JP2004181425A - Selective oxidation catalyst for carbon monoxide in reformed gas - Google Patents
Selective oxidation catalyst for carbon monoxide in reformed gas Download PDFInfo
- Publication number
- JP2004181425A JP2004181425A JP2002354504A JP2002354504A JP2004181425A JP 2004181425 A JP2004181425 A JP 2004181425A JP 2002354504 A JP2002354504 A JP 2002354504A JP 2002354504 A JP2002354504 A JP 2002354504A JP 2004181425 A JP2004181425 A JP 2004181425A
- Authority
- JP
- Japan
- Prior art keywords
- carbon monoxide
- selective oxidation
- reformed gas
- present
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
【課題】改質ガス中の一酸化炭素を選択的に酸化して低減し、良好な燃料利用効率や発電効率を実現し得る一酸化炭素選択酸化触媒を提供すること。
【解決手段】改質ガス中の一酸化炭素を酸素ガスによって選択的に酸化する触媒である。ルテニウムや白金を、αアルミナを含有するアルミナ担体に担持して成る。このアルミナ担体のα化率が10〜85%である。ルテニウムや白金を0.01〜2%の割合で含有する。
この選択酸化触媒を用いることにより、改質ガス中に1vol%程度存在する一酸化炭素を過剰量の酸素の存在下で反応させれば、一酸化炭素濃度を100ppm以下に低減することができる。
【選択図】 なしAn object of the present invention is to provide a carbon monoxide selective oxidation catalyst capable of selectively oxidizing and reducing carbon monoxide in a reformed gas and realizing good fuel use efficiency and power generation efficiency.
The catalyst selectively oxidizes carbon monoxide in a reformed gas with oxygen gas. Ruthenium or platinum is supported on an alumina support containing α-alumina. The pregelatinized ratio of this alumina carrier is 10 to 85%. Ruthenium and platinum are contained at a ratio of 0.01 to 2%.
By using this selective oxidation catalyst, the carbon monoxide concentration can be reduced to 100 ppm or less by reacting carbon monoxide present in the reformed gas at about 1 vol% in the presence of an excessive amount of oxygen.
[Selection diagram] None
Description
【0001】
【発明の属する技術分野】
本発明は、改質ガス中の一酸化炭素を選択的に酸化する触媒に係り、更に詳細には、低温で作動する燃料電池、特に固体高分子型燃料電池に用いられる改質ガス中の一酸化炭素を選択酸化する触媒に関する。
本発明の触媒によれば、改質ガス中の一酸化炭素が選択的に酸化されるので、かかる燃料電池を低温においても効果的に作動させることができる。
【0002】
【従来の技術】
従来、燃料電池用の燃料ガスとしては、コスト面を考慮して、メタンやプロパンなどの天然ガスの炭化水素、メタノール等のアルコール又はナフサ等を水蒸気改質して得られる改質ガスが広く用いられている。かかる改質ガスには、水素や二酸化炭素など以外にも一酸化炭素が含まれており、シフト反応で処理した後であっても、約1容量%の一酸化炭素が含まれていることが知られている。
【0003】
かかる副生一酸化炭素は、溶融炭酸塩型などの高温作動型燃料電池では、燃料としても利用されるが、燐酸型や固体高分子型の低温作動型燃料電池では、電極触媒である白金系触媒に対して触媒毒作用を呈し、特に燐酸型燃料電池よりも低温で運転される固体高分子型燃料電池においては、改質ガス中に共存する一酸化炭素による触媒被毒が著しく、発電効率の低下という問題が生じた。
