JP2004175927A - 表面改質方法 - Google Patents
表面改質方法 Download PDFInfo
- Publication number
- JP2004175927A JP2004175927A JP2002343855A JP2002343855A JP2004175927A JP 2004175927 A JP2004175927 A JP 2004175927A JP 2002343855 A JP2002343855 A JP 2002343855A JP 2002343855 A JP2002343855 A JP 2002343855A JP 2004175927 A JP2004175927 A JP 2004175927A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- plasma
- plasma processing
- processing chamber
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002715 modification method Methods 0.000 title description 4
- 238000012545 processing Methods 0.000 claims abstract description 112
- 239000000758 substrate Substances 0.000 claims abstract description 101
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 83
- 239000007789 gas Substances 0.000 claims abstract description 44
- 150000002500 ions Chemical class 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 32
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 155
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 57
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 56
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 35
- 239000010703 silicon Substances 0.000 abstract description 35
- 229910052710 silicon Inorganic materials 0.000 abstract description 35
- 238000010586 diagram Methods 0.000 abstract description 5
- 238000002407 reforming Methods 0.000 abstract 1
- 238000009826 distribution Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- 238000005121 nitriding Methods 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 11
- 229910001873 dinitrogen Inorganic materials 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 229910052734 helium Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 239000001307 helium Substances 0.000 description 7
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 7
- -1 nitrogen ions Chemical class 0.000 description 7
- 230000003028 elevating effect Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910006293 Si—N—O Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02337—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
- H01L21/0234—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02321—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
- H01L21/02329—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
- H01L21/02332—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28194—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28202—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/3143—Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
- H01L21/3144—Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/693—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Formation Of Insulating Films (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
【解決手段】被処理基体の表面をプラズマにより改質する方法において、被処理基体を、200℃以上400℃未満の温度に調節する工程と、プラズマ処理室内に窒素原子を含むガス又は窒素原子を含むガスと希ガスの混合ガスを導入する工程と、前記プラズマ処理室内の圧力を13.3Pa以上に調節する工程と、前記プラズマ処理室内にプラズマを生成する工程と、前記プラズマ中のイオンを10eV以下で前記被処理基体に入射させる工程とを有することを特徴とする。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は、一般には、半導体製造方法に係り、特に、マイクロ波表面波プラズマにより、被処理基体を、高品位に、高速で、改質する方法に関する。本発明は、例えば、シリコン酸窒化膜を形成するのに好適である。
