23aの内管23cが送水管となる例を示したが、その逆に内管23cを還水管として、中空管体1と内挿二重管23aとの間に送水管4を配置する構成としてもよい[図示を省略する。]
【0036】
<第5実施形態>
図13は第5実施形態の地中熱交換器を示した図である。第5実施形態では中空管体1の内側に内挿管23を配置し、内挿管23内部に熱媒を循環させることで周囲土壌より採熱または放熱ができるように構成されている。
【0037】
第5実施形態の内挿管23はその外径が中空管体1の内径よりも小さく設定されており、中空管体1の内側に内挿管23が挿入配置されている。内挿管23の先端はキャップ24などによって閉塞されている。中空管体1と内挿管23との間隙には水またはモルタル、グラウト等の充填材25が充填されている。そして、内挿管23の内側には送水管4が配置され、かつ中空管体1からはみ出した内挿管23の上端部は還水管5と接続されており、水またはその他の熱媒が内挿管23の内部を循環するように構成されている。
【0038】
<第6実施形態>
図14は第6実施形態の地中熱交換器を示した図である。第6実施形態では送水直管および還水直管の下端部を連結して構成された1組(1往復分)のU字管26が中空管体1の内側に挿入されている。中空管体1とU字管26との間隙には水またはモルタル、グラウト等の充填材25が充填されており、水またはその他の熱媒をU字管26の内部に循環させることで周囲土壌より採熱または放熱ができるように構成されている。なお、図14の例では中空管体1の内側に挿入されたU字管26は1組(1往復分)であるが、2組(2往復分)のU字管を配置する構成でもよい[図示を省略する]。
【0039】
<第7実施形態>
図15は第7実施形態の地中熱交換器を示した図である。第7実施形態は第4実施形態の変形例であって、中空管体1および内挿二重管23aを継ぎ足して地中熱交換器を延長し、必要熱交換長さを確保した例である。
【0040】
第7実施形態の地中熱交換器の設置作業では、まず先端部の羽根付中空管体27の内側に内挿二重管23aの先端部を挿入しておく。内挿二重管23aの羽根付中空管体27への固定は、羽根付中空管体27の底蓋3に取付けたキャップ24に内挿二重管23aを嵌め込むことで行う。
【0041】
次に、羽根付中空管体27を所定位置まで回転圧入し、継ぎ足し用の外管23bおよび内管23cを吊り込んで、内挿二重管23aを延長する。外管23bおよび内管23cの接合は、水密性、可撓性および伸縮性に優れた継手29によって行う。
【0042】
さらに羽根付中空管体27と継ぎ足し用中空管体28とを現場円周溶接等により接合し、接合完了後に一体化した中空管体1を回転圧入する。必要に応じて上記の継ぎ足し作業を繰り返すことで、所望の長さまで地中熱交換器を延長することができる。また、中空管体1の回転圧入完了後に外管23bの頂部を穴あきキャップ24aで閉塞して、外管23bおよび内管23cの間に断熱層25aを形成する。そして、中空管体1と内挿二重管23aとの間隙に還水管5を配置して地中熱交換器が完成する。
【0043】
なお、第7実施形態における設置作業はあくまで1例であって、図示の例に限定されることはない。例えば、羽根付中空管体27を継ぎ足し中空管体28によって延長して必要長さを埋設した後に、吊り込み固定冶具を用いて内挿二重管23aを継手29で延長しながら、中空管体1内に落しこんでいってもよい[図示を省略する]。
【0044】
<第8実施形態>
図16は第8実施形態の地中熱交換器を示した図である。第8実施形態は第5実施形態の変形例であって、中空管体1および内挿管23を継ぎ足して地中熱交換器を延長し、必要熱交換長さを確保した例である。
【0045】
第8実施形態の地中熱交換器の設置作業では、まず先端部の羽根付中空管体27の内側に、先端が閉塞された小径の内挿管23を挿入する。この羽根付中空管体27と内挿管23との間隙にはモルタル、グラウト等の充填材25が充填されており、内挿管23が固定されている。
【0046】
次に、羽根付中空管体27を所定位置まで回転圧入し、継ぎ足し用中空管体28を吊り込んで、羽根付中空管体27と継ぎ足し用中空管体28とを接合する。継ぎ足し用の中空管体28には内挿管23が挿入され、かつ中空管体28と内挿管23との間隙にはモルタル、グラウト等の充填材25が充填されている。そして、内挿管23同士の接合は、水密性、可撓性および伸縮性に優れた継手29によって行い、羽根付中空管体27と継ぎ足し用中空管体28との接合は、現場円周溶接等により行なわれる。なお、接合部に充填材25の注入孔を予め設けておき、羽根付中空管体27と継ぎ足し用中空管体28との接合後に継手29の空隙部に充填材25を注入して、注入孔を塞ぐのがより好ましい。
【0047】
上記の羽根付中空管27体と継ぎ足し用中空管体28との接合が完了した後、一体化した中空管体1を回転圧入する。必要に応じて上記の継ぎ足し作業を繰り返すことで、所望の長さまで地中熱交換器を延長することができる。そして、中空管体1の回転圧入完了後に内挿管23の内側に送水管4を配置して地中熱交換器が完成する。
【0048】
なお、第8実施形態における設置作業はあくまで1例であって、図示の例に限定されることはない。例えば、継ぎ足し中空管体28に予め内挿管23を固定することなく、継ぎ足し中空管体28と内挿管23とを同時に吊り込んで各々接合し、必要な長さを埋設した後に充填材25を充填してもよい。また、内挿管23の固定を冶具によって行い、中空管体1の埋設が完了した後で充填材25を充填してもよい[ともに図示を省略する]。
【0049】
<第9実施形態>
図17は第9実施形態の地中熱交換器を示した図である。第9実施形態は第6実施形態の変形例であって、中空管体1およびU字管26内挿管23を継ぎ足して地中熱交換器を延長する例である。この第9実施形態は、羽根付中空管体27に配置されたU字管26に、継ぎ足し中空管体28内に配置された送水直管および還水直管を継ぎ足す点で第8実施形態と異なる。なお、図17の例では中空管体1の内側に挿入されたU字管26は1組(1往復分)であるが、2組(2往復分)のU字管を配置する構成でもよい。
【0050】
<第10実施形態>
図18は第10実施形態の地中熱交換器を示した図である。第10実施形態は、底蓋を有しない中空管体1を回転圧入によって埋設した後に、中空管体1の内部に充填された土壌11中にU字管26を圧入する地中熱交換器の設置例である。第10実施形態は、底蓋を設けて中空管体1の内部空間を予め確保しなくとも、土壌11を除去することなくU字管26を土壌11中に圧入可能と判断される場合(例えば軟弱地盤等の場合)に用いられる。U字管26を土壌11に圧入した後において、中空管体1内部の土壌11が侵入していない間隙部分には、モルタル、グラウト等の充填材25が充填されており、周囲土壌より採熱または放熱ができるように構成されている。
【0051】
<第11実施形態>
図19は第7実施形態の地中熱交換器を示した図である。第11実施形態では、U字管26を内挿した中空管体1を回転圧入した後に、管体30のみを引き抜いて地中にU字管26を配置して地中熱交換器を形成する。
【0052】
第11実施形態の施工に用いられる中空管体1は、管体30の先端部に取り付けられる掘削蓋31と複数の管体30とをジョイントで機械的に連結することで構成されている。なお、管体30と掘削蓋31とのジョイントには、例えば、掘削蓋31の内側に挿入される管体30の係合部分に鉤状切り込みを設け、掘削蓋31の内周に突起を設けて、鉤状切り込みと突起とを係合・解除するものなど、種々のジョイントが適用できる[図示を省略する]。
【0053】
また掘削蓋31の下端には回転羽根2が設けられている。さらに掘削蓋31の内側上面にはスイベルジョイント32が設けられており、このスイベルジョイント32によってU字管26下端の折返部分が掘削蓋31に連結されている。
【0054】
第11実施形態の地中熱交換器の施工は、以下の工程で行なわれる。
▲1▼ まず、管体30の先端に掘削蓋31をジョイントで連結して中空管体1を構成し、中空管体1の内側にU字管26を配置する。またU字管26の折返部分は掘削蓋31に連結する。
▲2▼ 次に中空管体1を地中に回転圧入する。なお、中空管体1の長さが不足する場合には管体30をジョイントで連結して継ぎ足しながら回転圧入を行なう[図19(a)参照]。
▲3▼ 中空管体1を所望の長さまで回転圧入した後、管体30と掘削蓋31とのジョイントを解除して、掘削孔から管体30のみを引き抜く[図19(b)参照]。これにより、掘削孔の内部には掘削蓋31とU字管26が残される[図19(c)参照]。
▲4▼ そして、掘削孔とU字管26との空隙に水またはモルタル、グラウト等の充填材25を充填することで地中熱交換器が完成する[図19(d)参照]。
【0055】
図21は、本発明の地中熱交換器を用いた高効率エネルギーシステムの一実施形態を示すものである。この高効率エネルギーシステムでは、地中に設置された基礎杭兼用地中熱交換器41と専用杭地中熱交換器42とが、地表の建物43内に設置したヒートポンプ44に連結される。空調系統においては、ヒートポンプ44は、空調機45と連結され、空調機45からの冷暖房空気が空調ダクト46を通して建物43内の空間に噴出する。また、ヒートポンプ44は、室内用空調機47に連結され、これにより室内を冷却・加熱する。図示しているのは、室内用空調機であるファンコイルユニットの例であるが、放熱機や床暖房パイプ等を用いる場合もある。ヒートポンプ44と空調機45、室内用空調機47との間に必要に応じて蓄熱槽48を設置する。蓄熱槽48は、ヒートポンプ44の能力がピーク負荷に満たない時や夜間電力を利用する場合に設置する。給湯系統においては、ヒートポンプ44と貯湯槽50を連結し、貯湯槽内の水を昇温さらに温度保持し、ここから安定した給湯温度で給湯栓49にお湯を供給する。
【0056】
図22は、本発明の地中熱交換器を用いた高効率エネルギーシステムの他の実施形態を示すものである。この高効率エネルギーシステムでは、地中に設置された専用杭地中熱交換器42と道路の路面下に埋設された融雪パイプ51と熱媒循環ポンプ52を介して連結したものである。
【0057】
【発明の効果】
本発明の地中熱交換器は、多工程が必要となる従来方式の地中熱交換器と比べて著しく工程が短縮できる。また、泥水や廃土処理も不要であって、独自の回転羽根形状によって中空管体の貫入性に優れることから、地中熱交換器の設置にかかる建設コストを大幅に抑制できる。
【0058】
また本発明では、回転羽根形状や底蓋の形成方法によって、水密性の高い鋼管杭の内部空間を熱交換器として兼用することを可能とした。そのため、建物の支持に元来必要である基礎杭を熱交換器として兼用することで、熱交換器単独の埋設設置コストは不要となり、より一層のコスト削減が可能になる。
【0059】
なお、地中熱利用システムはエネルギー消費の非常に少ない優れたシステムであるが、非常に高い建設費がによって幅広い普及が阻害されているのが現状である。したがって、本発明の上記の効果によりその普及が促進されることが期待できる。
【図面の簡単な説明】
【図1】第1実施形態の地中熱交換器を示した図である。
【図2】第1実施形態に用いられる中空管体を示す図である。
【図3】第1実施形態に用いられる回転羽根を示す図である。
【図4】底蓋の取付態様の一例を示した図である。
【図5】中空管体に予め底蓋を形成した場合の空気ばね効果を説明する図である。
【図6】中空管体の圧力逃がし穴の設置例を示した図である。
【図7】底蓋を回転圧入後に形成する態様の一例を示した図である。
【図8】底蓋を回転圧入後に形成する態様の一例を示した図である。
【図9】第1実施形態の地中熱交換器における送水管および還水管の配置例を示した図である。
【図10】第2実施形態の地中熱交換器を示した図である。
【図11】第3実施形態の地中熱交換器を示した図である。
【図12】第4実施形態の地中熱交換器を示した図である。
【図13】第5実施形態の地中熱交換器を示した図である。
【図14】第6実施形態の地中熱交換器を示した図である。
【図15】第7実施形態の地中熱交換器を示した図である。
【図16】第8実施形態の地中熱交換器を示した図である。
【図17】第9実施形態の地中熱交換器を示した図である。
【図18】第10実施形態の地中熱交換器を示した図である。
【図19】第11実施形態の地中熱交換器を示した図である。
【図20】従来のU字管方式による地中熱交換器の施工工程を示す図である。
【図21】本発明の地中熱交換器を用いた高効率エネルギーシステムの一実施形態を示す図である。
【図22】本発明の地中熱交換器を用いた高効率エネルギーシステムの他の実施形態を示す図である。
【符号の説明】
1 中空管体
1a フィン
2 回転羽根
3 底蓋
4 送水管
5 還水管
6 始端切断面
7 掘削刃
8 終端切断面
8a 仮想終端切断面
9 開き角度
10 開端穴
11 土壌
12 輪状アングル
13 溶接部
14 圧力逃がし穴
15 プレート
16 輪状鉄筋
17 コンクリート
18 シンダーコンクリート
19 シール
20 塗膜防水
21 落し蓋
22 回転圧入鋼管杭
22a フーチング
23 内挿管
23a 内挿二重管
23b 外管
23c 内管
24 キャップ
24a 穴あきキャップ
25 充填材
25a 断熱層
26 U字管(U字形内挿管)
27 羽根付中空管体
28 継ぎ足し用中空管体
29 継手
30 管体
31 掘削蓋
32 スイベルジョイント
33 地表面
37 中空スクリューオーガ
38 仮ケーシング
40 モルタル
41 基礎杭兼用地中熱交換器
42 専用杭地中熱交換器
43 建物
44 ヒートポンプ
45 空調機
46 空調用ダクト
47 室内用空調機
48 蓄熱槽
49 給水栓
50 貯湯槽
51 融雪パイプ
52 熱媒循環ポンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an underground heat utilization system such as an underground heat source system that collects and radiates a stable temperature of the earth as a heat source and uses it, and an underground heat storage system that stores heat in soil using a large heat capacity of the earth. The present invention relates to an underground heat exchanger used for heat transfer between the earth and a heat utilization side.
[0002]
[Prior art]
Underground heat utilization systems such as the underground heat source system, which collects and radiates and uses the stable temperature of the earth as a heat source, and the underground heat storage system, which uses the large heat capacity of the earth to store heat in soil, use air conditioning and snow melting. It is very effective as one of the methods for reducing the consumption of energy used for such purposes. When using underground heat in this way, the underground heat exchanger used for heat exchange between the ground and the heat utilization side is a (1) U-shaped tube system or (2) a steel tube well system (double tube system). (See Non-Patent Document 1 and Non-Patent Document 2).
[0003]
As described in Non-Patent Document 3, the underground heat exchanger based on the U-tube method (1) is formed by the following steps. First, a hole is excavated in the ground in advance, and the temporary casing 38 is inserted to maintain the side wall of the hole (see FIG. 20A). Next, one set (one reciprocation) or two sets (two reciprocations) of the U-shaped pipe 26 connecting the lower ends of the water feed straight pipe and the return water straight pipe are inserted into the temporary casing 38 [FIG. (B)]. Then, while pulling out the temporary casing 38, the gap between the hole and the U-shaped tube is filled with mortar, grout and the like, and the space is backfilled to complete the installation [see FIGS. 20 (c) and (d)]. In order to maintain the hole wall, muddy water may be used instead of inserting the temporary casing.
[0004]
Further, as described in Non-patent Document 4, the underground heat exchanger using the double pipe method described in (2) above excavates a hole in the ground in advance and inserts an intubation tube into the hole. The gap between the hole and the intubation is filled with mortar, grout, or the like, backfilled, and at least one of a water supply pipe and a return water pipe is installed inside the intubation.
[0005]
The above-mentioned underground heat exchangers (1) and (2) are excellent in that they consume little energy. However, all of these methods involve many steps such as excavation, pipe insertion, backfilling, and the excavation cost is particularly high. Furthermore, the use of muddy water and temporary casing for maintaining the pore wall, the problem of waste soil treatment, and the like, increase the construction cost for installation, and currently widespread use is hindered [Non-Patent Document 2 and Non-Patent Document 5].
[0006]
Here, in the underground heat utilization system, there is a case in which the construction cost is reduced by using the PHC foundation pile as the double-pipe underground heat exchanger. However, there is much room for improvement in leakage of heat source water and antifreeze due to cracks in concrete. On the other hand, a steel pipe hammering pile having excellent watertightness is difficult to use as an underground heat exchanger because soil penetrates into the pipe [see Non-Patent Document 5].
[0007]
[Non-patent document 1]
Endo, "Thermal Storage Engineering I [Basic], Chapter 4 Underground Thermal Storage", Morikita Publishing Co., Ltd., December 1995, 101-103P
[Non-patent document 2]
Hamada et al., "Experiment and analysis of underground thermal storage type cooling and heating system using vertical buried U-tube", Transactions of the Society of Air Conditioning and Sanitary Engineers, No. 61, April 1996, 46-47P
[Non-Patent Document 3]
Ochito et al., “Survey and Research Report on Deep Ground Direct Thermal Storage System”, Engineering Promotion Association Underground Development and Utilization Research Center, March 1999, 46-47P
[Non-patent document 4]
Nagano, "Special Issue Aiming at Clean Energy 8. Geothermal Heat Pump", Refrigeration, Japan Refrigeration and Air Conditioning Society, December 2001, Vol. 76, No. 890, 8P
[Non-Patent Document 5]
Miyamoto et al., "Fukui Prefecture Snow Countermeasures Group, Cost Reduction of Underground Snow Melting S, Energy Saving", Weekly Energy Communication, Engineering News, No. 976, Published August 5, 2002 (Mon.), 17P
[0008]
[Problems to be solved by the invention]
The present invention has been made in order to eliminate the above-mentioned disadvantages of the prior art, and the object thereof is that it can be performed in a very small number of steps as compared with the conventional method that requires multiple steps for burying and installing the underground heat exchanger. Another object of the present invention is to provide an underground heat exchanger that does not require waste soil treatment.
[0009]
Another object of the present invention is to provide an underground heat exchanger that can ensure excellent penetration and excavation efficiency when excavating a hole and can greatly reduce the construction cost required for installing an underground heat exchanger. That is.
[0010]
Another object of the present invention is to provide a rotary press-fit steel pipe pile as a foundation pile of a building, by suppressing intrusion of soil inside the pipe, thereby enabling a water-tight steel pipe pile to be used also as an underground heat exchanger. That is.
[0011]
[Means for Solving the Problems]
(1) According to a first aspect of the present invention, the hollow tube 1 having a rotating blade 2 attached to a lower end portion is rotationally press-fitted by applying a rotational force and a downward force to the hollow tube 1 and embedded in the hollow tube 1. This is an underground heat exchanger constructed using space.
(2) In a second aspect, in the first aspect, the hollow pipe 1 is formed of a steel pipe, and the hollow pipe also serves as a rotary press-fit steel pipe pile 22 as a foundation pile for supporting a building. It is characterized by the following.
(3) In the third invention, in the first or second invention, the rotary blade 2 is a spiral blade, and an opening angle 9 between the start end cut surface 6 and the end cut surface 8 of the rotary blade 2 is 10 degrees. From 90 degrees.
(4) According to a fourth aspect of the present invention, in the first to third aspects, the open end hole 10 having a diameter equal to or less than the inner diameter of the hollow tubular body 1 is provided at the center of the rotary blade 2. Features.
(5) In a fifth aspect based on the first to fourth aspects, a bottom lid 3 is provided at a lower end portion or an intermediate portion in the hollow tubular body 1 so that the inside of the hollow tubular body 1 is sealed. It is characterized by having.
(6) A sixth invention is characterized in that, in the first to fifth inventions, the hollow tubular body 1 to which the bottom cover 3 is fixed in advance is buried by rotary press fitting.
(7) According to a seventh aspect of the present invention, in the sixth aspect, the pressure relief hole 14 is opened in the bottom cover 3 previously mounted inside or the side wall portion of the hollow tubular body 1 below the bottom cover 3. It is characterized by.
(8) An eighth aspect of the present invention is based on the first to fifth aspects, wherein the hollow tubular body 1 to which a protrusion is attached in advance at the bottom cover forming position on the inner periphery is buried by rotary press-fitting. 1 is dropped into the hollow tube 1 after the hollow tube 1 is buried and installed, and the inner periphery of the hollow tube 1 and the drop cover 21 are fixed and the bottom cover 3 is fixed. Is formed.
(9) In a ninth aspect, in the first to fifth aspects, the hollow tubular body 1 to which a protrusion is attached in advance at a bottom cover forming position on the inner periphery is buried by rotary press fitting, and the hollow tubular body 1 is provided. 1 is characterized in that a bottom cover 3 is formed by filling the bottom cover forming position in the hollow tubular body 1 with a time-hardening material after the embedding and installation.
(10) In a tenth aspect based on the first to fifth aspects, the hollow tubular body 1 to which a protrusion is attached in advance at a bottom cover forming position on the inner periphery is buried by rotary press fitting, and 1 is dropped into the hollow tubular body 1 after the hollow tubular body 1 is buried and installed, and the lower lid 3 is formed by filling a temporal hardening material on the upper side of the dropped cover 21. It is characterized by becoming.
(11) According to an eleventh aspect, in the first to tenth aspects, at least one of the inner surface and the outer surface of the hollow tubular body 1 is coated with anticorrosion.
(12) A twelfth invention is characterized in that, in the first to eleventh inventions, a fin 1a for promoting heat exchange is attached to the outer surface of the hollow tubular body 1.
(13) A thirteenth invention is the invention according to the first to twelfth inventions, wherein at least one of the water pipe 4 and the return pipe 5 is installed inside the hollow tube 1 and heat is generated inside the hollow tube 1. It is characterized in that the medium can be circulated and heat can be collected or radiated from the surrounding soil.
(14) In a fourteenth aspect, in the first to twelfth aspects, the outer pipe 23b has a diameter smaller than the inner diameter of the hollow tubular body 1 and has a tip and a top closed, and the outer pipe 23b And an inner tube 23c which is disposed near the distal end and communicates with the outside of the outer tube 23b, and air or heat insulating material is sealed between the outer tube 23b and the inner tube 23c. An insertion double pipe 23a on which a heat insulating layer 25a is formed is installed inside the hollow pipe body 1, and the inner pipe 23c of the insertion double pipe 23a is used as one of the water supply pipe 4 and the return water pipe 5. By installing the other of the water pipe and the return pipe between the hollow pipe body 1 and the insertion double pipe 23a, the heat medium can circulate, and heat can be collected or radiated from the surrounding soil. It is characterized by having been constituted as follows.
(15) In a fifteenth aspect based on the first to twelfth aspects, the inner tube 23 having a diameter smaller than the inner diameter of the hollow tube 1 and having a closed end is disposed inside the hollow tube 1. A gap between the hollow tube 1 and the inner tube 23 is filled with a filler 25 such as water or mortar or grout. At least one of the water supply pipe 4 and the return pipe 5 is connected to the inner tube 23. A heat medium can be circulated inside the inner tube 23 so as to be able to collect or radiate heat from surrounding soil.
(16) In a sixteenth aspect based on the first to twelfth aspects, one or more sets of U-shaped inner cannula 26 capable of circulating a heat medium are inserted inside the hollow tubular body 1, The gap between the U-shaped inner tube 26 and the U-shaped inner tube 26 is filled with a filler 25 such as water or mortar or grout, so that heat can be collected or radiated from the surrounding soil.
(17) A seventeenth invention is an underground heat exchanger according to the fourteenth invention, wherein the underground heat exchanger is formed by adding a plurality of hollow pipes. An outer tube 23b having a diameter smaller than the inner diameter of the hollow tube body and having a closed end, and an inner tube disposed inside the outer tube 23b and communicating with the outside of the outer tube 23b near the end. An insertion double pipe 23a consisting of an outer pipe 23b and an inner pipe 23c is connected and extended by a joint 29 after the hollow pipe 27 with wings is rotationally press-fitted to a predetermined position. The required length is ensured by sequentially connecting the required number of hollow pipes 28 with the bladed hollow pipe 27, and air or heat insulation is provided between the outer pipe 23b and the inner pipe 23c. The heat insulating layer 25a is formed by sealing the material.
(18) An eighteenth invention is the underground heat exchanger according to the fifteenth invention, wherein a plurality of hollow pipes are added to each other. An insertion tube 23 having a diameter smaller than the inner diameter of the bladed hollow tube 27 and having a closed end is disposed. After the bladed hollow tube 27 is rotationally press-fitted to a predetermined position, the inner tube 23 is internally connected thereto by a joint 29. The required length is ensured by extending the intubation tube 23 and then connecting the required number of hollow tube members 28 with the bladed hollow tube members 27 in order.
(19) A nineteenth invention is the underground heat exchanger according to the sixteenth invention, wherein a plurality of hollow pipes are added to each other, and the hollow pipe body with blades at the tip end has a U shape. One or more sets of V-shaped intubation tubes 26 are inserted, and after the hollow tube body 27 with blades is rotationally press-fitted to a predetermined position, each intubation is extended by a joint 29, and the hollow tube body 27 with blades is inserted. The required length is secured by sequentially connecting the required number of hollow pipes 28 to the extension pipes.
(20) According to a twentieth aspect, in the first to fourth aspects, the hollow tubular body 1 having no bottom lid 3 is buried by rotary press-fitting, and a heat medium is introduced into the soil inside the hollow tubular body 1. A circulating U-shaped inner tube 26 is press-fitted, and water, mortar, grout or the like is inserted into the gap between the U-shaped inner tube 26 and the hollow tube 1 where the soil inside the hollow tube 1 has not penetrated. Or the like, and is configured to be able to collect or radiate heat from the surrounding soil.
(21) According to the twenty-first aspect, a drilling lid 31 having a rotating blade 2 at a lower end is engaged with a lower end of the hollow tubular body 1, and a set of U-shaped insertion tubes 26 is provided inside the hollow tubular body 1. Inserted above, the folded portion of the U-shaped inner cannula 26 is connected to the excavation lid 31, and after embedding the hollow tubular body 1 in a state where the excavation lid 31 is engaged by rotary press fitting, The engagement between the hollow tube 1 and the excavation lid 31 is released and only the hollow tube is pulled out, and the space between the formed excavation hole and the U-shaped inner tube 26 is filled with water, mortar, grout, or the like. The underground heat exchanger is characterized in that the underground heat exchanger is configured to be filled with a material 25 and circulate a heat medium inside the U-shaped intubation tube 26 so as to collect or radiate heat from surrounding soil.
(22) A twenty-second invention relates to the heat pump, wherein the underground heat exchanger according to any one of the first to twenty-first inventions is connected to a heat pump, and the heat pump is connected to a load processing facility such as an air conditioner or a snow melting pipe. High efficiency characterized by installing a heat storage tank between the equipment and the load processing equipment as needed, and using the cold or hot heat produced by the heat pump as one or more of heat sources for cooling, heating, and snow melting Energy system.
(23) In a twenty-third aspect, the underground heat exchanger according to any one of the first to twenty-first aspects is connected to a heat pump, the heat pump is connected to a hot water tank, and the temperature of the water in the hot water tank is increased. A high-efficiency energy system characterized by holding and using heat generated by a heat pump as a heat source for hot water supply.
(24) A twenty-fourth aspect of the present invention relates to the underground heat exchanger according to any one of the first to twenty-first aspects, wherein the underground heat exchanger is connected to a load processing facility such as an air conditioner or a snow melting pipe. A heat storage tank is installed as necessary between the above and cooling water, heating, and one or more uses of snow melting by sending geothermal water in the underground heat exchanger to a load processing facility by a circulation pump. A high-efficiency energy system that is directly used for
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
<First embodiment>
Hereinafter, an underground heat exchanger according to a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the underground heat exchanger of the first embodiment embeds a hollow tubular body 1 having a rotating blade 2 attached to a lower end portion by rotary press-fitting and burying the hollow tubular body 1. The water supply pipe 4 and the return water pipe 5 are installed in the internal space above 3 and constructed.
[0013]
FIG. 2 shows a hollow tube 1 used in the first embodiment. If the hollow tube 1 is a single tube and has a length less than the required heat exchange length, the required heat exchange length is secured by adding it by circumferential welding or the like at the site. The material of the hollow tube 1 is not limited to a steel tube, and the hollow tube 1 may be formed of a resin material such as plastic. Further, when external corrosion protection is required for the hollow tubular body 1, the outer surface may be coated with polyethylene, urethane, or the like, and when internal corrosion protection is required, the inner surface may be coated with hard vinyl chloride, epoxy, or the like. Good.
[0014]
As shown in FIG. 2A, the lower end of the hollow tube 1 is spirally cut out, and the start end and the end of the spiral cut are connected via a step. The rotating blades 2 are concentrically fixed to the hollow tubular body 1 along the lower end surface of the hollow tubular body 1 cut in a spiral shape.
[0015]
As shown in FIG. 3, the rotary blade 2 is formed by partially cutting a disk-shaped (ring-shaped) steel plate in a radial direction, and a cutting edge 7 is fixed to a cutting end surface 6 of the rotary blade 2 by welding. ing. The rotary blade 2 is formed so as to spirally move upward from the start end cut surface 6 while gradually moving away from the lower end of the hollow tubular body 1, and to make approximately one turn to the end cut surface 8.
[0016]
The opening angle 9 between the start end cut surface 6 and the end cut surface 8 of the rotary blade 2 is about 45 degrees in the example of FIG. 3, but can be set in the range of 10 degrees to 90 degrees. When the rotating blades 2 are extended to set the opening angle 9 to a position of 0 degrees, the virtual end cut surface 8a and the start end cut surface 6 indicated by broken lines become parallel.
[0017]
An open end hole 10 is opened in the center of the rotary blade 2. In the examples of FIGS. 2 and 3, the diameter D of the open end hole 10 is set to about 0.6 times the inner diameter of the hollow tubular body 1. Any diameter may be used as long as it is equal to or less than the inner diameter, and the open end hole 10 need not be provided in the rotary blade 2.
[0018]
The rotary blade 2 having the opening angle 9 and the open end hole 10 as described above ensures excellent penetration of the hollow tube 1 and contributes to cost reduction by improving construction efficiency. In addition, the rotating blades 2 having the above-described shape can adjust the penetration of soil into the inside of the tube from about 1.5 times the diameter of the pipe to about half the length of the pipe. Effective use of space becomes possible.
[0019]
A bottom cover 3 is provided inside the hollow tube 1 so that a lower portion of the hollow tube 1 in which the soil 11 enters and an upper portion of the hollow tube 1 used for the underground heat exchanger are formed at the bottom. It is partitioned by the lid 3. The bottom cover 3 may be formed beforehand in the hollow tubular body 1 before the rotary press-fitting, or may be formed in the hollow tubular body 1 after the rotary press-fitting.
[0020]
FIG. 4 shows an example of an attachment mode of the bottom cover 3. In this example, the bottom cover 3 is formed by welding a ring-shaped angle 12 as a protrusion in advance to the bottom cover formation position on the inner periphery of the hollow tubular body 1 and dropping and fixing a drop cover 21 from above the ring-shaped angle 12. . Note that a reinforcing stiffener may be attached to the annular angle 12 as necessary.
[0021]
In the example of FIG. 4, when the penetration resistance is not large in a soft ground or the like, the bottom cover 3 is welded to the ring-shaped angle 12 in advance and the hollow tube 1 is rotationally press-fitted in a state where the attachment of the bottom cover 3 is completed. Construction is also possible. In this case, as shown in FIG. 5, the soil 11 appropriately enters the lower portion of the hollow tube 1 below the bottom cover 3, and an air spring effect is exerted by compressing the air remaining in the lower portion of the hollow tube 1. As a result, when the soil reaches the hard stratum, the soil 11 may further enter the inside of the pipe, and the penetration into the hard soil may be improved.
[0022]
On the other hand, when the penetration resistance of the ground is large and it is difficult to attach the bottom cover 3 and seal the lower portion of the hollow tube 1 in advance, the hollow tube 1 is rotated with only the annular angle 12 attached. After press-fitting, the bottom cover 3 may be welded to the ring-shaped angle 12.
[0023]
In the example of FIG. 6, the bottom cover 3 is attached to the inner periphery of the hollow tube 1 in advance, while the pressure release hole 14 is provided at the lower portion of the hollow tube 1 so that the soil 11 can easily enter the lower portion of the hollow tube 1. In this embodiment, the rotational resistance is reduced by reducing the penetration resistance. 6 (a) and 6 (b) show a case where a pressure relief hole 14 is provided in the bottom cover 3 and the pressure relief hole 14 is closed with a plate 15 after the hollow tube 1 is rotationally press-fitted, thereby completing the formation of the bottom cover 3. It is an example. FIG. 6C shows an example in which the pressure relief hole 14 is opened in the side wall of the hollow tube 1 immediately below the bottom cover 3. In this case, it is not necessary to close the pressure relief hole 14 after the rotary press fitting.
[0024]
Further, when it is desired to avoid using fire in the hollow tubular body 1 after the rotary press-fitting, it is possible to form the bottom cover 3 ex post by various methods described below.
[0025]
FIG. 7 shows an example of a mode in which the bottom cover 3 is formed after the press-fitting by rotation when the soil 11 enters the hollow tube 1 to some extent. In the example of FIG. 7, the annular reinforcing steel 16 for fixing concrete is welded in advance to the upper part of the soil penetration position (the bottom lid formation position) on the inner periphery of the hollow tubular body 1. Next, concrete 17 is poured after the hollow tube is rotationally press-fitted, and further, a cinder concrete 18 having a waterproof joint at a joint portion with the hollow tube is cast. After the joint 19 is sealed 19, the waterproof coating 20 is applied to form the bottom cover 3. In addition, even when the groundwater level is shallower than the bottom lid formation position, the bottom lid 3 can be formed by casting underwater concrete.
[0026]
FIG. 8 shows an example of a mode in which the bottom lid 3 is formed after the rotary press-fitting when the soil 11 does not enter the hollow tube body much. In the example of FIG. 8, the ring-shaped angle 12 is welded in advance to the upper part of the soil penetration position (the bottom lid formation position) on the inner periphery of the hollow tubular body 1. Next, after the hollow tubular body 1 is rotationally press-fitted, a drop lid 21 inscribed in the hollow tubular body 1 is dropped and a cinder concrete 18 is poured. Hereinafter, the bottom cover 3 is formed in the same process as in the above example of FIG.
[0027]
After the hollow pipe 1 is rotationally press-fitted, the water pipe 4 and the return pipe 5 are installed inside the hollow pipe 1 to complete the underground heat exchanger of the first embodiment. The underground heat exchanger according to the first embodiment has a configuration in which the internal space of the hollow tubular body 1 is directly used as a circulation path of a heat medium, so that heat can be collected or radiated from surrounding soil. I have.
[0028]
FIG. 9 shows an example of the arrangement of the water supply pipe 4 and the return water pipe 5 in the underground heat exchanger of the first embodiment. When the hollow pipe 1 has a small diameter, a double pipe system in which one of the water pipe 4 and the return pipe 5 is inserted as shown in FIG. 9A (the water pipe 4 in the illustrated example). Is interpolated). When the diameter of the hollow pipe 1 is large, a steel pipe well system is used in which both the water supply pipe 4 and the return water pipe 5 are inserted as shown in FIG. 9B.
[0029]
In the underground heat exchanger of the first embodiment, the construction is completed only by installing at least one of the water supply pipe 4 and the return water pipe 5 inside the hollow pipe 1 after the rotary pipe 1 is rotationally press-fitted. The process can be significantly shortened as compared with the conventional underground heat exchanger, and the cost can be drastically reduced.
[0030]
<Second embodiment>
FIG. 10 is a diagram showing an underground heat exchanger according to the second embodiment. In the following embodiments, the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted.
[0031]
In the second embodiment, a rotary press-fit steel pipe pile 22 as a foundation pile for supporting a building is rotationally press-fitted into the ground and buried, and a bottom lid 3 is formed near the tip of the rotary press-fit steel pipe pile 22 or at an intermediate portion thereof and hermetically sealed. And it is an underground heat exchanger constructed using the internal space of the rotary press-fit steel pipe pile 22. In the underground heat exchanger of the second embodiment, since the foundation pile originally required for supporting the building is also used as the heat exchanger, the cost of burying the heat exchanger alone is unnecessary, and further cost reduction can be achieved. Will be possible. As shown in FIG. 10 (a), as a method of taking out the water pipe 4 and the return pipe 5, the footing 22a is put on the top of the rotary press-fit steel pipe pile 22 as usual. To take out the water supply pipe 4 and the return water pipe 5 vertically by attaching a protrusion to the outer periphery of the footing joint at the top of the rotary press-fitting steel pipe pile 22 to transmit the supporting force from the pile to the footing. And a method using them in combination.
[0032]
<Third embodiment>
FIG. 11 is a diagram showing an underground heat exchanger according to the third embodiment. In the third embodiment, fins 1a for promoting heat exchange are attached to the outer periphery of the hollow tubular body 1. The shape of the fin 1a may be any shape that does not hinder the rotary press-fitting of the hollow tube 1, and for example, a small-diameter spiral fin formed by extending a drilling rotary blade upward may be considered. In FIG. 11, the fins 1a are provided over the entire length of the hollow tubular body 1. However, the fins 1a are effective in promoting heat exchange when groundwater is present. Fins 1a may be provided so as to cover the stratum where groundwater exists.
[0033]
<Fourth embodiment>
FIG. 12 is a diagram illustrating an underground heat exchanger according to a fourth embodiment. In the fourth embodiment, the insertion double tube 23a is inserted inside the hollow tube 1 and the heat medium is circulated inside the inside tube 23c and outside the outside tube 23b, so that heat is collected or radiated from the surrounding soil. It is configured to be able to. The fourth embodiment is advantageous in that the amount of the heat medium held in the underground heat exchanger can be reduced. For example, if a large-diameter hollow tube such as a foundation pile is used as an underground heat exchanger and an expensive antifreeze must be used as a heat medium in cold regions, the amount of antifreeze used can be reduced. This is advantageous in cost.
[0034]
The insertion double tube 23a used in the fourth embodiment is composed of an outer tube 23b having a smaller diameter than the inner diameter of the hollow tube 1, and an inner tube 23c arranged inside the outer tube 23b. The tip of the outer tube 23b is closed by a cap 24, and the top of the outer tube 23b is closed by a perforated cap 24a through which the inner tube 23c passes. An opening communicating with the inner tube 23c is provided near the distal end of the outer tube 23b. Then, between the outer tube 23b and the inner tube 23c in the insertion double tube 23a, air or a heat insulating material is sealed to form a heat insulating layer 25a.
[0035]
In the underground heat exchanger of the fourth embodiment, an insertion double pipe 23a is arranged inside the hollow pipe 1 and a return water pipe 5 is provided between the hollow pipe 1 and the insertion double pipe 23a. Is arranged. The heat medium sent from the inner tube 23c of the inner double tube 23a is circulated from the space between the hollow tube 1 and the inner double tube 23a to the return pipe 5 through the opening of the outer tube 23b. It is configured to Note that, in the fourth embodiment, an example in which the inner pipe 23c of the insertion double pipe 23a serves as a water supply pipe has been described. On the contrary, the hollow pipe 1 and the insertion double pipe 23 are used as the return pipe. The water supply pipe 4 may be disposed between the water supply pipe 23 and the nozzle 23a [not shown. ]
[0036]
<Fifth embodiment>
FIG. 13 is a diagram showing an underground heat exchanger according to the fifth embodiment. In the fifth embodiment, the inner tube 23 is arranged inside the hollow tube 1 and heat is radiated or radiated from the surrounding soil by circulating a heat medium inside the inner tube 23.
[0037]
The outer diameter of the inner tube 23 of the fifth embodiment is set smaller than the inner diameter of the hollow tube 1, and the inner tube 23 is inserted and arranged inside the hollow tube 1. The distal end of the inner cannula 23 is closed by a cap 24 or the like. The gap between the hollow tube 1 and the inner tube 23 is filled with a filler 25 such as water or mortar or grout. The water pipe 4 is arranged inside the inner pipe 23, and the upper end of the inner pipe 23 which protrudes from the hollow pipe 1 is connected to the return pipe 5, so that water or other heat medium is inserted into the inner pipe 23. 23 is circulated.
[0038]
<Sixth embodiment>
FIG. 14 is a diagram showing an underground heat exchanger according to the sixth embodiment. In the sixth embodiment, one set (one reciprocation) of the U-shaped pipe 26 configured by connecting the lower end portions of the water supply straight pipe and the return water straight pipe is inserted inside the hollow tubular body 1. The gap between the hollow tube body 1 and the U-shaped tube 26 is filled with a filler 25 such as water or mortar, grout, and the like. It is configured so that heat can be collected or radiated from the soil. In the example of FIG. 14, the number of U-shaped tubes 26 inserted into the hollow tube body 1 is one set (for one reciprocation). However, a configuration in which two sets (two reciprocations) of U-shaped tubes are arranged is also possible. Good [not shown].
[0039]
<Seventh embodiment>
FIG. 15 is a diagram illustrating an underground heat exchanger according to a seventh embodiment. The seventh embodiment is a modification of the fourth embodiment, and is an example in which the underground heat exchanger is extended by adding the hollow pipe 1 and the insertion double pipe 23a to secure a necessary heat exchange length. is there.
[0040]
In the installation operation of the underground heat exchanger according to the seventh embodiment, first, the distal end of the insertion double pipe 23a is inserted inside the hollow tubular body 27 with the blade at the distal end. The fixing of the inner double tube 23a to the hollow tubular body 27 with blades is performed by fitting the inner double tube 23a into a cap 24 attached to the bottom cover 3 of the hollow tubular body 27 with blades.
[0041]
Next, the hollow tube 27 with the blades is rotationally press-fitted to a predetermined position, the outer tube 23b and the inner tube 23c for extension are suspended, and the inner double tube 23a is extended. The outer tube 23b and the inner tube 23c are joined by a joint 29 having excellent watertightness, flexibility and elasticity.
[0042]
Further, the hollow tubular body 27 with the blades and the hollow tubular body 28 for extension are joined by in-situ circumferential welding or the like, and after the joining is completed, the integrated hollow tubular body 1 is rotationally press-fitted. The underground heat exchanger can be extended to a desired length by repeating the above-mentioned replenishment work as needed. After the completion of the rotation press-fitting of the hollow tube 1, the top of the outer tube 23b is closed with a perforated cap 24a, and a heat insulating layer 25a is formed between the outer tube 23b and the inner tube 23c. And the return water pipe 5 is arrange | positioned in the clearance gap between the hollow pipe body 1 and the insertion double pipe 23a, and an underground heat exchanger is completed.
[0043]
The installation work in the seventh embodiment is merely an example, and is not limited to the illustrated example. For example, after the hollow tube 27 with blades is added and extended by the hollow tube 28 to bury the required length, the insertion double tube 23a is extended by the joint 29 using a hanging fixture, and It may be dropped into the hollow tube 1 [not shown].
[0044]
<Eighth embodiment>
FIG. 16 is a diagram illustrating an underground heat exchanger according to an eighth embodiment. The eighth embodiment is a modification of the fifth embodiment, and is an example in which the underground heat exchanger is extended by adding the hollow tube 1 and the inner tube 23 to secure a necessary heat exchange length.
[0045]
In the installation operation of the underground heat exchanger according to the eighth embodiment, first, the small-diameter insertion tube 23 whose tip is closed is inserted into the inside of the hollow tubular body 27 with the blade at the tip. The space between the bladed hollow tube body 27 and the inner tube 23 is filled with a filler 25 such as mortar or grout, and the inner tube 23 is fixed.
[0046]
Next, the hollow tubular body 27 with blades is rotationally press-fitted to a predetermined position, the hollow tubular body 28 for extension is hung, and the hollow tubular body 27 with blades and the hollow tubular body 28 for extension are joined. The inner tube 23 is inserted into the refilling hollow tube 28, and the gap between the hollow tube 28 and the inner tube 23 is filled with a filler 25 such as mortar or grout. The joining between the intubation tubes 23 is performed by a joint 29 having excellent watertightness, flexibility, and elasticity, and the joining between the hollow tube body with blades 27 and the hollow tube for replenishment 28 is performed at the site circumference. This is performed by welding or the like. In addition, an injection hole for the filler 25 is provided in advance at the joint, and the filler 25 is injected into the gap of the joint 29 after the joining of the bladed hollow tube 27 and the refilling hollow tube 28, More preferably, the injection hole is closed.
[0047]
After the joining of the 27 winged hollow tubes and the refilling hollow tube 28 is completed, the integrated hollow tube 1 is rotationally press-fitted. The underground heat exchanger can be extended to a desired length by repeating the above-mentioned replenishment work as needed. After completion of the rotary press-fitting of the hollow tube 1, the water pipe 4 is arranged inside the inner tube 23 to complete the underground heat exchanger.
[0048]
The installation work in the eighth embodiment is merely an example, and is not limited to the illustrated example. For example, without additionally fixing the inner tube 23 to the hollow tube 28 in advance, the hollow tube 28 and the inner tube 23 are simultaneously suspended and joined together, and after the necessary length is buried, the filling material 25 is buried. May be filled. Alternatively, the insertion tube 23 may be fixed by a jig, and the filling material 25 may be filled after the embedding of the hollow tube 1 is completed (both are not shown).
[0049]
<Ninth embodiment>
FIG. 17 is a diagram illustrating an underground heat exchanger according to a ninth embodiment. The ninth embodiment is a modification of the sixth embodiment, and is an example in which the underground heat exchanger is extended by adding the hollow pipe 1 and the intubation 23 inside the U-shaped pipe 26. The ninth embodiment is different from the ninth embodiment in that a water supply straight pipe and a return water straight pipe arranged in a hollow pipe 28 are added to a U-shaped pipe 26 arranged in a hollow pipe 27 with blades. Different from the embodiment. In the example of FIG. 17, the number of U-shaped tubes 26 inserted into the hollow tube 1 is one set (for one reciprocation). However, a configuration in which two sets (for two reciprocations) of U-shaped tubes are arranged is also possible. Good.
[0050]
<Tenth embodiment>
FIG. 18 is a diagram illustrating the underground heat exchanger according to the tenth embodiment. In the tenth embodiment, underground heat exchange in which a hollow pipe 1 having no bottom lid is buried by rotary press-fitting, and then a U-shaped pipe 26 is pressed into the soil 11 filled in the hollow pipe 1. It is an example of installation of a vessel. In the tenth embodiment, it is determined that the U-shaped pipe 26 can be pressed into the soil 11 without removing the soil 11 without providing the bottom lid and securing the internal space of the hollow pipe 1 in advance ( For example, in the case of soft ground). After the U-shaped pipe 26 is pressed into the soil 11, the gap inside the hollow pipe 1 where the soil 11 has not entered is filled with a filler 25 such as mortar, grout, etc., and collected from the surrounding soil. It is configured to allow heat or heat radiation.
[0051]
<Eleventh embodiment>
FIG. 19 is a diagram showing an underground heat exchanger according to the seventh embodiment. In the eleventh embodiment, after the hollow tubular body 1 in which the U-shaped pipe 26 is inserted is rotationally press-fitted, only the tubular body 30 is pulled out and the U-shaped pipe 26 is arranged in the ground to form an underground heat exchanger. I do.
[0052]
The hollow pipe 1 used for the construction of the eleventh embodiment is configured by mechanically connecting a plurality of pipes 30 with a drilling lid 31 attached to the tip of the pipe 30. The joint between the pipe 30 and the excavation lid 31 is provided with, for example, a hook-shaped notch at an engagement portion of the pipe 30 inserted inside the excavation lid 31 and a projection provided on the inner periphery of the excavation lid 31. In addition, various joints such as those for engaging and disengaging the hook-shaped notch and the projection can be applied [not shown].
[0053]
The rotary blade 2 is provided at the lower end of the excavation lid 31. Furthermore, a swivel joint 32 is provided on the inner upper surface of the excavation lid 31, and the swivel joint 32 connects the folded portion at the lower end of the U-shaped tube 26 to the excavation lid 31.
[0054]
The construction of the underground heat exchanger of the eleventh embodiment is performed in the following steps.
{Circle around (1)} First, the excavation lid 31 is connected to the tip of the tube 30 by a joint to form the hollow tube 1, and the U-shaped tube 26 is arranged inside the hollow tube 1. The folded portion of the U-shaped tube 26 is connected to the excavation lid 31.
{Circle around (2)} Next, the hollow tubular body 1 is rotationally pressed into the ground. If the length of the hollow tube 1 is insufficient, the tube 30 is connected by a joint and rotary press-fitting is performed (see FIG. 19A).
{Circle around (3)} After the hollow tube 1 is rotationally press-fitted to a desired length, the joint between the tube 30 and the excavation lid 31 is released, and only the tube 30 is pulled out from the excavation hole (see FIG. 19B). . As a result, the excavation lid 31 and the U-shaped tube 26 are left inside the excavation hole (see FIG. 19C).
{Circle around (4)} Then, the underground heat exchanger is completed by filling the gap between the excavation hole and the U-shaped pipe 26 with the filler 25 such as water or mortar or grout (see FIG. 19D).
[0055]
FIG. 21 shows an embodiment of a high efficiency energy system using the underground heat exchanger of the present invention. In this high-efficiency energy system, a foundation pile / ground heat exchanger 41 and a dedicated pile ground heat exchanger 42 installed underground are connected to a heat pump 44 installed in a building 43 on the ground surface. In the air conditioning system, the heat pump 44 is connected to the air conditioner 45, and the cooling / heating air from the air conditioner 45 blows out to the space in the building 43 through the air conditioning duct 46. The heat pump 44 is connected to an indoor air conditioner 47 to cool and heat the room. Although the illustration shows an example of a fan coil unit which is an indoor air conditioner, a radiator or a floor heating pipe may be used in some cases. A heat storage tank 48 is installed between the heat pump 44, the air conditioner 45, and the indoor air conditioner 47 as needed. The heat storage tank 48 is installed when the capacity of the heat pump 44 is less than the peak load or when nighttime electric power is used. In the hot water supply system, the heat pump 44 and the hot water storage tank 50 are connected, the temperature of the water in the hot water storage tank is raised and the temperature is maintained, and the hot water is supplied to the hot water tap 49 at a stable hot water supply temperature.
[0056]
FIG. 22 shows another embodiment of the high-efficiency energy system using the underground heat exchanger of the present invention. In this high-efficiency energy system, a dedicated pile ground heat exchanger 42 installed underground, a snowmelt pipe 51 buried under the road surface, and a heat medium circulation pump 52 are connected.
[0057]
【The invention's effect】
The underground heat exchanger of the present invention can significantly reduce the number of steps as compared with the conventional underground heat exchanger that requires multiple steps. In addition, since there is no need to treat muddy water or waste soil and the unique rotary blade shape allows the hollow pipe to have excellent penetration, the construction cost for installing the underground heat exchanger can be greatly reduced.
[0058]
Further, in the present invention, the inner space of the highly watertight steel pipe pile can be used also as a heat exchanger by the shape of the rotating blades and the method of forming the bottom lid. Therefore, by using the foundation pile originally required for supporting the building as a heat exchanger, the cost of burying and installing the heat exchanger alone becomes unnecessary, and the cost can be further reduced.
[0059]
The geothermal heat utilization system is an excellent system that consumes very little energy. However, at present, its widespread use is hindered by extremely high construction costs. Therefore, it can be expected that the above effects of the present invention will promote its spread.
[Brief description of the drawings]
FIG. 1 is a diagram showing an underground heat exchanger according to a first embodiment.
FIG. 2 is a diagram showing a hollow tube used in the first embodiment.
FIG. 3 is a view showing a rotary blade used in the first embodiment.
FIG. 4 is a diagram showing an example of a mounting mode of a bottom cover.
FIG. 5 is a diagram illustrating an air spring effect when a bottom lid is previously formed in a hollow tubular body.
FIG. 6 is a diagram showing an example of installation of pressure relief holes in a hollow tubular body.
FIG. 7 is a diagram showing an example of an embodiment in which a bottom lid is formed after rotary press fitting.
FIG. 8 is a diagram showing an example of an embodiment in which a bottom lid is formed after rotational press fitting.
FIG. 9 is a diagram showing an example of arrangement of a water supply pipe and a return water pipe in the underground heat exchanger of the first embodiment.
FIG. 10 is a diagram showing an underground heat exchanger according to a second embodiment.
FIG. 11 is a diagram showing an underground heat exchanger according to a third embodiment.
FIG. 12 is a diagram showing an underground heat exchanger according to a fourth embodiment.
FIG. 13 is a diagram showing an underground heat exchanger according to a fifth embodiment.
FIG. 14 is a diagram illustrating an underground heat exchanger according to a sixth embodiment.
FIG. 15 is a diagram showing an underground heat exchanger according to a seventh embodiment.
FIG. 16 is a diagram showing an underground heat exchanger according to an eighth embodiment.
FIG. 17 is a diagram showing an underground heat exchanger according to a ninth embodiment.
FIG. 18 is a diagram showing an underground heat exchanger according to a tenth embodiment.
FIG. 19 is a diagram showing an underground heat exchanger according to an eleventh embodiment.
FIG. 20 is a view showing a construction process of a conventional U-tube type underground heat exchanger.
FIG. 21 is a diagram showing one embodiment of a high-efficiency energy system using the underground heat exchanger of the present invention.
FIG. 22 is a diagram showing another embodiment of the high efficiency energy system using the underground heat exchanger of the present invention.
[Explanation of symbols]
1 hollow tube
1a Fin
2 rotating blades
3 bottom lid
4 water pipe
5 Return water pipe
6 Start cutting surface
7 Drilling blade
8 End cut surface
8a Virtual termination section
9 Opening angle
10 Open end hole
11 soil
12 annular angles
13 Welds
14 Pressure relief hole
15 plates
16 Circular rebar
17 Concrete
18 Cinder concrete
19 Seal
20 Waterproof coating
21 Drop lid
22 Rotary press-fit steel pipe pile
22a Footing
23 Intubation
23a Interpolated double tube
23b outer tube
23c inner tube
24 caps
24a perforated cap
25 filler
25a insulation layer
26 U-shaped tube (U-shaped intubation)
27 Hollow tube with blade
28 Hollow tube for refilling
29 Fitting
30 tubes
31 Drilling lid
32 swivel joint
33 ground surface
37 Hollow Screw Auger
38 Temporary casing
40 mortar
41 Ground pile and ground heat exchanger
42 Dedicated pile underground heat exchanger
43 Building
44 heat pump
45 air conditioner
46 Air conditioning duct
47 Indoor air conditioner
48 thermal storage tank
49 hydrant
50 hot water storage tank
51 Snow melting pipe
52 Heat medium circulation pump

Claims (24)

下端部に回転羽根が取り付けられた中空管体に回転力と下向きの力を付加して回転圧入し、埋設された前記中空管体の内部空間を利用して構築したことを特徴とする地中熱交換器。It is constructed by applying rotational force and downward force to a hollow tubular body having a rotating blade attached to a lower end portion and rotationally press-fitting the hollow tubular body, and using the internal space of the buried hollow tubular body. Underground heat exchanger. 中空管体が鋼管で形成されており、前記中空管体が建物を支持する基礎杭としての回転圧入鋼管杭を兼用することを特徴とする請求項1に記載の地中熱交換器。The underground heat exchanger according to claim 1, wherein the hollow pipe is formed of a steel pipe, and the hollow pipe also serves as a rotary press-fit steel pipe pile as a foundation pile for supporting a building. 回転羽根が螺旋状羽根であって、回転羽根の始端切断面と終端切断面との開き角度が10度から90度に設定されていることを特徴とする請求項1または請求項2に記載の地中熱交換器。The rotating blade is a spiral blade, and an opening angle between a start end cut surface and an end cut surface of the rotary blade is set to 10 degrees to 90 degrees. Underground heat exchanger. 中空管体の管内径以下の直径に設定された開端穴が回転羽根の中心部に設けられていることを特徴とする請求項1から請求項3のいずれか1項に記載の地中熱交換器。The geothermal heat according to any one of claims 1 to 3, wherein an open end hole having a diameter equal to or less than the inner diameter of the hollow tubular body is provided in a center portion of the rotating blade. Exchanger. 中空管体内の下端部または中間部に底蓋が設けられて前記中空管体の内部が密閉されていることを特徴とする請求項1から請求項4のいずれか1項に記載の地中熱交換器。The ground according to any one of claims 1 to 4, wherein a bottom lid is provided at a lower end portion or an intermediate portion in the hollow tubular body, and the inside of the hollow tubular body is sealed. Medium heat exchanger. 予め底蓋が内部に固着されている中空管体が回転圧入で埋設されていることを特徴とする請求項1から請求項5のいずれか1項に記載の地中熱交換器。The underground heat exchanger according to any one of claims 1 to 5, wherein a hollow tubular body having a bottom cover fixed in advance therein is buried by rotary press-fitting. 内部に予め取り付けられた底蓋または底蓋より下側の中空管体側壁部に圧力逃がし穴が開口されていることを特徴とする請求項6に記載の地中熱交換器。7. The underground heat exchanger according to claim 6, wherein a pressure relief hole is opened in a bottom cover or a hollow tube side wall lower than the bottom cover previously mounted inside. 内周の底蓋形成位置に予め突起物が取り付けられた中空管体が回転圧入で埋設され、前記中空管体に内接する落し蓋を前記中空管体の埋設・据付後に前記中空管体内部に投下し、前記中空管体の内周と前記落し蓋とが固着されて底蓋が形成されてなることを特徴とする請求項1から請求項5のいずれか1項に記載の地中熱交換器。A hollow tube body, to which a projection is previously attached, is buried by rotary press-fitting at a bottom lid forming position on the inner periphery, and a drop lid inscribed in the hollow tube body is buried and installed after the hollow tube body is buried and installed. The ground according to any one of claims 1 to 5, wherein the bottom is dropped inside the body, and the inner periphery of the hollow tube body and the dropping lid are fixed to each other to form a bottom lid. Medium heat exchanger. 内周の底蓋形成位置に予め突起物が取り付けられた中空管体が回転圧入で埋設され、前記中空管体の埋設・据付後に中空管体内の底蓋形成位置に経時性硬化材を充填して底蓋が形成されてなることを特徴とする請求項1から請求項5のいずれか1項に記載の地中熱交換器。A hollow tube having a projection previously attached to a bottom lid forming position on the inner periphery is buried by rotary press-fitting, and after embedding and installing the hollow tube, a temporal hardening material is placed at the bottom lid forming position in the hollow tube. The underground heat exchanger according to any one of claims 1 to 5, wherein a bottom lid is formed by filling the bottom cover. 内周の底蓋形成位置に予め突起物が取り付けられた中空管体が回転圧入で埋設され、前記中空管体に内接する落し蓋を前記中空管体の埋設・据付後に前記中空管体内部に投下し、前記落し蓋の上側に経時性硬化材を充填して底蓋が形成されてなることを特徴とする請求項1から請求項5のいずれか1項に記載の地中熱交換器。A hollow tube body, to which a projection is previously attached, is buried by rotary press-fitting at a bottom lid forming position on the inner periphery, and a drop lid inscribed in the hollow tube body is buried and installed after the hollow tube body is buried and installed. The underground heat exchange according to any one of claims 1 to 5, wherein the bottom cover is formed by dropping into the inside of the body and filling a temporal hardening material above the drop cover to form a bottom cover. vessel. 中空管体の内面および外面の少なくとも一方が、防食被覆されていることを特徴とする請求項1から請求項10のいずれか1項に記載の地中熱交換器。The underground heat exchanger according to any one of claims 1 to 10, wherein at least one of an inner surface and an outer surface of the hollow tubular body is coated with anticorrosion. 中空管体の外面に熱交換を促進させるフィンを取り付けたことを特徴とする請求項1から請求項11のいずれか1項に記載の地中熱交換器。The underground heat exchanger according to any one of claims 1 to 11, wherein a fin for promoting heat exchange is attached to an outer surface of the hollow tubular body. 送水管および還水管の少なくとも一方が中空管体の内側に設置されて前記中空管体内部には熱媒が循環可能であって、周囲土壌より採熱または放熱ができるように構成されたことを特徴とする請求項1から請求項12のいずれか1項に記載の地中熱交換器。At least one of the water pipe and the return pipe is installed inside the hollow pipe, and the heat medium can be circulated inside the hollow pipe, so that heat can be collected or radiated from the surrounding soil. The underground heat exchanger according to any one of claims 1 to 12, wherein: 中空管体の内径よりも小径であって、その先端および頂部が閉塞されてなる外管と、前記外管の内側に配置されて、先端部近傍で外管外部と連通してなる内管とで構成され、かつ前記外管および前記内管の間には空気または断熱材を密封して断熱層が形成された内挿二重管が中空管体の内側に設置され、前記内挿二重管の内管を送水管および還水管のいずれか一方として利用し、前記中空管体と前記内挿二重管との間に送水管および還水管の他方を設置することで熱媒が循環可能であって、周囲土壌より採熱または放熱ができるように構成されたことを特徴とする請求項1から請求項12のいずれか1項に記載の地中熱交換器。An outer tube having a diameter smaller than the inner diameter of the hollow tube body and having a tip and a top closed, and an inner tube disposed inside the outer tube and communicating with the outside of the outer tube near the tip And an insertion double tube in which a heat insulating layer is formed by sealing air or a heat insulating material between the outer tube and the inner tube, is installed inside the hollow tube body, By using the inner pipe of the double pipe as one of the water pipe and the return pipe, and installing the other of the water pipe and the return pipe between the hollow pipe and the inserted double pipe, the heat medium The underground heat exchanger according to any one of claims 1 to 12, wherein the underground heat exchanger is configured to be able to circulate and to collect or release heat from surrounding soil. 中空管体の内径よりも小径でかつ先端が閉塞されている内挿管が前記中空管体の内側に配置され、前記中空管体と前記内挿管との間隙には水またはモルタル、グラウト等の充填材が充填されており、送水管および還水管の少なくとも一方が前記内挿管の内側に設置されて前記内挿管内部には熱媒が循環可能であって、周囲土壌より採熱または放熱ができるように構成されたことを特徴とする請求項1から請求項12のいずれか1項に記載の地中熱交換器。An inner tube having a diameter smaller than the inner diameter of the hollow tube and having a closed end is disposed inside the hollow tube, and a gap between the hollow tube and the inner tube is filled with water or mortar or grout. And at least one of a water supply pipe and a return water pipe is installed inside the intubation pipe, a heat medium can circulate inside the intubation pipe, and heat is taken or radiated from surrounding soil. The underground heat exchanger according to claim 1, wherein the underground heat exchanger is configured to perform the following. 熱媒を循環可能なU字形内挿管が中空管体の内側に1組以上挿入され、前記中空管体と前記U字形内挿管との間隙には水またはモルタル、グラウト等の充填材が充填されており、周囲土壌より採熱または放熱ができるように構成されたことを特徴とする請求項1から請求項12のいずれか1項に記載の地中熱交換器。One or more sets of U-shaped intubation capable of circulating a heat medium are inserted inside the hollow tube, and a gap between the hollow tube and the U-shaped intubation is filled with a filler such as water or mortar or grout. The underground heat exchanger according to any one of claims 1 to 12, wherein the underground heat exchanger is filled and configured to be capable of collecting or radiating heat from surrounding soil. 複数の中空管体を継ぎ足して構成された地中熱交換器であって、先端部の羽根付中空管体には、中空管体の内径よりも小径であって、その先端が閉塞されてなる外管と、前記外管の内側に配置されて、先端部近傍で外管外部と連通してなる内管とからなる内挿二重管が配置されており、前記羽根付中空管体を所定位置まで回転圧入した後に、継手によって前記外管および前記内管を各々接続延長し、前記羽根付中空管体と継ぎ足し中空管体とを必要本数だけ順次接続することで必要長さを確保した上で、前記外管および前記内管の間に空気または断熱材を密封して断熱層を形成したことを特徴とする請求項14に記載の地中熱交換器。An underground heat exchanger configured by adding a plurality of hollow tubes, wherein the hollow tube with blades at the tip has a diameter smaller than the inner diameter of the hollow tube, and the tip is closed. And an inner tube disposed inside the outer tube and communicated with the outside of the outer tube in the vicinity of the distal end portion, and an inner double tube is disposed, and the bladed hollow is provided. After the tube is rotationally press-fitted to a predetermined position, the outer tube and the inner tube are connected and extended, respectively, by a joint, and the required number of hollow tubes are connected to the bladed hollow tube, and the required number of hollow tubes are sequentially connected. The underground heat exchanger according to claim 14, wherein a heat insulating layer is formed by sealing air or a heat insulating material between the outer pipe and the inner pipe after securing the length. 複数の中空管体を継ぎ足して構成された地中熱交換器であって、先端部の羽根付中空管体には、前記羽根付中空管体の内径よりも小径でかつ先端が閉塞されている内挿管が配置されており、前記羽根付中空管体を所定位置まで回転圧入した後に、継手によって内挿管を延長した上で前記羽根付中空管体と継ぎ足し中空管体とを必要本数だけ順次接続することで必要長さを確保したことを特徴とする請求項15に記載の地中熱交換器。An underground heat exchanger configured by adding a plurality of hollow pipes, wherein the hollow pipe with a blade at the tip has a diameter smaller than the inner diameter of the hollow pipe with a blade and the tip is closed. The inserted intubation is disposed, and after the hollow tube with blades is rotationally press-fitted to a predetermined position, the intubation is extended by a joint, and then the hollow tube with blades is added to the hollow tube with blades. 16. The underground heat exchanger according to claim 15, wherein a required length is secured by sequentially connecting a required number of the underground heat exchangers. 複数の中空管体を継ぎ足して構成された地中熱交換器であって、先端部の羽根付中空管体には、U字形内挿管が1組以上挿入されており、前記羽根付中空管体を所定位置まで回転圧入した後に、継手によって各内挿管を延長した上で前記羽根付中空管体と継ぎ足し中空管体とを必要本数だけ順次接続することで必要長さを確保したことを特徴とする請求項16に記載の地中熱交換器。An underground heat exchanger configured by adding a plurality of hollow tubes, wherein at least one set of U-shaped inner intubation is inserted into the blade-mounted hollow tube at the tip, and After the hollow tube is rotationally press-fitted to a predetermined position, each intubation is extended by a joint, and the necessary number of hollow tubes are added to the hollow tube with blades and the required number of tubes are sequentially connected to secure the required length. The underground heat exchanger according to claim 16, wherein: 底蓋を有しない中空管体を回転圧入によって埋設し、前記中空管体内部の土壌中に熱媒を循環可能なU字形内挿管を圧入し、前記中空管体内部の土壌が侵入していない前記U字形内挿管と前記中空管体との間隙には、水またはモルタル、グラウト等の充填材が充填されており、周囲土壌より採熱または放熱ができるように構成されたことを特徴とする請求項1から請求項4のいずれか1項に記載の地中熱交換器。A hollow tube having no bottom cover is buried by rotary press-fitting, and a U-shaped intubation capable of circulating a heat medium is pressed into the soil inside the hollow tube, and the soil inside the hollow tube enters. The gap between the unshaped U-shaped intubation tube and the hollow tube body is filled with a filler such as water or mortar or grout so that heat can be collected or radiated from the surrounding soil. The underground heat exchanger according to any one of claims 1 to 4, characterized in that: 下端に回転羽根を備えた掘削蓋が中空管体の下端に係合され、前記中空管体の内側にU字形内挿管が1組以上挿入され、前記U字形内挿管の折返部分は前記掘削蓋に連結されており、前記掘削蓋が係合された状態の前記中空管体を回転圧入で埋設した後、前記中空管体と前記掘削蓋との係合を解除して前記中空管体のみを引き抜き、生じた掘削孔と前記U字形内挿管との空隙に水またはモルタル、グラウト等の充填材を充填し、前記U字形内挿管の内部に熱媒を循環して周囲土壌より採熱または放熱ができるように構成されたことを特徴とする地中熱交換器。A drilling lid having rotating blades at the lower end is engaged with the lower end of the hollow tube, and at least one set of U-shaped inner tubes is inserted inside the hollow tube. After the hollow pipe body connected to the drilling lid and the drilling lid is engaged is buried by rotary press-fitting, the engagement between the hollow pipe body and the drilling lid is released to release the hollow pipe body. Only the hollow pipe body is pulled out, the space between the formed drilling hole and the U-shaped intubation is filled with water or a filler such as mortar or grout, and a heat medium is circulated inside the U-shaped intubation to circulate the surrounding soil. An underground heat exchanger configured to be able to collect or release heat. 請求項1〜21のいずれかの地中熱交換器とヒートポンプを連結し、前記ヒートポンプと空調機や融雪パイプ等の負荷処理設備を連結し、前記ヒートポンプと負荷処理設備との間に必要に応じて蓄熱槽を設置し、ヒートポンプにて製造した冷熱または温熱を冷房、暖房、融雪のいずれか一つ以上の熱源として使用することを特徴とする高効率エネルギーシステム。22. The underground heat exchanger according to claim 1, wherein the heat pump is connected to the heat pump, and the heat pump is connected to a load processing facility such as an air conditioner or a snow melting pipe. A high-efficiency energy system characterized in that a heat storage tank is installed and cold or warm heat produced by a heat pump is used as one or more of heat sources for cooling, heating, and snow melting. 請求項1〜21のいずれかの地中熱交換器とヒートポンプを連結し、前記ヒートポンプと貯湯槽を連結し、貯湯槽内の水を昇温さらに温度保持し、ヒートポンプにて製造した温熱を給湯用途の熱源として使用することを特徴とする高効率エネルギーシステム。The underground heat exchanger according to any one of claims 1 to 21, wherein the heat pump is connected, the heat pump is connected to the hot water storage tank, the temperature of the water in the hot water storage tank is raised, and the temperature is maintained. A high-efficiency energy system used as a heat source for applications. 請求項1〜21のいずれかの地中熱交換器と空調機や融雪パイプ等の負荷処理設備を連結し、前記地中熱交換器と負荷処理設備との間に必要に応じて蓄熱槽を設置し、前記地中熱交換器内の地温水を循環ポンプにて負荷処理設備に送水することにより冷房、暖房、融雪のいずれか一つ以上の用途に直接利用することを特徴とする高効率エネルギーシステム。An underground heat exchanger according to any one of claims 1 to 21 and a load processing facility such as an air conditioner or a snow melting pipe are connected, and a heat storage tank is provided between the underground heat exchanger and the load processing facility as necessary. High efficiency characterized in that it is installed and directly used for one or more applications of cooling, heating and snow melting by sending ground temperature water in the underground heat exchanger to a load treatment facility by a circulation pump Energy system.
JP2003129223A 2002-12-05 2003-05-07 Underground heat exchanger with hollow tube buried by rotary press-in method and high-efficiency energy system using it Pending JP2004233031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129223A JP2004233031A (en) 2002-12-05 2003-05-07 Underground heat exchanger with hollow tube buried by rotary press-in method and high-efficiency energy system using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002353172 2002-12-05
JP2003129223A JP2004233031A (en) 2002-12-05 2003-05-07 Underground heat exchanger with hollow tube buried by rotary press-in method and high-efficiency energy system using it

Publications (1)

Publication Number Publication Date
JP2004233031A true JP2004233031A (en) 2004-08-19

Family

ID=32964415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129223A Pending JP2004233031A (en) 2002-12-05 2003-05-07 Underground heat exchanger with hollow tube buried by rotary press-in method and high-efficiency energy system using it

Country Status (1)

Country Link
JP (1) JP2004233031A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336815A (en) * 2004-05-26 2005-12-08 Nippon Steel Corp Underground snow melting tank by hollow pipe body buried by rotary press-in construction method, snow melting facility having this tank and operation method of snow melting facility
JP2006343004A (en) * 2005-06-08 2006-12-21 Jfe Welded Pipe Manufacturing Co Ltd Constitution of pile head portion
FR2918086A1 (en) * 2007-06-26 2009-01-02 Climatisation Par Puits Canadi HEAT EXCHANGER VERTICAL BURNER FOR HEATING OR REFRESHING INSTALLATION
JP2009041231A (en) * 2007-08-07 2009-02-26 Fairy Angel Inc Buried heat exchanger and its manufacturing method
JP2009097831A (en) * 2007-10-18 2009-05-07 Sankei Kikaku:Kk Geothermy collecting block, pile, and geothermy utilizing system
JP2009162459A (en) * 2008-01-10 2009-07-23 Jfe Steel Corp Underground heat exchanger
JP2009209674A (en) * 2008-02-08 2009-09-17 Jfe Steel Corp Screwed type pile
CN101008531B (en) * 2006-01-24 2010-05-12 北京北控恒有源科技发展有限公司 Water bag seal equipment used in well and heat-collection well using same
JP2011001732A (en) * 2009-06-18 2011-01-06 Kenji Fukumiya Construction method of underground heat storage device, underground heat storage device, and underground heat storage method
WO2011083899A1 (en) * 2010-01-11 2011-07-14 지앤지테크놀러지 Geothermal coil pipe header device, very deep vertical closed-type ground-coupled heat exchanger using same, and method for installing the heat exchanger
JP2013047606A (en) * 2012-11-15 2013-03-07 Jfe Steel Corp Underground heat exchanger
JP2014129706A (en) * 2012-12-28 2014-07-10 Mitani Sekisan Co Ltd Burying method and pedestal for pipe for heat exchange
JP2014129705A (en) * 2012-12-28 2014-07-10 Mitani Sekisan Co Ltd Burying method and tool for burning for pipe for heat exchange
JP5584839B1 (en) * 2014-02-19 2014-09-03 博明 上山 Hybrid spiral pile with integrated underground heat collection function
JP2014185450A (en) * 2013-03-22 2014-10-02 Nippon Hume Corp Installation method of geothermal concrete foundation pile
EP3086055A1 (en) * 2015-04-20 2016-10-26 Zilinská Univerzita V Ziline Ground heat exchanger
JP2016194411A (en) * 2016-08-25 2016-11-17 Jfeスチール株式会社 Underground heat exchanger
JP2016223271A (en) * 2015-05-27 2016-12-28 理研興業株式会社 Construction method for burying underground heat exchanger in steel pipe pile
JP2017026167A (en) * 2015-07-16 2017-02-02 三谷セキサン株式会社 Heat exchanger device using precast pile and precast pile with heat exchanging pipes
CN107327896A (en) * 2017-08-18 2017-11-07 山东北辰机电设备股份有限公司 Paddy electricity heats solid heat storage heat-exchange system
JP2019157349A (en) * 2018-03-07 2019-09-19 鹿島建設株式会社 Wall body and construction method of wall body
JP2022013509A (en) * 2020-07-03 2022-01-18 有限会社ジェイディエフ Concentric shaft multi-layered geothermal heat exchanger installation equipment, concentric shaft multi-layered geothermal heat exchanger and underground heat exchanger installation method
WO2022243669A1 (en) * 2021-05-17 2022-11-24 Keltbray Limited Pile cap
US20230047310A1 (en) * 2021-08-12 2023-02-16 Bernard J. Gochis Piles providing support and geothermal heat exchange
NL2033314B1 (en) * 2022-10-14 2024-05-02 Optisolar Holding B V Heat source and combination of a bottom layer and such a heat source

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123951A (en) * 1987-11-09 1989-05-16 Isako Yamazaki Utilization of underground heat by foundation pile and method of accumulating heat
JPH0296019A (en) * 1988-09-29 1990-04-06 Kubota Ltd Pile driving method
JPH0688333A (en) * 1992-03-17 1994-03-29 Kubota Corp Construction of storage tank utilizing steel pipe pile
JPH08326053A (en) * 1995-06-05 1996-12-10 Chiyoda Koei Kk Steel pipe pile
JPH1136287A (en) * 1997-07-18 1999-02-09 Nkk Corp Screw-in type steel pipe pile
JPH11182943A (en) * 1997-12-22 1999-07-06 Kubota Corp Underground heat exchanger
JPH11181767A (en) * 1997-12-24 1999-07-06 Sekisui House Ltd Tip fittings for steel pipe piles
JPH11325649A (en) * 1998-05-11 1999-11-26 Kajima Corp Soil heat source ice heat storage heat pump device
JP2001147056A (en) * 1999-11-19 2001-05-29 Unicom Kikaku Sekkei:Kk Underground heat utilization system with foundation pile
JP2002310524A (en) * 2001-04-11 2002-10-23 Kubota Corp Heat source equipment
JP2003014385A (en) * 2001-07-03 2003-01-15 Yutaka Kenchiku Sekkei Jimusho:Kk Underground heat sampling tube, underground heat exchanger and underground heat utilization heat exchange system
JP2003035455A (en) * 2001-07-23 2003-02-07 Daiwa House Ind Co Ltd Installation structure of underground vertical tubes for geothermal air conditioning

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123951A (en) * 1987-11-09 1989-05-16 Isako Yamazaki Utilization of underground heat by foundation pile and method of accumulating heat
JPH0296019A (en) * 1988-09-29 1990-04-06 Kubota Ltd Pile driving method
JPH0688333A (en) * 1992-03-17 1994-03-29 Kubota Corp Construction of storage tank utilizing steel pipe pile
JPH08326053A (en) * 1995-06-05 1996-12-10 Chiyoda Koei Kk Steel pipe pile
JPH1136287A (en) * 1997-07-18 1999-02-09 Nkk Corp Screw-in type steel pipe pile
JPH11182943A (en) * 1997-12-22 1999-07-06 Kubota Corp Underground heat exchanger
JPH11181767A (en) * 1997-12-24 1999-07-06 Sekisui House Ltd Tip fittings for steel pipe piles
JPH11325649A (en) * 1998-05-11 1999-11-26 Kajima Corp Soil heat source ice heat storage heat pump device
JP2001147056A (en) * 1999-11-19 2001-05-29 Unicom Kikaku Sekkei:Kk Underground heat utilization system with foundation pile
JP2002310524A (en) * 2001-04-11 2002-10-23 Kubota Corp Heat source equipment
JP2003014385A (en) * 2001-07-03 2003-01-15 Yutaka Kenchiku Sekkei Jimusho:Kk Underground heat sampling tube, underground heat exchanger and underground heat utilization heat exchange system
JP2003035455A (en) * 2001-07-23 2003-02-07 Daiwa House Ind Co Ltd Installation structure of underground vertical tubes for geothermal air conditioning

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336815A (en) * 2004-05-26 2005-12-08 Nippon Steel Corp Underground snow melting tank by hollow pipe body buried by rotary press-in construction method, snow melting facility having this tank and operation method of snow melting facility
JP2006343004A (en) * 2005-06-08 2006-12-21 Jfe Welded Pipe Manufacturing Co Ltd Constitution of pile head portion
CN101008531B (en) * 2006-01-24 2010-05-12 北京北控恒有源科技发展有限公司 Water bag seal equipment used in well and heat-collection well using same
FR2918086A1 (en) * 2007-06-26 2009-01-02 Climatisation Par Puits Canadi HEAT EXCHANGER VERTICAL BURNER FOR HEATING OR REFRESHING INSTALLATION
WO2009007606A3 (en) * 2007-06-26 2009-03-05 Climatisation Par Puits Canadi Buried vertical threaded exchanger for heating or cooling apparatus
JP2009041231A (en) * 2007-08-07 2009-02-26 Fairy Angel Inc Buried heat exchanger and its manufacturing method
JP2009097831A (en) * 2007-10-18 2009-05-07 Sankei Kikaku:Kk Geothermy collecting block, pile, and geothermy utilizing system
JP2009162459A (en) * 2008-01-10 2009-07-23 Jfe Steel Corp Underground heat exchanger
JP2009209674A (en) * 2008-02-08 2009-09-17 Jfe Steel Corp Screwed type pile
JP2011001732A (en) * 2009-06-18 2011-01-06 Kenji Fukumiya Construction method of underground heat storage device, underground heat storage device, and underground heat storage method
WO2011083899A1 (en) * 2010-01-11 2011-07-14 지앤지테크놀러지 Geothermal coil pipe header device, very deep vertical closed-type ground-coupled heat exchanger using same, and method for installing the heat exchanger
JP2013047606A (en) * 2012-11-15 2013-03-07 Jfe Steel Corp Underground heat exchanger
JP2014129706A (en) * 2012-12-28 2014-07-10 Mitani Sekisan Co Ltd Burying method and pedestal for pipe for heat exchange
JP2014129705A (en) * 2012-12-28 2014-07-10 Mitani Sekisan Co Ltd Burying method and tool for burning for pipe for heat exchange
JP2014185450A (en) * 2013-03-22 2014-10-02 Nippon Hume Corp Installation method of geothermal concrete foundation pile
JP5584839B1 (en) * 2014-02-19 2014-09-03 博明 上山 Hybrid spiral pile with integrated underground heat collection function
EP3086055A1 (en) * 2015-04-20 2016-10-26 Zilinská Univerzita V Ziline Ground heat exchanger
JP2016223271A (en) * 2015-05-27 2016-12-28 理研興業株式会社 Construction method for burying underground heat exchanger in steel pipe pile
JP2017026167A (en) * 2015-07-16 2017-02-02 三谷セキサン株式会社 Heat exchanger device using precast pile and precast pile with heat exchanging pipes
JP2016194411A (en) * 2016-08-25 2016-11-17 Jfeスチール株式会社 Underground heat exchanger
CN107327896A (en) * 2017-08-18 2017-11-07 山东北辰机电设备股份有限公司 Paddy electricity heats solid heat storage heat-exchange system
JP2019157349A (en) * 2018-03-07 2019-09-19 鹿島建設株式会社 Wall body and construction method of wall body
JP2022013509A (en) * 2020-07-03 2022-01-18 有限会社ジェイディエフ Concentric shaft multi-layered geothermal heat exchanger installation equipment, concentric shaft multi-layered geothermal heat exchanger and underground heat exchanger installation method
JP7219857B2 (en) 2020-07-03 2023-02-09 有限会社ジェイディエフ Equipment for installation of concentric multi-layer structure underground heat exchanger, concentric multi-layer structure underground heat exchanger and installation method of underground heat exchanger
WO2022243669A1 (en) * 2021-05-17 2022-11-24 Keltbray Limited Pile cap
US20230047310A1 (en) * 2021-08-12 2023-02-16 Bernard J. Gochis Piles providing support and geothermal heat exchange
US11953237B2 (en) * 2021-08-12 2024-04-09 Bernard J. Gochis Piles providing support and geothermal heat exchange
NL2033314B1 (en) * 2022-10-14 2024-05-02 Optisolar Holding B V Heat source and combination of a bottom layer and such a heat source

Similar Documents

Publication Publication Date Title
JP2004233031A (en) Underground heat exchanger with hollow tube buried by rotary press-in method and high-efficiency energy system using it
US5816314A (en) Geothermal heat exchange unit
US5623986A (en) Advanced in-ground/in-water heat exchange unit
CN102587365B (en) Method for embedding precession-type backfill grouting ground source thermal energy conversion precast pile device into stratum
US6932149B2 (en) Insulated sub-surface liquid line direct expansion heat exchange unit with liquid trap
JP2006052588A (en) Pile with outer pipe for underground heat exchange and construction method of underground heat exchanger using the pile
CN109458757B (en) Static drilling root planting energy pile and production method and construction method thereof
CN202543904U (en) Screw-in wall-post-grouting precast pile device for ground-source heat energy conversion
US20150007960A1 (en) Column Buffer Thermal Energy Storage
JP2003148079A (en) Manufacturing method of ground heat exchange equipment and civil engineering construction pile used in the manufacturing method
JP4764912B2 (en) Underground temperature stratified thermal storage tank
JP5621218B2 (en) Underground heat exchanger and filler
JP5103070B2 (en) Support pile system for heat exchange for residential and architectural use using geothermal heat
JP6166061B2 (en) Construction method of heat exchange device for geothermal heat utilization system and geothermal heat utilization system
EP3118558B1 (en) Ground heat accumulator
CN105927271A (en) Grouting backfilling system and grouting backfilling method for vertical shafts in vertical heat exchangers
KR200417382Y1 (en) High Efficiency Geothermal Heat Exchanger for Heat Pump
JP4136847B2 (en) Buried pipe for heat exchange
JP4859871B2 (en) Buried pipe for heat exchange
JP2010281494A (en) Recovery utilization system of geothermal heat
KR101303575B1 (en) Combined type geothermal system and construction method using large aperture punchung
JP4528029B2 (en) Underground snow melting tank with hollow tube embedded by rotary press-in method and snow melting equipment equipped with it
JP2004177012A (en) Steel pipe pile for heat exchange
JP2005069537A (en) Buried pipe for heat exchange
JP6018983B2 (en) Geothermal heat exchanger for geothermal heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731