そして、このような問題に対し、従来は、種々の白金族金属を各種アルミナ担体に担持したアルミナ触媒が提案されていた(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平5−201702号公報
【0005】
【発明が解決しようとする課題】
しかしながら、かかる白金族金属を用いたアルミナ触媒にあっては、酸素による酸化反応の選択性や活性が低いため、改質ガスの主成分であり燃料ガスとなる水素が同時に酸化浪費されてしまい、燃料利用効率の低下を引き起こすという問題点があった。
また、固体高分子型燃料電池においては、改質ガスを用いながら要求される発電効率を得るには、共存する一酸化炭素を当初の約1vol%からその1/100程度以下に低減した後に供給する必要があるが、上記従来の白金−アルミナ系触媒では、一酸化炭素の酸化低減が十分でなく、残留する一酸化炭素により発電効率の劣化を招いていた。
【0006】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、改質ガス中の一酸化炭素を選択的に酸化して低減し、良好な燃料利用効率や発電効率を実現し得る一酸化炭素選択酸化触媒を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、アルミナ担体中のαアルミナの存在量を適切に制御することにより、優れた一酸化炭素の選択的酸化が実現できることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明の一酸化炭素選択酸化触媒は、改質ガス中の一酸化炭素を酸素ガスによって選択的に酸化する触媒であって、
ルテニウム及び/又は白金をαアルミナを含有するアルミナ担体に担持して成り、且つこのアルミナ担体のα化率が10〜85%であることを特徴とする。
【0009】
また、本発明の一酸化炭素選択酸化触媒の好適形態は、ルテニウム及び/又は白金を0.01〜2%の割合で含有することを特徴とする。
【0010】
【作用】
本発明の選択酸化触媒が、一酸化炭素(CO)の優れた選択酸化性を発揮する理由の詳細は必ずしも明らかではないが、現時点では以下のように推察される。即ち、本発明では、αアルミナを含有する担体を用いることにより、触媒金属であるルテニウム(Ru)と白金(Pt)が該担体の最表面近傍に存在するようにした。
このように、触媒金属を担体表面に局在化させることによって、COの酸化が起こる温度を低温側にシフトさせることができ、他の反応に対する選択性を向上でき、これにより、反応後の改質ガス中のCO濃度を低減させ、且つ水素の消費を防ぐことができるものと思われる。
【0011】
一般に、ガス中に水蒸気が混入することにより水蒸気吸着が起こり、COの酸化が起こる温度が高温側にシフトされるが、αアルミナを用いることにより、その吸着による反応温度の高温側へのシフトを回避できる。この結果、CO酸化の選択性を向上させることができ、反応後の改質ガス中のCO濃度を低減させ、水素の消費を防ぐことができるものと考えられる。
【0012】
また、本発明においては、上述のように有用なαアルミナの担体中での存在比を後述するα化率により制御した。
【0013】
【発明の実施の形態】
以下、本発明の一酸化炭素選択酸化触媒について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示すものとする。
上述の如く、本発明の一酸化炭素選択酸化触媒は、改質ガス中のCOを酸素ガスによって選択的に酸化する触媒である。
ここで、改質ガスとは、一般にメタンやプロパン等の炭化水素、メタノール等のアルコール又はナフサ等を水蒸気改質して得られるガスをいい、代表的に、メタノール改質ガスは水素ガスを主成分とし、二酸化炭素(CO2)、メタン(CH4)、水(H2O)及びCOを含む。
なお、本発明の適用対象として効果的なものは、これらのうちでもシフト反応後の改質ガスであって、CO濃度が1vol%程度のものである。
【0014】
次に、酸素ガスは、COとの反応当量よりも過剰に存在すれば特に限定されるものではないが、代表的には、COとの反応当量の1.1〜5倍の酸素を存在させることが好ましい。
1.1倍未満では、酸化されないCOが残留し、5倍を超えると、水素の消費量が増大することがあり、好ましくない。
【0015】
また、本発明の選択酸化触媒は、RuとPtを0.01〜2%の割合で含有することが好ましい。即ち、RuとPtの混合物の担持量は、得られる触媒全体の0.01〜2%とすることが好ましく、望ましくは0.02〜0.5%とすることがよい。
上記混合物の担持量が0.02%未満では、COの酸化活性が十分でないことがあり、0.5%を超えると、Ru、Ptが有効に利用されないことがある。
【0016】
更に、本発明の選択酸化触媒では、担持されているRu及びPtの少なくとも一方の粒子径が200Å以下、望ましくは5〜200Åであることが好ましい。粒子径が200Åを超えると、COの酸化活性が十分でなくなることがあり、好ましくない。
【0017】
また、本発明の選択酸化触媒ではアルミナ担体を用いるが、このアルミナ担体は、αアルミナを含有し、そのα化率が10〜85%であることを要する。
ここで、「α化率」とは、加熱によりγアルミナがαアルミナに相転位する際に、X線回折パターンに現れるαアルミナ固有のピーク((113)面に相当)の相対ピーク強度を意味しており、α転位が完結したときのピーク強度をα化率100%として表したものである。
このα化率が上述の範囲を逸脱すると、意図するCO低減効果が得られない。
【0018】
また、上述のアルミナ担体としては、Ru、Pt、Ru−Pt混合物を当該担体外表面から100μm以内、好ましくは20μm以内に存在させることができることが好ましいが、その形状は特に限定されるものではない。
Ru等を担体外表面から100μm以内に担持できない場合は、触媒表面のRu濃度が薄くなり、所期の効果が得られないことがある。
【0019】
本発明の選択酸化触媒において、γアルミナは、1000℃以上の温度で保持すればαアルミナに転移するが、その温度に保つと触媒金属であるRuやPtがシンタリングを起こし、十分な活性が得られなくなるので、本発明の触媒に単独で用いるのには適していない。但し、触媒活性種であるRu、Ptなどを担持する前にγ,θ,ηなどのアルミナを熱処理し、上記α化率を尺度にしてαアルミナに相転換させた後に担体して用いることは可能である。
【0020】
また、本発明の選択酸化触媒は、粒状やペレット状とすることが可能で、更には、ハニカム状の支持体を用いることが可能であり、例えば、コージェライト製や金属製などのハニカム状の一体構造型支持体にコートして用いることも可能である。
【0021】
本発明の選択酸化触媒は、上述のような構成を有し、優れたCO選択酸化性を有するが、代表的には、改質ガス中に共存する1vol%程度のCOを100ppm程度に酸化除去する。
なお、使用条件も特に限定されるものではないが、空間速度(SV)を30,000h−1以下、触媒温度を100〜200℃とすれば、顕著な効果が得られる。
【0022】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0023】
[性能評価]
以下の実施例及び比較例において、得られた触媒の性能は下記の手法で評価した。
【0024】
(CO選択酸化性能)
・評価装置:固定床流通型
・模擬ガス組成
CO : 1vol%
CO2:22vol%
CH4: 3vol%
H2:74vol%
・模擬ガス流量:830ml/min
・空気流量:108ml/min
・H2O流量:0.43ml/min
・O2/CO比:1〜3で変化させた。
・触媒使用量:1.67ml
・反応温度:110〜210℃(20℃刻み)
【0025】
(実施例1)
平均粒径が2mm程度のγアルミナを空気中1100℃で3時間加熱した後、Ruを約2%担持させて本例の選択酸化触媒を得た。この選択酸化触媒をX線回折分析したところ、α化率は16%であった。
この選択酸化触媒を上記性能評価に供し、得られた結果を図1に示す。なお、図1中、右辺の「110」等の数値と記号は反応温度を示している。
【0026】
(実施例2)
平均粒径が2mm程度のγアルミナを空気中1100℃で6時間加熱した後、Ruを約2%担持させて本例の選択酸化触媒を得た。この選択酸化触媒をX線回折分析したところ、α化率は80%であった。
この選択酸化触媒を上記性能評価に供し、得られた結果を図2に示す。なお、図2中、右辺の「110」等の数値と記号は反応温度を示している。
【0027】
(比較例1)
加熱時間を0時間とした以外は、実施例1と同様操作を繰り返し、本例の触媒を得た。なお、α化率は0%であった。
上記同様の性能評価に供し、得られた結果を図3に示す。
【0028】
(比較例2)
加熱時間を24時間とした以外は、実施例1と同様操作を繰り返し、本例の触媒を得た。なお、α化率は100%であった。
上記同様の性能評価に供し、得られた結果を図4に示す。
【0029】
図1〜図4から、本発明の範囲に属する実施例1及び2の選択酸化触媒が、比較例1,2の酸化触媒に比較して高い選択酸化活性を示すことが分かる。
【0030】
以上、本発明を好適実施例により詳細に説明したが、本発明はこれら実施例に限定されるものではなく、本発明の開示の範囲内において種々の変形実施が可能である。
例えば、本発明の選択酸化触媒の用途は、固体高分子型燃料電池に供給される改質ガスに限定されるものではなく、他の改質ガス中のCOの低減にも利用可能であり、高純度水素ガスを必要とするアンモニアの合成などの各種プロセスにも適用可能である。
【0031】
【発明の効果】
以上説明してきたように、本発明によれば、アルミナ担体中のαアルミナの存在量を適切に制御することとしたため、改質ガス中の一酸化炭素を選択的に酸化して低減し、良好な燃料利用効率や発電効率を実現し得る一酸化炭素選択酸化触媒を提供することができる。
例えば、本発明の触媒を用いることにより、改質ガス中に1vol%程度存在する一酸化炭素を過剰量の酸素の存在下150℃程度で反応させれば、一酸化炭素濃度を100ppm以下に低減することができる。
【図面の簡単な説明】
【図1】実施例1のCO選択酸化触媒の触媒性能を示すグラフである。
【図2】実施例2のCO選択酸化触媒の触媒性能を示すグラフである。
【図3】比較例1のCO選択酸化触媒の触媒性能を示すグラフである。
【図4】比較例2のCO選択酸化触媒の触媒性能を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst for selectively oxidizing carbon monoxide in a reformed gas, and more particularly, to a catalyst in a reformed gas used for a fuel cell operating at a low temperature, particularly a polymer electrolyte fuel cell. The present invention relates to a catalyst for selectively oxidizing carbon oxide.
According to the catalyst of the present invention, carbon monoxide in the reformed gas is selectively oxidized, so that such a fuel cell can be effectively operated even at a low temperature.
[0002]
[Prior art]
Conventionally, as a fuel gas for a fuel cell, a reformed gas obtained by steam reforming a hydrocarbon of natural gas such as methane or propane, an alcohol such as methanol or naphtha, etc. is widely used in consideration of cost. Have been. Such a reformed gas contains carbon monoxide in addition to hydrogen and carbon dioxide, and even after being subjected to the shift reaction, it may contain about 1% by volume of carbon monoxide. Are known.
[0003]
Such by-produced carbon monoxide is also used as a fuel in a high-temperature operation type fuel cell such as a molten carbonate type, but in a phosphoric acid type or solid polymer type low temperature operation type fuel cell, a platinum-based electrode catalyst is used. It exhibits catalytic poisoning effect on the catalyst, especially in polymer electrolyte fuel cells that operate at lower temperatures than phosphoric acid fuel cells, and the poisoning of the catalyst by the carbon monoxide coexisting in the reformed gas is remarkable, resulting in power generation efficiency. The problem of the decrease in the temperature has arisen.
To cope with such a problem, conventionally, an alumina catalyst in which various platinum group metals are supported on various alumina carriers has been proposed (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-5-201702
[Problems to be solved by the invention]
However, in such an alumina catalyst using a platinum group metal, since the selectivity and activity of the oxidation reaction by oxygen are low, hydrogen which is a main component of the reformed gas and becomes a fuel gas is oxidized and wasted at the same time. There is a problem that fuel efficiency is reduced.
In the case of a polymer electrolyte fuel cell, in order to obtain the required power generation efficiency while using a reformed gas, the coexisting carbon monoxide is reduced from about 1 vol% at the beginning to about 1/100 or less thereof, and then supplied. However, in the conventional platinum-alumina-based catalyst, the reduction of carbon monoxide oxidation is not sufficient, and the remaining carbon monoxide causes deterioration of power generation efficiency.
[0006]
The present invention has been made in view of such problems of the related art, and an object of the present invention is to selectively oxidize and reduce carbon monoxide in a reformed gas to achieve good fuel utilization. An object of the present invention is to provide a carbon monoxide selective oxidation catalyst capable of realizing efficiency and power generation efficiency.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that by appropriately controlling the amount of α-alumina in an alumina carrier, excellent selective oxidation of carbon monoxide can be realized. Thus, the present invention has been completed.
[0008]
That is, the carbon monoxide selective oxidation catalyst of the present invention is a catalyst that selectively oxidizes carbon monoxide in the reformed gas with oxygen gas,
It is characterized in that ruthenium and / or platinum are supported on an alumina carrier containing α-alumina, and the alumina carrier has an α conversion of 10 to 85%.
[0009]
Further, a preferred embodiment of the carbon monoxide selective oxidation catalyst of the present invention is characterized in that it contains ruthenium and / or platinum at a ratio of 0.01 to 2%.
[0010]
[Action]
The details of the reason why the selective oxidation catalyst of the present invention exhibits excellent selective oxidation property of carbon monoxide (CO) are not necessarily clear, but at the present time, it is presumed as follows. That is, in the present invention, by using a carrier containing α-alumina, ruthenium (Ru) and platinum (Pt) as catalyst metals are present near the outermost surface of the carrier.
Thus, by localizing the catalytic metal on the surface of the support, the temperature at which CO oxidation occurs can be shifted to a lower temperature side, and the selectivity to other reactions can be improved. It is considered that the CO concentration in the raw gas can be reduced and the consumption of hydrogen can be prevented.
[0011]
In general, when water vapor is mixed into a gas, water vapor adsorption occurs and the temperature at which CO oxidation occurs is shifted to a high temperature side. However, by using α-alumina, the reaction temperature is shifted to a high temperature side due to the adsorption. Can be avoided. As a result, it is considered that the selectivity of CO oxidation can be improved, the CO concentration in the reformed gas after the reaction can be reduced, and the consumption of hydrogen can be prevented.
[0012]
Further, in the present invention, the abundance ratio of useful α-alumina in the carrier as described above was controlled by the α-conversion rate described later.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the carbon monoxide selective oxidation catalyst of the present invention will be described in detail. In addition, in this specification, "%" indicates a mass percentage unless otherwise specified.
As described above, the carbon monoxide selective oxidation catalyst of the present invention is a catalyst that selectively oxidizes CO in reformed gas with oxygen gas.
Here, the reformed gas generally refers to a gas obtained by steam reforming a hydrocarbon such as methane or propane, an alcohol such as methanol, or naphtha, and typically, a methanol reformed gas is mainly a hydrogen gas. As a component, carbon dioxide (CO 2 ), methane (CH 4 ), water (H 2 O) and CO are included.
It is to be noted that an effective object to which the present invention is applied is a reformed gas after the shift reaction, and a CO concentration of about 1 vol%.
[0014]
Next, the oxygen gas is not particularly limited as long as it is present in excess of the reaction equivalent with CO, but typically, oxygen is present in an amount of 1.1 to 5 times the reaction equivalent with CO. Is preferred.
If it is less than 1.1 times, unoxidized CO remains, and if it exceeds 5 times, the consumption of hydrogen may increase, which is not preferable.
[0015]
The selective oxidation catalyst of the present invention preferably contains Ru and Pt at a ratio of 0.01 to 2%. That is, the supported amount of the mixture of Ru and Pt is preferably 0.01 to 2%, and more preferably 0.02 to 0.5% of the whole obtained catalyst.
If the supported amount of the mixture is less than 0.02%, the oxidation activity of CO may not be sufficient, and if it exceeds 0.5%, Ru and Pt may not be effectively used.
[0016]
Further, in the selective oxidation catalyst of the present invention, the particle size of at least one of Ru and Pt carried is preferably 200 ° or less, more preferably 5 to 200 °. If the particle size exceeds 200 °, the oxidation activity of CO may not be sufficient, which is not preferable.
[0017]
In the selective oxidation catalyst of the present invention, an alumina carrier is used. This alumina carrier must contain α-alumina, and its α-formation ratio must be 10 to 85%.
Here, the “α conversion rate” means a relative peak intensity of a peak inherent to α alumina (corresponding to the (113) plane) that appears in an X-ray diffraction pattern when γ alumina undergoes a phase transition to α alumina by heating. The peak intensity at the time when the α dislocation is completed is expressed as an α conversion rate of 100%.
If the ratio of α becomes out of the above range, the intended CO reduction effect cannot be obtained.
[0018]
Further, as the above alumina carrier, it is preferable that Ru, Pt, and Ru-Pt mixture can be present within 100 μm, preferably within 20 μm from the outer surface of the carrier, but the shape is not particularly limited. .
If Ru or the like cannot be supported within 100 μm from the outer surface of the carrier, the Ru concentration on the catalyst surface becomes too low, and the desired effect may not be obtained.
[0019]
In the selective oxidation catalyst of the present invention, γ-alumina is converted to α-alumina when kept at a temperature of 1000 ° C. or higher, but when kept at that temperature, the catalytic metals Ru and Pt cause sintering, and sufficient activity is obtained. It is not suitable for use alone in the catalyst of the present invention since it is no longer obtainable. However, prior to supporting catalytically active species such as Ru and Pt, alumina is subjected to heat treatment such as γ, θ, η, etc., and is converted to α-alumina using the above-mentioned α conversion as a scale. It is possible.
[0020]
Further, the selective oxidation catalyst of the present invention can be in the form of granules or pellets, and further, it is possible to use a honeycomb-shaped support, for example, a honeycomb-shaped honeycomb made of cordierite or metal. It is also possible to coat and use an integral structure type support.
[0021]
The selective oxidation catalyst of the present invention has the above-described configuration and has excellent CO selective oxidation properties. However, typically, about 1 vol% of CO coexisting in the reformed gas is removed by oxidation to about 100 ppm. I do.
The use conditions are not particularly limited, but a remarkable effect can be obtained when the space velocity (SV) is 30,000 h −1 or less and the catalyst temperature is 100 to 200 ° C.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0023]
[Performance evaluation]
In the following Examples and Comparative Examples, the performance of the obtained catalyst was evaluated by the following method.
[0024]
(CO selective oxidation performance)
・ Evaluation device: fixed bed flow type ・ Simulated gas composition CO: 1 vol%
CO 2 : 22 vol%
CH 4 : 3 vol%
H 2 : 74 vol%
-Simulated gas flow rate: 830 ml / min
・ Air flow rate: 108ml / min
・ H 2 O flow rate: 0.43 ml / min
· O 2 / CO ratio: was varied from 1 to 3.
・ Amount of catalyst used: 1.67 ml
・ Reaction temperature: 110-210 ° C (20 ° C increments)
[0025]
(Example 1)
After heating γ-alumina having an average particle size of about 2 mm in air at 1100 ° C. for 3 hours, about 2% of Ru was supported thereon to obtain a selective oxidation catalyst of this example. X-ray diffraction analysis of the selective oxidation catalyst revealed that the degree of pregelatinization was 16%.
