JP2004172177A - 発信装置 - Google Patents
発信装置 Download PDFInfo
- Publication number
- JP2004172177A JP2004172177A JP2002333112A JP2002333112A JP2004172177A JP 2004172177 A JP2004172177 A JP 2004172177A JP 2002333112 A JP2002333112 A JP 2002333112A JP 2002333112 A JP2002333112 A JP 2002333112A JP 2004172177 A JP2004172177 A JP 2004172177A
- Authority
- JP
- Japan
- Prior art keywords
- photonic crystal
- electromagnetic wave
- crystal structure
- photonic
- transmitting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
【解決手段】第一のフォトニック結晶構造1と第二のフォトニック結晶構造2との間に放射アンテナを内包する不純物構造3を介在させ、前記放射アンテナより電磁波を放射することで前記第一のフォトニック結晶構造1若しくは前記第二のフォトニック結晶構造2を透過する電磁波を発信するものとした。
【選択図】図1
Description
【発明の属する技術分野】
本発明は、情報通信機器その他種々の機器への適用が可能な電磁波発信装置に関する。
【0002】
【従来の技術】
光波と電波との境界にあるTHz帯域(おおよそ100GHz〜10THzの帯域)の利用技術は、GHz帯域や赤外〜可視域を利用する技術と比較して立ち後れていた。だが、近年、THz電磁波を発生させる幾つかの手段が考案され、この帯域を用いた超高速通信、超高速エレクトロニクス等の研究も進展しつつある。THz電磁波を発生させる手段として、例えば、光伝導アンテナ(光スイッチ)、半導体表面、量子井戸、電気光学結晶等をフェムト秒光パルスで励起してTHzパルス電磁波を発生させるものや、二つの連続波レーザを光伝導アンテナに照射することでフォトミキシングによる連続波THz電磁波を発生させるものが既知である(非特許文献1を参照)。
【0003】
【非特許文献1】阪井清美、谷正彦、「テラヘルツ光エレクトロニクス」、応用物理、社団法人応用物理学会、2001年2月、第70巻、第2号、p.149−155
【0004】
【発明が解決しようとする課題】
しかしながら、THz帯域で高Q値の共振器を作成することは、依然として困難である。
【0005】
他方、昨今、周期的な屈折率分布をもち、フォトニックバンドギャップや欠陥モード生起等の特徴的な性質を有する、フォトニック結晶と呼ばれる誘電体材料への関心が高まっている。フォトニック結晶は、その様々な特徴により、光学あるいは電気光学素子への応用が期待される。フォトニック結晶の応用研究は、通信分野への適用の観点から、これまで主に近赤外領域で行われてきた。だが、フォトニック結晶は、構造サイズのスケーリングにより、働く電磁場の振動数領域を変更することができる。
【0006】
本発明は、フォトニック結晶を利用し、所要の波長成分を選択的に強めて、THz電磁波を含む電磁波を好適に発信し得る発信装置を実現しようとするものである。
【0007】
【課題を解決するための手段】
第一のフォトニック結晶構造と第二のフォトニック結晶構造との間に放射アンテナを内包する不純物構造を介在させて発信装置を構成した。該発信装置において、前記放射アンテナより電磁波を放射すると、前記第一のフォトニック結晶構造若しくは前記第二のフォトニック結晶構造を透過する電磁波が発信される。発信される電磁波には、欠陥モード(若しくは、不純物モード。空間的にもエネルギー的にも局在したモード)の成分が含まれる。加えて、このとき、第一のフォトニック結晶構造と第二のフォトニック結晶構造とが共振器としての作用を営む。結果として、特に欠陥モードが高い強度で外方に発信されるものとなる。
【0008】
並びに、本発明では、放射アンテナの傍らにフォトニック結晶構造を配置し、前記放射アンテナより電磁波を放射することで反フォトニック結晶構造側に電磁波を発信可能とした発信装置を構成した。このものによれば、前記フォトニック結晶構造のフォトニックバンドギャップに該当する周波数領域の電磁波の発信強度を向上させることが可能である。
【0009】
【発明の実施の形態】