【0002】
【従来の技術】
近年、半導体装置の微細化に伴い、厚さ3nm以下のゲート絶縁膜に、シリコン酸窒化膜が使用されている。シリコン酸窒化膜は、高比誘電率であり、リーク電流抑制効果やゲート電極からのボロン拡散防止効果を有し、その優れた特性により注目されている。
【0003】
シリコン酸窒化膜の製造方法は、最初にシリコン熱酸化膜を成膜した後で窒素を導入する方法と、シリコン基板上に直接CVD(化学気相成長)法によりシリコン酸窒化膜を成膜する方法があるが、シリコン基板との界面の電気的特性の観点から、前者が有力である。また、シリコン酸化膜を窒化処理する方法に、熱処理と、プラズマ処理等が検討されている。
【0004】
熱処理によるシリコン酸窒化膜製法では、例えば、一酸化窒素ガス雰囲気中で、数時間、ウエハを加熱する方法が提案されており(例えば、非特許文献1)、この方式はシリコン酸化膜を熱窒化するものである。熱窒化には800℃から1000℃という高温が必要であるため、窒素はシリコン酸化膜中を容易に移動し、シリコン酸化膜とシリコンの界面に到達する。シリコン酸化膜とシリコンでは拡散のしやすさが異なるため、窒素は、シリコン酸化膜とシリコンの界面に蓄積する。よって、熱窒化によるシリコン酸化膜中の深さ方向窒素濃度分布は、シリコンとシリコン酸化膜の界面に局在する。また熱処理によるシリコン酸窒化膜製法の別の例としては、NH3を用いた窒化方法が開示されている(例えば、特許文献1)。
【0005】
プラズマ処理によるシリコン酸窒化膜製法では、リモートプラズマを用いて窒素プラズマのうち窒素イオンを十分減らし、窒素活性種のみをウエハに輸送し、シリコン酸化膜を窒化するといった方法が提案されている(例えば、非特許文献2)。この方式は、反応性の高い中性活性種を利用することにより、比較的低い400℃程度の温度でシリコン酸化膜を窒化することができる。反応容器を高圧に保ったり、プラズマ発生部とウエハを大きく離したりし、プラズマ中の窒素イオンを減じ窒素活性種のみを利用している。リモートプラズマ処理によるシリコン酸化膜中の深さ方向窒素濃度分布は、表面ほど大きく、シリコンとシリコン酸化膜の界面で小さくすることができる。
【0006】
また、プラズマからのイオンを用いた窒化の方法も知られている(例えば、特許文献2)。この方法は、50eV以下のエネルギーでイオンを入射させ、イオンエネルギーに依存した深さにピークを持つような、窒素の深さ方向濃度分布が得られている。
【0007】
【特許文献1】
特開平6−140392号公報
【特許文献2】
特開平10−173187号公報
【非特許文献1】
第62回応用物理学会学術講演会講演予稿集、No.2、630頁
【非特許文献2】
第62回応用物理学会学術講演会講演予稿集、No.2、631頁
【0008】
【発明が解決しようとする課題】
これら従来のシリコン酸化膜の窒化方法には、幾つか問題点があり、極薄酸化膜に対しては実用に至っていない。
【0009】
例えば、熱窒化処理においては、シリコン酸化膜とシリコンの界面の窒素濃度が高いため、トランジスタのチャネルの移動度が低下する等の素子特性悪化が発生する。また、シリコン酸化膜表面の窒素濃度が低いため、ゲート電極のホウ素がシリコン酸化膜中に拡散して、リーク電流の増大等の問題を引き起こす。
【0010】
リモートプラズマ処理においては、プラズマ中の窒素イオンと一緒に必要な窒素の中性活性種も減るため、十分な窒素の中性活性種を得られず、処理時間が非常に長い。また、シリコン酸化膜中の深さ方向窒素濃度分布は、深さに伴い急減するので、窒素面密度を高めることが難しい。更に十分な量の窒素を導入しようとすると、高温にする必要があり、窒素が深くまで拡散してしまうため、高濃度で浅い窒化層の形成ができない。
【0011】
イオンによる窒化では、低圧力、低温で処理を行うと、シリコン熱酸化膜中にダメージが残留し、リーク電流やボロン拡散阻止性能が劣化する。ダメージは高温で回復するが、高温処理で窒素が拡散し、浅い窒化層の形成ができない。また、数十eVという高いエネルギーでイオンを打ち込むと、深い位置までイオンが注入されてしまうため、3nm以下という極薄酸化膜の窒化には対応することができなかった。
【0012】
本発明は、これら従来技術の問題点を解決すべく、シリコン酸化膜とシリコン基板界面の窒素濃度を十分小さくし、かつ、シリコン酸化膜中の窒素濃度を高め、ダメージを減らした高品位のシリコン酸窒化膜を、短い処理時間で生成する表面改質方法を提供することを例示的な目的とする。
【0013】
【課題を解決するための手段】
本発明の一側面としての表面改質方法は、被処理基体の表面をプラズマにより改質する方法において、被処理基体を、200℃以上400℃未満の温度に調節する工程と、プラズマ処理室内に窒素原子を含むガス又は窒素原子を含むガスと希ガスの混合ガスを導入する工程と、前記プラズマ処理室内の圧力を13.3Pa以上に調節する工程と、前記プラズマ処理室内にプラズマを生成する工程と、前記プラズマ中のイオンを10eV以下で前記被処理基体に入射させる工程とを有することを特徴とする。
【0014】
【発明の実施の形態】
本発明の一実施形態のマイクロ波表面波干渉プラズマ処理装置を、図1を参照して詳細に説明する。図1において、1はプラズマ処理室、2は被処理基体、3は被処理基体2を保持する被処理基体載置台、4はヒーター、5は処理用ガス導入手段、6は排気口、8はマイクロ波をプラズマ処理室1に導入するためのスロット付無終端環状導波管、11は無終端環状導波管8にマイクロ波管内波長の1/2又は1/4毎に設けられたスロット、7はプラズマ処理室1内にマイクロ波を導入する誘電体窓、10は無終端環状導波管8に内蔵された冷却水路である。プラズマ処理室1内壁、誘電体窓7は、被処理基体2への金属コンタミのおそれのない石英である。被処理基体載置台3は、内蔵ヒーター4熱伝導と金属コンタミを考慮し、窒化アルミニウムを主成分としたセラミックである。
【0015】
プラズマ処理においては、冷却水路10に冷却水を流し、無終端環状導波管8を室温に冷却する。また、被処理基体載置台3をヒーター4により加熱する。表面に厚さ3nm以下の極薄シリコン酸化膜の付いた被処理基体2を被処理基体載置台3に搬送して載置する。被処理基体2の搬送は、不図示のロードロック室を用いて真空中で行ってもよいし、大気圧下で窒素又は不活性ガスの雰囲気中で行ってもよい。
【0016】
次に、当業界で周知の圧力調整弁25aや真空ポンプ(例えば、樫山製作所製)25bを有する排気系25を介してプラズマ処理室1内を真空排気する。プラズマ処理室1内の圧力は、制御部21が、真空ポンプ25bを運転しながら、処理室1の圧力を検出する圧力センサー24が所定の値になるように、処理室1の圧力を弁の開き具合で調整する圧力調整弁25a(例えば、VAT製の圧力調整機能付きゲートバルブやMKS製排気スロットバルブ)を制御することによって調節することができる。
【0017】
続いて、窒素を含有するガス(例えば、N2、NO,NO2、NH3、N2H4)或いは窒素を含有するガスと希ガス(例えば、He、Ne、Ar、Xe、Kr)の混合ガスを、処理用ガス導入手段5を介してプラズマ処理室1に導入する。処理ガス導入手段5は、ガス源、供給路に加えて、図8に示すように、当業界で周知の流量調節バルブなどを有しており、所望の流量を処理室1に導入することができる。即ち、希ガスや窒素ガスの流量は、制御部21に接続され、ガスの質量流量を調整するマスフローコントローラ(例えば、MKS製)等の質量流量制御器27と、ガスをプラズマ処理室1に供給停止する弁28を用いて調節することができる。制御部21は、質量流量制御器27に所望の質量流量を指示することによって所望の混合比のガスをプラズマ処理室1に供給する。あるガスを全く流さない時は弁28を閉じる。希ガスは、反応性がないのでシリコン酸化膜に悪影響せず、また、電離しやすいのでプラズマ密度を増加し窒化処理速度を上昇する傾向がある。
【0018】
次に、排気系25に設けられたコンダクタンスバルブなどの圧力調整弁25aを調整し、プラズマ処理室1内を一定の圧力に保持する。
【0019】
次に、図示しないマイクロ波電源よりマイクロ波を、無終端環状導波管8、誘電体7を介して、プラズマ処理室1内に供給し、プラズマ処理室1内でプラズマを発生させる。無終端環状導波管8内に導入されたマイクロ波は、左右に二分配され、自由空間よりも長い管内波長をもって伝搬し、スロット11から誘電体7を介してプラズマ処理室1に導入され、誘電体7表面を表面波として伝搬する。この表面波は、隣接するスロット間で干渉し、電界を形成する。この電界によりプラズマを生成する。プラズマ発生部の電子温度と電子密度は高いので、窒素を効率良く解離することができる。また、電子温度は、プラズマ発生部から離れると、急速に低下する。プラズマ中の窒素イオンは、被処理基体2近辺に拡散で輸送され、被処理基体2表面に発生したイオンシースにより加速され、被処理基体2に衝突する。所定の時間が経過後、マイクロ波電源を停止し、窒素ガスを停止し、プラズマ処理室1内を真空排気した後、被処理基体2をプラズマ処理室1外へ搬送する。被処理基体2の温度は、プラズマにより加熱され、初期温度より上昇する。温度上昇は、基板に入射するイオンのエネルギーと数により決定される。
【0020】
10V以下という非常に低いシース電圧を達成し、尚且つプラズマ密度を実用可能な値に維持するには、超高密度なシート状プラズマを下流に拡散させる方法が最適である。本方法に最も相応しいプラズマ源は、マイクロ波表面波プラズマであり、具体的には表面波プラズマ、表面波干渉プラズマ、RLSAプラズマなどがあげられるが、その他のプラズマ源、例えばマイクロ波プラズマ、誘導結合プラズマ、容量結合プラズマ、マグネトロンプラズマ、ECRプラズマ、NLDプラズマなどであっても、10V以下のシース電位及び実用可能なプラズマ密度が達成されれば、本方法に使用することができる。
【0021】
イオンエネルギーは、圧力、プラズマ発生方法などで調整することができる。例えば、圧力を上げればイオンエネルギーは低下し、下げると増大する。また一般的には、プラズマを発生させる高周波の周波数が高いほどイオンエネルギーは低下する傾向にある。例えば、上記誘導結合プラズマ、容量結合プラズマで、これまで市販されている装置では、入射イオンエネルギーは10〜20Vと報告されている。このようなプラズマ源を用いた場合、窒素が深く進入してしまい、特性の良いゲート絶縁膜を得ることができない。
【0022】
次に、上記装置を用いて窒化したシリコン酸化膜を分析した結果、幾つかの知見が得られたので、その結果を以下に詳述する。
【0023】
被処理基体表面のシリコン酸化膜中の窒素濃度の処理圧力依存性をSIMSにより測定したところ、図2に示す通り、窒化深さと窒化量は圧力に大きく依存することが分かった。なお、図2は、理解の便宜上、カラー図面を本出願に添付する。
【0024】
また、同様の装置において、基板へのイオン入射エネルギー分布の圧力依存性を測定した結果を図3に示す。なお、図2同様、図3にもカラー図面を本出願に添付する。図3より、圧力上昇と共に分布が低エネルギー側にシフトし、更に入射イオン量が低下し、図2に示したSIMSの結果と良く対応していることが分かった。即ち、本方法では、窒素イオンの注入によりシリコン酸化膜が窒化されると結論することができる。13.3Paのイオンエネルギー分布は大きく歪んで多量の高エネルギー成分が含まれているが、それに対応して窒素濃度分布も大きく歪んで深く注入された成分が多くなっている。圧力が39.9Pa以上では入射イオンエネルギー分布の高エネルギー成分は消滅する。これは、高圧力により平均自由行程が短くなり、プラズマ発生部で生成した高エネルギー粒子が衝突によりエネルギーを失ったものと考えられる。
【0025】
図3に示す入射イオンエネルギー分布図は、13.3Paまでの測定結果を示している。13.3Paで処理したゲート絶縁膜は、程度は軽いものの、やや劣化の傾向が見られる。その時の入射イオンエネルギーの平均値は7eVで、分布の大半は10eVの中に入っているが、一部10eV以上のエネルギーで入射するイオンも見られる。圧力を上げるに従い、10eV以上のイオンは減少し、それに伴い膜特性も良好となる。
【0026】
また、図3より明らかなように、26.6Paでは、圧力を高くすることでイオンの高エネルギー成分が減少している。13.3Paでは、僅かながら10eV以上のエネルギーの成分が残留するが、26.6Pa以上では10eV以上の成分は検出限界以下まで低下する。この事実から、26.6Pa以上がより好ましいといえる。
【0027】
図4に、窒素濃度が最大となる深さを圧力に対してプロットした図を示す。窒素濃度が最大となる深さは、処理圧力が399Paでは0.4nm程度まで浅くなり、膜厚1nm程度のゲート酸化膜であっても、シリコン/シリコン酸化膜界面の窒素濃度を低く保つことが可能である。また、厚い膜に対しては低圧力の条件で対応することができる。なお、399Pa以上の圧力では、安定した表面波プラズマの放電が維持できない。
【0028】
次に、XPSを用いて窒素原子の結合状態の、基板温度依存性を調査した結果を図5に示す。ここで、図5には、理解の便宜上、カラー図面を本出願に添付する。基板温度が200℃以下では、窒素の1sスペクトルにおいて、Si−N−O2とSi3−Nの2つの結合状態が観測され、またSi3−Nピークの幅も広い。一方、基板温度が200℃以上では、Si3−Nの結合状態のみが観測され、またSi3−Nピークの幅が狭くなることが分かった。Si3−N結合は、完全窒化物であるSi3N4で観測される結合状態であり、窒素とシリコンの安定な結合状態である。一方、Si−N−O2結合は、SiO2のSi−O結合を切ってNが侵入した形の不安定な結合状態であり、イオン入射のダメージによって形成された結合状態であると考えられる。また、200℃以下でのSi3−Nピーク幅の広がりも、イオン入射による結晶状態の乱れを反映している。以上の結果より、窒素イオンの入射により導入されたダメージは、200℃以上の温度で処理することで回復することが分かった。
【0029】
次に、窒素の拡散について考察する。シリコン酸化膜中の窒素原子の拡散活性化エネルギーは、シリコン酸化膜の膜質にもよるが、本発明者らの実験によれば、0.7〜2eVであることが分かった。つまり、シリコン酸化膜中の窒素濃度勾配や処理時間にも依存するが、被処理基体2の温度を概ね400℃未満に維持すれば拡散をほぼ無視することができ、より好ましくは被処理基体2の温度を300℃以下に維持すれば、シリコン酸化膜に注入された窒素はその場に留まることが分かった。
【0030】
以上の結果より、被処理基体2の温度を200〜400℃に保つことにより、シリコン酸化膜中に窒素を拡散させず、かつ、焼きなまし効果を得ることができる。被処理基体2は、ヒーター4と、窒素イオン照射により、加熱されるため、被処理基体2温度が窒化処理終了時に200以上400℃未満となるように、窒化処理前の被処理基体2を適切な温度に設定しておく必要がある。
【0031】
被処理基体2の温度は、直接に(例えば、熱電対を直接接触させるなど)、若しくは、間接的に(例えば、載置台3に温度計を埋め込んで載置台3の温度を測定したり、被処理基体2の温度を輻射熱を利用して測定するなど)測定したりしてもよい。本発明は、温度計が被処理基体2に直接接触して温度測定する熱電対などを使用することを妨げるものではないが、直接接触は一般にコンタミの原因になる。温度制御機構は、制御部21と、温度計22と、ヒーター4(のヒーター線)及び制御部21に接続された電源23から構成される。制御部21は、温度計22が測定した被処理基体2の温度が200℃〜400℃になるように、ヒーター4への通電を制御する。
【0032】
また、13.3Pa以下の圧力では、高エネルギーイオンの存在により深くまで窒化されるので、それ以上の圧力で処理するのが望ましい。
【0033】
【実施例】
【実施例1】
本発明の第一の実施例を、図1に示すマイクロ波表面波干渉プラズマ処理装置を例にして説明する。まず、被処理基体載置台3をヒーター4により加熱して200℃にし、表面に厚さ2nmのシリコン酸化膜の付いた被処理基体2を被処理基体載置台3に搬送して載置した。次に、排気系25を介してプラズマ処理室1内を1Paまで真空排気した。続いて、窒素ガスを、処理用ガス導入手段5を介して500sccmプラズマ処理室1に導入した。次に、排気系25に設けられたコンダクタンスバルブなどの圧力調整弁25aを調整し、プラズマ処理室1内の圧力を133Paに保持した。
【0034】
また、図示しないマイクロ波電源より1.5kWのマイクロ波を、無終端環状導波管8、誘電体7を介して、プラズマ処理室1内に供給し、プラズマ処理室1内でプラズマを発生させた。3分経過後、マイクロ波電源を停止し、窒素ガスを停止し、プラズマ処理室1内を1Pa以下まで真空排気した後、被処理基体2をプラズマ処理室1外へ搬送した。被処理基体2の温度は、プラズマにより加熱され、270℃となっていた。
【0035】
被処理基体2の表面のシリコン酸化膜中の窒素濃度をSIMSにより測定したところ、深さ0.5nmにピークを持ち、そこから急減して、2nmの深さにあるシリコン酸化膜とシリコンの界面において0.4at%以下であった。SIMSの測定原理から考えて、実際のシリコン酸化膜とシリコン界面における窒素濃度は、これより更に低いと思われる。また、XPSで測定したところ、窒素濃度は約5at%であり、窒素の結合状態は、Si3−N結合のみが観測された。また、エリプソメーターによる測定の結果、光学的酸化膜換算膜厚は2.1nm、均一性は3.0%であった。
【0036】
【実施例2】
本発明の第二の実施例を、図1のマイクロ波表面波干渉プラズマ処理装置を例にして説明する。まず、被処理基体戴置台3をヒーター4により加熱して200℃にし、表面に厚さ2nmのシリコン酸化膜の付いた被処理基体2を被処理基体保持台3に搬送して載置した。次に、排気系25を介してプラズマ処理室1内を1Paまで真空排気した。続いて、窒素ガスを処理用ガス導入手段5を介して500sccmの流量でプラズマ処理室1に導入した。次に、排気系25に設けられたコンダクタンスバルブなどの圧力調整弁25aを調整し、プラズマ処理室1内の圧力を26.6Paに保持した。
【0037】
また、図示しないマイクロ波電源より1.5kWのマイクロ波を、無終端環状導波管8、誘電体7を介して、プラズマ処理室1内に供給し、プラズマ処理室1内でプラズマを発生させた。15秒経過後、マイクロ波電源を停止し、窒素ガスを停止し、プラズマ処理室1内を1Pa以下まで真空排気した後、被処理基体2をプラズマ処理室1外へ搬送した。被処理基体2の温度は、プラズマにより加熱され、300℃となっていた。
【0038】
被処理基体2表面のシリコン酸化膜中の窒素濃度は、SIMSにより測定したところ、深さ0.7nmにピークを持ち、そこから急減して、2nmの深さにあるシリコン酸化膜とシリコンの界面において1at%以下であった。SIMSの測定原理から考えて、実際のシリコン酸化膜とシリコン界面における窒素濃度は、これより更に低いと思われる。また、XPSで測定したところ、窒素濃度は約5at%であり、窒素の結合状態は、Si3−N結合のみが観測された。また、エリプソメーターによる測定の結果、光学的酸化膜換算膜厚は2.5nm、均一性は3.5%であった。
【0039】
【実施例3】
本発明の第三の実施例を、図1に示すマイクロ波表面波干渉プラズマ処理装置を例にして説明する。本実施例は、窒素を含有するガスに希ガスを添加することにより、プラズマ密度を2〜3倍に上昇させ、短時間で効率よく窒化処理を行うことを目的としたものである。
【0040】
図1に示すマイクロ波表面波干渉プラズマ処理装置により、以下のようにプラズマ処理を行った。まず、被処理基体載置台3をヒーター4により150℃に加熱し、表面に厚さ2nmのシリコン酸化膜の付いた被処理基体2を被処理基体載置台3に搬送して載置した。次に、排気系25を介してプラズマ処理室1内を1Paの圧力まで真空排気した。続いて、処理用ガス導入手段5を介し窒素50sccmとアルゴン450sccmをプラズマ処理室1に導入した。次に、排気系25に設けられたコンダクタンスバルブなどの圧力調整弁25aを調整し、プラズマ処理室1内を133Paに保持した。
【0041】
また、図示しないマイクロ波電源より1.5kWのマイクロ波を、無終端環状導波管8、誘電体7を介して、プラズマ処理室1内に供給し、プラズマ処理室1内でプラズマを発生させた。3分経過後、マイクロ波電源を停止し、窒素ガスとアルゴンガスを停止し、プラズマ処理室1内を1Pa以下まで真空排気した後、被処理基体2をプラズマ処理室1外へ搬送した。被処理基体2の温度は、プラズマにより加熱され、280℃まで上昇していた。
【0042】
被処理基体2の表面のシリコン酸化膜中の窒素濃度をSIMSにより測定したところ、深さ0.5nmにピークを持ち、そこから急減して、2nmの深さにあるシリコン酸化膜とシリコンの界面において0.5at%以下であった。SIMSの測定原理から考えて、実際のシリコン酸化膜とシリコン界面における窒素濃度は、これより更に低いと思われる。また、XPSで測定したところ、窒素濃度は約9at%であり、窒素の結合状態は、Si3−N結合のみが観測された。また、エリプソメーターによる測定の結果、光学的酸化膜換算膜厚は2.2nm、均一性は2.7%であった。
【0043】
【実施例4】
本発明の第四の実施例を、図1に示すマイクロ波表面波干渉プラズマ処理装置を例にして説明する。本実施例は、マイクロ波電力を増大させることにより、プラズマ密度を2〜3倍に上昇させ、短時間で効率よく窒化処理を行うことを目的としたものである。
【0044】
図1に示すマイクロ波表面波干渉プラズマ処理装置により、以下のようにプラズマ処理を行った。まず、被処理基体載置台3をヒーター4により150℃に加熱し、表面に厚さ2nmのシリコン酸化膜の付いた被処理基体2を被処理基体載置台3に搬送して載置した。次に、排気系25を介してプラズマ処理室1内を1Paの圧力まで真空排気した。続いて、処理用ガス導入手段5を介し窒素500sccmをプラズマ処理室1に導入した。次に、排気系25に設けられたコンダクタンスバルブなどの圧力調整弁25aを調整し、プラズマ処理室1内を133Paに保持した。
【0045】
また、図示しないマイクロ波電源より3.0kWのマイクロ波を、無終端環状導波管8、誘電体7を介して、プラズマ処理室1内に供給し、プラズマ処理室1内でプラズマを発生させた。3分経過後、マイクロ波電源を停止し、窒素ガスを停止し、プラズマ処理室1内を1Pa以下まで真空排気した後、被処理基体2をプラズマ処理室1外へ搬送した。被処理基体2の温度は、プラズマにより加熱され270℃まで上昇していた。
【0046】
被処理基体2の表面のシリコン酸化膜中の窒素濃度をSIMSにより測定したところ、深さ0.5nmにピークを持ち、そこから急減して、2nmの深さにあるシリコン酸化膜とシリコンの界面において0.5at%以下であった。SIMS測定原理から考えて、実際のシリコン酸化膜とシリコン界面における窒素濃度は、これより更に低いと思われる。また、XPSで測定したところ、窒素濃度は約8at%であり、窒素の結合状態は、Si3−N結合のみが観測された。また、エリプソメーターによる測定の結果、光学的酸化膜換算膜厚は2.2nm、均一性は3.8%であった。
【0047】
【実施例5】
本発明の第五の実施例を、図1に示すマイクロ波表面波干渉プラズマ処理装置を例にして説明する。本実施例は、被処理基体載置台3をプラズマに近付けることにより、プラズマの電子温度を実質的にほとんど変化させず、プラズマ密度のみを上昇させることで、短時間で効率的に窒化処理を行うことを目的としている。
【0048】
図1に示すマイクロ波表面波干渉プラズマ処理装置により、以下のようにプラズマ処理を行った。まず、被処理基体載置台3をヒーター4により加熱して100℃にし、表面に厚さ2nmのシリコン酸化膜の付いた被処理基体2を被処理基体載置台3に搬送して載置した。次に、被処理基体載置台3を、搬送位置の5cm上に移動させ、誘電体窓7から5cm下の位置に設置した。
【0049】
図7に被処理基体載置台3の昇降機構の一例を示す。同図において、29は、制御部21に接続されて制御され、載置台3を昇降移動する昇降機構、30は、載置台3に固定され、昇降機構29によって上下する支持棒、31は載置台3の位置を検出する上下位置検出器である。昇降機構29は、不図示の内蔵する空気圧駆動回転機に取り付けた歯車の回転により支持棒30を上下移動させる。上下位置検出器31は、例えば、当業界で周知のポテンショメーターを利用することができる。制御部21は、上下位置検出器31が検出する載置台3の上下位置が所望の位置になるように、昇降機構29を制御する。
【0050】
次に、排気系25を介してプラズマ処理室1内を真空排気した。続いて、処理用ガス導入手段5を介し窒素500sccmをプラズマ処理室1に導入した。次に、排気系25に設けられたコンダクタンスバルブなどの圧力調整弁25aを調整し、プラズマ処理室1内を133Paに保持した。
【0051】
また、図示しないマイクロ波電源より1.5kWのマイクロ波を、無終端環状導波管8、誘電体7を介して、プラズマ処理室1内に供給し、プラズマ処理室1内でプラズマを発生させた。1分間経過後、マイクロ波電源を停止し、窒素ガスを停止し、プラズマ処理室1内を1Pa以下まで真空排気した後、被処理基体2をプラズマ処理室1外へ搬送した。被処理基体2の温度は、プラズマにより加熱され210℃まで上昇していた。
【0052】
被処理基体2の表面のシリコン酸化膜中の窒素濃度をSIMSにより測定したところ、深さ0.6nmにピークを持ち、そこから急減して、2nmの深さにあるシリコン酸化膜とシリコンの界面において0.5at%以下であった。SIMS測定原理から考えて、実際のシリコン酸化膜とシリコン界面における窒素濃度は、これより更に低いと思われる。また、XPSで測定したところ、窒素濃度は約7at%であり、窒素の結合状態は、Si3−N結合のみが観測された。また、エリプソメーターによる測定の結果、光学的酸化膜換算膜厚は2.1nm、均一性は5.6%であった。
【0053】
【実施例6】
本発明の第六の実施例を、図6に示すマイクロ波表面波干渉プラズマ処理装置を例にして説明する。本実施例では、被処理基体2を温度制御するための機構を被処理基体載置台3に更に設け、被処理基体2を温度制御することにより、プラズマ処理中の温度上昇を緩和し、被処理基体2を窒素が実質的に拡散しない温度、かつ、焼きなまし効果を得られる温度に保つことを目的としている。図6において、9は被処理基体載置台3を温度制御する熱媒体流路である。12は被処理基体載置台3と被処理基体2間に静電吸着力を発生させる双極式の吸着電極である。被処理基体載置台3表面に、ヘリウム供給口13とこれと連通した100μm深さの凹部がある。その他、図1と同様な部材には同一の参照番号を付して説明は省略する。
【0054】
図6に示すマイクロ波表面波干渉プラズマ処理装置により、以下のようにプラズマ処理を行った。熱媒体流路9に熱媒体を流し、被処理基体載置台3を200℃に保持し、表面に厚さ2nmのシリコン酸化膜の付いた被処理基体2を被処理基体載置台3に搬送して載置した。双極式の吸着電極12に図示しない直流高圧電源から±200Vの電圧をかけ、被処理基体2を被処理基体載置台3に吸着した。
【0055】
次に、被処理基体載置台3の表面凹部にヘリウム供給口13からヘリウムを充填した。ヘリウムの圧力は800Paとした。次に、被処理基体載置台3を誘電体窓7から5cm下の位置に不図示の手段により移動させた。
【0056】
次に、排気系25を介してプラズマ処理室1内を真空排気した。続いて、処理用ガス導入手段5を介し窒素500sccmをプラズマ処理室1に導入した。次に、排気系25に設けられたコンダクタンスバルブなどの圧力調整弁25aを調整し、プラズマ処理室1内を133Paに保持した。
【0057】
また、図示しないマイクロ波電源より1.5kWのマイクロ波を、無終端環状導波管8、誘電体7を介して、プラズマ処理室1内に供給し、プラズマ処理室1内でプラズマを発生させた。3分経過後、マイクロ波電源を停止し、窒素ガス、ヘリウムガスを停止し、プラズマ処理室1内を1Pa以下まで真空排気した後、吸着電極12の高電圧を停止し、被処理基体2をプラズマ処理室1外へ搬送した。被処理基体2は、プラズマにより加熱され上昇していたが、約220℃であった。
【0058】
被処理基体2の表面のシリコン酸化膜中の窒素濃度をSIMSにより測定したところ、深さ0.5nmにピークを持ち、そこから急減して、2nmの深さにあるシリコン酸化膜とシリコンの界面において0.4at%以下であった。SIMS測定原理から考えて、実際のシリコン酸化膜とシリコン界面における窒素濃度は、これより更に低いと思われる。また、XPSで測定したところ、窒素濃度は約5at%であり、窒素の結合状態は、Si3−N結合のみが観測された。また、エリプソメーターによる測定の結果、光学的酸化膜換算膜厚は2.1nm、均一性は6.0%であった。
【0059】
本出願は更に以下の事項を開示する。
【0060】
(実施態様1) 被処理基体の表面をプラズマにより改質する方法において、
被処理基体を、200℃以上400℃未満の温度に調節する工程と、
プラズマ処理室内に窒素原子を含むガス又は窒素原子を含むガスと希ガスの混合ガスを導入する工程と、
前記プラズマ処理室内の圧力を13.3Pa以上に調節する工程と、
前記プラズマ処理室内にプラズマを生成する工程と、
前記プラズマ中のイオンを10eV以下で前記被処理基体に入射させる工程とを有することを特徴とする方法。
【0061】
(実施態様2) 前記温度調節工程は、前記被処理基体の温度を200℃以上300℃以下に調節することを特徴とする実施態様1記載の方法。
【0062】
(実施態様3) 前記導入工程は、窒素原子を含むガスとしてN2、NH3又はN2H4を導入することを特徴とする実施態様1記載の方法。
【0063】
(実施態様4) 前記導入工程は、希ガスとしてHe、Ne、Ar、Kr、Xeを導入することを特徴とする実施態様1記載の方法。
【0064】
(実施態様5) 前記圧力調節工程は、前記所定圧力を26.6Pa以上399Pa以下に設定することを特徴とする実施態様1記載の方法。
【0065】
(実施態様6) 前記入射工程が入射する前記イオンのイオンエネルギーの平均値は、7eV以下であることを特徴とする実施態様1記載の方法。
【0066】
(実施態様7) 前記生成工程は、前記プラズマとして表面波プラズマ、表面波干渉プラズマ又はRLSAプラズマを生成することを特徴とする実施態様1記載の方法。
【0067】
(実施態様8) 実施態様1の方法を用いてMOSFETのゲート絶縁膜の表面を改質することを特徴とする方法。
【0068】
【発明の効果】
以上説明したように、本発明によれば、被処理基体の表面から所望の深さまでの所望の物質の濃度を増加させ、高品位な表面改質を短時間で行う表面改質方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例としてのマイクロ波表面波干渉プラズマ処理装置の概略断面斜視図である。
【図2】被処理基体に形成されるシリコン酸化膜中の深さ方向の窒素濃度分布を示すグラフである。
【図3】被処理基体に入射するイオンエネルギー分布の圧力依存性を示すグラフである。
【図4】圧力と窒素濃度分布ピーク深さの関係を示すグラフである。
【図5】XPSにより測定したN1sピークの基板温度による変化を示すグラフである。
【図6】図1に示すマイクロ波表面波干渉プラズマ処理装置の変形例の概略断面斜視図である。
【図7】図1に示すマイクロ波表面破干渉プラズマ処理装置に適用可能な載置台の昇降機構の概略ブロック図である。
【図8】図1に示すマイクロ波表面破干渉プラズマ処理装置に適用可能なガス混合比調整機構の概略ブロック図である。
【符号の説明】
1 プラズマ処理室
2 被処理基体
3 被処理基体戴置台
4 ヒーター
5 処理用ガス導入手段
6 排気口
7 誘電体窓
8 スロット付無終端環状導波管
9 冷却水路
10 冷却水路
11 スロット
12 吸着電極
13 ヘリウム供給口
21 制御部
22 温度計
23 電源
24 圧力センサー
25 排気系
27 質量流量制御器
28 弁
29 昇降機構
30 支持棒
31 上下位置検出器
Claims (1)
- 被処理基体の表面をプラズマにより改質する方法において、
被処理基体を、200℃以上400℃未満の温度に調節する工程と、
プラズマ処理室内に窒素原子を含むガス又は窒素原子を含むガスと希ガスの混合ガスを導入する工程と、
前記プラズマ処理室内の圧力を13.3Pa以上に調節する工程と、
前記プラズマ処理室内にプラズマを生成する工程と、
前記プラズマ中のイオンを10eV以下で前記被処理基体に入射させる工程とを有することを特徴とする方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002343855A JP2004175927A (ja) | 2002-11-27 | 2002-11-27 | 表面改質方法 |
US10/701,431 US6916678B2 (en) | 2002-11-27 | 2003-11-06 | Surface modification method |
TW092132610A TWI229384B (en) | 2002-11-27 | 2003-11-20 | Surface modification method |
CNB2003101154865A CN1275295C (zh) | 2002-11-27 | 2003-11-26 | 表面氮化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002343855A JP2004175927A (ja) | 2002-11-27 | 2002-11-27 | 表面改質方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004175927A true JP2004175927A (ja) | 2004-06-24 |
JP2004175927A5 JP2004175927A5 (ja) | 2006-01-12 |
Family
ID=32322008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002343855A Pending JP2004175927A (ja) | 2002-11-27 | 2002-11-27 | 表面改質方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US6916678B2 (ja) |
JP (1) | JP2004175927A (ja) |
CN (1) | CN1275295C (ja) |
TW (1) | TWI229384B (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008515161A (ja) * | 2004-09-30 | 2008-05-08 | 東京エレクトロン株式会社 | 基板を処理するためのプラズマ処理システム |
WO2016103510A1 (ja) * | 2014-12-26 | 2016-06-30 | 日本テクノリード株式会社 | 透明基板上にパターニングされた導電性高分子層を有する積層基板の製造方法及びメタルメッシュ基板の製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2302720B1 (en) * | 2003-03-26 | 2012-06-27 | Canon Kabushiki Kaisha | Electrode material for lithium secondary battery and electrode structure including the same |
US8084400B2 (en) | 2005-10-11 | 2011-12-27 | Intermolecular, Inc. | Methods for discretized processing and process sequence integration of regions of a substrate |
US7268084B2 (en) * | 2004-09-30 | 2007-09-11 | Tokyo Electron Limited | Method for treating a substrate |
US7902063B2 (en) * | 2005-10-11 | 2011-03-08 | Intermolecular, Inc. | Methods for discretized formation of masking and capping layers on a substrate |
JP5425361B2 (ja) * | 2006-07-28 | 2014-02-26 | 東京エレクトロン株式会社 | プラズマ表面処理方法、プラズマ処理方法およびプラズマ処理装置 |
WO2018195426A1 (en) * | 2017-04-20 | 2018-10-25 | Micromaterials Llc | Selective sidewall spacers |
JP6903040B2 (ja) | 2018-09-21 | 2021-07-14 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置、およびプログラム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000294550A (ja) * | 1999-04-05 | 2000-10-20 | Tokyo Electron Ltd | 半導体製造方法及び半導体製造装置 |
WO2002058130A1 (en) * | 2001-01-22 | 2002-07-25 | Tokyo Electron Limited | Method for producing material of electronic device |
JP2002208593A (ja) * | 2001-01-11 | 2002-07-26 | Tokyo Electron Ltd | シリコン酸窒化膜形成方法 |
JP2002222941A (ja) * | 2001-01-24 | 2002-08-09 | Sony Corp | Mis型半導体装置及びその製造方法 |
JP2002261097A (ja) * | 2000-12-28 | 2002-09-13 | Tadahiro Omi | 誘電体膜およびその形成方法、半導体装置、不揮発性半導体メモリ装置、および半導体装置の製造方法 |
WO2003088345A1 (en) * | 2002-03-29 | 2003-10-23 | Tokyo Electron Limited | Material for electronic device and process for producing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5681394A (en) * | 1991-06-26 | 1997-10-28 | Canon Kabushiki Kaisha | Photo-excited processing apparatus and method for manufacturing a semiconductor device by using the same |
JPH06140392A (ja) | 1992-10-27 | 1994-05-20 | Fujitsu Ltd | 半導体装置の製造方法 |
US6110842A (en) * | 1996-06-07 | 2000-08-29 | Texas Instruments Incorporated | Method of forming multiple gate oxide thicknesses using high density plasma nitridation |
EP0847079A3 (en) | 1996-12-05 | 1999-11-03 | Texas Instruments Incorporated | Method of manufacturing an MIS electrode |
US6482476B1 (en) * | 1997-10-06 | 2002-11-19 | Shengzhong Frank Liu | Low temperature plasma enhanced CVD ceramic coating process for metal, alloy and ceramic materials |
-
2002
- 2002-11-27 JP JP2002343855A patent/JP2004175927A/ja active Pending
-
2003
- 2003-11-06 US US10/701,431 patent/US6916678B2/en not_active Expired - Fee Related
- 2003-11-20 TW TW092132610A patent/TWI229384B/zh not_active IP Right Cessation
- 2003-11-26 CN CNB2003101154865A patent/CN1275295C/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000294550A (ja) * | 1999-04-05 | 2000-10-20 | Tokyo Electron Ltd | 半導体製造方法及び半導体製造装置 |
JP2002261097A (ja) * | 2000-12-28 | 2002-09-13 | Tadahiro Omi | 誘電体膜およびその形成方法、半導体装置、不揮発性半導体メモリ装置、および半導体装置の製造方法 |
JP2002208593A (ja) * | 2001-01-11 | 2002-07-26 | Tokyo Electron Ltd | シリコン酸窒化膜形成方法 |
WO2002058130A1 (en) * | 2001-01-22 | 2002-07-25 | Tokyo Electron Limited | Method for producing material of electronic device |
JP2002222941A (ja) * | 2001-01-24 | 2002-08-09 | Sony Corp | Mis型半導体装置及びその製造方法 |
WO2003088345A1 (en) * | 2002-03-29 | 2003-10-23 | Tokyo Electron Limited | Material for electronic device and process for producing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008515161A (ja) * | 2004-09-30 | 2008-05-08 | 東京エレクトロン株式会社 | 基板を処理するためのプラズマ処理システム |
JP4861329B2 (ja) * | 2004-09-30 | 2012-01-25 | 東京エレクトロン株式会社 | 基板を処理するためのプラズマ処理システム |
WO2016103510A1 (ja) * | 2014-12-26 | 2016-06-30 | 日本テクノリード株式会社 | 透明基板上にパターニングされた導電性高分子層を有する積層基板の製造方法及びメタルメッシュ基板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN1503331A (zh) | 2004-06-09 |
US20040102053A1 (en) | 2004-05-27 |
TWI229384B (en) | 2005-03-11 |
US6916678B2 (en) | 2005-07-12 |
CN1275295C (zh) | 2006-09-13 |
TW200416887A (en) | 2004-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8236706B2 (en) | Method and apparatus for growing thin oxide films on silicon while minimizing impact on existing structures | |
JP4795407B2 (ja) | 基板処理方法 | |
US7915177B2 (en) | Method of forming gate insulation film, semiconductor device, and computer recording medium | |
US7723241B2 (en) | Plasma processing method and computer storage medium | |
CN101048858B (zh) | 绝缘膜形成方法及基板处理方法 | |
JP2004349546A (ja) | 酸化膜形成方法、酸化膜形成装置および電子デバイス材料 | |
JP2004175927A (ja) | 表面改質方法 | |
JP2007324185A (ja) | プラズマ処理方法 | |
JP3233281B2 (ja) | ゲート酸化膜の形成方法 | |
JP2004165377A (ja) | 表面改質方法 | |
JP2005252031A (ja) | プラズマ窒化方法 | |
US20020139304A1 (en) | Semiconductor manufacturing apparatus | |
JP2006019366A (ja) | 半導体装置の絶縁膜形成方法 | |
JP2008192919A (ja) | シリコン酸化膜の窒化方法 | |
JP2003273103A (ja) | 半導体の製造方法および製造装置 | |
US20090275209A1 (en) | Plasma processing apparatus and method | |
US20080206968A1 (en) | Manufacturing method of semiconductor device | |
JPH01158736A (ja) | 堆積膜形成方法及びその装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051121 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090224 |