This selective oxidation catalyst was subjected to the above-described performance evaluation, and the obtained results are shown in FIG. In FIG. 1, numerical values and symbols such as “110” on the right side indicate the reaction temperature.
[0026]
(Example 2)
After heating γ-alumina having an average particle size of about 2 mm in air at 1100 ° C. for 6 hours, about 2% of Ru was supported thereon to obtain a selective oxidation catalyst of this example. X-ray diffraction analysis of the selective oxidation catalyst revealed that the degree of pregelatinization was 80%.
This selective oxidation catalyst was subjected to the above-described performance evaluation, and the obtained results are shown in FIG. In FIG. 2, numerical values and symbols such as “110” on the right side indicate the reaction temperature.
[0027]
(Comparative Example 1)
The same operation as in Example 1 was repeated except that the heating time was set to 0 hour, to obtain a catalyst of this example. The α conversion was 0%.
The same performance evaluation as above was performed, and the obtained results are shown in FIG.
[0028]
(Comparative Example 2)
The same operation as in Example 1 was repeated except that the heating time was set to 24 hours, to obtain a catalyst of this example. The α conversion was 100%.
The same performance evaluation as above was performed, and the obtained results are shown in FIG.
[0029]
1 to 4 show that the selective oxidation catalysts of Examples 1 and 2 belonging to the scope of the present invention exhibit higher selective oxidation activity than the oxidation catalysts of Comparative Examples 1 and 2.
[0030]
As described above, the present invention has been described in detail with reference to the preferred embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the disclosure of the present invention.
For example, the use of the selective oxidation catalyst of the present invention is not limited to the reformed gas supplied to the polymer electrolyte fuel cell, but can also be used to reduce CO in other reformed gases, The present invention is also applicable to various processes such as synthesis of ammonia requiring high-purity hydrogen gas.
[0031]
【The invention's effect】
As described above, according to the present invention, since the amount of α-alumina in the alumina carrier is appropriately controlled, carbon monoxide in the reformed gas is selectively oxidized and reduced, and It is possible to provide a carbon monoxide selective oxidation catalyst that can realize high fuel use efficiency and power generation efficiency.
For example, by using the catalyst of the present invention, if carbon monoxide present in about 1 vol% in the reformed gas is reacted at about 150 ° C. in the presence of an excessive amount of oxygen, the carbon monoxide concentration can be reduced to 100 ppm or less. can do.
[Brief description of the drawings]
FIG. 1 is a graph showing catalytic performance of a CO selective oxidation catalyst of Example 1.
FIG. 2 is a graph showing catalytic performance of a CO selective oxidation catalyst of Example 2.
FIG. 3 is a graph showing the catalytic performance of a CO selective oxidation catalyst of Comparative Example 1.
FIG. 4 is a graph showing the catalytic performance of a CO selective oxidation catalyst of Comparative Example 2.
Claims (2)
ルテニウム及び/又は白金をαアルミナを含有するアルミナ担体に担持して成り、且つこのアルミナ担体のα化率が10〜85%であることを特徴とする一酸化炭素選択酸化触媒。A catalyst for selectively oxidizing carbon monoxide in a reformed gas with oxygen gas,
A selective oxidation catalyst for carbon monoxide, comprising ruthenium and / or platinum supported on an alumina carrier containing α-alumina, wherein the alumina carrier has an α conversion of 10 to 85%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002354504A JP4083556B2 (en) | 2002-12-06 | 2002-12-06 | Selective oxidation catalyst for carbon monoxide in reformed gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002354504A JP4083556B2 (en) | 2002-12-06 | 2002-12-06 | Selective oxidation catalyst for carbon monoxide in reformed gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004181425A true JP2004181425A (en) | 2004-07-02 |
JP4083556B2 JP4083556B2 (en) | 2008-04-30 |
Family
ID=32755471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002354504A Expired - Lifetime JP4083556B2 (en) | 2002-12-06 | 2002-12-06 | Selective oxidation catalyst for carbon monoxide in reformed gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4083556B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100692699B1 (en) | 2004-12-24 | 2007-03-09 | 현대자동차주식회사 | Method for producing platinum catalyst for fuel cell electrode |
KR100782125B1 (en) | 2005-09-29 | 2007-12-05 | 한국에너지기술연구원 | Reforming gas refining catalyst and preparation method thereof |
CN100435400C (en) * | 2005-03-17 | 2008-11-19 | 株式会社东芝 | Carbon monoxide removal method, removal device and manufacturing method thereof, hydrogen generation device and fuel cell system |
-
2002
- 2002-12-06 JP JP2002354504A patent/JP4083556B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100692699B1 (en) | 2004-12-24 | 2007-03-09 | 현대자동차주식회사 | Method for producing platinum catalyst for fuel cell electrode |
CN100435400C (en) * | 2005-03-17 | 2008-11-19 | 株式会社东芝 | Carbon monoxide removal method, removal device and manufacturing method thereof, hydrogen generation device and fuel cell system |
KR100782125B1 (en) | 2005-09-29 | 2007-12-05 | 한국에너지기술연구원 | Reforming gas refining catalyst and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4083556B2 (en) | 2008-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6913739B2 (en) | Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation | |
JP3746401B2 (en) | Selective oxidation catalyst for carbon monoxide in reformed gas | |
TWI294413B (en) | Method for converting co and hydrogen into methane and water | |
WO2000030745A1 (en) | Carbon monoxide oxidation catalyst, method for preparation of carbon monoxide oxidation catalyst and method for production of hydrogen-containing gas | |
US7105148B2 (en) | Methods for producing hydrogen from a fuel | |
JPH08295503A (en) | Method for removing CO in hydrogen gas | |
WO2003051493A2 (en) | Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation | |
JP4083556B2 (en) | Selective oxidation catalyst for carbon monoxide in reformed gas | |
JP2001212458A (en) | Selective oxidation catalyst for carbon monoxide in reformed gas | |
JP3574469B2 (en) | Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell | |
US7029640B2 (en) | Process for selective oxidation of carbon monoxide in a hydrogen containing stream | |
JPH0748101A (en) | Method for producing hydrogen-containing gas for fuel cell | |
KR100858943B1 (en) | Selective Oxidation Catalyst of Carbon Monoxide in Reforming Gas | |
KR100460433B1 (en) | Catalyst for Purifying Reformate Gas and Process for Selectively Removing Carbon Monoxide Contained in Hydrogen-enriched Reformate Gas Using the Same | |
JP2004244231A (en) | Carbon monoxide concentration reduction method | |
JP3943606B2 (en) | Method for selective removal of carbon monoxide | |
JP4663095B2 (en) | Hydrogen purification equipment | |
KR100440907B1 (en) | Process for Selectively Removing Carbon Monoxide Contained in Hydrogen-enriched Reformate Gas Using Natural Manganese Ore | |
JPH07309603A (en) | Method for producing hydrogen-containing gas for fuel cell | |
WO2004000458A1 (en) | Catalysts for selective oxidation of carbon monoxide in reformed gas | |
US7156887B1 (en) | Methods, apparatus, and systems for producing hydrogen from a fuel | |
EP1391240A1 (en) | Method for preparing a catalyst for preferential oxidation to remove carbon monoxide from a hydrogen-rich gas, a process for preferential oxidation to remove carbon monoxide from hydrogen-rich gas and a method for operating a fuel cell system | |
JP2006008434A (en) | Hydrogen generator, fuel cell power generation system, and hydrogen generation method | |
US7459224B1 (en) | Methods, apparatus, and systems for producing hydrogen from a fuel | |
JP4209868B2 (en) | Method for producing hydrogen-containing gas for fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050719 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4083556 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313118 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313118 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130222 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140222 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |