[go: up one dir, main page]

JP2004186641A - Metallized film capacitor and manufacturing method thereof - Google Patents

Metallized film capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP2004186641A
JP2004186641A JP2002355139A JP2002355139A JP2004186641A JP 2004186641 A JP2004186641 A JP 2004186641A JP 2002355139 A JP2002355139 A JP 2002355139A JP 2002355139 A JP2002355139 A JP 2002355139A JP 2004186641 A JP2004186641 A JP 2004186641A
Authority
JP
Japan
Prior art keywords
electrode
metal
slit
metal deposition
metallized film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002355139A
Other languages
Japanese (ja)
Inventor
Kohei Shioda
浩平 塩田
Toshiharu Saito
俊晴 斎藤
Hiroki Takeoka
宏樹 竹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002355139A priority Critical patent/JP2004186641A/en
Publication of JP2004186641A publication Critical patent/JP2004186641A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/145Organic dielectrics vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】第1の電極引出し部にスリットを設けそのスリットにヒューズ部で電極容量形成部に接続した第1の金属蒸着電極と、スリットやヒューズを有しない第2の金属蒸着電極からなる金属化フィルムコンデンサは、通電時にコンデンサの温度が上昇し、耐電圧が低下することが課題となっていた。
【解決手段】メタリコン電極5に沿って金属蒸着のないスリット7を第1電極引出し部1aに形成し、そのスリット7を横ぎって局部的にヒューズ部8を設けて、第1の電極引出し部1aと第1の電極容量形成部1bを接続し、第1の金属蒸着電極の電極引出し部1aの厚みを、スリットとヒューズ部がない、第2の金属蒸着電極2の第2の電極引出し部2aの厚みよりも厚くする。
【選択図】 図1
A metallization includes a first metal deposition electrode provided with a slit in a first electrode lead-out portion, connected to the electrode capacitance forming portion by a fuse portion in the slit, and a second metal deposition electrode having no slit or fuse. The problem with film capacitors is that the temperature of the capacitor rises when energized and the withstand voltage decreases.
A slit (7) without metal deposition is formed in a first electrode lead portion (1a) along a metallikon electrode (5), and a fuse portion (8) is provided locally across the slit (7) to form a first electrode lead portion. 1a is connected to the first electrode capacitance forming portion 1b, and the thickness of the electrode lead portion 1a of the first metal deposition electrode is set to the second electrode lead portion of the second metal deposition electrode 2 having no slit and fuse portion. 2a.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器、電気機器や産業機器に用いられる金属化フィルムコンデンサに関するものである。さらに詳しくは、金属蒸着電極にヒューズ部を形成して自己保安機能を設けた金属化フィルムコンデンサに関するものである。
【0002】
【従来の技術】
フィルムコンデンサは、一般に、金属箔を電極に用いるものと、誘電体フィルム上に設けた蒸着金属を電極に用いるものとに大別される。中でも、蒸着金属を電極とする金属化フィルムコンデンサは、金属箔のフィルムコンデンサに比べて電極の占める体積が小さく小型軽量化が図れることと、金属蒸着電極特有の自己回復性能(絶縁欠陥部で短絡が生じた場合に、短絡のエネルギーで欠陥部周辺の蒸着電極が蒸発・飛散して絶縁化し、コンデンサの機能が回復する性能)により絶縁破壊に対する信頼性が高いことから、従来から広く用いられている。
【0003】
前記自己回復性能は金属蒸着電極の厚みが薄いほど良好(少ないエネルギーで金属蒸着電極が飛散するため)なことから、金属蒸着電極の中で容量部分を形成する有効電極部すなわち電極容量形成部の金属蒸着電極の厚みを薄くし、メタリコン電極と接続する部分の厚みを厚くしたヘビーエッジ部の構成も広く用いられている。このヘビーエッジ部構成により、コンデンサの耐電圧を高め、高電位傾度化を図ることができる。
【0004】
このような金属化フィルムコンデンサの従来例について図4、図5を参照して以下に説明する。図4、図5において、第1の金属蒸着電極41は、第1の電極引出し部41aと第1の電極容量形成部41bから構成されていて、誘電体フィルム42上にマージン部43を除いて蒸着されている。第2の金属蒸着電極44は第2の電極引出し部44aと第2の電極容量形成部44bから構成されていて、誘電体フィルム45上にマージン部46を除いて蒸着されている。そして第1の金属蒸着電極41はメタリコン電極47を通じ第2の金属蒸着電極44は反対側のメタリコン電極48を通じてそれぞれ電極が引出されている。第1の金属蒸着電極41はメタリコン電極47に沿って伸びるスリット49により、第1の電極引出し部41aと第1の電極容量形成部41bに区分され、スリット49内に局部的に設けられたヒューズ部50により電気的に接続されている。51は第1の電極容量形成部41bを分割する分割スリットで、各分割電極は前記スリット49内のヒューズ部50により並列接続されている。一方、第2の金属蒸着電極44はメタリコン電極48を通じて電極が引出されているが、第2の電極引出し部44aと第2の電極容量形成部44bとの間にスリットやヒューズ部はない。52に示す矢印はメタリコン電極47、48よりそれぞれ第1の電極引出し部41aと第2の電極引出し部44aに流れる電流を示したものである。上記の金属蒸着フィルムコンデンサは、前述の自己回復時の短絡電流により絶縁欠陥部周囲のヒューズ部を溶断して絶縁欠陥部を電気回路から切り離す自己保安機能を形成するものである。
【0005】
さらに近年では、前述の分割スリットを格子状に設け微細な分割電極に細分化してヒューズ部で並列接続した格子状分割電極も提唱されている。この構成では各分割電極の面積が小さくヒューズ溶断時の容量減少も小さくなるとともに、ヒューズ部の形状や各分割電極の面積を改良することにより、金属蒸着電極の絶縁回復性能も高めることができるため、さらに高電位傾度化すなわち誘電体フィルム1μmあたりの電圧を高めることが図れるとされている。
【0006】
そして10〜1000mmの面積からなる格子状分割電極と各分割電極間を接続する0.05〜1.5mm幅の第1ヒューズ部を有し、かつメタリコン電極と接する電極引き出し部に沿って伸びるスリットと前記スリットを区分する第2ヒューズ部が設けられ、第2ヒューズ部の幅を第1ヒューズ部に対し2〜20倍にした場合に直流での電位傾度130〜350V/μm、交流での電位傾度60〜120V/μmの金属化フィルムコンデンサが実現できると提唱されている(例えば、特許文献1)。
【0007】
【特許文献1】
特開平8ー250367号公報
【0008】
【発明が解決しようとする課題】
しかしながら、前述の自己保安機能を設けた金属化フィルムコンデンサは、自己保安機能の無い(ヒューズ部の無い)金属化フィルムコンデンサに比べて、通電時の電流による発熱が大きいという問題点があった。
【0009】
すなわち、単に一定の直流電圧が印加され続ける場合にはコンデンサには電流が流れないため発熱は生じないが、交流電流やリプル電流、充放電電流、サージ電流等が流れた場合には、コンデンサが著しく発熱してしまう。コンデンサの温度上昇が大きくなると、耐電圧や長期信頼性が低下すると言う問題点があった。
【0010】
特に、インバータの平滑用途のように、コンデンサに直流電圧をかけながら大きなリプル電流を通電する場合には、リプル電流による温度上昇のためにコンデンサの耐電圧が低下する課題があった。特に自動車用途に用いられた場合には、周囲温度が元々高いことから、大きな課題となっていた。そこで本発明は、上記従来の問題点に鑑み、通電時の温度上昇の少ない金属化フィルムコンデンサを提供することにある。
【0011】
【課題を解決するための手段】
本発明者等は、上記課題に関して詳細に研究を進めた結果、前述の課題は、ヒューズ部を有する第1の金属蒸着電極における、電極引出し部(以下第1の電極引出し部と言う)からヒューズ部へ電流が流れ込む際に、第1の電極引出し部自体が発熱してしまうために、コンデンサが大きく温度上昇したり、第1の電極引出し部が劣化して誘電損失(tanδ)が悪化したりすることを見出した。
【0012】
すなわち、第1の電極引出し部は、その端面全体でメタリコン電極から電流が流入するが、電流の流出部はヒューズ部しか無いために、第1の電極引出し部自体が、狭く長い電流経路となり、容易に発熱してしまう。なお、第2の金属蒸着電極の電極引出し部(以下第2の電極引出し部と言う)においても同様に端面全体でメタリコン電極から電流が流入するが、第2の金属蒸着電極にはスリットやヒューズが無いので、一様に電流が流れることから、発熱はほとんど生じない。
【0013】
そして、前記第1の電極引出し部の厚みを、前記第2の電極引出し部の厚みよりも厚く形成した場合には、電流による発熱を、自己保安機能の無いコンデンサとほぼ同等にまで低減できることを見出した。
【0014】
第1の電極引出し部の厚みは、第2の電極引出し部の厚みよりも厚くし、特に1.2倍以上(面抵抗値としては5/6倍以下)が望ましく、第1の電極引出し部の厚みを第2電極引出し部の厚みよりも1.5倍以上の厚み(面抵抗値としては2/3倍以下)にすることで、より一層大きな効果が得られることを究明し、これを課題解決の手段とした。
【0015】
【発明の実施の形態】
本発明の目的は、各請求項に記載の構成とすることによって達成できるのであるが、以下には具体的な本発明の実施の形態について、図面を用いて説明する。
【0016】
(実施の形態1)
図1は、本発明の実施の形態1の金属化フィルムコンデンサの要部断面図であり、図2は図1に用いた1対の金属化フィルムの鳥瞰図である。図1および図2において、第1の金属蒸着電極1および第2の金属蒸着電極2が誘電体フィルム3、4上にそれぞれ設けられ、両端面のメタリコン電極5、6を通じて電極が引き出されている。第1の金属蒸着電極1は、メタリコン電極5に沿って長手方向に伸びるスリット7により、第1の電極引出し部1aと電極容量形成部1bに区分され、スリット7内に局部的に設けられたヒューズ部8により電気的に接続されている。なお、第2の金属蒸着電極2は、第2の電極引出し部2aと電極容量形成部2bから形成されるが、これらを区分するスリットやヒューズ部は無く、電極引出し部2aと電極容量形成部2bは一様に電気的に接続されている。そして、第1の電極引出し部1aは第2の電極引出し部2aよりも厚く形成されている。この構成により、自己保安機能を有し、しかも発熱の少ない金属化フィルムコンデンサを実現できる。なお、図2に示す29は電極容量形成部21bを分割する分割スリットである。
【0017】
そして上記の実施の形態1において第1ならびに第2の金属蒸着電極1、2には、電極容量形成部1b、2bの金属蒸着膜の厚みを薄くし、メタリコン電極5、6に接する部分の金属蒸着膜を厚くしたり、電極容量形成部1b、2bの面抵抗値よりメタリコン電極5、6に接する部分の面抵抗値を低くしたりするヘビーエッジ部を構成することができる。
【0018】
(実施の形態2)
図3は、本発明の実施の形態2の金属化フィルムコンデンサの1対の金属化フィルムの鳥瞰図である。図3において、第1の金属蒸着電極21は、メタリコン電極22に沿って伸びるスリット23により、第1の電極引出し部21aと第1の電極容量形成部21bに区分され、スリット23内に局部的に設けられたヒューズ部24により電気的に接続されている。さらに、第1の電極容量形成部21bは、分割スリット25により格子状に分割され、分割スリット25内に局部的に設けられた第2のヒューズ部26により並列接続されている。なお、第2の金属蒸着電極27にはメタリコン電極28に沿うスリットやヒューズは無く、第2の電極引出し部27aと第2の電極容量形成部27bは一様に電気的に接続されている。そして、第1の電極引出し部21aは第2の電極引出し部27aよりも厚く形成されている。この構成により、自己保安機能を有し、かつ高電位傾度化が可能で、しかも発熱の少ない金属化フィルムコンデンサを実現できる。そして、実施の形態2においても実施の形態1と同様に第1ならびに第2の金属蒸着電極21、27には電極容量形成部21b、27bの金属蒸着膜の厚みを薄くし、メタリコン電極22、28に接する部分の金属蒸着膜を厚くしたり、電極容量形成部21b、27bの面抵抗値より、メタリコン電極22、28に接する部分の面抵抗値を低くしたりするヘビーエッジ部を構成することができる。
【0019】
なお、実施の形態2においても実施の形態1と同様に第1の金属蒸着電極21はマージン部29を除いて誘電体フィルム上に、また、第2の金属蒸着電極27はマージン部30を除いて上記の誘電体フィルムとは別の誘電体フィルム上に蒸着して形成されている。また第1の電極引出し部21aはメタリコン電極22に、第2の電極引出し部27aはメタリコン電極28にそれぞれ接続されている。また実施の形態2においてでも実施の形態1と同様に金属蒸着膜の厚みや面抵抗値において、電極容量形成部21b、27bの厚さをメタリコン電極22、28に接する部分より薄くしたり、メタリコン電極に接する部分の面抵抗値を電極容量形成部21b、27bの面抵抗値より低くするヘビーエッジ部をもつ構成とすることが可能である。
【0020】
(性能比較の例)
本発明の実施の形態1と2よりなる金属化フィルムコンデンサの性能について以下説明する。実施の形態1と2に使用する誘電体フィルムとしては、厚みが3.5μmで幅が70mmのポリプロピレンフィルムを用いて200μFの小判型コンデンサ素子を作製し、ポリブチレンテレフタレート製のケースにおさめてエポキシ樹脂でモールドした。また、ヒューズ部8は0.6mm幅とし、分割スリット9は0.3mm幅とした。比較のために、従来技術よりなるコンデンサも作製した。
【0021】
なお、金属蒸着電極の材質としては、第1と第2の電極容量形成部1b、2b、21b、27bはアルミニウムを用いて形成し、第1と第2の電極引出し部1a、2a、21a、27aは、アルミニウムの上にさらに亜鉛を蒸着した。また、電極引出し部1a、2a、21a、27aの厚みは、誘電体フィルム上に電極を蒸着する際に、亜鉛の蒸発源上に開口部を有する固定マスクを配置し、前記開口部の面積を調整することにより、所定の厚みを得た。
【0022】
このようにして作製した各コンデンサに、85℃において10kHzで実効値20Aの正弦波電流を180分間通電し、小判型素子表面の温度上昇値を測定した。なお、いずれのコンデンサにおいても180分後には温度上昇は飽和していた。
【0023】
得られた結果を表1の温度上昇値に示す。実施の形態1、2と従来例1、2の比較から、明らかに本発明よりなるコンデンサは従来例に比べて温度上昇が小さい。
【0024】
【表1】

Figure 2004186641
【0025】
次に各コンデンサに85℃で前記リプル電流を通電した状態で、700Vの直流電圧を印加し、1000時間後の容量変化率を測定した。結果を表1の容量変化率に示す。明らかに本発明の実施の形態1、2よりなるコンデンサは従来例のコンデンサに比べて高電圧下での容量減少が小さく、高電位傾度で使用できる。これは、従来例においてはリプル電流による発熱のために誘電体フィルムの耐圧が低下するために、多くの個所で局所短絡によるヒューズ部の溶断が発生したのに対し、本発明の実施の形態ではリプル電流による発熱が抑制されることからヒューズ部の溶断も少なくなったためである。
【0026】
なお、本発明の実施の形態2では、四角形状からなる分割電極を例として説明したが、本発明は四角形状の分割電極に限定するものではなく、他の形状、例えば菱形状や六角形状、三角形状の格子状分割電極においても同様の結果を得た。またヒューズ部の位置は前記四角形の各辺に設けたが、頂点に設けてもよい。
【0027】
さらに、誘電体フィルムとしてポリプロピレンフィルムを用いて説明したが、他のフィルム例えばポリエチレンテレフタレートやポリフェニレンサルファイド、ポリエチレンナフタレート等においても同様の結果を得た。また実施の形態1における誘電体フィルム3および4として、それぞれ2枚以上のフィルムを重ねても、同様の効果を得た。
【0028】
また蒸着する金属としてアルミニウム単独や亜鉛単独、あるいは亜鉛とアルミニウムの混合物を用いた場合にも同様の効果を得た。
【0029】
また、本発明の実施の形態1では第1の金属蒸着電極1と第2の金属蒸着電極2は別々のフィルム3、4上に設けたが、金属蒸着電極1と2は同じ誘電体フィルムの裏表に設け、未蒸着の誘電体フィルムと重ねて積層、巻回しても良い。
【0030】
また、本発明の実施の形態ではエポキシ樹脂でモールドした乾式小判型コンデンサの例を説明したが、絶縁油やワックスで含浸された湿式コンデンサでも同様の効果が得られる。またコンデンサの形状は丸型でもよい。
【0031】
さらに、電極容量形成部1b上に分割スリット9を設けて分割する場合の例を説明したが、金属化フィルムを積層してなる積層型コンデンサのように金属化フィルム1枚1枚が分離されている場合には、分割スリットは無くても良い。
【0032】
【発明の効果】
以上の説明から明らかなように、本発明によれば、メタリコン電極と接続する電極引出し部に沿って伸びる蒸着金属の無いスリットと、前記スリットを区分するヒューズ部を有する第1の金属蒸着電極と、前記スリットを有しない第2の金属蒸着電極とを備え、前記第1の金属蒸着電極の電極引出し部の厚みを、前記第2の金属蒸着電極の電極引出し部の厚みよりも厚くすることにより、自己保安機能を有し、しかも電流通電時に発熱が少ない良好な金属化フィルムコンデンサを実現することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における金属化フィルムコンデンサの断面図
【図2】本発明の実施の形態1における金属化フィルムの鳥瞰図
【図3】本発明の実施の形態2における金属化フィルムの鳥瞰図
【図4】従来技術における金属化フィルムコンデンサの断面図
【図5】従来技術における金属化フィルムの鳥瞰図
【符号の説明】
1、21 第1の金属蒸着電極
1a、21a 第1の電極引出し部
1b、27b 第1の電極容量形成部
2、27 第2の蒸着電極
2a、27a 第2の電極引出し部
3、4 誘電体フィルム
3a、4a マージン
5、6 メタリコン電極
7 スリット
8 ヒューズ部
9、25 分割スリット
24 第1のヒューズ部
26 第2のヒューズ部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metallized film capacitor used for electronic equipment, electric equipment and industrial equipment. More specifically, the present invention relates to a metallized film capacitor provided with a self-security function by forming a fuse portion on a metal deposition electrode.
[0002]
[Prior art]
In general, film capacitors are roughly classified into those using a metal foil as an electrode and those using a metal deposited on a dielectric film as an electrode. Among them, metallized film capacitors that use vapor-deposited metal as an electrode have a smaller volume and smaller weight compared to metal foil film capacitors, and have a self-healing performance unique to metal-deposited electrodes. In the case where a short circuit occurs, the deposition electrode around the defect is evaporated and scattered by the energy of the short circuit and becomes insulated, and the function of the capacitor recovers.) I have.
[0003]
The self-healing performance is better as the thickness of the metal-deposited electrode is smaller (because the metal-deposited electrode is scattered with less energy). The configuration of the heavy edge portion in which the thickness of the metal deposition electrode is reduced and the thickness of the portion connected to the metallikon electrode is increased is also widely used. With this heavy edge configuration, the withstand voltage of the capacitor can be increased, and a high potential gradient can be achieved.
[0004]
A conventional example of such a metallized film capacitor will be described below with reference to FIGS. 4 and 5, the first metal deposition electrode 41 is composed of a first electrode lead-out portion 41a and a first electrode capacitance forming portion 41b, and is formed on a dielectric film 42 except for a margin portion 43. Has been deposited. The second metal deposition electrode 44 includes a second electrode lead-out portion 44a and a second electrode capacitance forming portion 44b, and is deposited on the dielectric film 45 except for a margin portion. The first metal deposition electrode 41 is led out through a metallikon electrode 47 and the second metal deposition electrode 44 is pulled out through a metallikon electrode 48 on the opposite side. The first metal deposition electrode 41 is divided into a first electrode lead portion 41a and a first electrode capacitance forming portion 41b by a slit 49 extending along the metallikon electrode 47, and a fuse locally provided in the slit 49. They are electrically connected by the unit 50. Reference numeral 51 denotes a division slit for dividing the first electrode capacitance forming portion 41b. Each division electrode is connected in parallel by a fuse section 50 in the slit 49. On the other hand, the electrode of the second metal deposition electrode 44 is led out through the metallikon electrode 48, but there is no slit or fuse portion between the second electrode lead-out portion 44a and the second electrode capacitance forming portion 44b. Arrows indicated by 52 indicate currents flowing from the metallikon electrodes 47 and 48 to the first electrode lead-out part 41a and the second electrode lead-out part 44a, respectively. The above-described metal-deposited film capacitor forms a self-protection function of blowing the fuse portion around the insulation defect portion by the short-circuit current at the time of the self-recovery and separating the insulation defect portion from the electric circuit.
[0005]
Further, in recent years, a lattice-shaped divided electrode in which the above-mentioned divided slits are provided in a lattice shape and divided into fine divided electrodes and connected in parallel by a fuse portion has been proposed. In this configuration, the area of each divided electrode is small, the capacity decrease when the fuse is blown is small, and the insulation recovery performance of the metal deposition electrode can be improved by improving the shape of the fuse portion and the area of each divided electrode. It is stated that the potential gradient can be further increased, that is, the voltage per 1 μm of the dielectric film can be increased.
[0006]
It has a grid-shaped divided electrode having an area of 10 to 1000 mm 2 and a first fuse portion having a width of 0.05 to 1.5 mm connecting between the divided electrodes, and extends along an electrode lead portion in contact with the metallikon electrode. A second fuse portion for separating the slit and the slit is provided, and when the width of the second fuse portion is set to 2 to 20 times that of the first fuse portion, the potential gradient at DC is 130 to 350 V / μm and the gradient at AC is It has been proposed that a metallized film capacitor having a potential gradient of 60 to 120 V / μm can be realized (for example, Patent Document 1).
[0007]
[Patent Document 1]
JP-A-8-250367
[Problems to be solved by the invention]
However, the metallized film capacitor provided with the above-described self-security function has a problem in that heat generated by current when energized is greater than that of a metallized film capacitor without a self-security function (without a fuse portion).
[0009]
In other words, when a constant DC voltage is simply kept applied, no current flows through the capacitor and no heat is generated.However, when an AC current, a ripple current, a charge / discharge current, a surge current, or the like flows, the capacitor is not operated. It generates heat remarkably. When the temperature rise of the capacitor becomes large, there is a problem that the withstand voltage and the long-term reliability decrease.
[0010]
In particular, when a large ripple current is applied while a DC voltage is applied to a capacitor as in the case of smoothing an inverter, there has been a problem that the withstand voltage of the capacitor is reduced due to a rise in temperature due to the ripple current. In particular, when used for automobiles, the ambient temperature was originally high, so this was a major problem. The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a metallized film capacitor with a small rise in temperature during energization.
[0011]
[Means for Solving the Problems]
The present inventors have conducted detailed research on the above-mentioned problem, and as a result, the above-mentioned problem has been solved in that the first metal deposition electrode having the fuse portion has a fuse extending from an electrode lead portion (hereinafter, referred to as a first electrode lead portion). When current flows into the portion, the first electrode lead-out portion itself generates heat, so that the temperature of the capacitor rises significantly, or the first electrode lead-out portion deteriorates and the dielectric loss (tan δ) worsens. I found out.
[0012]
In other words, the first electrode lead-out portion has a current flowing in from the metallikon electrode over the entire end face, but the current outflow portion has only the fuse portion. Therefore, the first electrode lead-out portion itself becomes a narrow and long current path, It generates heat easily. Similarly, a current flows from the metallikon electrode over the entire end face also in the electrode lead-out portion of the second metal deposition electrode (hereinafter referred to as a second electrode lead-out portion). Since there is no current, the current flows uniformly, so that little heat is generated.
[0013]
When the thickness of the first electrode lead portion is formed to be thicker than the thickness of the second electrode lead portion, heat generated by current can be reduced to almost the same level as a capacitor having no self-protection function. I found it.
[0014]
The thickness of the first electrode lead-out portion is preferably larger than the thickness of the second electrode lead-out portion, and particularly preferably 1.2 times or more (5/6 times or less in sheet resistance). By making the thickness 1.5 times or more the thickness of the second electrode lead-out portion (2/3 times or less as the sheet resistance value), it was clarified that a greater effect could be obtained. It was a means of solving the problem.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The object of the present invention can be achieved by adopting the configuration described in each claim. Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
[0016]
(Embodiment 1)
FIG. 1 is a sectional view of a main part of a metallized film capacitor according to Embodiment 1 of the present invention, and FIG. 2 is a bird's-eye view of a pair of metallized films used in FIG. 1 and 2, a first metal deposition electrode 1 and a second metal deposition electrode 2 are provided on dielectric films 3 and 4, respectively, and the electrodes are drawn out through metallikon electrodes 5 and 6 on both end surfaces. . The first metal deposition electrode 1 is divided into a first electrode lead-out portion 1a and an electrode capacitance forming portion 1b by a slit 7 extending in the longitudinal direction along the metallikon electrode 5, and is provided locally in the slit 7. They are electrically connected by a fuse unit 8. The second metal deposition electrode 2 is formed of a second electrode lead-out portion 2a and an electrode capacitance forming portion 2b. However, there is no slit or fuse for separating these, and the electrode lead-out portion 2a and the electrode capacitance forming portion are not formed. 2b is electrically connected uniformly. And the 1st electrode lead-out part 1a is formed thicker than the 2nd electrode lead-out part 2a. With this configuration, it is possible to realize a metallized film capacitor having a self-security function and generating less heat. Incidentally, reference numeral 29 shown in FIG. 2 denotes a dividing slit for dividing the electrode capacity forming portion 21b.
[0017]
In the first embodiment, the first and second metal-deposited electrodes 1 and 2 are provided with a thin metal-deposited film of the electrode capacitance forming portions 1 b and 2 b, and the metal in the portions in contact with the metallikon electrodes 5 and 6 are formed. It is possible to form a heavy edge portion in which the thickness of the deposited film is increased or the sheet resistance value of the portion in contact with the metallikon electrodes 5, 6 is lower than the sheet resistance value of the electrode capacitance forming portions 1b, 2b.
[0018]
(Embodiment 2)
FIG. 3 is a bird's-eye view of a pair of metallized films of the metallized film capacitor according to Embodiment 2 of the present invention. In FIG. 3, the first metal deposition electrode 21 is divided into a first electrode lead portion 21 a and a first electrode capacitance forming portion 21 b by a slit 23 extending along the metallikon electrode 22, and a local portion is formed in the slit 23. Are electrically connected to each other by a fuse portion 24 provided at the first position. Further, the first electrode capacitance forming portion 21b is divided into a lattice by the dividing slit 25, and is connected in parallel by a second fuse portion 26 provided locally in the dividing slit 25. The second metal deposition electrode 27 has no slit or fuse along the metallikon electrode 28, and the second electrode lead-out portion 27a and the second electrode capacitance forming portion 27b are uniformly electrically connected. And the 1st electrode lead-out part 21a is formed thicker than the 2nd electrode lead-out part 27a. With this configuration, it is possible to realize a metallized film capacitor having a self-security function, capable of increasing the potential gradient, and generating less heat. Also, in the second embodiment, the thickness of the metal deposition film of the electrode capacitance forming portions 21b and 27b is reduced for the first and second metal deposition electrodes 21 and 27 as in the first embodiment. Forming a heavy edge portion that increases the thickness of the metal vapor-deposited film at the portion in contact with 28 and lowers the sheet resistance at the portion in contact with the metallikon electrodes 22 and 28 than the sheet resistance of the electrode capacitance forming portions 21b and 27b. Can be.
[0019]
In the second embodiment, as in the first embodiment, the first metal-deposited electrode 21 is formed on the dielectric film except for the margin 29, and the second metal-deposited electrode 27 is formed on the dielectric film except for the margin 30. It is formed by vapor deposition on a dielectric film different from the above dielectric film. The first electrode lead-out portion 21a is connected to the metallikon electrode 22, and the second electrode lead-out portion 27a is connected to the metallikon electrode 28. Also, in the second embodiment, as in the first embodiment, in the thickness and the sheet resistance of the metal deposition film, the thickness of the electrode capacitance forming portions 21b and 27b is made thinner than the portions in contact with the metallikon electrodes 22 and 28, It is possible to adopt a configuration having a heavy edge portion in which the sheet resistance of the portion in contact with the electrode is lower than the sheet resistance of the electrode capacitance forming portions 21b and 27b.
[0020]
(Example of performance comparison)
The performance of the metallized film capacitor according to Embodiments 1 and 2 of the present invention will be described below. As a dielectric film used in the first and second embodiments, a 200 μF small-sized capacitor element was manufactured using a 3.5 μm thick and 70 mm wide polypropylene film, and was placed in a polybutylene terephthalate case to obtain an epoxy film. Molded with resin. The width of the fuse portion 8 was 0.6 mm, and the width of the split slit 9 was 0.3 mm. For comparison, a capacitor according to the related art was also manufactured.
[0021]
As the material of the metal deposition electrode, the first and second electrode capacitance forming portions 1b, 2b, 21b, 27b are formed using aluminum, and the first and second electrode lead portions 1a, 2a, 21a, In 27a, zinc was further evaporated on aluminum. The thickness of each of the electrode lead portions 1a, 2a, 21a, and 27a is set such that when depositing an electrode on a dielectric film, a fixed mask having an opening is disposed on a zinc evaporation source, and the area of the opening is reduced. By adjusting, a predetermined thickness was obtained.
[0022]
A sine wave current having an effective value of 20 A at 85 ° C. and a frequency of 20 A was applied to each capacitor for 180 minutes at 85 ° C., and the temperature rise of the surface of the oval element was measured. The temperature rise was saturated in all the capacitors after 180 minutes.
[0023]
The obtained results are shown in the temperature rise values in Table 1. From a comparison between the first and second embodiments and the conventional examples 1 and 2, the capacitor according to the present invention clearly has a smaller temperature rise than the conventional example.
[0024]
[Table 1]
Figure 2004186641
[0025]
Next, a DC voltage of 700 V was applied in a state where the ripple current was applied to each capacitor at 85 ° C., and the capacitance change rate after 1000 hours was measured. The results are shown in the capacity change rate in Table 1. Obviously, the capacitors according to the first and second embodiments of the present invention have a smaller capacity reduction under a high voltage than the conventional capacitors, and can be used with a high potential gradient. This is because, in the conventional example, since the withstand voltage of the dielectric film is reduced due to heat generation due to the ripple current, the fuse portion is blown due to a local short circuit in many places, whereas in the embodiment of the present invention. This is because the heat generated by the ripple current is suppressed, so that the fusing of the fuse portion is reduced.
[0026]
In the second embodiment of the present invention, a quadrangular divided electrode has been described as an example.However, the present invention is not limited to a quadrangular divided electrode, and other shapes, such as a rhombic shape and a hexagonal shape, may be used. Similar results were obtained with a triangular grid-shaped divided electrode. Further, although the position of the fuse portion is provided on each side of the square, it may be provided at the vertex.
[0027]
Furthermore, although the description has been made using a polypropylene film as the dielectric film, similar results were obtained with other films such as polyethylene terephthalate, polyphenylene sulfide, and polyethylene naphthalate. Similar effects were obtained even when two or more films were stacked as dielectric films 3 and 4 in the first embodiment.
[0028]
Similar effects were obtained when aluminum alone, zinc alone, or a mixture of zinc and aluminum was used as the metal to be deposited.
[0029]
Further, in Embodiment 1 of the present invention, the first metal deposition electrode 1 and the second metal deposition electrode 2 are provided on separate films 3 and 4, but the metal deposition electrodes 1 and 2 are formed of the same dielectric film. It may be provided on the front and back, and may be laminated and wound on an undeposited dielectric film.
[0030]
In the embodiment of the present invention, an example of a dry type oval type capacitor molded with epoxy resin has been described. However, the same effect can be obtained with a wet type capacitor impregnated with insulating oil or wax. The shape of the capacitor may be round.
[0031]
Furthermore, an example in which the dividing slit 9 is provided on the electrode capacitance forming portion 1b to divide the electrode capacitor forming portion 1b has been described. However, as in the case of a multilayer capacitor in which metallized films are laminated, each metallized film is separated. If there is, there is no need to provide a split slit.
[0032]
【The invention's effect】
As is apparent from the above description, according to the present invention, a metal-free metal-equipped slit extending along an electrode lead portion connected to a metallikon electrode, and a first metal-deposited electrode having a fuse portion for dividing the slit are provided. A second metal vapor deposition electrode having no slit, by making the thickness of the electrode lead portion of the first metal vapor deposition electrode larger than the thickness of the electrode lead portion of the second metal vapor deposition electrode. A good metallized film capacitor having a self-protection function and generating less heat when current is supplied can be realized.
[Brief description of the drawings]
1 is a cross-sectional view of a metallized film capacitor according to a first embodiment of the present invention; FIG. 2 is a bird's-eye view of a metallized film according to a first embodiment of the present invention; Bird's-eye view of the film [Fig. 4] Cross-sectional view of a metallized film capacitor in the prior art [Fig. 5] Bird's-eye view of the metallized film in the prior art [Explanation of reference numerals]
Reference numerals 1, 21 First metal deposition electrodes 1a, 21a First electrode lead portions 1b, 27b First electrode capacitance forming portions 2, 27 Second deposition electrodes 2a, 27a Second electrode lead portions 3, 4, dielectric Films 3a, 4a Margins 5, 6 Metallicon electrode 7 Slit 8 Fuse section 9, 25 Split slit 24 First fuse section 26 Second fuse section

Claims (7)

別々の誘電体フィルムまたは同じ誘電体フィルムの表裏両面の片側端部に設けられるマージン部を除いて金属蒸着した金属化フィルムを、それぞれのマージン部が反対側に位置するように巻回または積層し、両端にメタリコン電極を形成した金属化フィルムコンデンサであって、前記金属化フィルムは、片側端部のメタリコン電極と接続する電極引出し部と、電極容量形成部とから構成される金属蒸着面を備えており、一方の金属蒸着面には電極引出し部に沿って伸びる蒸着金属の無いスリットと、前記スリットを局部的に横ぎって区分し、前記電極引出し部に電極容量形成部を接続するヒューズ部を有する第1の金属蒸着電極と、他方の金属蒸着面はスリットを有しないで電極引出し部と電極容量形成部とが連続して一様に形成される第2の金属蒸着電極とを具備し、前記第1の金属蒸着電極の電極引出し部の厚みを、前記第2の金属蒸着電極の電極引出し部の厚みよりも厚く構成したことを特徴とする金属化フィルムコンデンサ。Winding or laminating metalized films that have been metallized except for the margins provided on one side of the front and back surfaces of separate dielectric films or the same dielectric film so that each margin is located on the opposite side A metallized film capacitor having metallikon electrodes formed at both ends, wherein the metallized film includes a metal deposition surface formed of an electrode lead-out portion connected to the metallikon electrode at one end and an electrode capacitance forming portion. A metal-free metal-deposited surface, a slit having no metal deposited extending along the electrode lead-out portion, and a fuse portion which divides the slit locally across the slit and connects an electrode capacitance forming portion to the electrode lead-out portion. And a second metal deposition surface having no slit, and a second metal deposition surface having no slit and having an electrode lead portion and an electrode capacitance formation portion continuously and uniformly formed. A metallized film capacitor comprising: a metal deposition electrode; and wherein the thickness of the electrode lead portion of the first metal deposition electrode is larger than the thickness of the electrode lead portion of the second metal deposition electrode. . 別々の誘電体フィルムまたは同じ誘電体フィルムの表裏両面の片側端部に設けられるマージン部を除いて金属蒸着した金属化フィルムを、それぞれのマージン部が反対側に位置するように巻回または積層し、両端にメタリコン電極を形成した金属化フィルムコンデンサであって、前記金属化フィルムは、片側端部のメタリコン電極と接続する電極引出し部と、電極容量形成部とから構成される金属蒸着面を備えており、一方の金属蒸着面には電極引出し部に沿って伸びる蒸着金属の無いスリットと、前記スリットを局部的に横ぎって区分し、前記電極引出し部に電極容量形成部を接続するヒューズ部を有する第1の金属蒸着電極と、他方の金属蒸着面はスリットを有しないで電極引出し部と電極容量形成部とが連続して一様に形成される第2の金属蒸着電極とを具備し、前記第1の金属蒸着電極の電極引出し部の面抵抗値を、前記第2の金属蒸着電極の電極引出し部の面抵抗値よりも低く設定したことを特徴とする金属化フィルムコンデンサ。Winding or laminating metalized films that have been metallized except for the margins provided on one side of the front and back surfaces of separate dielectric films or the same dielectric film so that each margin is located on the opposite side A metallized film capacitor having metallikon electrodes formed at both ends, wherein the metallized film includes a metal deposition surface formed of an electrode lead-out portion connected to the metallikon electrode at one end and an electrode capacitance forming portion. A metal-free metal-deposited surface, a slit having no metal deposited extending along the electrode lead-out portion, and a fuse portion which divides the slit locally across the slit and connects an electrode capacitance forming portion to the electrode lead-out portion. And a second metal deposition surface having no slit, and a second metal deposition surface having no slit and having an electrode lead portion and an electrode capacitance formation portion continuously and uniformly formed. A metal deposition electrode, wherein the sheet resistance value of the electrode lead portion of the first metal deposition electrode is set lower than the sheet resistance value of the electrode lead portion of the second metal deposition electrode. Metallized film capacitors. 前記第1および第2の金属蒸着電極は、前記電極引出し部が金属蒸着膜厚において前記電極容量形成部の金属蒸着膜厚よりも厚いヘビーエッジ部をなす構成であり、前記第1の金属蒸着電極のヘビーエッジ部の厚みは、前記第2の金属蒸着電極のヘビーエッジ部の厚みよりも厚く構成したことを特徴とする請求項1または2記載の金属化フィルムコンデンサ。The first and second metal vapor deposition electrodes are configured such that the electrode lead-out portion forms a heavy edge portion in the metal vapor deposition film thickness that is thicker than the metal vapor deposition film thickness of the electrode capacitance forming portion. 3. The metallized film capacitor according to claim 1, wherein the thickness of the heavy edge portion of the electrode is larger than the thickness of the heavy edge portion of the second metal deposition electrode. 前記第1および第2の金属蒸着電極は、前記電極引出し部が面抵抗値において前記電極容量形成部の面抵抗値よりも低いヘビーエッジ部をなす構成であり、前記第1の金属蒸着電極のヘビーエッジ部の面抵抗値は、前記第2の金属蒸着電極のヘビーエッジ部の面抵抗値よりも低く設定したことを特徴とする請求項1または2記載の金属化フィルムコンデンサ。The first and second metal-deposited electrodes are configured such that the electrode lead-out portion forms a heavy edge portion that is lower in sheet resistance than the electrode-capacitance forming portion in sheet resistance. The metallized film capacitor according to claim 1, wherein a sheet resistance value of the heavy edge portion is set lower than a sheet resistance value of the heavy edge portion of the second metal deposition electrode. 前記第1の金属蒸着電極が、有効電極部である電極容量形成部を分割する分割スリットと前記分割スリット内に局部的に設けられたヒューズ部とを備えたことを特徴とする請求項1ないし4のいずれかに記載の金属化フィルムコンデンサ。The first metal-deposited electrode includes a division slit for dividing an electrode capacitance forming portion, which is an effective electrode portion, and a fuse portion locally provided in the division slit. 5. The metallized film capacitor according to any one of 4. 前記第1の金属蒸着電極が、有効電極部である電極容量形成部を格子状に分割する分割スリットと、前記分割スリット内に局部的に設けられたヒューズ部とを備えたことを特徴とする請求項5記載の金属化フィルムコンデンサ。The first metal-deposited electrode includes a division slit for dividing an electrode capacitance forming portion, which is an effective electrode portion, into a grid, and a fuse portion locally provided in the division slit. A metallized film capacitor according to claim 5. 別々の誘電体フィルムまたは同じ誘電体フィルムの表裏両面に、誘電体フィルムの幅方向の片側端部に設けられるマージン部を除いて、前記誘電体フィルム上に付着する蒸発金属量を、開口部を有する固定マスクを用いて蒸着した金属化フィルムを、前記マージン部が前記金属化フィルムの幅方向で反対側になるように巻回または積層し、前記金属化フィルムの幅方向の両端にメタリコン電極を形成した金属化フィルムコンデンサを製造する金属化フィルムコンデンサの製造方法であって、前記金属化フィルムは、ヒューズ部を有する分割電極を備えた第1の金属蒸着電極と、マージン部を除いて一様に金属蒸着して分割電極のない第2の金属蒸着電極とを有し、前記第1および第2の金属蒸着電極はともに、前記メタリコン電極に近い側に前記メタリコン電極と接続する金属蒸着膜厚の厚いヘビーエッジ部をなす構成であり、前記第1の金属蒸着電極のヘビーエッジ部の厚みは、前記第2の金属蒸着電極のヘビーエッジ部の厚みより厚くなるように金属蒸着させて製造することを特徴とする金属化フィルムコンデンサの製造方法。Except for a margin portion provided at one end in the width direction of the dielectric film on both front and back surfaces of a separate dielectric film or the same dielectric film, the amount of evaporated metal adhering on the dielectric film is determined by an opening. A metallized film deposited using a fixed mask having, wound or laminated such that the margin part is on the opposite side in the width direction of the metallized film, and metallikon electrodes at both ends in the width direction of the metallized film. A method of manufacturing a metallized film capacitor for manufacturing a formed metallized film capacitor, wherein the metallized film is uniform except for a first metal deposition electrode having a split electrode having a fuse portion and a margin portion. And a second metal-deposited electrode without a split electrode, wherein both the first and second metal-deposited electrodes are on the side closer to the metallikon electrode. It is configured to form a heavy edge portion having a large metal deposition thickness connected to the metallicon electrode, and the thickness of the heavy edge portion of the first metal deposition electrode is larger than the thickness of the heavy edge portion of the second metal deposition electrode. A method for producing a metallized film capacitor, characterized in that it is produced by depositing a metal so as to be thick.
JP2002355139A 2002-12-06 2002-12-06 Metallized film capacitor and manufacturing method thereof Pending JP2004186641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355139A JP2004186641A (en) 2002-12-06 2002-12-06 Metallized film capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355139A JP2004186641A (en) 2002-12-06 2002-12-06 Metallized film capacitor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2004186641A true JP2004186641A (en) 2004-07-02

Family

ID=32755914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355139A Pending JP2004186641A (en) 2002-12-06 2002-12-06 Metallized film capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2004186641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299865A (en) * 2006-04-28 2007-11-15 Nichicon Corp Metallized film capacitors
EP2458602A4 (en) * 2009-11-04 2015-08-05 Panasonic Ip Man Co Ltd METALLIC FILM CAPACITOR AND MOLDED HOUSING TYPE CAPACITOR COMPRISING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299865A (en) * 2006-04-28 2007-11-15 Nichicon Corp Metallized film capacitors
EP2458602A4 (en) * 2009-11-04 2015-08-05 Panasonic Ip Man Co Ltd METALLIC FILM CAPACITOR AND MOLDED HOUSING TYPE CAPACITOR COMPRISING THE SAME
US9240279B2 (en) 2009-11-04 2016-01-19 Panasonic Intellectual Property Management Co., Ltd. Metallized film capacitor and case mold type capacitor including same

Similar Documents

Publication Publication Date Title
JP3914854B2 (en) Metalized film capacitor, inverter smoothing capacitor and automotive capacitor using the same
WO2006109732A1 (en) Metalized film capacitor, case module type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit
WO2008026526A1 (en) Metallization film capacitor
CN111213217B (en) Film capacitors, junction capacitors, inverters using the same, and electric vehicles
JP3870932B2 (en) Metallized film capacitors
CN101473390A (en) Film capacitor
JP3870875B2 (en) Deposition film, film capacitor using the film, and inverter device using the capacitor
JPWO2020084823A1 (en) Film capacitors, articulated capacitors, inverters and electric vehicles using them
JP2004363431A (en) Metallized film capacitors
JP2013219094A (en) Metalization film capacitor
JP4366930B2 (en) Metallized film capacitors
JPH08288171A (en) Metallized film capacitors
JP4770935B2 (en) Metallized film capacitors
JP2004186641A (en) Metallized film capacitor and manufacturing method thereof
CN102084444A (en) Film foil self healing inductive type capacitor
JP2004095604A (en) Metallized film capacitors
JP4487817B2 (en) Metallized film capacitors
JP3935561B2 (en) Metallized film capacitors
JP2006286988A (en) Metallization film capacitor
JP2007103534A (en) Metallization film capacitor
CN113628880A (en) Internal series self-healing metallized film and capacitor
JP2920240B2 (en) Metallized film capacitors
JP4267257B2 (en) Metallized film capacitors
JP2009239175A (en) Film capacitor
JPH03234010A (en) Metallized film capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051201

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20060112

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616