以下、本発明の一実施形態を、図面を参照して説明する。図1に、本発明に係る発信装置Dを模式的に示す。このものは、フォトニック結晶に欠陥を導入することによって構成されており、略薄板状の面欠陥をなす不純物構造3が第一のフォトニック結晶構造1と第二のフォトニック結晶構造2とを隔てるものとなっている。不純物構造3は、電磁波を放射する放射アンテナを内包する。そして、該放射アンテナより連続波電磁波を放射することにより、第一のフォトニック結晶構造1若しくは第二のフォトニック結晶構造を透過する電磁波を外方へ発信し得るものである。
【0010】
フォトニック結晶の特徴的な性質として、フォトニックバンドギャップの形成を挙げることができる。フォトニックバンドギャップ帯に該当する振動数をもつ光は、フォトニック結晶を透過することができない。ところが、フォトニック結晶に欠陥を導入すると、構造の周期性が損なわれて欠陥モードと呼ばれるQ値の高いピークがフォトニックバンドギャップ内に立つ。このようなモードに関し、フォトニック結晶は高Q値の共振器として働くことができる。また、フォトニックバンドギャップ端近傍の振動数をもつ光の群速度が小さいことも特徴の一つである。角振動数をω、波数ベクトルをkとおくと、状態密度D(ω)〜dk/dω、群速度Vg(ω)=dω/dkであるから、状態密度は群速度に反比例する。よって、群速度が小さくなれば状態密度が増大する。即ち、フォトニック結晶はフォトニックバンドギャップ端近傍において状態密度が大きいという特性を有している。
【0011】
本発明に係る発信装置Dを実験的に構築するためには、例えば、薄板状の光伝導アンテナ素子をフォトニック結晶で挟み込む。光伝導アンテナ素子について詳述すると、図2に示すように、半絶縁性基板31(GaAs基板等)上に光伝導薄膜32(低温エピタキシャル成長GaAs等)を成長させ、さらにその上に金属の平行伝送線路33、34を蒸着させて設けたもので、各平行伝送線路33、34の中央部には互いに相寄る方向に突き出る突出片33a、34aを形成してある(図示例は、いわゆるボウタイ型光伝導アンテナ)。これら平行伝送線路33、34は電極を兼ねる。そして、平行伝送線路33、34間に直流バイアスを印加した状態で、周波数が相異なる二つの連続波レーザ41、42を一対の突出片33a、34aの間隙に波面をそろえて照射することで、電流変調を惹起して二つのレーザ41、42の差周波数に相当する連続波電磁波を放射させることができる。この連続波電磁波は、誘電率がより大きい基板31側に強く放射される。
【0012】
また、第一のフォトニック結晶構造1及び第二のフォトニック結晶構造2として、例えば、Si等を素材とする角柱状のロッドと複数本のロッド間に介在する空隙とよりなる擬単純立方格子フォトニック結晶を採用することができる。四角エアロッド擬単純立方格子フォトニック結晶を、図3に示す。格子定数を0.40mm、エアロッド充填率を0.818、ロッドの誘電率を11.4(Siの誘電率)と設定したとき、該フォトニック結晶は6.5〜10.2cm−1(1cm−1≒30GHz)即ちおおよそ0.2〜0.3THzの周波数領域にてフォトニックバンドギャップをもつものとなる。単位格子がx軸、y軸方向に平面的に並ぶフォトニック結晶スラブをz軸方向に複数層重ね、次いで不純物構造3たる光伝導アンテナ素子を配置し、さらに前記スラブをz軸方向に複数層重ねることにより、発信装置Dを構築できる。このように構築した発信装置Dを、図4に模式的に示す。
【0013】
以降、上述の発信装置Dより発信される電磁波の強度の周波数特性に関して、実験結果を基に述べる。発信装置Dより発信される電磁波を測定するためのシステムの概略を、図5に示す。該システムは、二つの単一モード連続波レーザ41、42を組み合わせた励起光を発信装置Dの上流側(左側;パラメタzの小さい側)より照射し、光伝導アンテナ素子の平行伝送線路33、34の突出片33a、34aの間隙を励起して連続波電磁波を放射させるとともに、下流側(右側;パラメタzの大きい側)のフォトニック結晶構造(図示例では、第二のフォトニック結晶構造2)を透過する電磁波をInSbホットエレクトロン検出器(ボロメータ)5で測定するものである。なお、第一のフォトニック結晶構造1を上流側、第二のフォトニック結晶構造2を下流側とし、光伝導アンテナ素子の平行伝送線路33、34及び光伝導薄膜32を上流側、基板31を下流側に配する。しかして、一方の連続波レーザ42の波長を変えることにより差周波数を変えて、光伝導アンテナ素子より放射される電磁波の周波数を変えながら下流側のフォトニック結晶構造2を透過する電磁波の強度を測定した。なお、ここでは、フォトニック結晶スラブの単位格子のセル数を8×8とし、各フォトニック結晶構造1、2を構成するフォトニック結晶スラブの層数をそれぞれ4層ずつとした。
【0014】
図6、図7に示すものは、光伝導アンテナ素子のみより下流側(基板31側)に放射される電磁波のスペクトル、並びに、発信装置Dより下流側に発信される電磁波のスペクトルを測定した結果である。横軸は測定電磁波の周波数、縦軸は測定電磁波の強度であり、光伝導アンテナ素子のみより放射される電磁波のスペクトルを実線で、発信装置Dより発信される電磁波のスペクトルを点線で、それぞれ表している。さらに、図7は、図6の一部、フォトニック結晶構造1、2のもつフォトニックバンドギャップ帯を含む周波数領域をクローズアップしたものである。光伝導アンテナ素子のみからは、基板31のファブリー・ペロー共振器効果に基づくピークを伴う放射スペクトルが得られる。一方で、上記発信装置Dからは、複数の増強されたピークが得られる。フォトニックバンドギャップ中の7.1cm−1、10.1cm−1付近に見出されるピークは、欠陥モードの共鳴効果による放射増強、言い換えるならば、面欠陥をなす不純物構造3の導入に伴い励起される欠陥モードが、第一のフォトニック結晶1と第二のフォトニック結晶2とが発揮する共振器効果によって効率よく外方に発信されたものと考えられる。さらに、6.4cm−1付近に見出されるピークは、先に述べたフォトニックバンドギャップ端の大きな状態密度に関係した放射増強、言い換えるならば、フォトニックバンドギャップ端に立つ定在波による増強である。光伝導アンテナ素子のみの場合、基板31のファブリー・ペロー共振器効果により状態密度は制約を受ける。一方で、光伝導アンテナ素子をフォトニック結晶構造1、2で挟んだ場合には、フォトニックバンドギャップ端の状態密度が大きいことから、基板31のファブリー・ペロー共振器効果による状態密度の制約が緩和されて放射が増強されるものと解釈することができる。また、フォトニックバンドギャップ外の帯域でも、指向性の向上に伴う放射電磁波スペクトルの増強をある程度確認できる。
【0015】
因みに、光伝導アンテナ素子の下流側にのみフォトニック結晶構造を設けた場合に該フォトニック結晶構造を透過して下流側に発信される電磁波のスペクトルは、図8、図9に示すようなものとなる。なお、光伝導アンテナ素子の下流側にのみフォトニック結晶構造を設けた場合に下流側に発信される電磁波のスペクトルを実線で表し、上記発信装置Dより発信される電磁波のスペクトルを点線で表し(これは図6、図7に示しているものと同等である)ている。図9は、フォトニックバンドギャップ帯を含む周波数領域をクローズアップしたものである。
【0016】
実験結果より明らかにされたように、第一のフォトニック結晶構造1と第二のフォトニック結晶構造2との間に放射アンテナを内包する不純物構造3を介在させ、前記放射アンテナより電磁波を放射することで下流側のフォトニック結晶即ち第二のフォトニック結晶構造2を透過する電磁波を発信可能とした発信装置Dは、放射アンテナのみの場合あるいは下流側にのみフォトニック結晶構造を設けた場合と比較して、特定振動数の電磁波の強度を高めて下流側に効率よく出力できるものとなる。特定振動数の電磁波の放射効率及びQ値を改善可能である点で、既存の基板レンズを用いた増強とは大いに異なる。該発信装置Dに特異的な増強効果は、欠陥モードの共鳴効果、並びにフォトニックバンドギャップ端近傍での大きな状態密度に由来する効果である。欠陥モードの共鳴効果により増強される周波数成分、即ち7.1cm−1、10.1cm−1といったピークの周波数は、第一のフォトニック結晶1、第二のフォトニック結晶2の構造や、不純物構造3の厚み寸法等を変えることによりコントロール可能である。放射アンテナより連続波を放射するものとすれば、第一のフォトニック結晶構造1と第二のフォトニック結晶構造2との間で特定のモードがより集積され易くなるため、所要の波長成分の強度の向上に資する。また、フォトニックバンドギャップ端近傍の大きな状態密度に関係して増強される周波数成分、即ち6.4cm−1のピークの周波数は、異なるフォトニックバンドギャップをもつ別種のフォトニック結晶をフォトニック結晶構造1、2として用いることでコントロール可能であると予想される。しかしながら、当該モードは面欠陥層では弱い振幅しか持っていないため、不純物構造3の厚み寸法を変えたとしてもその周波数はあまり変化しないと思われる。
【0017】
ところで、図10に模式的に示すように、放射アンテナ3Aの上流側にのみフォトニック結晶構造1Aを設けて発信装置DAを構成する場合、下流側に発信される電磁波の強度の周波数特性は図6ないし図7に示したものとは異なる。上記の実験と同様、フォトニック結晶構造1Aとしてシリコン製四角エアロッド擬単純立方格子フォトニック結晶を用い、放射アンテナ3Aとして光伝導アンテナを用いてこのような発信装置DAを構築し、図5に示した実験システムで下流側(光伝導アンテナの基板31側)に発信される電磁波のスペクトルを測定した結果を、図11、図12に示す。なお、光伝導アンテナ素子のみより下流側に放射される電磁波のスペクトルを実線で表し(これは図6、図7に示しているものと同等である)、上述の発信装置DAより下流側に発信される電磁波のスペクトルを点線で表している。図12は、前記フォトニック結晶構造1Aのもつフォトニックバンドギャップ帯を含む周波数領域をクローズアップしたものである。フォトニックバンドギャップ帯の略全域にわたり、該発信装置DAより下流側に発信される電磁波の強度は光伝導アンテナのみより下流側に放射される電磁波の強度に勝る。即ち、フォトニックバンドギャップ帯において、上流側に設けたフォトニック結晶構造1Aの存在により、光伝導アンテナより放射される電磁波の上流側への伝搬が抑制されかつ下流側へ向かう電磁波が強められることが分かる。
【0018】
このように、放射アンテナ3Aの傍らにフォトニック結晶構造1Aを配置し、前記放射アンテナ3Aより電磁波を放射することで反フォトニック結晶構造側に電磁波を発信可能とした発信装置DAは、該フォトニック結晶構造1Aがもつフォトニックバンドギャップ帯の波長成分を強めた電磁波を下流側に効率よく出力できるものとなる。フォトニックバンドギャップはフォトニック結晶の素材、構造等を変えることによりコントロール可能である。従って、該発信装置DAを用いれば、所要の波長成分を選択的に強めた電磁波を発信することができる。
【0019】
なお、本発明は以上に詳述した実施形態に限られるものではない。上記実施形態では、発信装置の外部に設置したレーザを励起手段として放射アンテナより電磁波を放射させるものとしていたが、電磁波の放射の態様はこのようなものには限られない。放射アンテナは光伝導アンテナ素子には限られず、種々の態様のアンテナ素子を採用することが可能であって、例えば、外部より電力の供給を受けて電磁波を放射するようなものであってもよい。
【0020】
放射アンテナ、あるいは放射アンテナを内包する不純物構造の形状は、薄板状には限られない。フォトニック結晶の構造は、擬単純立方格子構造に限られない。第一のフォトニック結晶構造と第二のフォトニック結晶構造とが、互いに異なる構造を有するものであってもよい。勿論、フォトニック結晶構造を構成する素材はSiには限られない。
【0021】
その他各部の具体的構成は上記実施形態には限られず、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
【0022】
【発明の効果】
以上に詳述した本発明によれば、所要の波長成分を選択的に強めて電磁波を発信し得る発信装置を実現可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態における発信装置の全体構成を示す図
【図2】光伝導アンテナ素子を示す図
【図3】四角エアロッド擬単純立方格子フォトニック結晶を示す図
【図4】同実施形態における発信装置を模式的に示す図
【図5】透過電場スペクトルを測定するためのシステムを示す図
【図6】電場スペクトルの測定結果を示す図
【図7】電場スペクトルの測定結果を示す図
【図8】電場スペクトルの測定結果を示す図
【図9】電場スペクトルの測定結果を示す図
【図10】同実施形態における発信装置を模式的に示す図
【図11】電場スペクトルの測定結果を示す図
【図12】電場スペクトルの測定結果を示す図
【符号の説明】
D…発信装置
1…第一のフォトニック結晶構造
2…第二のフォトニック結晶構造
3…不純物構造
DA…発信装置
1A…フォトニック結晶構造
3A…放射アンテナ
Claims (2)
- 第一のフォトニック結晶構造と第二のフォトニック結晶構造との間に放射アンテナを内包する不純物構造を介在させ、前記放射アンテナより電磁波を放射することで前記第一のフォトニック結晶構造若しくは前記第二のフォトニック結晶構造を透過する電磁波を発信可能とした発信装置。
- 放射アンテナの傍らにフォトニック結晶構造を配置し、前記放射アンテナより電磁波を放射することで反フォトニック結晶構造側に電磁波を発信可能とした発信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002333112A JP3787626B2 (ja) | 2002-11-18 | 2002-11-18 | 発信装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002333112A JP3787626B2 (ja) | 2002-11-18 | 2002-11-18 | 発信装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004172177A true JP2004172177A (ja) | 2004-06-17 |
JP3787626B2 JP3787626B2 (ja) | 2006-06-21 |
Family
ID=32697913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002333112A Expired - Lifetime JP3787626B2 (ja) | 2002-11-18 | 2002-11-18 | 発信装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3787626B2 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004279604A (ja) * | 2003-03-13 | 2004-10-07 | Fuji Xerox Co Ltd | 波長変換装置 |
JP2006047663A (ja) * | 2004-08-04 | 2006-02-16 | Canon Inc | 3次元フォトニック結晶およびそれを用いた光学素子 |
JP2006065273A (ja) * | 2004-02-23 | 2006-03-09 | Canon Inc | 3次元周期構造及びそれを有する機能素子 |
JP2006147772A (ja) * | 2004-11-18 | 2006-06-08 | Matsushita Electric Ind Co Ltd | 電磁波発生装置 |
JP2006186348A (ja) * | 2004-12-02 | 2006-07-13 | Canon Inc | 発光装置、発光装置を備えた光源装置 |
JP2009080448A (ja) * | 2007-09-07 | 2009-04-16 | Kagawa Univ | テラヘルツ光源 |
JP2011103321A (ja) * | 2009-11-10 | 2011-05-26 | Pioneer Electronic Corp | 電磁波検出装置、電磁波発生装置およびこれらを用いた時間領域分光装置 |
-
2002
- 2002-11-18 JP JP2002333112A patent/JP3787626B2/ja not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004279604A (ja) * | 2003-03-13 | 2004-10-07 | Fuji Xerox Co Ltd | 波長変換装置 |
JP2006065273A (ja) * | 2004-02-23 | 2006-03-09 | Canon Inc | 3次元周期構造及びそれを有する機能素子 |
JP4612844B2 (ja) * | 2004-02-23 | 2011-01-12 | キヤノン株式会社 | 3次元周期構造及びそれを有する機能素子 |
JP2006047663A (ja) * | 2004-08-04 | 2006-02-16 | Canon Inc | 3次元フォトニック結晶およびそれを用いた光学素子 |
JP4560348B2 (ja) * | 2004-08-04 | 2010-10-13 | キヤノン株式会社 | 3次元フォトニック結晶およびそれを用いた光学素子 |
JP2006147772A (ja) * | 2004-11-18 | 2006-06-08 | Matsushita Electric Ind Co Ltd | 電磁波発生装置 |
JP4708002B2 (ja) * | 2004-11-18 | 2011-06-22 | パナソニック株式会社 | 電磁波発生装置 |
JP2006186348A (ja) * | 2004-12-02 | 2006-07-13 | Canon Inc | 発光装置、発光装置を備えた光源装置 |
JP2009080448A (ja) * | 2007-09-07 | 2009-04-16 | Kagawa Univ | テラヘルツ光源 |
JP2011103321A (ja) * | 2009-11-10 | 2011-05-26 | Pioneer Electronic Corp | 電磁波検出装置、電磁波発生装置およびこれらを用いた時間領域分光装置 |
Also Published As
Publication number | Publication date |
---|---|
JP3787626B2 (ja) | 2006-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7397055B2 (en) | Smith-Purcell radiation source using negative-index metamaterial (NIM) | |
Bulu et al. | Highly directive radiation from sources embedded inside photonic crystals | |
JP4756741B2 (ja) | 電磁波生成方法及び装置、並びに中心波長決定方法 | |
US6738397B2 (en) | Solid-state light source apparatus | |
WO2007149853A2 (en) | Efficient terahertz sources by optical rectification in photonic crystals and metamaterials exploiting tailored transverse dispersion relations | |
Tymchenko et al. | Highly-efficient THz generation using nonlinear plasmonic metasurfaces | |
Lukowski et al. | Widely tunable high-power two-color VECSELs for new wavelength generation | |
Nourmohammadi et al. | Ultra-wideband photonic hybrid plasmonic horn nanoantenna with SOI configuration | |
US8031014B2 (en) | Solid state terahertz radiation frequency multiplier | |
US20140197425A1 (en) | Wide area array type photonic crystal photomixer for generating and detecting broadband terahertz wave | |
Kruczek et al. | Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device | |
WO2014136943A1 (ja) | レーザ装置 | |
Droulias et al. | Novel lasers based on resonant dark states | |
CN106159641A (zh) | 携带轨道角动量的太赫兹波的发生装置及产生方法 | |
JP3787626B2 (ja) | 発信装置 | |
JP2005195707A (ja) | テラヘルツ電磁波発振器 | |
Volchok et al. | Coherent terahertz emission from a plasma layer due to linear conversion of laser wakefields on pre-modulated ion density | |
US6621841B1 (en) | Phonon-pumped semiconductor lasers | |
JP2009180809A (ja) | テラヘルツ電磁波発生装置 | |
Rivera-Lavado et al. | Arrays and new antenna topologies for increasing THz power generation using photomixers | |
Belarouci et al. | Control of F2 color centers spontaneous emission in LiF thin films inside optical microcavities | |
Iida et al. | Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal | |
Shikata et al. | Terahertz-wave generation from surface phonons at forbidden frequencies of lithium niobate | |
Baryshev et al. | Two-dimensional distributed feedback lasers with excitation of TE waves in the active medium | |
Xu et al. | Backward-Emitting Antenna Based on Ridge Subwavelength Grating Array Enabled High Wavelength Sensitivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050125 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3787626 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |